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Introduction

In [W2], Waldhausen constructs a map
W : A(X) — nmzm(x+) (where A(X) denotes the (Waldhausen)
K-theory of the space X) and showed that evaluation on the
image of M : nme(X+) — A(X) induced by the inclusion of
monomial matrices produced a self-map
WoM: n”z”(x+) — n”zm(x+) homotopic to the identity by a
homotopy natural in X. This yielded a splitting of szm(x+)
off of A(X) (as well as it’s stabilization AS(X)), and this
fact plays a key role in the proof of the fundamental theorem

of Waldhausen relating A(X) to pseudo-isotopy theory ([W2],

[WM], [W]):

o _® Diff
Thm [Waldhausen] A(X) =~ 1 Z (X+) x WH (X) where
92Wthff(x) ~ #(X) = the stable pseudo-isotopy space of X

(as defined by Hatcher-Wagoner-Igusa).

The construction of W is done in stages. Waldhausen first
shows that fibre (A(Sn ~ X,) — A(X)) can be described
through a certain range of dimensions (approximately 2n) in
terms of a "cyclic" bar construction. On this cyclic bar cons-
truction he constructs a map to szm(x+) compatible with
stabilization. The result is a map AS(X) — n”zm(x+) natural
in X, and precomposition with the stabilization map

A(X) — AS(X) yields W. In this sequence of papers we



construct a generalization of Waldhausen’s map W and in-
vestigate it’s properties. Specifically let X .and Y be

pointed simplicial sets, X connected. Thep there exists a

dgeneralized Waldhéﬁseg trace mgé (2.2.8):
(*) Tr, (Y) : lim 0"fibre(A(Z(X v 2"Y)) — A(3X))
n
— 2”3z v | x[97 L vy,
a2l

This map is natural in X and Y. The first application of

this is to prove a conjecture due to T. Goodwillie:

Thm A For connected X there is a weak equivalence

=TT b+ 07370V E2/q g Ix119h)) —5 Ex),  natural
@1 4 Q1 :

in X.

The action of Z/p on le[q] is given by cyclic per-
mutation, and as above A(Z) denotes fibre (A(Z) — A(*)).
Theorem A has been announced previously in [CCGH] as well as
by myself in [01]. Unfortunately both of these papers contain
serious mistakes: The proof of theorem A we give here follows
the line of argument attempted in [CCGH], with technical modi-
fication along the lines of [W2]. An outline is as follows: in
chapter 1 we recall the necessary results from [W2] and
Goodwillie’s Calculus of Functors [Gl]}, and in this context
define the maps ;q used in the proof of theo?ém A. In

chapter 2, we follow the arguments of [W2] in constructing the



trace map fo(Y) and in section 2.3 we complete the proof of

Theorem A by using TEX(Y) to explitely compute the ISt

derivative of ;q at a connected space X (this 1St
derivative is in the sense of Goodwillie. A crucical
ingredient here is the computation, due to Goodwillie, of the
derivatives of A(2_) on connected spaces, generalizing
Waldhausen’s proof of the equivalence AS(X) = Qme(x+)
(WM]). Tom Goodwillie has also been able to prove Theorem A by
applying results of G. Carlsson to study the Goodwillie
"Taylor series" for the functor AZ(_). In chapter 3, we in-

clude some results (initially circulated as the preprint

[02])), concerning splittings of homotopy functors.

As indicated by the title, this paﬁer appears as part of
a series. Part II, which will appear as joint work with W.
Vogell, determines the effect on the decomposition of theorem
A under the involution on A(ZX) induced by a stable spheri-
cal fibration on 2X. In Part III we use T?X(Y) and exten-
sions of the representation Fq to determine the effect of
non-suspension maps f : ZX — 3Y on this decomposition; this
can be used to gain information on A(X) for 1l-connected

spaces X not homotopy equivalent to a suspension.

In other installments, we hope to investigate the effect

of reduced power operations and transfer, as well as the con-

t derivative (at X, evaluated at

nection of TEX(Y) to the 1°
Y) of Bokstedt’s topological Dennis trace map and it’s 1lift to

1.1
the homotopy fixed point set 0°3"(x; )P,
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PTER
§1.1 Background and Notation for. A(X)

We recall the construction of A(X) as given in [W2].
Let X be a pointed, connected simplicial set, GX it’s Kan

loop group. Let Hﬂ(lle) denote the total singular complex

X
of the topological monoid Aut .. ( V s" ~ |ex|,) of

|GX|-equivariant self-homotopy equivalences of the free base-

k .
pointed |GX|-space V s" lex], . Hi(IGXI) identifies natu-

rally with a set EQ(IGX|+) of path components of

k .
ME(lGX|+) = Map (V Sn,V s -~ IGX|+) under the inclusion

k x k
n ~
He(l6x|) — Map | oy (v s ~ lex|,, v s" ~ |ex|,) = Map(v s",

k
v s™ 4 |Gx|+). One has stabilitization maps

n n .

