Representations of the braid group B_n and the highest weight modules of $U(\mathfrak{sl}_{n-1})$ and $U_q(\mathfrak{sl}_{n-1})$

Alexandre V. Kosyak, Inst. of Math. Kiev/MPI, Bonn kosyak01@yahoo.com, kosyak@imath.kiev.ua *

Abstract

In [1] we have constructed a $\left[\frac{n+1}{2}\right] + 1$ parameters family of irreducible representations of the Braid group B_3 in arbitrary dimension $n \in \mathbb{N}$, using a q-deformation of the Pascal triangle. This construction extends in particular results by S.P. Humphries (2000), who constructed representations of the braid group B_3 in arbitrary dimension using the classical Pascal triangle. E. Ferrand (2000) obtained an equivalent representation of B_3 by considering two special operators in the space $\mathbb{C}^n[X]$. Slightly more general representations were given by I. Tuba and H. Wenzl (2001). They involve $\left[\frac{n+1}{2}\right]$ parameters (and also use the classical Pascal's triangle). The latter authors also gave the complete classification of all simple representations of B_3 for dimension $n \leq 5$. Our construction generalize all mentioned results and throws a new light on some of them. We also study the irreducibility and equivalence of the constructed representations.

In the present article we show that all representations constructed in [1] may be obtained by taking exponent of the highest weight modules of $U(\mathfrak{sl}_2)$ and $U_q(\mathfrak{sl}_2)$. We generalize these connections between the representation of the braid group B_n and the highest weight modules of the $U_q(\mathfrak{sl}_{n-1})$ for arbitrary *n* using the well-known reduced Burau representations.

^{*}The author would like to thank the Max-Planck-Institute of Mathematics and the Institute of Applied Mathematics, University of Bonn for the hospitality. The partial financial support by the DFG project 436 UKR 113/87 is gratefully acknowledged.

1 Introduction. Braid group representations

Our aim is to describe the dual \hat{B}_n of the braid group B_n . It is natural to compare the representation theory of the symmetric group S_n and of the braid group B_n . We know almost everything about representation theory of the symmetric group S_n . We know the description of the dual \hat{S}_n in terms of Young diagrams. We know even the Plancherel measure on \hat{S}_n . The Young graph explains how to decompose the restriction $\pi \mid_{S_{n-1}}$ of the representation $\pi \in \hat{S}_n$, etc.

The braid groups B_n are defined by the generators σ_i , $1 \le i \le n-1$ and by the relations $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$, $\sigma_i \sigma_j = \sigma_i \sigma_j$ for $|i-j| \ge 2$. The dual \hat{B}_n of the group B_n is known only for the commutative case when n = 2. In this case $B_2 \cong \mathbb{Z}$ hence $\hat{B}_2 \cong S^1$. The representation theory for the braid groups B_n is much more complicated than for S_n . The reason is the following. In the case of the group S_n we have the essential (quadratic) relation $\sigma_i^2 = 1$, hence $Sp(\pi(\sigma_i)) \subseteq \{-1, 1\}$. In the case of the group B_n we do not have these conditions. Since $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ we have $Sp(\pi(\sigma_i)) = Sp(\pi(\sigma_{i+1}))$, but the spectra $Sp(\pi(\sigma_i))$ may be almost arbitrary.

The Hecke algebra $H_n(q)$ see f.e.[15] appears as the factor algebra of the group algebra of the group B_n subject to the following quadratic relation $\sigma_i^2 = (q-1)\sigma_i + q, 1 \leq i \leq n-1$, hence $Sp(\pi(\sigma_i)) \subseteq \{-1,q\}$ and $H_n(q) \cong \mathbb{C}[S_n]$. This is a reason why the representation theory of Hecke algebras is well developed.

The next step is to impose the polynomial condition $p_k(\sigma_i) = 0$ on the generators σ_i where k is the order of the polynomial $p_k(x)$. For k = 3 the corresponding algebra is called *Birman–Murakami–Wenzl type algebra* or simple BMW algebra see [26, 32] (see also [27]) and so on.

The situation becomes much more complicated if no additional conditions on the spectra are imposed. We *shall study* this *general case* for .

In [29] I.Tuba and H.Wenzl gave the complete classification of all simple representations of B_3 for dimension ≤ 5 .

In [12] E.Formanek et al. gave the complete classification of all simple representations of B_n for dimension $\leq n$.

We generalize the results I. Tuba and H. Wenzl for B_3 , give new representations of B_n for large dimension and establish connection between the representations of B_n and the highest weight modules of the quantum group $U_q(\mathfrak{sl}_{n-1}).$

More precisely, in the work [1] with S.Albeverio we have constructed a $\left[\frac{n+1}{2}\right] + 1$ parameter family of irreducible representations of the braid group B_3 it in arbitrary dimension $n \in \mathbb{N}$, using a q-deformation of the Pascal triangle. This construction extends in particular results by S.P. Humphries [14], I. Tuba and H. Wenzl [29], and E. Ferrand [11]. The irreducibility and the equivalence of the constructed representations is studied. For example the representations corresponding to different q and n are nonequivalent.

In this article we show that there is a striking connection between these representations of B_3 and a highest weight modules of the quantum group $U_q(\mathfrak{sl}_2)$, a one-parameter deformation of the universal enveloping algebra $U(\mathfrak{sl}_2)$ of the Lie algebra \mathfrak{sl}_2 . The starting point for all these considerations is some homomorphism ρ_3 of the braid group B_3 into $SL(2,\mathbb{Z})$:

$$\rho_3: B_3 \mapsto \mathfrak{sl}_2 \stackrel{\exp}{\mapsto} \operatorname{SL}(2, \mathbb{Z})$$
$$\sigma_1 \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \stackrel{\exp}{\mapsto} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \sigma_2 \mapsto \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \stackrel{\exp}{\mapsto} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

The constructed representations may be treated as the q-symmetric power of this fundamental representation or as an appropriate q-exponential of the highest weight modules of $U_q(\mathfrak{sl}_2)$.

