AN EXACT GEOMETRIC MASS FORMULA

CHIA-FU YU

ABSTRACT. We show an exact geometric mass formula for superspecial points
in the reduction of any quaternionic Shimura variety modulo at a good prime
p.

1. INTRODUCTION

Let p be a rational prime number. Let B be a totally indefinite quaternion
algebra over a totally real field F' of degree d, together with a positive involution
%. Assume that p is unramified in B. Let Op be a maximal order stable under
the involution *. Let (V,1) be a non-degenerate Q-valued skew-Hermitian (left)
B-module with dimension 2g over Q. Put m := 2%, a positive integer. A polarized
abelian Op-variety A = (A, A, 1) is a polarized abelian variety (A4, \) together with
a ring monomorphism ¢ : Op — End(A) such that Aoc(b*) = ¢(b)* o\ for all b € Op.
Let k& be an algebraically closed field of characteristic p. An abelian variety over k
is said to be superspecial if it is isomorphic to a product of supersingular elliptic
curves. Denote by Af the set of isomorphism classes of g-dimensional superspecial

principally polarized abelian O pg-varieties over k. Define the mass of Af to be

1

1.1 Mass(AB) := _ .
( ) aSb( g) A;:B |Aut(A, )\7L)|

The mass Mass(A?) is studied in Ekedahl [1] (Ekedahl’s result relies on an
explicit volume computation in Hashimoto-Ibukiyama [4, Proposition 9, p. 568]) in
the special case B = M5(Q). He proved

Theorem 1.1 (Ekedahl, Hashimoto-Ibukiyama). One has
(—1)9te+t1)/2 I g

— [Ica—20 - [[» + 1),

i=1 =1

(1.2) Mass(Ag) =

where A4 is the set of isomorphism classes of g-dimensional superspecial principally
polarized abelian varieties over k and ((s) is the Riemann zeta function.

Let Bp o be the quaternion algebra over Q ramified exactly at {p, co}. Let B’
be the quaternion algebra over F' such that inv,(B’) = inv, (B, - ®q B) for all v.
Let A’ be the discriminant of B’ over F.

In this paper we prove
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Theorem 1.2. One has
(1.3)

B (_1)dm(m+1)/2 mn ] ) . .
Mass(Ag) = ~——7—— [[{cr—20) [T N + (-1 J] N@)'+1y,

i1 oA olp, ot A
where (p(s) is the Dedekind zeta function.

Let N > 3 be a prime-to-p positive integer. Choose a primitive n-th root of
unity (y € Q C C and fix an embedding Q — Q,. Let M be the moduli space over
F, of g-dimensional principally polarized abelian O p-varieties with a symplectic
Ogp-linear level-N structure w.r.t. (y. Let Ly be a self-dual Og-lattice of V' with
respect to . Let G1 be the automorphism group scheme over Z associated to the
pair (Lo, ). As an immediate consequence of Theorem 1.2, we get

Theorem 1.3. The moduli space M has
(1.4)
(_1)dm(m+1)/2 s . i i i
|G1(Z/NZ)|TH Cr(1—20) [T N+ (=)' J[ N +1
=1 v|A’ v|p,vtA’
superspecial points.

We divide the proof of Theorem 1.2 into 4 parts; each part is treated in one sec-
tion. The first part is to express the weighted sum in terms of an arithmetic mass;
this is done in the author’s recent work [8]. The second part is to compute the mass
associated to a quaternion unitary group and a standard open compact subgroup;
this is done by Shimura [7] (re-obtained by Gan and J.-K. Yu [3, 11.2, p. 522])
using the theory of Bruhat-Tits Buildings). The third part is to compare the de-
rived arithmetic mass in Section 1 with “the” standard mass in Section 2. This
reduces the problem to computing a local index at p. The last part uses Dieudonné
theory to compute this local index. A crucial step is choosing a good basis for the
superspecial Dieudonné module concerned; this makes the computation easier.

Notation. H denotes the Hamilton quaternion algebra over R. Ay denotes the
finite adele ring of Q and 7 = ]_[p Z,. For a number field F' and a finite place v,
denote by Op the ring of integers, F, the completion of F' at v, e, the ramification
index for F/Q, k, the residue field, f, := [k, : Fp] and ¢, := N(v) = |k,|. For an
Op-module A, write A, for A ®o, OF,. For a scheme X over Spec A and an A-
algebra B, write X g for X Xgpeca SpecB. For a linear algebraic group G over Q and
an open compact subgroup U of G(Ay), denote by DS(G, U) the double coset space
G(Q)\G(Ay)/U, and write Mass(G,U) := E?:l IT;|~! if G is R-anisotropic, where
I :=GQ) Ne¢Uc ' and ey, .. ., ¢, are complete representatives for DS(G, U). For
a central simple algebra B over F, write A(B/F) for the discriminant of B over F.
If B a central division algebra over a non-archimedean local field F,, denote by Op
the maximal order of B, m(B) the maximal ideal and x(B) the residue field. Qp»
denotes the unramified extension of Q, of degree n and write Zy» := Og,, -

