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Abstract. We define and classify matrix linear total differential operators whose
images in the Lie algebra g of evolutionary vector fields on the infinite jet space over
a fibre bundle are subject to the collective commutation closure,

[ N∑

i=1

im Ai,

N∑

j=1

im Aj

]
⊆

N∑

k=1

im Ak.

As a by-product, we obtain a convenient criterion under which such Z2-graded opera-
tors are Hamiltonian. We prove that, under a change of coordinates in the common do-
main Ω of the operators, the arising bi-differential structural constants Γkij : Ω×Ω → Ω
are transformed by the direct analogue of the reparametrization rule for Christoffel
symbols. We show that the operators A with involutive images determine flat connec-

tions in the triads Ω
A
−→ g that consist of the two Lie algebras and the morphism.

Introduction. We begin with three examples from geometry of integrable systems,
which serve as a motivation for the constructions in this paper.

Example 1. Let A be a Hamiltonian total differential operator, that is, a skew-adjoint
linear matrix operator in total derivatives which determines a Poisson bracket on the
space H̄ of Hamiltonian functionals [2, 17, 25]. The image of A in the Lie algebra g of
evolutionary vector fields, which are of the form ∂ϕ = ϕ ∂

∂u
+ d

dx
(ϕ) ∂

∂ux
+ · · · , is closed

under commutation. This is readily seen from the Jacobi identity for the variational
Schouten bracket [[ , ]] and the representation of A as the variational Poisson bi-vector [9].
Indeed, the commutator of two Hamiltonian vector fields equals

[
[[A,H1]], [[A,H2]]

]
= [[A, [[H2, [[A,H1]]]]]] + [[H2, [[[[A,H1]], A]]]],

whence the Poisson bracket [[H2, [[A,H1]]]] = {H1,H2}A of H1,H2 ∈ H̄ appears in the
right-hand side and the second summand contains d2

A(H1) ≡ [[A, [[A,H1]]]] = 0. The
definition of the total derivatives [17, 25], which are written in local coordinates as
d
dx

= ∂
∂x

+ ux
∂
∂u

+ · · · , implies the commutation closure of imA for all arguments of A,
not necessarily exact (originating from a Hamiltonian functional).

For instance, the second Hamiltonian operator for the Korteweg–de Vries equation is
A = −1

2
d3

dx3 + u d
dx

+ d
dx

◦ u. The image of A is closed under commutation, and the Lie
algebra structure [ , ]A on its domain is related by the homomorphisms δ/δu and A to
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the Lie algebra
(
H̄, { , }A

)
of Hamiltonians, endowed with the Poisson bracket, and to

the Lie algebra
(
g, [ , ]

)
of evolutionary vector fields, respectively (see [2]). It is readily

seen that, for the above operator, the bracket [ , ]A on the domain of A is [28]

[p, q]A = ∂A(p)(q) − ∂A(q)(p) + d
dx

(p) · q − p · d
dx

(q). (1)

Example 2. The Noether symmetries of the scalar Liouville equation ELiou =
{
uxy =

exp(2u)
}
, which is the open 2D Toda chain associated with the root system A1, amount

to ϕL = �
(
δ
δw
H(x,w,wx, . . .)

)
and ϕL = �

(
δ
δw
H(y, w, wy, . . .)

)
, where � = ux+

1
2

d
dx

and

� = uy + 1
2

d
dy

are total differential operators, the quantities w = u2
x − uxx ∈ ker d

dy

∣∣
ELiou

and w = u2
y − uyy ∈ ker d

dx

∣∣
ELiou

are conserved on ELiou, and the functionals H, H

are arbitrary (see [26]). As above, we obtain symmetries ϕ = �
(
φ(x,w,wx, . . .)

)
,

ϕ = �
(
φ(y, w, wy, . . .)

)
of ELiou for any φ and φ even if they are not in the images of

the respective variational derivatives, see [28].
The symmetries ϕ and ϕ generate two Lie subalgebras g and g in sym ELiou = g ⊕ g

such that [g, g] = 0. At the same time, each of the two components is not Abelian. The
commutator, say, on g is transferred by � onto its domain, where it specifies the Lie
algebra structure

[p, q]� = ∂�(p)(q) − ∂�(q)(p) + d
dx

(p) · q − p · d
dx

(q). (2)

Example 3. In [12] we demonstrated that the dispersionless 3-component Boussinesq
system of hydrodynamic type admits a two-parametric family of nontrivial finite de-
formations [ , ]ε for the standard bracket of its symmetries sym E . This is achieved by
using two recursion differential operators Ri : sym E → sym E , i = 1, 2, whose images
are closed under commutation and which are compatible in this sense, spanning the
two-dimensional space of the operators Rε with involutive images. The new brackets
[ , ]ε are determined via

[
Rε(p), Rε(q)

]
= Rε

(
[p, q]ε

)
for p, q ∈ sym E , c.f. [8] and [24].

They admit the familiar deconposition in the two standard evolutionary terms and the
bi-linear bi-differential bracket:

[p, q]ε = ∂Rε(p)(q) − ∂Rε(q)(p) + {{p, q}}ε.

Each example gives us operators whose images generate involutive distributions of
evolutionary vector fields and which induce Lie algebra structures on their domains. In
this paper we develop a systematic unification for these three empiric facts.

The three main sources of this problem, which locate it within geometry of integrable
systems, are the Schouten–Gerstenhaber dual differential complexes for Poisson mani-
folds [2, 13, 14], the contractions of Lie algebras [8, 24], and the Riemannian geometry
of the Dubrovin–Novikov–Ferapontov–Mokhov Hamiltonian operators for evolutionary
systems of hydrodynamic type [5, 23], see [22] for references.

Let P ∈ Γ
(∧2(TF )

)
be a bi-vector field with vanishing Schouten bracket [[P ,P ]] =

0 on a finite-dimensional smooth orientable real manifold F . Using the coupling
〈 , 〉 : Γ(T ∗F ) × Γ(TF ) → C∞(F ) and a nondegenerate Poisson bi-vector P , one trans-
fers the Lie algebra structure [ , ] on Γ(TF ) to [ , ]P on Γ(T ∗F ) 3 p, q and obtains the
Koszul–Dorfman–Daletsky–Karasëv bracket [2]

[p, q]P = LPp(q) − LPq(p) + ddR

(
P(p, q)

)
,
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here L is the Lie derivative. The de Rham differential ddR on
∧•(T ∗F ) is defined in the

complex over the Lie algebra
(
Γ(TF ), [ , ]

)
by using Cartan’s formula. If the Poisson

bi-vector P has the inverse symplectic two-form P−1 such that

P−1[x, y] = [P−1x,P−1y]P , (3)

then the differential ddR is correlated with the Koszul–Schouten–Gerstenhaber bracket [[ , ]]P
on

∧•(T ∗F ) by ddR = [[P−1, ·]]P . The differential ddR on
∧•(T ∗F ) is intertwined [14, 15]

with the Poisson differential dP = [[P , ·]] on
∧•(TF ) by

(∧k+1
P

)(
[[P−1,Ψ]]P

)
+ [[P ,

(∧k

P
)
(Ψ)]] = 0, ∀Ψ ∈ Γ

(∧k

(T ∗F )
)
. (4)

Trivial infinitesimal deformations of the Lie bracket [ , ] on Γ(TF ) are obtained us-
ing the Nijenhuis structures N: Γ(TF ) → Γ(TF ), see [2, 13]. Nontrivial deformations
[p, q]0 := limε→+0R

−1(ε)
[
R(ε) p,R(ε) q

]
of the standard bracket on the m-dimensional

Lie algebras
(
km, [ , ]

)
3 p, q are obtained, pointwise on F , through the continuous con-

tractions by isomorphisms R : ε ∈ (0, 1] → GL(m) with a nontrivial analytic behaviour
as ε → +0, see [8], [24] and references therein. In these terms, the correlation (3)
enlarges the problem of contractions via the isomorphisms R to the problem of corre-
lation for the two Lie algebra structures in the domains and images of the operators
P ∈ HomC∞(F )

(
Γ(T ∗F ),Γ(TF )

)
, which leads to (4).