We generalize these connections between the representation of the braid group B_n and the highest weight modules of the $U_q(\mathfrak{sl}_{n-1})$ for arbitrary nusing the well-known reduced Burau representation $b_n^{(t)}$ see c.f. [15]. We note that in particular $\rho_3 = b_3^{(-1)}$.

Let \mathfrak{g} be the Lie algebra defined by a Cartan matrix \mathbf{A} and let \mathbf{B} be the corresponding braid group. Denote by $\mathbf{U}(\mathfrak{g})$ the quantized enveloping algebra of \mathfrak{g} over the field $\mathbb{C}(v)$, and let V be the integrable $\mathbf{U}(\mathfrak{g})$ -module. In [24] G. Lusztig defined a natural action of \mathbf{B} on V which permutes the weight space of V according to the action of the Weyl group on the weights. This rather *general but different approach* allows us also to construct the irreducible representations of the braid group \mathbf{B} (see [22]).

0. Definition of the Artin braid group B_n

$$B_n = \langle (\sigma_i)_{i=1}^{n-1}, | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad \sigma_i \sigma_j = \sigma_i \sigma_j, \quad | i-j | \ge 2 \rangle.$$

 $B_n = \pi_1(X)$ is the fundamental group π_1 of the configuration space $X = \{\mathbb{C}^n \setminus \Delta\}/S_n$ where $\Delta = \{(z_1, ..., z_n) \mid x_i = z_j \text{ for some } i \neq j\}$ and the group S_n act freely on $\mathbb{C}^n \setminus \Delta$ by permuting coordinates.

A **BRAID** on *n* strings is a collection of curves in \mathbb{R}^3 joining *n* points in a horizontal plane to the *n* points directly below them on another horizontal plane. Operation: concatenation.

$$\sigma_1 = \left| \left| \ldots \right|, \quad \sigma_2 = \left| \left| \left| \left| \ldots \right|, \quad \sigma_{n-1} = \left| \ldots \right| \right| \right| \right|$$

Knot theory : Alexander, Jones, HOMFLYPT, Kauffman polynomials. Respectively: Temperley-Lieb, Hecke, BMW algebras. Geometry, physics etc. Relation with the symmetric group $S_n : \sigma_i^2 = 1$

$$\sigma_i^2 = 1 \Rightarrow Sp\left(\rho(\sigma_i)\right) \subseteq \{-1, 1\}$$
$$Rep(S_n) \qquad Rep(B_n)?$$

 $\hat{S}_n = \{ \text{Young diagrams} \}, \text{ Plancherel measure on } \hat{S}_n.$

The Young graph explains how to decompose the restriction $\rho \mid_{S_{n-1}}$ of the representation $\rho \in \hat{S}_n$, etc.

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \Rightarrow Sp\left(\rho(\sigma_i)\right) = Sp\left(\rho(\sigma_{i+1})\right).$$

The *Hecke algebra* is defined by

$$H_n(q) = \langle \sigma_i \rangle_{i=1}^{n-1} \mid ...\sigma_i^2 = (q-1)\sigma_i + q \rangle, \quad p_2(\sigma_i) = 0,$$

hence $Sp(\rho(\sigma_i)) \subseteq \{-1, q\}$ and $H_n(q) \cong \mathbb{C}[S_n]$.

- 1. **Definition** $B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle.$
- 2. Homomorphism $\rho: B_3 \mapsto \mathrm{SL}(2,\mathbb{Z}),$

$$\sigma_1 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \sigma_2 = (\sigma_1^{-1})^{\sharp}.$$

- 3. $B_3/Z(B_3) \simeq \operatorname{PSL}(2,\mathbb{Z}) \simeq \mathbb{Z}_2 * \mathbb{Z}_3.$
- 4. P. Humphries result, Pascal's triangle

$$\sigma_1 \mapsto \sigma_1(1,n), \ \sigma_2 \mapsto \sigma_2(1,n).$$

- 5. Ferrand result $\Phi_n, \Psi_n \in \operatorname{End} \mathbb{C}^n[X]$.
- 6. Tubo-Wenzl example

$$\sigma_1, \mapsto \sigma_1(1, n)\Lambda_n, \quad \sigma_2 \mapsto \Lambda_n^{\sharp}\sigma_2(1, n), \quad \Lambda_n\Lambda_n^{\sharp} = cI.$$

- 7. Tubo Wenzl classifications of $B_3 \text{mod}, \dim V \leq 5$.
- 8. Generalizations

$$\sigma_1 \mapsto \sigma_1^{\Lambda}(q, n) := \sigma_1(q, n) D_n(q)^{\sharp} \Lambda_n,$$

$$\sigma_2 \mapsto \sigma_2^{\Lambda}(q, n) := \Lambda_n^{\sharp} D_n(q) \sigma_2(q, n),$$

where $\sigma_2(q, n) = (\sigma_1^{-1}(q^{-1}, n))^{\sharp}, \ \Lambda_n = \operatorname{diag}(\lambda_r)_{r=0}^n, \ \Lambda_n \Lambda_n^{\sharp} = cI,$

$$D_n(q) = \operatorname{diag}(q_r)_{r=0}^n, \ q_r = q^{\frac{(r-1)r}{2}}, \ r, n \in \mathbb{N}.$$

- 9. The connection between $Rep(B_3)$ and $U_q(\mathfrak{sl}_2)$ -mod.
- 10. The Burau representation $\rho_n : B_n \mapsto \operatorname{GL}_n(\mathbb{Z}[t, t^{-1}]).$
- 11. Lowrence-Kramer representations
- 12. Generalization of 8 and 9 for B_n .
- 13. Formanek classifications of $B_n \text{mod}$, for $\dim V \leq n$.