2. SIMPLE MASS FORMULAS

Let B be a finite-dimensional semi-simple algebra over Q with a positive involu-
tion *, and Op be an order of B stable under *. Let k be any field.
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To any polarized abelian Opg-varieties A = (A, \, ) over k, we associate a pair
(G, U,), where G, is the group scheme over Z representing the functor

R+ {h € (Endo,(Ay) © R)* |W'h =1},

where h +— h/ is the Rasoti involution, and U, is the open compact subgroup G (Z).
For any prime ¢, we write A(¢) for the associated ¢-divisible group with additional
structures (A[£*°], A¢, t¢), where A, is the induced quasi-polarization from A[(*°] to
At[¢>] = A[¢>°]* (the Serre dual), and ¢ : Op ® Zy — End(A[¢*°]) the induced ring
monomorphism. For any two objects A; and A, over k, denote by Q-isomy, (A, A,)
the set of Op-linear quasi-isogenies ¢ : A; — As over k such that ¢*As = A1, and
Isomy (4, (£), A5(€)) the set of Op ® Z-linear isomorphisms ¢ : A1[(*°] — A3[*]
over k such that p* Ay = Aq.

Let x := Ay = (Ao, Ao, o) be a fixed polarized abelian O g-variety over k. Denote
by A (k) the set of isomorphisms classes of polarized abelian O p-varieties A over
k such that

(I¢): Isomp(Ay(£), A(£)) # 0 for all primes £.
Let A/ (k) C A, (k) be the subset consisting of objects such that
(Q): Qeisomy (Ag, 4) £ 0.
Let ker' (Q, G,;) denote the kernel of the local-global map H*(Q, Gy) — [[, H*(Qy, Gz).

Theorem 2.1. ([8, Theorem 2.3]) Suppose that k is a field of finite type over its
prime field.

(1) There is a natural bijection AL (k) ~ DS(Gy,U,). Consequently, Al (k) is finite.
(2) One has Mass(AL(k)) = Mass(G, U,).

Theorem 2.2. ([8, Theorem 4.6 and Remark 4.7]) Notation as above. If k D F,
is algebraically closed and Ag is supersingular, then Mass(AL(k)) = Mass(G,, Us)
and Mass(A,(k)) = | ker' (Q, G,)| - Mass(Gy, Uy).

Remark 2.3. The statement of Theorem 2.2 is valid for basic abelian O g-varieties
in the sense of Kottwitz (see [6] for the definition). The present form is enough for
our purpose.

3. AN EXACT MASS FORMULA OF SHIMURA

Let D be a totally definite quaternion division algebra over a totally real field
F of degree d. Let (bar) d ~— d denote the canonical involution. Let (V’,¢) be
a D-valued totally definite quaternion Hermitian D-module of rank m. Let G¥
denote the unitary group attached to . This is a reductive group over F' and is
regarded as a group over Q via the Weil restriction of scalars from F' to Q. Choose
a maximal order Op of D stable under the canonical involution ~. Let L be an
Op-lattice in V’ which is maximal among the lattices on which ¢ takes its values
in Op. Let Uy be the open compact subgroup of G¥(Ay) which stabilizes the adelic
lattice L ®z 7.

The following is deduced from a mass formula of Shimura [7] (also see Gan -
J-K. Yu [3, 11.2, p. 522]). This form is more applicable to prove Theorem 1.2.
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Theorem 3.1 (Shimura). One has

(_l)dm(7n+1)/2 T )
(3.1) Mass(G¥,Up) = —md H Cr(1—2d) H N(v)' + (-1)’
=1 v|A(D/F)

Deduction. In [7, Introduction, p. 68] Shimura gives the explicit formula
(3.2)

Mass(G¥,Up) = | Dp|™ HD1/2 2i — 1)1(2m) 2] ¢p(20) ] HN

i=1 v|A(D/F)i=1
where Dy is the discriminant of F' over Q. Using the functional equation for {g(s),
we deduce (3.1) from (3.2).

4. GLOBAL COMPARISON

Keep the notation as in Section 1. Fix a g-dimensional superspecial principally
polarized abelian Op-variety © = (Ag, Ao, t0) over k. Define A, := A, (k) as in
Section 2. Let (G5, U,) be the pair associated to x.

Lemma 4.1. Any two self-dual Op ® Zy-lattices of (Vg,,1) are isomorphic.
PROOF. The proof is elementary and omitted.
Lemma 4.2. One has (1) A, = A} (2) ker'(Q,G,) = {1}.