Next, we regard the manifold F as the fibre in the bundle π : Em+n −−→
Fm

Bn over

a smooth n-dimensional orientable base manifold B (e.g., Sn). This allows us to pass
from Hamiltonian ODE on F to Hamiltonian PDE upon sections of this bundle.

For the dispersionless first-order Hamiltonian evolutionary systems of hydrodynamic
type, the Poisson structures are determined by the Dubrovin–Novikov–Ferapontov–
Mokhov operators [5, 23]. The profound relation of hydrodynamic type systems to the
geometry of linear connections is the following: such first-order Hamiltonian opera-
tors are described by n-tuples of (pseudo)Riemannian metrics of constant curvature K
(which requires the weak nonlocality of the operators if K 6= 0). Note that both the
metric tensors and the Christoffel symbols they specify are contained explicitly1 in the
operators.

The commutation closure for images of all Hamiltonian total differential operators for
PDE is well-known [17, 25]. The analysis of Lie algebra structures on their domains Ω,
which are constituted by the variational covectors, is performed in [2, 13]. In parallel
with the finite-dimensional case, trivial infinitesimal deformations of the bracket in the
algebra g of evolutionary vector fields are obtained using Nijenhuis recursion operators
N: g → g (see [2, 13] and [6], where the compatibility conditions for the operators N
and the variational Poisson bi-vectors P are formulated). A family of nontrivial finite
deformations [p, q]ε = R−1

ε

([
Rε(p), Rε(q)

])
of the commutators was obtained in [12]

for symmetries of a dispersionless Boussinesq-type system E . In that paper [12], the
notion of linear compatible Noether operators cosym E → sym E and recursion operators
Rε : sym E → sym E with involutive images was proposed, here ε ∈ R2.

1This must not be confused with the concept of the bi-differential Christoffel operators Γkij , which
is developed in this paper (in particular, for first-order Hamiltonian operators): the bi-differential
symbols can not be contained in the differential operators. They determine a connection in a pair of
Lie algebras, and it is always flat (see Theorem 7).
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The problem of construction and classification of differential operators with involutive
images, not imposing the requirement that the operators be isomorphisms or Hamilton-
ian structures, is the synthesis of the two problems: the contraction of Lie algebras and
the correlation of brackets in the domains and images of the operators. This approach
was proposed in [28], where it was motivated by the well-known structure of symmetry
generators for open 2D Toda chains EToda. It is remarkable that such non-Hamiltonian
operators, which determine the symmetries, also induce the Poisson structures for the
Drinfel’d–Sokolov KdV-type hierarchies [3] contained in sym EToda. This analysis was
continued in [10, 11] for hyperbolic Euler–Lagrange systems of Liouville type.

We notice that the domains of the Noether or recursion operators for differential
equations are uniquely determined by the system at hand. In this paper we define the
domains of operators, whose images are subject to the collective commutation closure,
without any reference to any underlying differential equation. Moreover, we deal with
the general case of the N -tuples of such operators for arbitrary N ≥ 1. We begin with
N = 1 and hence with a unique operator A that satisfies (5), see below. We study
this reduced case, N = 1, in more detail because it provides the Lie algebra structures
on the domains of the operators A. This reduction is also achieved for many, N ≥ 2,
operators under the assumption they are linear compatible.

Let g denote the Lie algebra of evolutionary vector fields on the infinite jet space J∞(π)
for a smooth fibre bundle π : E −→

F
B over an orientable real manifold B. We consider

linear total differential operators that take values in g such that the sum of their images
is closed under commutation. We associate bi-differential extensions Γkij of Christoffel
symbols on the fibres F to N -tuples of such operators. We prove that the connections,

constituted by operators A with involutive images in the triads domA
A
−→ g of the two

Lie algebras related by the morphism, are flat.
This paper consists of three parts. In section 1 we describe the domains Ω of the

operators Ai : Ω → g. This requires two fibre bundles over the same base B, namely, π
and the auxiliary bundle ξ : Ir+n −−→

W r
Bn. For example, the r-dimensional fibre W r for a

2D Toda chain EToda corresponds to the differential generators w1, . . . , wr ∈ ker d
dy

∣∣
EToda

of its conservation laws, with r being the rank of the semi-simple complex Lie algebra.
Next, we consider the infinite jet bundle ξ∞ : J∞(ξ) → Bn and the C∞(J∞(ξ))-module
of sections Γ

(
ξ∗∞(ξ)

)
= Γ(ξ)⊗C∞(B) C

∞(J∞(ξ)) of the induced fibre bundle, see [9, 17].
Also, we consider its dual module w.r.t. the coupling that takes values in the n-th
horizontal cohomology group H̄n(ξ) = Γ

(
ξ∗∞

(∧n TBn
))/

im ξ∗∞
(
ddR(Bn)

)
. These two

modules act as the jet bundle analogues of the (co)tangent bundle to the fibre manifold,
respectively (see [19]). Namely, sections ϕ ∈ Γ

(
ξ∗∞(ξ)

)
yield evolutionary vector fields

∂ϕ = ϕ · ∂/∂w + · · · on J∞(ξ) and the sections in the dual bundle are transformed as
the variational covectors ψ = δ(·)/δw. Note that g(π) ≡

(
Γ
(
π∗∞(π)

)
, [ , ]

)
, where [ , ] is

the standard commutator of the fields. Finally, we require the existence of a differential
substitution w : J∞(π) → Γ(ξ) that converts Γ

(
ξ∗∞(ξ)

)
to the C∞(J∞(π))-submodule

of Γ
(
π∗∞(ξ)

)
= Γ(ξ) ⊗C∞(B) C

∞(J∞(π)), and similar for the dual module. From now
on, we denote the coordinates w along W r and these substitutions w[u] by the same
letter, which makes no confusion.



INVOLUTIVE DISTRIBUTIONS OF OPERATOR-VALUED EVOLUTIONARY FIELDS 5

Having chosen one of the two modules f of sections as above, we study total differential
operators Ai on the image of w in f. Thus we set Ω(ξπ) := f

∣∣
w
. In particular, if ξ = π

and w = id, then we obtain the recursion operators, see [12]. If the sections of ξ are
composed by evolution equations E = {wi[u] = 0, 1 ≤ i ≤ r}, then the sections of

the dual module ̂Γ
(
ξ∗∞(ξ)

)
are the cosymmetries [9, 17, 25], and we deal with Noether

operators Ω → sym E . At the same time, in the second (dual) case with π 6= ξ and
nontrivial nonlinear operators w, we describe higher symmetry algebras for the 2D Toda
chains [10, 11].