1. $B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle.$ 2. $\rho : B_3 \mapsto SL(2, \mathbb{Z}),$

$$\sigma_1 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

3. $B_3/Z(B_3) \simeq \mathrm{PSL}(2,\mathbb{Z}) \simeq \mathbb{Z}_2 * \mathbb{Z}_3.$ Hint: the Pascal triangle, $\sigma_1 \mapsto \sigma_2$? $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$

$$\sigma_1(1,2) := \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \sigma_1^{-1}(1,2)^{\sharp} := \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

Notations the **central symmetry:**

$$A^{\sharp} := (A^{t})^{s}, \quad A^{\sharp} = (a_{ij}^{\sharp}), \ a_{ij}^{\sharp} = a_{n-i,n-j},$$
$$\sigma_{1} \mapsto \sigma_{1}(1,2), \quad \sigma_{2} \mapsto \sigma_{2}(1,2) := \sigma_{1}^{-1}(1,2)^{\sharp}.$$

4. **P. Humphries**, [14] representations of B_3 in \mathbb{C}^{n+1}

$$\sigma_1 \mapsto \sigma_1(1,n), \quad \sigma_2 \mapsto \sigma_2(1,n) := \sigma_1^{-1}(1,n)^{\sharp}. \tag{1}$$

5. Ferrand result, [11]. $\Phi_n, \Psi_n \in \operatorname{End} \mathbb{C}^n[X] : \Phi_n \Psi_n \Phi_n = \Psi_n \Phi_n \Psi_n$.

$$(\Phi_n p)(X) := p(X+1), \quad (\Psi_n p)(X) := (1-X)^n p(X/(1-X)).$$

6. Tubo-Wenzl example [29]: representations $\sigma^{\Lambda}(1,n)$ of B_3 in \mathbb{C}^{n+1}

$$\sigma_1 \mapsto \sigma_1(1, n)\Lambda_n, \quad \sigma_2 \mapsto \Lambda_n^{\sharp} \sigma_2(1, n),$$
 (2)

conditions on the complex diagonal matrix $\Lambda_n = \text{diag}(\lambda_0, \lambda_1, ..., \lambda_n)$ are the following:

$$\Lambda_n \Lambda_n^{\sharp} = cI, \ c \in \mathbb{C}.$$
(3)

7. Tubo - Wenzl classifications of $B_3 - \text{mod}$, $\dim V \leq 5$.

See [29]. Let V be a simple B_3 module of dimension n = 2, 3. Then there exist a basis for V for which σ_1 and σ_2 act as follows $(\lambda = (\lambda_k)_k)$ for n = 2 and n = 3

$$\sigma_1^{\lambda} := \begin{pmatrix} \lambda_1 & \lambda_1 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2^{\lambda} := \begin{pmatrix} \lambda_2 & 0 \\ -\lambda_2 & \lambda_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_2 & 0 \\ 0 & \lambda_1 \end{pmatrix}, \quad (4)$$

$$\sigma_1 \mapsto \sigma_1^{\lambda} = \begin{pmatrix} \lambda_1 \ \lambda_1 \lambda_3 \lambda_2^{-1} + \lambda_2 \ \lambda_2 \\ 0 \ \lambda_2 \ \lambda_3 \end{pmatrix}, \quad \sigma_2 \mapsto \sigma_2^{\lambda} := \begin{pmatrix} \lambda_3 \ 0 \ 0 \\ -\lambda_2 \ \lambda_2 \ 0 \\ \lambda_2 \ -\lambda_1 \lambda_3 \lambda_2^{-1} - \lambda_2 \ \lambda_1 \end{pmatrix}.$$
(5)

Let us set $D = \sqrt{\lambda_2 \lambda_3 / \lambda_1 \lambda_4}$. All simple modules for n = 4 are the following:

$$\sigma_1 \mapsto \sigma_1^{\lambda} = \begin{pmatrix} \lambda_1 \ (1+D^{-1}+D^{-2})\lambda_2 \ (1+D^{-1}+D^{-2})\lambda_3 \ \lambda_4 \\ 0 \ \lambda_2 \ (1+D^{-1})\lambda_3 \ \lambda_4 \\ 0 \ 0 \ \lambda_3 \ \lambda_4 \\ 0 \ 0 \ \lambda_4 \end{pmatrix}, \tag{6}$$

$$\sigma_2 \mapsto \sigma_2^{\lambda} = \begin{pmatrix} \lambda_4 & 0 & 0 & 0 \\ -\lambda_3 & \lambda_3 & 0 & 0 \\ D\lambda_2 & -(D+1)\lambda_2 & \lambda_2 & 0 \\ -D^3\lambda_1 & (D^3 + D^2 + D)\lambda_1 & -(D^2 + D + 1)\lambda_1 & \lambda_1 \end{pmatrix}.$$
 (7)

Let us set $\gamma = (\lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5)^{1/5}$. All simple modules for n = 5 are the following:

$$\sigma_{1} \mapsto \sigma_{1}^{\lambda} = \begin{pmatrix} \lambda_{1} \left(1 + \frac{\gamma^{2}}{\lambda_{2}\lambda_{4}}\right) (\lambda_{2} + \frac{\gamma^{3}}{\lambda_{3}\lambda_{4}}\right) \left(\frac{\gamma^{2}}{\lambda_{3}} + \lambda_{3} + \gamma\right) \left(1 + \frac{\lambda_{1}\lambda_{5}}{\gamma^{2}}\right) \left(1 + \frac{\lambda_{2}\lambda_{4}}{\gamma^{2}}\right) (\lambda_{3} + \frac{\gamma^{3}}{\lambda_{2}\lambda_{4}}\right) \frac{\gamma^{3}}{\lambda_{1}\lambda_{5}} \\ 0 & \lambda_{2} & \frac{\gamma^{2}}{\lambda_{3}} + \lambda_{3} + \gamma & \frac{\gamma^{3}}{\lambda_{1}\lambda_{5}} + \lambda_{3} + \gamma & \frac{\gamma^{3}}{\lambda_{1}\lambda_{5}} \\ 0 & 0 & \lambda_{3} & \frac{\gamma^{3}}{\lambda_{1}\lambda_{5}} + \lambda_{3} & \frac{\gamma^{3}}{\lambda_{1}\lambda_{5}} \\ 0 & 0 & 0 & \lambda_{4} & \lambda_{4} \\ 0 & 0 & 0 & 0 & \lambda_{5} \end{pmatrix}.$$

$$(8)$$

The formula for σ_2^{λ} was not given in [29].