PROOF. (1) The inclusion A, C A? is clear. We show the other direction. Let
Ae Af. It follows from Lemma 4.1 that the condition (Iy) is satisfied for primes
¢ # p. Let M be the covariant Dieudonné module of A. One chooses an isomorphism
Op,p =~ M3(Op,) so that * : (a;;) — (a;;)". Using the Morita equivalence, it suffices
to show that any two superspecial principally quasi-polarized Dieudonné modules
with compatible OF ,-action are isomorphic. This follows from Theorem 5.1.

(2) Since G, is semi-simple and simply connected (as it is an inner form of
Resr/q SPay, i), the Hasse principle for G holds. W

4.1. 'We compute that
(i) Go(R) = {h € My (H)? | h*h =1},
(i) for £ # p, we have G (Q¢) = ][, Go,o and Us,e = ][, Uz, where

G _ ]Spam(F), if v1 A(B/F),
(4.1) “" V1 {h € My(B,)|h*th =1}, otherwise,
4.1
U — )SPam(OF,), if vt A(B/F),
o {h € M,(Op,)|h'h =1}, otherwise,

(ili) G2(Qp) =1, Go,v, Where
(42) a _Isean(R). if vt A
' UV {h e My (B.)|hth =1}, otherwise.

Take D = B’ and V' = D®™ with ¢(z,y) = > 9, and take L = OF™. We
compute that
(i) G#(R) = {h € My (H)! | hth =1},
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(ii)” for any ¢, we have G,(Q) = Hv\f GY and Uy = Hv\f Uo,v, where

¢=:{&”m0%” ; ifof A,
Y {h € My, (B,)|hth =1}, otherwise,
(4.3)
U _ Sme(OFu)v ifUJfA/v
“" 7\ {h € My(Op,) |hth =1}, otherwise.

For ¢ # p and v|{, one has B, = BJ and that v{ A(B/F) if and only if v { A’. Tt
follows from computation above that G, r ~ Gg and G, g, ~ G§, for all £. Since
the Hasse principle holds for the adjoint group G2, we get G, ~ G¥ over Q. We
fix an isomorphism and write G, = G¥. For ¢ # p and v|¢, the subgroups Uy, and
U,,, are conjugate, and hence they have the same local volume.

4.2.  Applying Theorem 2.2 in our setting (Section 1) and using Lemma 4.2, we
get Mass(AZ) = Mass(G., U,). Using the result in Subsection 4.1, we get

(4.4) Mass(Af) = Mass(G*,Up) - 1(Uo,p/Us p),
where 11(Up p/Us.p) = [Usp : Uop N Uz ] HUo,p : Uop N U p)-

5. LOoCAL INDEX (Uo,p/Us.p)

Let (M, (,),) be the covariant Dieudonné module associated to the point © =
(Ao, Ao, to) in the previous section. Choose an isomorphism Op®Z, ~ My(Or®Zy)
so that * becomes the transpose. Let M := eM’, {,) := (,)|m and ¢ := |0},
where e = <(1) 8) in My(Op ® Z,). The triple (M, (,),¢) is a superspecial prin-
cipally quasi-polarized Dieudonné module with compatible O ® Z,-action of rank
g = 2dm. Let M = @®,,M, be the decomposition with respect to the decomposi-
tion Op ® Zy = 4|, Oyp; here we write O, for OF,. By the Morita equivalence, we
have

(5'1) UL;D = AUtDM,OB (MI7 < ) >/) = AUtDl\/LOF (M7 <,>) = H Uw,va
v|p
where Uy, := Autpm,o, (My, (,)).

Let W := W (k) be ring of Witt vectors over k and o the absolute Frobenius
map on W. Let J := Hom(O,, W) be the set of embeddings; write J = {0 };cz/7,2
so that oo; = 041 for all i. We identify Z/ f,Z with J through i — o;. Decompose
M, = @®;ez)5,2M}, into o4-isotypic components M. One has (1) each component
M} is a free W-module of rank 2m, which is self-dual with respect to the pairing
(,), (2) (ML, M}y = 0if i # j, and (3) the operations F and V shift by degree 1
and degree -1, respectively.

Theorem 5.1. Let (M, (,),¢) be as above. There is a symplectic basis {X;:7 in}j:17,,,7m
for M} such that

6) ¥} € VAL,

(i) FX!=-Y*" and FY] = pX;*!,
foralli € Z/ f,Z and all j.
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Proor. We write f, M and ¢ for f,, M, and q,, respectively. Suppose that
f=2ciseven. Let N :={x € M|Fx = (—1)°V°z}. Since M is superspecial, we
have (x) F2N = pN, N ®z, W ~ M and N = &N". Since VN is isotropic with
respect to (,) in N/pN, we can choose a symplectic basis { X7, Y} ;=1 m for N°
such that Y> € VN! for all j. Define X} and Y} recursively for j =1,---,j:

(5.2) Xip=p 'FY], Y/, =-FX].