If N = 1, there is a unique operator A : Ω(ξπ) → g(π) with the image closed w.r.t.
the commutation,

[imA, imA] ⊆ imA. (5)

The operator A transfers the Lie algebra structure [ , ]
∣∣
imA

to the skew-symmetric
bracket [ , ]A in the quotient domA/ kerA,

[
A(p), A(q)

]
= A

(
[p, q]A), p, q ∈ Ω(ξπ). (6)

By definition, the kernel kerA is an ideal in the Lie algebra
(
Ω(ξπ), [ , ]A

)
. In section 1

we analyse further the standard decomposition (11) of [ , ]A.

Example 4 (N = 1). In Theorem 1 we show why the image of every Z2-graded
Hamiltonian operator is closed under the commutation in g. This approach (see (12)
and (15) on p. 9) provides the most convenient method for verification whether a given
graded operator is Hamiltonian.2 The proof of Theorem 1 makes it clear that the
commutation closure is not superfluous but appears as an element of the construction.

Examples of non-Hamiltonian operators A that satisfy (5), and the brackets [ , ]A, are
contained in [28] and [12]. The brackets [ , ]A that describe the commutation relations
in symmetry algebras for open 2D Toda chains are calculated in [11], see Remark 3.

Definition 1. Suppose that each of the N ≥ 2 operators A1, . . . , AN with a common
domain satisfies (5). We say that these operators are linear compatible if their linear

combinations Aλ =
∑N

i=1 λiAi retain the same property (5) for any λ.

In Theorem 2 we prove that the bracket, induced on the domain of a linear combi-
nation Aλ of the linear compatible operators, is equal to the sum of their ‘individual’
brackets.

Definition 2. We say that the N ≥ 2 operators Ai : Ω(ξπ) → g(π) are strong compatible

if the sum of their images is closed under commutation in g(π),
[∑

i

imAi,
∑

j

imAj

]
⊆

∑

k

imAk, 1 ≤ i, j, k ≤ N. (7)

The involutivity (7) gives rise to the bi-differential operators ckij : Ω(ξπ)×Ω(ξπ) → Ω(ξπ)
through [

Ai(p), Aj(q)
]

=
∑

k

Ak
(
ckij(p, q)

)
, p, q ∈ Ω(ξπ). (8)

2In principle, it is possible to obtain comparably transparent and equally algorithmic verification
formulas by re-deriving the entire construction of [6] in the Z2-graded setup; that concept is based on
the use of variational polyvectors which are already endowed with their own grading.
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The structural constants ckij absorb the bi-differential action on p, q under the commu-
tation in the images of the operators (c.f. [7, §III.3]).

Example 5 (N = 2). The Magri scheme [21] for the restriction of two compatible3

Hamiltonian operators A1, A2 onto the commutative hierarchy of the descendants Hi ∈
H̄n(π) of the Casimirs H0 for A1 gives an example of (7) with N = 2 and ckij ≡ 0.
We conclude section 1 asking whether the converse is true and, consequently, helps to
generate completely integrable systems at n ≥ 1.

We do not assume that each operator Ai alone satisfies (5), therefore it may well
occur that ckii 6= 0 for some k 6= i.

In section 2 we analyse the standard structure (21) of the decompositions (8). We
extract the components Γkij ∈ CDiff

(
Ω(ξπ) × Ω(ξπ) → Ω(ξπ)

)
from ckij that act by

total differential operators on both arguments p, q ∈ Ω(ξπ) at once. Our main result,
Theorem 4, states that, under a change of coordinates in the domain, the symbols Γkij
are transformed by a proper analogue (23) of the classical rule Γ 7→ g Γg−1 + dg g−1

for the connection 1-forms Γ and reparametrizations g. We note (Corollary 5) that the
bi-differential symbols Γkij are symmetric in lower indices if the domain Ω(ξπ) of the

operators Ai is ̂Γ(ξ∗∞(ξ))
∣∣
w[u]

and hence its elements acquire an additional grading.

In section 3 we confirm the geometric interpretation of Γkij as Christoffel symbols
for a connection, although not in a fibre bundle. For transparency, we consider linear
compatible operators, whence we deal with points A ∈

⊕N

i=1 R · Ai. We recognize the

symbols Γkij as the coefficients of a connection in the triad
(
Ω(ξπ), [ , ]A

) A
−→

(
g, [ , ]

)
of

the two Lie algebras and the morphism.
Let us recall that, for a commutative associative unital k-algebra A and an A-

algebra B related by a k-homomorphism ı : A ↪→ B, the definition of connections ∇
in the triads A

ı
−→ B was proposed in [16] as follows:

Der(A) ↪→ Der(A,B)
∇
−→ Der(B, P ), P is a B-module.

In its turn, this is the algebraic counterpart of our initial geometric picture A =
C∞(Bn), B = C∞(Em+n), and ı : A ↪→ B for the bundle π : Em+n −−→

Fm
Bn. We

notice that this understanding of connections admits a tautological analogue for the
spaces of inner derivations of Lie algebras. Namely, we let ∇A : DerIn

(
Ω(ξπ), g(π)

)
→

Der
(
g(π), P

)
be the map A ◦ [ψ, ·]A 7→

[
A(ψ), ·

]
for each ψ ∈ Ω(ξπ) and any g(π)-

module P . In Theorem 7 we prove that such connections ∇A are always flat.

1. Compatible differential operators

We begin with some notation; the standard reference in geometry of integrable systems
is [25], see also [4, 17, 18]. In the sequel, everything is real and C∞-smooth.

Let Bn be an n-dimensional orientable manifold, and let π : Em+n −−→
Fm

Bn be a

bundle over Bn with m-dimensional fibres Fm 3 u = (u1, . . . , um). By J∞(π) we
denote the infinite jet space over π, and we set π∞ : J∞(π) → Bn. We denote by uσ,

3The Hamiltonian operators are (Poisson) compatible if their linear combinations remain Hamilton-
ian, see Theorem 3 below.
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|σ| ≥ 0, its fibre coordinates. Then [u] stands for the differential dependence on u and
its derivatives up to some finite order, and we put F(π) := C∞(J∞(π)), understanding
it as the inductive limit of filtered algebras.

We recall that two F(π)-modules are canonically associated with the jet space J∞(π).
First, we have the F(π)-module Γ(π∗∞(π)) = Γ(π) ⊗C∞(Bn) F(π). The shorthand no-
tation is κ(π) ≡ Γ(π∗∞(π)). Its sections ϕ ∈ κ(π) describe the π-vertical evolutionary

derivations ∂ϕ =
∑

σ
d|σ|

dxσ (ϕ) · ∂/∂uσ on J∞(π). For all ψ such that ∂ϕ(ψ) makes sense,

the linearizations `
(u)
ψ are defined by `

(u)
ψ (ϕ) = ∂ϕ(ψ), where ϕ ∈ κ(π).