8. Equivalence of Tuba-Wenzl's representations in the case $\dim \leq 5$ and our representations.

General formulas for $1 \le n \le 4$ gives us (we set $q_r = q^{\frac{(r-1)r}{2}}$):

$$\sigma_{1} \mapsto \sigma_{1}^{\Lambda} := \sigma_{1}(q, n)\Lambda_{n}, \quad \sigma_{2} \mapsto \sigma_{2}^{\Lambda} := \Lambda_{n}^{\sharp}\sigma_{2}(q, n),$$
$$\Lambda_{n}\Lambda_{n}^{\sharp} = \lambda_{0}\lambda_{n}\Lambda_{n}(q), \quad \Lambda_{n}(q) = q_{n}^{-1}D_{n}(q)D_{n}^{\sharp}(q), \quad D_{n}(q) = \operatorname{diag}(q_{r})_{r=0}^{n},$$
$$\lambda_{r}\lambda_{n-r} = \lambda_{0}\lambda_{n}q^{-(n-r)r}, \quad 0 \le r \le n.$$
(9)

Let n = 1 we have

$$\sigma_1^{\Lambda} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \Lambda_1, \quad \sigma_2^{\Lambda} = \Lambda_1^{\sharp} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \Lambda_1 = \begin{pmatrix} \lambda_0 & 0 \\ 0 & \lambda_1 \end{pmatrix}.$$

Let n = 2, conditions (9) gives us $\Lambda_2 = \text{diag}(\lambda_r)_{r=0}^3$

diag
$$(\lambda_0 \lambda_2, \lambda_1^2, \lambda_0 \lambda_2) = \lambda_0 \lambda_2$$
diag $(1, q^{-1}, 1)$, so $q^{-1} = \lambda_1^2 / \lambda_0 \lambda_2$.
 $\sigma_1^{\Lambda}(q, 2) = \begin{pmatrix} 1 & 1+q & 1\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{pmatrix} \Lambda_2$, $\sigma_2^{\Lambda}(q, 2) = \Lambda_2^{\sharp} \begin{pmatrix} 1 & 0 & 0\\ -1 & 1 & 0\\ q^{-1} & -(1+q^{-1}) & 1 \end{pmatrix}$.

For n = 3 conditions (9) gives us $q^{-2} = \lambda_1 \lambda_2 / \lambda_0 \lambda_3$ for r = 1.

$$\sigma_1(q,3) = \begin{pmatrix} 1 & 1+q+q^2 & 1+q+q^2 & 1\\ 0 & 1 & 1+q & 1\\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_0 & 0 & 0 & 0\\ 0 & \lambda_1 & 0 & 0\\ 0 & 0 & \lambda_2 & 0\\ 0 & 0 & 0 & \lambda_3 \end{pmatrix},$$
$$\sigma_2(q,3) = \begin{pmatrix} 1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0 & 0\\ q^{-1} & -(1+q^{-1}) & 1 & 0\\ -q^{-3} & q^{-1}(1+q^{-1}+q^{-2}) & -(1+q^{-1}+q^{-2}) & 1 \end{pmatrix}.$$

For n = 4 conditions (9) gives us $q^{-3} = \lambda_1 \lambda_3 / \lambda_0 \lambda_4$ for r = 1 and $q^{-4} = \lambda_2^2 / \lambda_0 \lambda_4$ for r = 2.

$$\sigma_1(q) = \begin{pmatrix} 1 & (1+q)(1+q^2) & (1+q^2)(1+q+q^2) & (1+q)(1+q^2) & 1 \\ 0 & 1 & 1+q+q^2 & 1+q+q^2 & 1 \\ 0 & 0 & 1 & 1+q & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \Lambda = \begin{pmatrix} \lambda_0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix},$$

 $\sigma_2(q,4) = (\sigma_1^{-1}(q^{-1},4))^{\sharp}.$

$$\sigma_1 \mapsto \sigma_1(1, n)\Lambda_n, \quad \sigma_2 \mapsto \Lambda_n^{\sharp} \sigma_2(1, n), (2)$$
$$\Lambda_n = \operatorname{diag}(\lambda_r)_{r=0}^n, \quad \Lambda\Lambda^{\sharp} = cI, \ c \in \mathbb{C}, \quad (3)$$

8. Generalization of (2) for $q \neq 1$, with the condition (3)

$$\sigma_1 \mapsto \sigma_1^{\Lambda}(q,n) := \sigma_1(q,n) D_n^{\sharp}(q) \Lambda_n, \ \sigma_2 \mapsto \sigma_2^{\Lambda}(q,n) := \Lambda_n^{\sharp} D_n(q) \sigma_2(q,n), \ (10)$$

$$\sigma_2(q,n) := \sigma_1^{-1}(q^{-1},n)^{\sharp}, \ D_n(q) = \operatorname{diag}(q_r)_{r=0}^n, \ q_r = q^{\frac{(r-1)r}{2}},$$
(11)

where q - binomial coefficients or Gaussian polynomials are defined as follows

$$\binom{n}{k}_{q} := \frac{(n)!_{q}}{(k)!_{q}(n-k)!_{q}}, \quad [^{n}_{k}]_{q} := \frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}}$$
(12)

corresponding to two forms of q-natural numbers, defined by

$$(n)_q := \frac{q^n - 1}{q - 1}, \quad [n]_q := \frac{q^n - q^{-1}}{q - q^{-1}}.$$
 (13)

Theorem 1 [1] The formulas (10) $\sigma_1 \mapsto \sigma_1^{\Lambda}(q, n), \sigma_2 \mapsto \sigma_2^{\Lambda}(q, n)$ give the representation of B_3 .