Mk(IGX|+) — Mk+1(|GX]+) given by wedge prodgct with the
identity map, suspension maps ME(IGX|+) =2, M2+1(|Gx|+)
given by smash product with the identity, and pairing maps
n n n

Mk(lGX|+) x Mn(|GX|+) — Mk+n(|Gx|+) induced by wedge-sum.

This pairing restricted to {HQ(IGXI)}kZO gives LZA HE(IGXl)

the structure of a simplicial permutative category for all
n 2 0. These operations - wedge sum, suspension, stabilization
- commute up to natural isomorphism. So letting 

. ..k
H, (l6x]) = 1im HE(]GXl), H(lexX|) = 1im H'(|GX|) we see that
2 L

[ ] Hk(IGXI) is also a simplicial permutative category under
k20 :

wedge-sum. Waldhausen’s definition of A(X) |is



Def. 1.1.1 A(X) = aB(]_| BH (|ex])) = Z x BH(|ex])™.
k30

If X is a baseﬁointed space, - A(X) is defined to be

A(Sing(X)). similarly if X 1is a simplical space,

def '
A(X) = A (sing|X]). If X 3 Y then A(X) = A(Y).

Note that wo(nk(lcxl)) = GLy (Z[7)X]), so BHk(lle)
makes sense (as does BHﬁ(IGXI) for all n 2 0). We will use
the notation XU to denote the reduced suspension of U. If
|x] = z|z|, where 2z is a simplicial space c§nnected in each
degree, then GX is weakly equivalent to the simplicial James
monoid JZ, which in degree q 1is the free moﬁoid on the
pointed space Zq. In this case we can use JZ 1in place of
the Kan loop group GX in the above constructions. The re-

sult is an equivalence A(3z) =~ 0B(] | Hk(Ile)).
‘ k20 .

In studying jA(EZ), we will use constructions from §2 of
[W2]. The first, due to Segal, generalizes the bar coﬁstruc-
tion which associates to a monoid it’s nerve. Thus, a partial
monoid is a basepointed set M together with a partially de-
fined composition law M x M D M2 N M.M, is.required to

satisfy i) M v M CM and ii) (u(ml,mz),m3) €M iff

27 2
(ml,p(mz,mB)) € M,. Associated to such a partial monoid is
it’s nerve: {[p] - composable p-tuples in M}. Face and
degeneracy maps are defined in the usual way. One example of a

partial monoid is that of Waldhausen’s generalized wedge.



Given an inclusion of monoids A — M one defines M2 to be

M x AU A x M. The nerve of the resulting partial monoid is
AxA

1,
e

: p
denoted by {(p]. = V (M,A)} where

v 5 ad-1 p-J
vV (M,A) = UA x M x A . Taking A = {pt} yields the
3=1

trivial partial monoid structure on M; the realization of

P : ’
{[p] — V (M,*)} is weakly equivalent to 3I|M|. It is often
useful to appro#imate the nerve of a monoid M by generalized
wedges. A straightforward arguement (Lemma 2.2.1 of [W2])
yields that if A — M is an (n-1)-connected inclusion of

monoids, the induced inclusion

p P
{lpl — V M,A)} — {(p) — V (M,M)} = NM is (2n-1)-con-
nected. As one can easily see, a fixed monoid may admit many

different partial monoid structures.

ILet M be a monoid, S a set on which M acts. Then

one can form the'cyglig bar_construction of M with "coeffi-
cients" in S. It is a simplicial set NCY(M,S) which in de-

gree q is M? x S. The face and degeneracy maps are given by

the following formulae (see [W2], §2):

(1.1.1.5)
ao(ml,...,mq;s) = (mz,ma,...,mq:sml)
al(ml,..;)mq:s) = (ml,...,mimi+1,...,mq:s), 1 <1i< g-1
aq(ml,...,mq:s) = (ml,...,mq_l:mqs)

sy (ml,...,mq:s) = (ml,...,mi,l,mi+1,...:s) 0¢<1i¢q.