Second, let Λ̄n(π) be the module of highest π-horizontal forms on J∞(π), d̄ be the
horizontal π∗∞-lifting of the de Rham differential on the base Bn, and H̄n(π) be the
n-th horizontal cohomology. Then we denote by κ̂(π) = HomF(π)

(
κ(π), H̄n(π)

)
the

F(π)-module dual to κ(π).
Likewise, let ξ : Ir+n −−→

W r
Bn be another bundle over the same base B. Then we con-

sider the F(π)-module h = Γ(π∗∞(ξ)) = Γ(ξ) ⊗C∞(Bn) F(π) of sections of the induced

bundle over Mn. We denote by ĥ = HomF(π)

(
h, H̄n(π)

)
the dual of h. The stan-

dard example of ĥ is the module of ‘cosymmetries’ dual to the module h of differential
equations4 that are imposed upon sections of the bundle π.

We suppose further that there is a differential substitution w : J∞(π) → Γ(ξ). Ob-
viously, the substitution converts F(ξ)-modules to the submodules of F(π)-modules.
We continue denoting the fibre coordinates in ξ and the nonlinear differential operators
w[u] that take values in Γ(ξ) by the same letter w.

The main object of our study are total differential operators (that is, linear matrix
differential operators in total derivatives) which take values in g(π). By definition, the
domain f of the operators is one of the following: we have that either

f = κ(ξ)
∣∣
w : J∞(π)→Γ(ξ)

or f = κ̂(ξ)
∣∣
w : J∞(π)→Γ(ξ)

.

We refer to the operators with such domains as first and second kind, respectively. In
particular, we have ξ = π for the recursion operators κ(π) → κ(π) and it is standard to
identify f = κ̂(π) for the Hamiltonian operators (see above); here we set w = id: Γ(π) →
Γ(ξ) in both cases.

Under any differential reparametrizations ũ = ũ[u] : J∞(π) → Γ(π) and w̃ = w̃[w] : J∞(ξ) →
Γ(ξ), the operators A of first kind are transformed according to

A 7→ Ã = `
(u)
ũ ◦ A ◦ `(w̃)

w

∣∣∣w=w[u]
u=u[ũ]

. (9a)

Respectively, the operators of second kind obey

A 7→ Ã = `
(u)
ũ ◦ A ◦

(
`
(w)
w̃

)∗∣∣∣w=w[u]
u=u[ũ]

. (9b)

For an N -tuple of operators Ai with a common domain f we set

Ω(ξπ) = f
/ ⋂N

i=1
kerAi. (10)

4We stress that reparametrizations of the equations {wi[u] = 0, with 1 ≤ i ≤ r} that constitute an
r-component system are independent from any changes of the coordinates u in the bundle π.
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Remark 1. The recursion and Noether operators with involutive images, addressed
in [12], are examples of the operators of first and second kind, respectively. The oper-
ators that yield symmetries of 2D Toda chains are of second kind [10, 11, 28].

At the same time, there is no coordinate-independent understanding for the family
of operators A = d

dx
◦

∏s

j=1

(
d
dx

+ µ(j, µ(j ′))u
)
, s ≥ 1, µ

(
j, µ(j ′)

)
) ∈ N, j ′ < j, that was

discovered in [28] and proved to be infinite in [27] for a fixed system of coordinates (x, u)
in π. The ‘chain rule’ for the brackets on different domains of such operators, divisible
one by another, is described in [27] and [12].

Let us consider in more detail the case N = 1 of only one total differential operator
A : Ω(ξπ) → g(π) that satisfies (5). By the Leibnitz rule, two sets of summands appear
in the bracket of evolutionary vector fields A(p), A(q) that belong to the image:

[
A(p), A(q)

]
= A

(
∂A(p)(q) − ∂A(q)(p)

)
+

(
∂A(p)(A)(q) − ∂A(q)(A)(p)

)
.

In the first summand we have used the permutability of evolutionary derivations and
total derivatives. The second summand hits the image of A by construction. Conse-
quently, the Lie algebra structure [ , ]A on the domain of A equals

[p, q]A = ∂A(p)(q) − ∂A(q)(p) + {{p, q}}A. (11)

The bracket [ , ]A contains the two standard summands and the bi-differential skew-
symmetric part {{ , }}A ∈ CDiff

(
Ω(ξπ)×Ω(ξπ) → Ω(ξπ)

)
that generally does not satisfy

the Jacobi identity.

Remark 2. The bracket {{ , }}A for Hamiltonian operators A can be derived explicitly
from the Jacobi identity [[A,A]] = 0 for the Lie algebra

(
H̄n(π), { , }A

)
of the Hamil-

tonian functionals endowed by A with the Poisson bracket. Following [17], we put5

`A,ψ(ϕ) :=
(
∂ϕ(A)

)
(ψ) for any ϕ ∈ κ(π), ψ ∈ f, and a total differential operator

A ∈ CDiff(f,κ(π)). Note that `A,ψ is an operator in total derivatives w.r.t. its argu-

ment ϕ and w.r.t. ψ (but not w.r.t. the coefficients of A), and hence the adjoint `†A,ψ is
well defined.

A skew-adjoint operator A =
∥∥Aijτ · d|τ |

dxτ

∥∥ is Hamiltonian if and only if the relation

`A,p(A(q)) − `A,q(A(p)) = A
(
`†A,q(p)

)

holds for all p, q ∈ f. This formula provides the bracket {{p, q}}A = `†A,p(q) explicitly,
c.f. [12, 17, 25] and Theorem 1 below; in coordinates, the k-th (1 ≤ k ≤ m) component
of {{ , }}A equals

{{p, q}}kA =
∑

|σ|,|τ |≥0

m∑

i,j=1

( d|σ|

dxσ

)†[
qi ·

∂Aijτ
∂ukσ

·
d|τ |

dxτ
(pj)

]
, (12)

where † denotes the adjoint. Formula (12) is extended straightforwardly onto the super-
setup of bosonic super-fields and parity-preserving Hamiltonian operators that endow
bosonic functionals with Poisson brackets. Now the multi-indices σ and τ can run
through the super-derivations as well, and the partial derivatives ∂/∂ukσ in (12) act
according to the graded Leibnitz rule.

5We emphasize that the notation `A,ψ is not the same as the linearization `
(u)
A(ψ).
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Example 6. Let u = u0(x, t) · 1 + θ1 · u1(x, t) + θ2 · u2(x, t) + θ1θ2 · u12(x, t) be a scalar
bosonic super-field, that is, a mapping of R2 3 (x, t) to the four-dimensional Grassmann
algebra generated over C by θ1 and θ2 satisfying θiθj = −θjθi. By definition, put Di =
∂/∂θi+ θi ·d/dx, here 1 ≤ i, j ≤ 2 and it is readily seen that DiDj +DjDi = 2δij ·d/dx.

Consider the super-operator A2 that comes from the N=2 classical super-conformal
algebra [1] and yields the second Hamiltonian structure for the triplet of integrable N=2
supersymmetric Korteweg–de Vries equations [20],

A2 = D1D2
d
dx

+ 2u d
dx

−D1(u)D1 −D2(u)D2 + 2ux. (13)

Let the bosonic super-sections p, q ∈ κ̂(π) be two arguments of A2. Then formula (12)
yields their skew-symmetric bracket

{{p, q}}A2
= 2

(
d
dx

p · q − p · d
dx

q
)
−D1(p) · D1(q) −D2(p) · D2(q), (14)

and the validity of (11) confirms that the super-operator A2 is indeed Hamiltonian.