Theorem 2 [1] The representation $\sigma^{\Lambda}(q, n)$ defined by (10) generalize the Tubo-Wenzl representations for arbitrary $n \in \mathbb{N}$.

Definition. We say that the representation is **subspace irreducible** or **ireducible** (resp. **operator irreducible**) when there no nontrivial invariant close **subspaces** for all operators of the representation (resp. there no nontrivial bounded **operators** commuting with all operators of the representation).

Let us define for n, r, q, λ such that $n \in \mathbb{N}, 0 \leq r \leq n, \lambda \in \mathbb{C}^{n+1}, q \in \mathbb{C}$ the following operators

$$F_{r,n}(q,\lambda) = \exp_{(q)}\left(\sum_{k=0}^{n-1} (k+1)_q E_{kk+1}\right) - q_{n-r}\lambda_r (D_n(q)\Lambda_n^{\sharp})^{-1}, \qquad (14)$$

where $\exp_{(q)} X = \sum_{m=0}^{\infty} X^m / (m)!_q$. For the matrix $C \in \operatorname{Mat}(n+1, \mathbb{C})$ we denote by

 $M_{j_1 j_2 \dots j_r}^{i_1 i_2 \dots i_r}(C)$, (resp. $A_{j_1 j_2 \dots j_r}^{i_1 i_2 \dots i_r}(C)$), $0 \le i_1 < \dots < i_r \le n$, $0 \le j_1 < \dots < j_r \le n$ its minors (resp. the cofactors) with i_1, i_2, \dots, i_r rows and j_1, j_2, \dots, j_r columns. **Theorem 3** [1] The representation of the group B_3 defined by (10) have the following properties:

1) for q = 1, $\Lambda_n = 1$, it is subspace irreducible in arbitrary dimension $n \in \mathbb{N}$; 2) for $q \neq 1$, $\Lambda_n = \operatorname{diag}(\lambda_k)_{k=0}^n \neq 1$ it is operator irreducible if and only if for any $0 \leq r \leq \left[\frac{n}{2}\right]$ there exists $0 \leq i_0 < i_i < \ldots < i_r \leq n$ such that

$$M_{r+1r+2...n}^{i_0 i_1...i_{n-r-1}}(F_{r,n}^s(q,\lambda)) \neq 0;$$
(15)

3) for $q \neq 1$, $\Lambda_n = 1$ it is subspace irreducible if and only if $(n)_q \neq 0$. The representation has $\left[\frac{n+1}{2}\right] + 1$ free parameters.

9. The connection between $Rep(B_3)$ and $U_q(\mathfrak{sl}_2)$ -mod.

The algebra $U(\mathfrak{sl}_2)$ is the associative algebra generated by three generators X, Y, H with the relations (7).

$$[H, X] = 2X, \ [H, Y] = -2Y, \ [X, Y] = H,$$
(16)

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{in} \quad \mathfrak{sl}_2$$

 $U_q(\mathfrak{sl}_2)$ is the algebra generated by four variables $E,\,F,\,K,\,K^{-1}$ with the relations

$$KK^{-1} = K^{-1}K = 1, (17)$$

$$KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F,$$
 (18)

$$[E, F] = \frac{K - K^{-1}}{q - q^{-1}} = \frac{q^H - q^{-H}}{q - q^{-1}}.$$
(19)

Comultiplication Δ , counit ε and antipod S are as follows:

$$\Delta(E) = E \otimes K + 1 \otimes E, \quad \Delta(F) = F \otimes 1 + K^{-1} \otimes F, \quad \Delta(K) = K \otimes K,$$
$$S(K) = K^{-1}, \ S(E) = -EK^{-1}, \ S(F) = -KF,$$

$$\varepsilon(K) = 1, \ \varepsilon(E) = \varepsilon(F) = 0.$$

All finite-dimensional U-module V being the highest weight module of highest weight λ are of the following form (see Kassel, [17, TheoremV.4.4.])

$$\rho(n)(X) = \begin{pmatrix} 0 & n & 0 & \dots & 0 \\ 0 & 0 & n-1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \quad \rho(n)(Y) = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 2 & \dots & 0 & 0 \\ 0 & 0 & \dots & n & 0 \end{pmatrix},$$

$$\rho(n)(H) = \begin{pmatrix} n & 0 & \dots & 0 & 0 \\ 0 & n-2 & \dots & 0 & 0 \\ & \dots & & & \\ 0 & 0 & \dots & 0 & -n \end{pmatrix}.$$

where $\lambda = \dim(V) - 1 \in \mathbb{N}$.

All finite-dimensional U_q -module V being the highest weight module of highest weight λ are of the following form (see Kassel, [17, Theorem VI.3.5.])

$$\rho_{\varepsilon,n}(E) = \varepsilon \begin{pmatrix} 0 & [n] & 0 & \dots & 0 \\ 0 & 0 & [n-1] & \dots & 0 \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \quad \rho_{\varepsilon,n}(F) = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & [2] & \dots & 0 & 0 \\ 0 & 0 & \dots & [n] & 0 \end{pmatrix},$$
$$\rho_{\varepsilon,n}(K) = \varepsilon \begin{pmatrix} q^n & 0 & \dots & 0 & 0 \\ 0 & q^{n-2} & \dots & 0 & 0 \\ \dots & q^{-n+2} & 0 \\ 0 & 0 & \dots & 0 & q^{-n} \end{pmatrix},$$

where $\varepsilon = \pm 1$, $\lambda = \varepsilon q^n$ and $n \in \mathbb{N}$.