As noted in [W2], the double bar construction is a special
case of the cyclic bar construction where S appears as a
cartesian product of a left M-set and a right M-set. When M
is a grouplike monoid (wou is a group) and S = M with in-

duced M action of the left and right, NCY(M,M) is weakly

1
equivalent to BM® . The construction of NCY(M,S) extends in

the obvious way to simplicial monoid M acting on a simpli-

cial set 8.

It is often case that S itself is a partial monoid
which admits a left and right M-action. In this case one wants
to know that the cyclic bar construction Ncy(M,S) can be
done in such a way as to be compatible with the partial monoid
structure on S. A left M-module is a partial monoid E to-
gether with a basepointed M-action M x E — E compatible
with the partial monoid structure on E. A right M-module is
similarly defined, and an M-bimodule is a partial monoid with
compatible left and right module structures. Given such an
M-bimodule E, the semidirect product M x E 1is the partial
monoid whose underlying set is M x E with composition given
by (m,e)(m’,e’) = (mm’,em’+m’e) (where the product in M is
written multiplicatively, that in E additively). Clearly
this construction can be done degreewise when M and E are
simplicial. If the partial monoid structure on E has not

been specified, we will assume it is the trivial one. Note

P
that in this case it’s nerve {{[p) — V (E,*)} 1is again a

partial monoid with trivial structure, and is a left (resp.
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right resp. bi-):module over M 1if E 1is. Iteration of this
construction yields an H-module structure on a space whose
realization is an iterated suspension of |E|, and which -
agrees (up to homotopy) with that induced by the given action
of M on E together with the trivial action on the suspen-

sion coordinates."

A key result concerning the nerve of a semidirect product
is provided by lemma 2.3.1 of [WZ].)It states that, under a
certain "saturation" condition, there is a map
u ¢ diag(Ncy(M,NE)) — N(M = E), which is a weak equivalence
when wo(M) is a group. Here M 1is a simplicial monoid, E a
simplicial M-bimodule, and NCY(M,NE) denote the cyclic bar
construction of M acting on the nerve of the partial monoid
E. The "diagonal" structure is with respect to the simplicial
coordinates coming from Ncy(&) and NE. The saturation con-
dition referred to above, as well as the condition that FO(H)
is a group, will always be satisfied in our caee. As we will
need to know u explicitely later on, we recali that it is
given on n-simplices by the formula ([W2], p. 569):
(1.1.2) u(m

.,mn:e ..,en) =

l' LN
n n
= (ml,(i=l mi)elml; mz,(l=£ mi)ez(m ),...,mn mnen(l [ i)) .

1'

Let us return to considering JZ and H;(IJZ|) (for con-

nected 2). We will be interested in the case when 2 = X v Y.



_11_

Recall first that the James-Milnor splitting yields an

equivalence 3|3z| = 3( v |z|[9)), the splitting being in-
SRR 2 N )
duced by the word léength filtration of |JZ| =~ J|2|. When

Z=Xv Y one can consider other coarser filtrations. Let
Fr(X,Y) C J(XvY) denote the subset which in each agree con-
sists of elements of word-length at most r 1in Y. This is
clearly a simplicial subset. Moreover the natural JX-bimodule
structure of J(XvY) restricts to a JX-bimodule structure on
Fr(x,Y). There is also a natural partial monoid structure on
Fr(x,Y), compatible with this action, where two elements are
composeable if their product in J(XvY) lies in Fr(X,Y).

Under suspension the Hilton-James~Milnor splitting yields an

r
equivalence ZI|F_(X,Y)] = 3(V |F_(X,Y)/F_ .(X,Y)]|) of
r q=0 q gq-1

IJxl-bimodules,'where F_,(X,¥) = *, Fo(x,y)'= J(X) C J(XvY).
In particular, Z|F (X,Y)| = Z(|3(X)|vIF (X,¥)/F (X:Y)|); we
will denote F,(X,Y)/F,(X,Y) by Fl(X,Y). The projection maps
F,(X,Y) = F,(X,*) C JX and F, (X,Y) - Fl(k,Y) are JX-bi-
module maps, whére the partial monoid structure on FI(X,Y)

is the trivial one.