The purely bosonic setup of Remark 2 and the N=2 supersymmetry invariance in
Example 6 are particular cases in the general Z2-graded framework of (m0 + n | m1)-
dimensional fibre bundles π and Hamiltonian operators A : κ̂(π) → κ(π) for bosonic
Hamiltonian functionals.

Let 〈 , 〉 denote the standard coupling κ̂(π)×κ(π) → H̄n(π) and define 〈 | 〉 by setting
〈p | q〉 := 〈q,p〉. Namely, if p = (p0,p1) and q = (q0, q1) are decomposed to even and
odd-graded components, then 〈p, q〉 = p0 · q0 + p1 · q1 and 〈p | q〉 = p0 · q0 − p1 · q1.
The definition of adjoint graded operators implies 〈p, A(q)〉 = 〈q, A†(p)〉 = 〈A†(p) | q〉.

Theorem 1. A Z2-graded parity-preserving skew-adjoint total differential operator A : κ̂(π) →
κ(π) is Hamiltonian if and only if its image is closed under the commutation and, for

all p, q, r ∈ κ̂(π), the bracket {{ , }}A in (11) satisfies the equality
〈
A

(
{{p, q}}A

)
| r

〉
= :

〈
p, ∂A

←−
( r
−→

)(A)(q)
〉
:, (15)

where the normal order : : suggests that all derivations are thrown off A(r) by the graded

Green formula and the arrows indicate that first A(r) is moved right w.r.t. q, and then

the operator A is pushed left w.r.t. p by Green’s formula again. The arising argument

of the skew-adjoint operator A is the bracket {{p, q}}A.

Proof. Let us expand each of the three summands of the Jacobi identity,
∑

�

∂A(p)(〈q, A(r)〉) = 0,

by using the Leibnitz rule. We obtain
∑

�

[
〈∂A(p)(q), A(r)〉 + 〈q, ∂A(p)(A)(r)〉 + 〈q, A(∂A(p)(r))〉

]
= 0. (16)

Consider the third term in (16) and, by the substitution principle [25], suppose that
r is the variational derivative of a Hamiltonian functional, whence the linearization `r

is self-adjoint in the graded sense. Consequently,

〈q, A(∂A(p)(r))〉 = −〈A(q) | ∂A(p)(r)〉 = −〈A(q) | `r(A(p))〉 = −〈A(p) | `†r(A(q))〉

= −〈A(p) | `r(A(q))〉 = −〈`r(A(q)), A(p)〉 = −〈∂A(q)(r), A(p)〉.
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Substituting this back in (16) and taking the sum over the cyclic permutations, we
cancel 3 × 2 terms, except for

〈q, ∂A(p)(A)(r)〉 + 〈r, ∂A(q)(A)(p)〉 + 〈p, ∂A(r)(A)(q)〉 = 0. (17)

Now we consider separately the first and second summands in (17), paying due attention
to the order of graded objects and the directions the derivations act in. First, applying
the even vector field ∂A(p) to the equality 〈q, A(r)〉 = 〈A†(q) | r〉 and using A† = −A,
we conclude that

〈q, ∂A(p)(A)(r)〉 = −〈∂A(p)(A)(q) | r〉.

Likewise, the second summand in (17) gives

〈r, ∂A(q)(A)(p)〉 = 〈∂A(q)(A)(p) | r〉.

Hence from (17) we obtain

〈∂A(p)(A)(q) | r〉 − 〈∂A(q)(A)(p) | r〉 = 〈p, ∂A(r)(A)(q)〉.

Integrating the right-hand side by parts, we move the skew-adjoint operator A off r

and obtain the bracket {{p, q}}A as its argument.
We have shown that if the bracket induced on the domain of a given graded skew-

adjoint operator A with involutive image, see (11), coincides with the bracket {{ , }}A
emerging from (15), then A is indeed Hamiltonian, and vice versa. This concludes the
proof. �

Example 7. Writing the super-operator (13) in components, now with pi = δH/δui,
whence p0 and p12 are even and p1, p2 are odd, we obtain the (4×4)-matrix operator [1]

P̂2 =




− d
dx

−u2 u1 2u0
d
dx

+ 2u0;x

−u2

(
d
dx

)2
+ u12 −2u0

d
dx

− u0;x 3u1
d
dx

+ 2u1;x

u1 2u0
d
dx

+ u0;x

(
d
dx

)2
+ u12 3u2

d
dx

+ 2u2;x

2u0
d
dx

−3u1
d
dx

− u1;x −3u2
d
dx

− u2;x

(
d
dx

)3
+ 4u12

d
dx

+ 2u12;x


 . (18)

The application of Theorem 1 is particularly transparent since the coefficients of (18)
are linear functions. The right-hand side of (15) yields the four components of the
skew-symmetric bracket {{p, q}}A2

,

{{p, q}}0
A2

= 2(p0;xq12 − p12q0;x) − (p1;xq2 + p2q1;x) + (p2;xq1 + p1q2;x),

{{p, q}}1
A2

= 2(p1;xq12 − p12q1;x) + (p0q2 − p2q0) + (p12;xq1 − p1q12;x),

{{p, q}}2
A2

= 2(p2;xq12 − p12q2;x) + (p1q0 − p0q1) + (p12;xq2 − p2q12;x),

{{p, q}}12
A2

= 2(p12;xq12 − p12q12;x) − p1q1 − p2q2.

This is the component expansion of (14).

We note that Poisson compatible Hamiltonian operators are linear compatible, and
vice versa, because formula (12), c.f. (15), is linear in the coefficients of A. This mani-
fests a general property of the linear compatible operators, each subject to (5) and same
for their linear combinations.
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Theorem 2 ([12]). The bracket {{ , }}Aλ
on the domain of the combination Aλ of linear

compatible operators Ai is

{{ , }} N
P

i=1

λiAi

=
N∑

i=1

λi · {{ , }}Ai
.

The pairwise linear compatibility implies the collective linear compatibility of A1, . . . , AN .

Let us revisit the classical Magri scheme [21] for completely integrable bi-Hamiltoni-
an systems in n ≥ 1 dimensions and focus our attention on its element which is often
omitted but becomes particularly clear in the cohomological formulation. We recall
that the Schouten bracket [6] of the variational bi-vectors satisfies the Jacobi identity

[[[[A1, A2]], A3]] + [[[[A2, A3]], A1]] + [[[[A3, A1]], A2]] = 0. (19)

Hence the original Jacobi identity [[A,A]](ψ1, ψ2, ψ3) = 0 for the arguments of A implies
that dA = [[A, · ]] is a differential, giving rise to the Poisson cohomology Hk

A(π). Obvi-
ously, the Casimirs H0 ∈ H̄n(π) such that [[A,H0]] = 0 for a Hamiltonian operator A
constitute H0

A(π).

Theorem 3 ([2, 21]). Suppose [[A1, A2]] = 0, H0 ∈ H0
A1

(π) is a Casimir of A1, and the

first Poisson cohomology w.r.t. dA1
= [[A1, · ]] vanishes. Then for any k > 0 there is a

Hamiltonian Hk ∈ H̄n(π) such that

[[A2,Hk−1]] = [[A1,Hk]]. (20)

Put ϕk := A1

(
δ/δu(Hk)

)
. The Hamiltonians Hi, i ≥ 0, pairwise Poisson commute

w.r.t. either A1 or A2, the densities of Hi are conserved on any equation utk = ϕk, and

the evolutionary derivations ∂ϕk
pairwise commute for all k ≥ 0.