The main observation is the following:

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \exp \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & (2)_q & 1 \\ 0 & 1 & (1)_q \\ 0 & 0 & 1 \end{pmatrix} = \exp_{(q)} \begin{pmatrix} 0 & (2)_q & 0 \\ 0 & 0 & (1)_q \\ 0 & 0 & 0 \end{pmatrix},$$

where

$$\begin{pmatrix} 0 & (2)_{q^2} & 0\\ 0 & 0 & (1)_{q^2}\\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & [2]_q & 0\\ 0 & 0 & [1]_q\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} q^2 & 0 & 0\\ 0 & q & 0\\ 0 & 0 & 1 \end{pmatrix}, \ \exp_{(q)} X := \sum_{m=0}^{\infty} \frac{1}{(m)!_q} X^m.$$

Theorem 4 For q = 1 holds

$$\sigma_1(1,n) = \exp(\rho(n)(X)), \quad \sigma_2(1,n) = \exp(\rho(n)(-Y)).$$
 (20)

Theorem 5 For $q \neq 1$ we have

$$\sigma_1(q^2, n) D_n^{\sharp}(q^2) = \exp_{(q^2)} \left(q^{n/2} \rho_{1,n}(EK^{1/2}) \right) D_n^{\sharp}(q^2), \tag{21}$$

$$D_n(q^2)\sigma_2(q^2,n) = \exp_{(q^2)}\left(-q^{n/2}\rho_{1,n}(FK^{-1/2})\right)D_n(q^2).$$
(22)

Proof. The two forms of q-natural numbers are connected as follows (see Kassel, [17])

$$[n] = q^{-(n-1)}(n)_{q^2}, \quad [n]! = q^{-(n-1)n/2}(n)!_{q^2}$$
(23)

$$\begin{pmatrix} 0 & (n) & 0 & \dots & 0 \\ 0 & 0 & (n-1) & \dots & 0 \\ 0 & 0 & 0 & \dots & (1) \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} 0 & [n] & 0 & \dots & 0 \\ 0 & 0 & [n-1] & \dots & 0 \\ 0 & 0 & 0 & \dots & [1] \\ 0 & 0 & 0 & \dots & [1] \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} diag(q^n, q^{n-1}, ..., 1)$$
$$= q^{n/2} \rho_{1,n}(EK^{1/2}), \text{ and}$$
$$\begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ (1) & 0 & \dots & 0 & 0 \\ 0 & (2) & \dots & 0 & 0 \\ 0 & 0 & \dots & (n) & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ [1] & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & [n] & 0 \end{pmatrix} diag(1, q, ..., q^{n-1}, q^n)$$
$$= q^{n/2} \rho_{1,n}(FK^{-1/2}), \text{ since}$$

$$=q^{n/2}\rho_{1,n}(FK^{-1/2}),$$
 since

diag
$$(1, q, ..., q^{n-1}, q^n) = q^{n/2} \rho_{1,n}(K^{-1/2})$$

and

diag
$$(q^n, q^{n-1}, ..., 1) = q^{n/2} \rho_{1,n}(K^{1/2}).$$

Al last we conclude that

$$\begin{pmatrix} 0 & (n) & 0 & \dots & 0 \\ 0 & 0 & (n-1) & \dots & 0 \\ 0 & 0 & 0 & \dots & (1) \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} = q^{n/2} \rho_{1,n}(EK^{1/2}),$$
$$\begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ (1) & 0 & \dots & 0 & 0 \\ 0 & (2) & \dots & 0 & 0 \\ 0 & 0 & \dots & (n) & 0 \end{pmatrix} = q^{n/2} \rho_{1,n}(FK^{-1/2}).$$

Further we observe that

$$X \otimes I + I \otimes X \mid_{S^{2}(\mathbb{C}^{2})} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes I + I \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mid_{S^{2}(\mathbb{C}^{2})} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\Delta \rho(1)(X) \mid_{S^{2}(\mathbb{C}^{2})} = \rho(2)(X),$$
$$(I + X) \otimes (I + X) = \exp(\Delta(X)), \quad \sigma_{1}(1, 1) \otimes \sigma_{1}(1, 1) \mid_{S^{2}(\mathbb{C}^{2})} = \sigma(1, 2).$$

Lemma 6 We have for $q \neq 1$

$$\rho_{1,n} = \Delta^{n-1} \rho_{1,1} \mid_{S^{n,q}(\mathbb{C}^2)}, \tag{24}$$

where $S^{n,q}(\mathbb{C}^2)$ is q-symmetric tensor power of \mathbb{C}^2 .

Proof. For n = 1 we have the following operators

$$\rho_{1,1}(E) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \rho_{1,1}(F) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \rho_{1,1}(K) = \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} = q^H.$$

For n = 2 we get

$$\rho_{1,2}(E) = \begin{pmatrix} 0 & [2] & 0\\ 0 & 0 & [1]\\ 0 & 0 & 0 \end{pmatrix}, \ \rho_{1,2}(F) = \begin{pmatrix} 0 & 0 & 0\\ [1] & 0 & 0\\ 0 & [2] & 0 \end{pmatrix}, \ \rho_{1,2}(K) = \begin{pmatrix} q^2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & q^{-2} \end{pmatrix}$$

We have $\Delta(\rho_{1,1}(E)) =$

$$\rho_{1,1}(E) \otimes \rho_{1,1}(K) + 1 \otimes \rho_{1,1}(E) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & q & 0 \\ 0 & 0 & 0 & q^{-1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & q & 0 \\ 0 & 0 & 0 & q^{-1} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Further $\Delta(\rho_{1,1}(F)) =$

$$\rho_{1,1}(F) \otimes 1 + \rho_{1,1}(K^{-1}) \otimes \rho_{1,1}(F) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} q^{-1} & 0 \\ 0 & q \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} q^{-1} & 0 & 0 & 0 \\ q^{-1} & 0 & 0 & 0 \\ 0 & 0 & q & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ q^{-1} & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & q & 0 \end{pmatrix}$$

and

$$\Delta(\rho_{1,1}(K)) = \rho_{1,1}(K) \otimes \rho_{1,1}(K) = \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} \otimes \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} = \begin{pmatrix} q^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q^{-2} \end{pmatrix}.$$