One has X;+2 = %FgX} and in+2 = %Fngi; hence

XJf _ (_1)cpch20XjQ _ X?, Y'jf _ (_1)cpch20Y}O _ Y}O,

for all j. It is easy to see that {X}, Y]-i}jzl),,,m forms a symplectic basis for N°.

Suppose that f = 2c+ 1 is odd. Let N := {z € M|F*z + pfz = 0}.
We construct a symplectic basis {X;J,Y]Q}FLWM for N° with the properties:
X) ¢ VN', Y € VN' and Y = (—=1)“t'p F/X? for all j. We can choose
XY € NOVN! so that (X, (=1)*Flp~cFf X)) € Z,. This follows from the
fact that the form (z,y) := (x,p °Ffy) mod p is a non-degenerate Hermitian
form on N°/VN1. Set Y = (=1)*lp=¢FfX? and let p := (X, YP). From
(FIXP, FIYP) = ((—1)“TpeY?, (—1)p“T XYD), we get p € Z. Since Qg2/Qq is
unramified, replacing X{ by a suitable AXY, we get (X?,Y?) = 1. Do the same
construction for the complement of the submodule < X{,Y}? > and use induction;
we exhibit such a basis for N°.

Define X} and Yf recursively for ¢ = 1,..., f as (5.2). We verify again that

f _ xo f _ yo ; i Vi
Xi = Xj and Yy =Y. It follows from the relation (5.2) that {X},Y'}iz1, . m

’ VAR
forms a symplectic basis for N* for all . This completes the proof. R

Proposition 5.2. Notation as above.
(1) If f, is even, then

(5.3) U = {(é g) € Spo(Zg,)| B=0 mod p } .
(2) If f, is odd, then
(5.4) Uz~ {h € Myy(Op; ) |h'h =1}

Proor. Let ¢ € U,,. Choose a symplectic basis B for M, as in Theorem 5.1.
Since ¢ commutes with the Op-action, we have ¢ = (¢;), where ¢; € Aut(M¢, (,)).
Write ¢; = (éf ZB;l) € Spy,, (W) using the basis B. Since the map F' is injective,
¢o determines the remaining ¢;. From ¢F? = F2¢, we have ¢; 10 = ¢§2) (as
matrices). Here we write gbgn) for ¢§’". From ¢F = F¢ we get Al(.l) = Dy,
Bi(l) = —pCiy1, pci(l) = —B;y1 and Dl(l) =Ait.

(1) It f, is even, then Ag, By, Co, Do € Z4, and Byp = 0 mod p. This shows
(5.3).

(2) Suppose f, is odd. From (;Séf”H) = ¢1 we get Aéf”) = Dy, Béf”) = —pCy,
pC’(()f”) = — By, D(()f'”) = Ap. Hence

A —pCT
Ur,v - {(O Z‘r > S Sme(qu)} ’
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where 7 is the involution of Qg2 over Q,. Note that Op; = Zg [I1] with IT> = —p
A —pC

and Ila = a"1I for all @ € Zg2. The map A + CII — <C A

v
) gives rise to an
isomorphism (5.4). This proves the proposition.

Let (Vo = Fzm, 1) be a standard symplectic space. Let P be the stabilizer of
the standard maximal isotropic subspace Fy < eq,...,em >.

Lemma 5.3. |Sp,,, (Fq)/P| =[]/~ (¢" +1).

PrROOF. We have a natural bijection between the group Sp,,,(F,) and the set
B(m) of ordered symplectic bases {v1,...,va,} for Vj. The first vector v; has
¢>™ — 1 choices. The first companion vector v,,41 has ¢! choices as it does not
lie in the hyperplane vi- and we require 1o (vi, vmy1) = 1. The remaining ordered
symplectic basis can be chosen from the complement F, < v1, vy,4+1 >>. Therefore,
we have proved the recursive formula | Spy,, (Fy)| = (¢™ — 1)¢*>™ 1| Spy,,_o(Fy)|-
From this, we get

m

(5.5) |SPam (F)| = ¢ [[(¢* — 1)
=1
We have
P {(’3 g) AD' = I, BA'— ABt} .
This yields
(5.6) IPl= "5 |GLu(F))| = " [[(a" - 1),

i=1

From (5.5) and (5.6), we prove the lemma. i
By Proposition 5.2 and Lemma 5.3, we get

Theorem 5.4. One has

(57) ,U(UO,P/U%;D) = H/L(UO,U/UQU,U) = H H(Q% + 1)

vlp vlp,vtAri=1

Plugging the formula (5.7) in the formula (4.4), we get the formula (1.3). The
proof of Theorem 1.2 is complete.
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