Standard proof. The main homological equality (20) is established by induction on k.
Starting with a Casimir H0, we obtain

0 = [[A2, 0]] = [[A2, [[A1,H0]]]] = −[[A1, [[A2,H0]]]] mod [[A1, A2]] = 0,

using the Jacobi identity (19). The first Poisson cohomology H1
A1

(π) = 0 is trivial by
an assumption of the theorem, and hence the closed element [[A2,H0]] in the kernel of
[[A1, ·]] is exact: [[A2,H0]] = [[A1,H1]] for some H1. For k ≥ 1, we have

[[A1, [[A2,Hk]]]] = −[[A2, [[A1,Hk]]]] = −[[A2, [[A2,Hk−1]]]] = 0

using (19) and by [[A2, A2]] = 0. Hence [[A2,Hk]] = [[A1,Hk+1]] by H1
A1

(π) = 0, and we
thus proceed infinitely. �

We see now that the inductive step — the existence of the (k + 1)-st Hamiltonian
in involution — is possible if and only if H0 is a Casimir,6 and therefore the operators
A1 and A2 are restricted onto the linear subspace that is spanned in κ̂(π) by the Euler
derivatives of the descendants of H0, the Hamiltonians of the hierarchy. In fact, the
image under A2 of a generic section from κ̂(π) can not be resolved w.r.t. A1 by (20).
On the other hand, the strong compatibility of the restrictions of Poisson compatible

6The Magri scheme starts from any two Hamiltonians Hk−1,Hk ∈ H̄n(π) that satisfy (20), but
we operate with maximal subspaces of H̄n(π) such that the sequences of Hamiltonians can not be
extended with k < 0.
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operators A1 and A2 onto the hierarchy follows from Theorem 3 tautologically, since
their images are commutative Lie algebras.

Regarding the converse statement as a potential generator of multi-dimensional com-
pletely integrable systems, we formulate the open problem: Is the strong compatibility
of linear compatible Hamiltonian operators achieved only for their restrictions onto
the hierarchies of Hamiltonians in involution so that the bi-differential constants ckij
necessarily vanish ?

2. Bi-differential Christoffel symbols

In this section we consider strong compatible total differential operators Ai : Ω(ξπ) →
g(π), 1 ≤ i ≤ N , whose images in the Lie algebra g(π) of evolutionary vector fields
on J∞(π) are subject to the collective commutation closure (7).

Let us extract the total bi-differential parts of the operators ckij in (8), similar to (11)
now for N ≥ 1. We have

ckij = ∂Ai(p)(q) · δkj − ∂Aj(q)(p) · δki + Γkij(p, q), p, q ∈ Ω(ξπ), (21)

where Γkij ∈ CDiff
(
Ω(ξπ) × Ω(ξπ) → Ω(ξπ)

)
. By definition, the three indices in Γkij

match the respective operators Ai, Aj, Ak in (8). Obviously, the convention Γ1
11 =

{{ , }}A1
holds if N = 1. At the same time, for fixed i, j, k, the symbol Γkij remains

a (class of) matrix differential operator in each of its two arguments p, q ∈ Ω(ξπ).
Hence the total number of the indices is much greater than three; we note that the
upper or lower location of the omitted indices depends on the (co)vector nature of the
domain Ω(ξπ). The symbol Γkij represents a class of bi-differential operators because
they are not uniquely defined. Indeed, they are gauged by the conditions

N∑

k=1

Ak

(
∂Aj(q)(p)δki − ∂Ai(p)(q)δkj + Γkij(p, q)

)
= 0, p, q ∈ Ω(ξπ). (22)

The zero in the r.h.s. of (22) appears if
[
Ak(ψ),

∑N

`=1 imA`
]

= 0 implies ψ ∈ kerAk;
for this it is sufficient that the sum of the images of A` in g(π) be semi-simple.

Example 8. Consider the Liouville equation ELiou = {uxy = exp(2u)}. The differential
generators w ∈ ker d

dy

∣∣
ELiou

, w̄ ∈ ker d
dx

∣∣
ELiou

of its conservation laws are w = u2
x − uxx

and w̄ = u2
y − uyy. The operators7

� = ux + 1
2

d
dx

and �̄ = uy + 1
2

d
dy

determine higher

symmetries ϕ, ϕ̄ (in particular, Noether symmetries ϕL, ϕ̄L) of ELiou, which are

ϕ = �
(
φ(x, [w])

)
, ϕL = �

(δH(x, [w])

δw

)
; ϕ̄ = �̄

(
φ̄(y, [w̄])

)
, ϕ̄L = �̄

(δH̄(y, [w̄])

δw̄

)

for any smooth φ̄, φ ∈ κ̂(ξ)
∣∣
w[u]

and H̄,H ∈ H̄1(ξ)
∣∣
w[u]

. The images of � and �̄ are

closed w.r.t. the commutation; for instance, the bracket (11) for � contains {{p, q}}� =
d
dx

(p) · q − p · d
dx

(q), and similar for �̄. The two summands in the symmetry algebra
sym ELiou ' im � ⊕ im �̄ commute between each other, [im �, im �̄]

.
= 0 on ELiou. The

7We denote the operators by � and �̄, following the notation of [28] and [10, 11].
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operators �, �̄ generate the bi-differential symbols

Γ�
�� = {{ , }}� = d

dx
⊗ 1 − 1 ⊗ d

dx
, Γ�

� �
= {{ , }}� = d

dy
⊗ 1 − 1 ⊗ d

dy
,

Γ�

��
= d

dy
⊗ 1, Γ�

��
= −1 ⊗ d

dx
, Γ�

��
= −1 ⊗ d

dy
, Γ�

��
= d

dx
⊗ 1,

where the notation is obvious. Note that Γ�

��
(p, q)

.
= Γ�

��
(p, q)

.
= Γ�

��
(q, p)

.
= Γ�

��
(q, p)

.
=

0 on ELiou for any p(x, [w]) and q(y, [w̄]).
The matrix operators �, �̄ of second kind are well-defined [10, 11] for each 2D Toda

chain EToda associated with a semi-simple complex Lie algebra. They exhibit the same
properties as above.

Remark 3 (on representability). The main result of [11] leads to the open problem: Let,
as above, the operator � be of second kind and suppose that the substitution w = w[u]
is such that the velocity ∂�(p)(w) is a differential function of w for any p ∈ f

∣∣
w
, and same

for the coefficients of the bracket {{ , }}�. In view of [10, 11, 28], such assumptions are
natural. Now, when is there a Hamiltonian operator A : f → κ(ξ) that endows the F(ξ)-
module f of variational covectors with the same Lie algebra structure as � does, i.e., such
that {{ , }}� = {{ , }}A? [For example, the identity ∂�(p)(w) =

(
−1

2
d3

dx3 +u d
dx

+ d
dx
◦u

)
(p)

implies the equality of the brackets in (1) and (2).]

The operators �, �̄ yield the involutive distributions of evolutionary vector fields
that are tangent to the integral manifolds, the 2D Toda differential equations. But
generally there is no Frobenius theorem for such distributions.