In the q-symmetric basis of the submodule $S^{2,q}(\mathbb{C}^2)$ of the module $\mathbb{C}^2 \otimes \mathbb{C}^2$

$$e_{00}^{s,q} = e_0 \otimes e_0, \quad e_{01}^{s,q} = q^{-1} e_0 \otimes e_1 + e_1 \otimes e_0, \quad e_{11}^{s,q} = e_1 \otimes e_1$$

the operator $\Delta(\rho_{1,1}(E))$ has the following form:

$$\Delta(\rho_{1,1}(E)) \mid_{S^{2,q}(\mathbb{C}^2)} = \begin{pmatrix} 0 & [2] & 0 \\ 0 & 0 & [1] \\ 0 & 0 & 0 \end{pmatrix}.$$

The basis in the space $\mathbb{C}^2 \otimes \mathbb{C}^2$ is generated by vectors e_{kn} , $0 \leq k, n \leq 1$ where $e_{kn} = e_k \otimes e_n$. Operator $\Delta(\rho_{1,1}(E))$ acts as follows $e_{00} \mapsto 0$, $e_{01} \mapsto e_{00}$, $e_{10} \mapsto q e_{00}$, $e_{11} \mapsto q^{-1} e_{01} + e_{10}$, hence $e_{00}^{s,q} \mapsto 0$,

$$e_{01}^{s,q} = q^{-1}e_{01} + e_{10} \mapsto (q+q^{-1})e_{00} = [2]e_{00}^{s,q}, \ e_{11}^{s,q} \mapsto q^{-1}e_{01} + e_{10} = e_{01}^{s,q}.$$

Similarly we get

$$\Delta(\rho_{1,1}(F)) \mid_{S^{2,q}(\mathbb{C}^2)} = \begin{pmatrix} 0 & 0 & 0 \\ [1] & 0 & 0 \\ 0 & [2] & 0 \end{pmatrix}, \quad \Delta(\rho_{1,1}(K)) \mid_{S^{2,q}(\mathbb{C}^2)} = \begin{pmatrix} q^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & q^{-2} \end{pmatrix}.$$

hence (24) holds for n = 2. For n > 2 the proof is similar.

10. The Burau representation $\rho : B_n \mapsto \operatorname{GL}_n(\mathbb{Z}[t, t^{-1}])$ is defined for a non-zero complex number t by

$$\sigma_i \mapsto \beta_i = I_{i-1} \oplus \begin{pmatrix} 1-t & t \\ 1 & 0 \end{pmatrix} \oplus I_{n-i-1}$$

where 1 - t is the (i, i) entry. Representation ρ splits into 1-dimensional and n-1-dimensional irreducible representations, known as *reduced Burau* representation $\overline{\rho}: B_n \mapsto \operatorname{GL}_{n-1}(\mathbb{Z}[t, t^{-1}])$

$$\sigma_1 \mapsto b_1 = \begin{pmatrix} -t & 0 \\ -1 & 1 \end{pmatrix} \oplus I_{n-3}, \quad \sigma_{n-1} \mapsto b_{n-1} = I_{n-3} \oplus \begin{pmatrix} 1 & -t \\ 0 & -t \end{pmatrix},$$
$$\sigma_i \mapsto b_i = I_{i-2} \oplus \begin{pmatrix} 1 & -t & 0 \\ 0 & -t & 0 \\ 0 & -1 & 1 \end{pmatrix} \oplus I_{n-i-2}, \ 2 \le i \le n-2.$$

Problem. Whether the reduced Burau representation $\overline{\rho} : B_n \mapsto \operatorname{GL}_{n-1}(\mathbb{Z}[t, t^{-1}])$ is *faithful*?

YES for n = 3 (Birman [8]). NO for $n \ge 9$ Moody [25] Long and Paton [23], Bigelow [6] improved further for $n \ge 5$.

Open problem: Whether the reduced Burau representation of $B_4 \mapsto$ GL₃($\mathbb{Z}[t, t^{-1}]$)

$$b_1 = \begin{pmatrix} -t & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ b_2 = \begin{pmatrix} 1 & -t & 0 \\ 0 & -t & 0 \\ 0 & -1 & 1 \end{pmatrix}, \ b_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -t \\ 0 & 0 & -t \end{pmatrix}$$

is faithful

11. Lowrence-Kramer representations, [20]

$$\lambda: B_n \mapsto \operatorname{GL}_m(\mathbb{Z}[t^{\pm 1}, q^{\pm 1}]), \quad m = n(n-1)/2.$$

The basis in the space $\mathbb{C}^{n(n-1)/2}$ is x_{ik} , $1 \leq i < k \leq n$.

Faithfulness for all n, Bigelow [7], Kramer [21] $\Rightarrow B_n$ is a linear group for all n.

 $\begin{array}{lll} \sigma_k x_{k,k+1} = & tq^2 x_{k,k+1} \\ \sigma_k x_{ik} = & (1-q) x_{ik} + q x_{i,k+1} & \text{for } i < k \\ \sigma_k x_{i,k+1} = & x_{ik} + tq^{k-i+1}(q-1) x_{k,k+1} & \text{for } i < k \\ \sigma_k x_{kj} = & tq(q-1) x_{k,k+1} + q x_{k+1,j} & \text{for } k+1 < j \\ \sigma_k x_{k+1,j} = & x_{kj} + (1-q) x_{k+1,j} & \text{for } k+1 < j \\ \sigma_k x_{ij} = & x_{ij} & \text{for } i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{ij} = & x_{ij} + tq^{k-i}(q-1)^2 x_{k,k+1} & \text{for } i < k < k+1 < j \\ \end{array}$

12. Generalization of 8 and 9 for B_n . For n = 4 and t = -1 we have $\overline{\rho}_4 : B_4 \mapsto SL(3, \mathbb{Z})$

$$b_1 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ b_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \ b_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$
$$b_1 = \exp(-F_1), \ b_2 = \exp(E_1 - F_2), \ b_3 = \exp(E_2).$$

We can show that the symmetric powers $b_i \otimes b_i |_S$ are the following

$$b_1 \otimes b_1 \mid_S = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, b_2 \otimes b_2 \mid_S = \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{pmatrix},$$
$$b_3 \otimes b_3 \mid_S = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

We have for n = 5 and t = -1 $b^{(5)} : B_5 \mapsto SL(4, \mathbb{Z})$

$$b_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ b_2 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ b_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}, \ b_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Let $\overline{\rho}: B_n \mapsto \mathrm{SL}_{n-1}(\mathbb{Z})$ be the reduced Burrau representation for t = -1.