Theorem 4 (Transformations of Γkij). Let w̃ = w̃[w] be a nondegenerate change of

fibre coordinates in the bundle ξ. Recall that the sections p, q ∈ f
∣∣
w

in the domains of

strong compatible operators are reparametrized by p 7→ p̃ = gp and q 7→ q̃ = gq, where

g = `
(w)
w̃ for the operators (9a) of first kind and g =

[(
`
(w)
w̃

)∗]−1
for the operators (9b) of

second kind. In this notation, the operators A1, . . ., AN : Ω(ξπ) → g(π) with a common

domain Ω(ξπ) = f
∣∣
w
/
⋂
i kerAi are transformed by Ai 7→ Ãi = Ai ◦ g

−1
∣∣
w=w[w̃]

.

Then the bi-differential symbols Γkij ∈ CDiff
(
Ω(ξπ) × Ω(ξπ) → Ω(ξπ)

)
obey the direct

analogue of the standard rule Γ 7→ g Γ g−1 + dg · g−1 for the connection 1-forms Γ,

Γkij(p, q) 7→ Γk̃ı̃̃
(
p̃, q̃

)
=

(
g◦Γk̃ı̃̃

)(
g−1p̃, g−1q̃

)
+δk̃ı̃ ·∂Ã̃(q̃)(g)

(
g−1p̃

)
−δk̃̃ ·∂Ãı̃(p̃)(g)

(
g−1q̃

)
.

(23)

Proof. Denote A = Ai and B = Aj; without loss of generality assume i = 1 and j = 2.
Let us calculate the commutators of vector fields in the images of A and B using two
systems of coordinates in the domain. We equate the commutators straighforwardly,
because the fibre coordinates in the images of the operators are not touched at all. So,
we have, originally,

[
A(p),B(q)

]
= B

(
∂A(p)(q)

)
− A

(
∂B(q)(p)

)
+ A

(
ΓAAB(p, q)

)
+B

(
ΓBAB(p, q)

)
+

N∑

k=3

Ak
(
ΓkAB(p, q)

)
.
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On the other hand, we substitute p̃ = gp and q̃ = gq in
[
Ã(p̃), B̃(q̃)

]
, whence, by the

Leibnitz rule, we obtain

[
Ã(p̃),B̃(q̃)

]
= B̃

(
∂Ã(p̃)(g)(q)

)
+

(
B̃ ◦ g

)(
∂Ã(p̃)(q)

)
− Ã

(
∂B̃(q̃)(g)(p)

)
+

(
Ã ◦ g

)(
∂B̃(q̃)(p)

)

+
(
A ◦ g−1

)(
ΓÃ
ÃB̃

(gp, gq)
)

+
(
B ◦ g−1

)(
ΓB̃
ÃB̃

(gp, gq)
)

+
N∑

k̃=3

(
Ak̃ ◦ g

−1
)(

Γk̃
ÃB̃

(gp, gq)
)
.

Therefore,

ΓAAB(p, q) =
(
g−1 ◦ ΓÃ

ÃB̃

)
(gp, gq) −

(
g−1 ◦ ∂B(q)(g)

)
(p),

ΓBAB(p, q) =
(
g−1 ◦ ΓB̃

ÃB̃

)
(gp, gq) +

(
g−1 ◦ ∂A(p)(g)

)
(q),

ΓkAB(p, q) =
(
g−1 ◦ Γk

ÃB̃

)
(gp, gq) for k ≥ 3.

Acting by g on these equalities and expressing p = g−1p̃, q = g−1q̃, we conclude the
proof. �

Remark 4. Within the Hamiltonian formalism, it is very productive to postulate that
the arguments of Hamiltonian operators, the cosymmetries, are odd 8, see [9]. Indeed, in
this particular situation they can be conveniently identified with Cartan 1-forms times
the pull-back of the volume form d vol(Bn) for the base of the jet bundle.

We preserve this Z-grading for domains Ω(ξπ) of operators (9b) of second kind. Hence
if π and ξ are super-bundles with Grassmann-valued sections, then the operators A are
bi-graded. Their proper new Z-grading is |A|Z = −1 because the images in g(π) have
degree zero; the Z2-degree, if any, can be arbitrary for the operators A.

Corollary 5. For any i, j, k ∈ [1, . . . , N ] and for arguments p, q ∈ Ω(ξπ) of Z-degree 1
for strong compatible operators of second kind, we have that

Γkij(p, q) = −Γkji(q,p) = (−1)|p|Z·|q|Z · Γkji(q,p) (24)

due to the skew-symmetry of the commutators in (7). Hence the symbols Γkij are
symmetric w.r.t. the Z-grading in this case.

Proposition 6. If, additionally, two strong compatible operators Ai and Aj are linear

compatible, then their ‘individual’ brackets Γiii and Γjjj are

{{p, q}}Ai
= Γjij(p, q) + Γjji(p, q) and {{p, q}}Aj

= Γiij(p, q) + Γiji(p, q)

for any p, q ∈ Ω(ξπ).

Proof. For brevity, denoteA = Ai, B = Aj and consider the linear combination µA+νB,
which satisfies (5). By Theorem 2, we have

(
µA+ νB

)(
{{p, q}}µA+νB

)
=

= µ2A
(
{{p, q}}A

)
+ µν · A

(
{{p, q}}B

)
+ µν ·B

(
{{p, q}}A

)
+ ν2B

(
{{p, q}}A

)
.

8Here we assume for simplicity that all fibre coordinates in π and ξ are permutable.
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On the other hand,
[(
µA+ νB

)
(p),

(
µA+ νB

)
(q)

]

= µ2
[
A(p), A(q)

]
+ µν

[
A(p), B(q)

]
− µν

[
A(q), B(p)

]
+ ν2

[
B(p), B(q)

]
.

Taking into account (21) and equating the coefficients of µν, we obtain

A
(
{{p, q}}B

)
+B

(
{{p, q}}A

)
= A

(
ΓAAB(p, q)

)
+B

(
ΓBAB(p, q)

)
−A

(
ΓAAB(q,p)

)
−B

(
ΓBAB(q,p)

)
.

Using the formulas ΓAAB(q,p) = −ΓABA(p, q) and ΓBAB(q,p) = −ΓBBA(p, q), see (24), we
isolate the arguments of the operators and obtain the assertion. �

3. Flat connections in the triads Ω(ξπ)
A
−→ g(π)

In this section we consider linear compatible operators, which span the linear space
A =

⊕N

k=1Ak · R of operators that satisfy (5) at each point A ∈ A.
Let A : f → κ(π) be such an operator. It provides the homomorphism of Lie algebras

A :
(
Ω(ξπ), [ , ]A

)
→

(
g(π), [ , ]

)
. (25)

Let P be a g(π)-module; for example, P = F(π) or any other horizontal F(π)-module
(including g(π) itself). By the homomorphism A, the g(π)-module P is an Ω(ξπ)-module
as well.

We recall that, due to the Jacobi identity, the adjoint action by an element of the Lie
algebra Ω(ξπ) is a derivation. We bear in mind that the inclusion DerIn

(
Ω(ξπ), g(π)

)
⊆

Der
(
Ω(ξπ), g(π)

)
is strict whenever the constructions are defined on the empty jet space.

Indeed, if imA 6= g(π), then the g(π)-valued derivation
[
ϕ0, A(·)

]
does not belong to

DerIn

(
Ω(ξπ), g(π)

)
for any ϕo /∈ imA. Besides, we assume that [ψ1, ·]A = [ψ2, ·]A implies

ψ1 = ψ2 in Ω(ξπ). Both requirements are fulfilled if the image of A in g(π) is semi-simple
and Whitehead’s lemma holds for it.

Now we define a connection ∇A in the triad (25),

∇A : DerIn

(
Ω(ξπ), g(π)

)
→ Der

(
g(π), P

)
.

This connection lifts inner g(π)-valued derivations of Ω(ξπ) to P -valued derivations
of g(π). We set

∇A : A ◦ [ψ, ·]A 7→ [A(ψ), ·]. (26)

The above definition is Ω(ξπ)-linear. Indeed, for a derivation ∆ = [ψ, ·]A we have that

∇A
f×∆ = A(f) ×∇A

∆, f ∈ Ω(ξπ), ∆ ∈ DerIn

(
Ω(ξπ)

)
, (27)

where the multiplication × by f and by its image under A is the adjoint action.9

Remark 5. Of course, the connection (26) in the triads (25) is not the Cartan connection
on J∞(π). Indeed, they are defined in entirely different geometric setups. This is also
readily seen from the fact that the evolutionary fields on J∞(π) are π-vertical and are
projected to zero vector fields on Bn under π∞,∗. (Everything is projected to the point x0

if the jet bundle amounts to the finite-dimensional manifold Fm and π : Fm → {x0}.)

9Note that the right-hand side of the analogue of (27) in a classical definition of the C∞(Bn)-linea-
rity of connections in the fibre bundles π : Em+n −−→

Fm

Bn does contain the image ı(f) of the identical

embedding ı : C∞(Bn) ↪→ C∞(Em+n) and not f itself.
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Theorem 7. The connection (26) is flat :
(
∇A

p ◦ ∇A
q −∇A

q ◦ ∇A
p −∇A

[p,q]A

)(
ϕ
)

= 0, ∀p, q ∈ Ω(ξπ), ϕ ∈ g(π). (28)

Proof. The Jacobi identity for the bracket of evolutionary vector fields,
[
A(p),

[
A(q), ϕ

]]
+

[
A(q),

[
ϕ,A(p)

]]
+

[
ϕ,

[
A(p), A(q)

]]
= 0,

is the flatness condition (28). �

Corollary 8. The bi-differential symbols Γkij determine symmetric flat connections

∇λ =
∑

k λk∇
Ak in the graded triads Ω(ξπ)

Aλ−→ g(π) given by the operators Aλ =∑N

i=1 λi · Ai ∈ A of second kind.

Remark 6. If the flows of a commutative hierarchy A belong to the image of an op-
erator A ∈ A, then the hierarchy is a geodesic w.r.t. the connection (26). Indeed, for
any curve ψ(τ) : R → Ω(A) located in the inverse image of A under A, the covariant
derivative ∇A

ψ(τ)A(ψ′(τ)) of the velocity ψ′(τ) vanishes along the curve.

Remark 7. The operators (25) induce the homomorphism Ω(ξπ) →
∧•

g(π) to the
Schouten algebra of evolutionary polyvector fields, which is endowed with the Schouten
bracket [[ , ]]. The flat connection (26) in the triad (25) is naturally extended to the

connection in Ω(ξπ)
A
−→

∧•
g(π), which remains flat in the graded sense. In particular,

we thus obtain the connections in the triads Ω
P
−→ g composed by the Poisson bi-vectors

P ∈ Γ
(∧2 TF

)
, the Schouten algebra g =

(∧• TF, [ , ]
)
, and the Gerstenhaber algebra

Ω =
(∧• T ∗F, [ , ]P

)
.

Twice in this paper, we imposed the requirements of vanishing for the zeroth and first
Chevalley cohomology with values in g(π) for the Lie subalgebra

∑N

i=1 imAi ⊆ g(π) of
the Lie algebra of evolutionary vector fields. Consider the operator (25) that makes
Ω(ξπ) the Lie algebra (isomorphic to its image under A). Using Cartan’s formula, we

associate the differential complex on the Chevalley cohomology HomR

(∧k Ω(ξπ),Ω(ξπ)
)

with values in the Lie algebra itself. (Likewise, the values could be in the Ω(ξπ)-
module g(π), or the entire construction repeated for the Lie algebra imA.) For any k ≥

0 and ωk ∈ HomR

(∧k Ω(ξπ),Ω(ξπ)
)
, the differential dA : ωk 7→ ωk+1 is defined by

dAωk
(
ψ0, . . . , ψk

)
=

∑

i

(−1)i
[
ψi, ωk

(
ψ0, . . . , ψ̂i, . . . , ψk

)]
A

+
∑

i<j

(−1)i+j−1ωk
(
[ψi, ψj]A, ψ0, . . . , ψ̂i, . . . , ψ̂j, . . . , ψk

)
.

Hence we obtain the analogue of the Gerstenhaber complex, see (3–4),

Ω(ξπ)
const
−−−→ HomR

(
Ω(ξπ),Ω(ξπ)

)
−−−→ HomR

(∧2
Ω(ξπ),Ω(ξπ)

)

−−−→ HomR

(∧3
Ω(ξπ),Ω(ξπ)

)
→ · · · . (29)

The first inclusion in (29) consists of the commutations [ψ0, ·]A with fixed elements ψ0 ∈
Ω(ξπ), whence the zeroth cohomology H0

(
Ω(ξπ)

)
is described by the centre of Ω(ξπ).
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Likewise, the first cohomology group H1
(
Ω(ξπ)

)
is composed by the derivations of Ω(ξπ)

which are not inner.
Both requirements H0

(
Ω(ξπ)

)
= 0 = H1

(
Ω(ξπ)

)
, see above, are fulfilled for the data(

ξ, π, w[u], A
)

if the Lie algebra
(
Ω(ξπ), [ , ]A

)
is semi-simple and the Whitehead lemma

holds for it (c.f. [7]). Several operators A can be admissible for given ξ, π, and w. With
these input data, the A-dependent cohomology calculation problem for Ω

(
ξπ

)
is open.

Discussion

Our concept confirms the well-established principle in mathematical physics: ordinary
differential equations and related structures on a manifold F are converted to partial
differential equations and differential operators, respectively, if F is realized as the
fibre, but not the base in a bundle — that is, F becomes the target, but not the source
space for the sections. Hence the practical approach to the (jet) bundles is to “widen
the fibre” rather than “tower the base:” we ‘blow up’ the fibre points u ∈ F along
the base Bn in the bundle π. At the same time, it is generally impossible to extend
the Christoffel symbols of a connection ∇ in the (co)tangent bundle over F to the
bi-differential operators Γkij, preserving ∇ as the zero-order term.

We performed all the reasonings for local graded differential operators; all the struc-
tures were defined on the empty jet spaces. A rigorous extension of these objects to
nonlocal operators on (noncommutative, upon maps to an associative unital algebra)
differential equations is a separate problem for future research. In addition, the use of
difference operators subject to (7) can be a fruitful idea au début for discretization of
integrable systems with free functional parameters in the symmetries (e.g., Toda-like
difference systems).
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