The quantum group $U_q(\mathfrak{sl}_{\mathfrak{n}-1})$ is the algebra generated by 4(n-1) variables E_i, F_i, K_i, K_i^{-1} with relations as (17)–(19). Let

$$\rho_m: U_q(\mathfrak{sl}_{\mathfrak{n-1}}) \mapsto \operatorname{End}(\mathbb{C}^{\mathfrak{m}})$$

be the highest weight $U_q(\mathfrak{sl}_{\mathfrak{n}-1})$ -module. Then

$$\sigma_1 \mapsto \exp(-\rho_m(F_1)), \ \sigma_k \mapsto \exp(\rho_m(E_{k-1} - F_k)), \ \sigma_n \mapsto \exp(\rho_m(E_{n-1})).$$

gives the representation of B_n for q = 1 (see (20)).

For $q \neq 1$ we can obtain formulas similar to (21)–(22).

13. Formanek classifications of $B_n - \text{mod}$, for $\dim V \leq n$.

In [12] E.Formanek et al. gave the complete classification of all simple representations of B_n for dimension $\leq n$.

Acknowledgements. The author would like to thank the Max-Planck-Institute of Mathematics and the Institute of Applied Mathematics, University of Bonn for the hospitality. The partial financial support by the DFG project 436 UKR 113/87 is gratefully acknowledged.

References

- [1] S. Albeverio, A. Kosyak, q-Pascal's triangle and irreducible representations of the braid group B_3 in arbitrary dimension (in preparation), 50p.
- [2] S. Albeverio and S. Rabanovich, On a class of unitary representation of the braid groups B_3 and B_4 (submitted for publication in ...).
- [3] G.E. Andrews, The Theory of Partitions. Encyclopedia of Mathematics and its Applications, Addison–Wesley Publishing Company, Cambridge, Massachusetts, 1976.
- G.E. Andrews and R. Askey, Classical orthogonal polynomials *Polynômes Orthogonaux et Applications*, Lect. Notes Math. 1171 (1985), Ed. C. Brezinski et al. New York, Springer. 36–62.
- [5] E. Artin, Theorie des Zöpfe, Abh. Math. Sem. Hamburg. Univ 4 (1926) 47–72.
- [6] S. Bigelow, The Burrau representation of the braid group B_n is not faithful for n=5, Geometry and Topology 3 (1999), 397–404.

- [7] S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 No 2, (2001), 471–486.
- [8] J.S Birman, Braids, links and mapping class groups, Annals of math. Studies 82 (1974).
- [9] J.S Birman, New point of view in knot theory, Bull. Amer. Math. Soc. 28 (1993) 253–287.
- [10] J.S Birman and T.E Brendel, Braids: A survey. In Handbook of Knot Theory (Ed. W. Menasko and T. Thistlethwaite), Elsevier, 2005.
- [11] E. Ferrand, Pascal and Sierpinski matrices, and the three strands braid group, http://www-fourier.ujf-grenoble.fr/~eferrand/publi
- [12] E. Formanek, W. Woo, I. Sysoeva, M. Vazirani, The irreducible complex representations of n string of degree $\leq n$, J.Algebra Appl. 2 (2003), no. 3, 317–333.
- [13] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, 1990.
- [14] S.P. Humphries, Some linear representations of braid groups, Journ. Knot Theory and Its Ramifications. 9, no. 3 (2000) 341–366.
- [15] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Annals of Math. 126 (1987) 335–388.
- [16] V. Kac and P. Cheung, Quantum Calculus, Springer, 2001.
- [17] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
- [18] A. Klimyk and K. Schmüdgen, Quantum Groups and their Representations, Springer-Verlag, Berlin Heidelberg New York, 1997.
- [19] A.V. Kosyak, Extension of unitary representations of inductive limits of finite-dimensional Lie groups, Rep. Math. Phys. 26 no. 2 (1988) 129–148.
- [20] D. Krammer, The braid groups B_4 is linear, Invent. Math. 142 No. 3, (2000), 451–486.

- [21] D. Krammer, Braid groups are linear, Ann. of Math. (2) 155 No. 1, (2002), 131-156.
- [22] Oh Kang Kwon, Irreducible representations of braid Groups via quantized enveloppin algebra, Journ of Algebra. 183 (1996) 898–912.
- [23] D. Long and M. Paton, The Burrau representation of the braid group B_n is not faithful for $n \ge 6$, Topology 32 (1993), 439–447.
- [24] G. Lusztig, Introduction to quantum groups, Birkhäuset, Boston Basel Berlin, 1993.
- [25] J. Moody, The Burrau representation of the braid group B_n is not faithful for large n, Bull. Math. Soc. 25 (1991), 379–384.
- [26] J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math, 24 (1987) 745–758.
- [27] O. Ogievetski and P. Pyatov, Orthogonal and symplectic quantum matrix algebras and Cayley-Hamilton theorem for them, ArXiv:math.QA/0511618v1.
- [28] I. Tuba, Low-dimensional unitary representations of B_3 , Proc. Amer. Math. Soc. 129 (2001) 2597–2606.
- [29] I. Tuba, H. Wenzl, Representations of the braid group B_3 and of $SL(2,\mathbb{Z})$, Pacific J. Math. 197, No.2 (2001) 491–510.
- [30] J. Riordan, Combinatorial Identities, Wiley, 1968.
- [31] W.G. Ritter, Introduction to Quantum Group Theory, arXiv:math. QA/0201080 v1 10 Jan2002.
- [32] H. Wenzl, Quantum groups and subfactors of type B, C, and D, Comm. Math. Phys. 133 (1990) no. 2, 383–432.