If E is a left (resp. right resp. bi-) module over M,
then ME(IEI) is a left (resp. right resp. bi-) module over
H;(lMl). If M is a partial monoid , then it sometimes makes
sense to talk about a partial monoid structure on HE(IMI)
even though the latter has not yet been properly defined. For

when M 1s a monoid one has an equivalence
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k k
Hp(IM|) = ¥2(|M|,) c map (v s", v 8"~ |M[,), and the latter is
defined as a set for all M. In particular when A C M is a

submonoid and M2 =MxA U A x M, one can define
AXA

(M (IM[,)), to be

(M (lal,) x Hpclml,) v Rclnl,) x ®2(Ial,)) © (MMl )2, 1f
fe ﬁi(|A|+)r g € ﬁ2(|M|)+). then g o f = fg 1is the compo-
sition

k £ k

k . k N
vst Livst . |alzv |al, - s" i,y |al,~ s™ ~ |M|,—

+
K n id~ X n

vV 8" . IAI+ A |M|+ 1P, v s . |M|+. fg is similarly defined
when f € ﬁ£(|n|+) and g € M (|a|,). This applies to the

case M = Fl(X,Y), A = JX. We summarize these observations as

Lemma 1.1.3 The Hilton-James-Milnor splitting of 3I|J(XvY) |
induces a splitting of |JX|-bimodules

S(|TXvY)|) = z(qgo |Fq(X,Y)/Fq_1(X,Y)|) » F.(X,¥Y) as defined

above. Fr(x,Y) admits a partial monecid structure, and the
natural projection F.(X,¥) — F_(X,*) = JX is a Jx-bi-'
module map. In particular Fl(X,Y) is a generalized wedge,
inducing a partial monoid structure on ﬁﬁ(IFl(x,Y)|+). The

projection map Fl(X,Y) — ﬁl(X,Y) induces a map of

n . =n p2 n, =
Hk(IJXI)—blmodules Mk(lFl(X,Y)|+) -5 Mk(lFl(x,Y)I), the lat-
ter being endowed with the trivial monoid structure. These

maps are compatible with suspension, stabilization and

wedge-sumn,
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We also note that the equivalence
HE(lJ(XVY)l) = ﬁﬁ(lJ(va)|+) is an equivalence of
Hﬁ(lJ(XvY)l)-bimodules and hence by restriciton an equivalence
of HE(IJXI)—bimodules. Now consider the map
%é o xla-i-al o x[3) _ yla-1] [y given by
%é(xl,...,xq_i,yl,xi,...,xi)

1
yield a "folding" map as in [CCGH]:

= (x',xé,...,xi,xl,xz,...,xq_i_l,yl). These plece together to

q ~ ~ q -] -
(v &Y =% v xle-i-1]
i=1 9 9 i=3

hence

ay o~ x4 o x[9°2) |y oang

avd e q — i — —
(V&) =8 :v (v x(ai-1] oy xli)y Ly xla=1] [y,
i=1 g2l

Under the James-Milnor splitting EIFl(X,Y)I can be expanded

q - ]
as T (v (v |x{¥i-110y . x0B31|yy. The |Jx|-bimodule
qQ2l i=1 .

structure on this wedge is clear, and hence € induces a map

e =3|% : 3|F (x,v)| - 3(v [xI9Hly]). ¢ identifies
@1

the left and right |JX]|-module structures, in the sense that

¢(a * m) = €(m + a) for a € zlil(x,Y)l and m € |JXx|.
Finally HE(IMl) is a mapping space (for a simplicial

monoid M), for which we will adopt the convention that AB

denotes the compositon

which as a composition product would be written as B -+ A,
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§ 1.2 Goodwillie’s Calculus

We briefly recall the éetup for Goodwillie’s calculus of
functors, as presented in [Gl]. We will only give construc-~
tions and results necessary for the following sections, avoid-
ing the somewhat involved definitions describing the connecti-
vity of various families of diagrams - definitions which are

needed for the general development given in [G1].

For simplicity we will only consider functors F : € — D
where C 1is either U,T,U(C) or T(C) and D is T,T(C)
or the category Sp of basepointed spectra.‘Here U is the
category of (Hausdorff) topological spaces weakly equivalent
to a C.W. complex, T the category of basepointed spaces in
U with basepointed homotopy type of a CW complex. U(C),
T(C) denote the corresponding categories of spaces over
C € obj(u). Note that an object of T(C) 1is a retractive
space Y over -C, i.e., r : Y — C admits a right homotopy
inverse i(r o i ~ id). Each of these choices of C is a
closed model category in the sense of Quilleh, so one has the
usual constructions of homotopy theory. In particular one can
consider the restriction of F to gn = the‘full subcate-gory
of n-connected objects in C. Moreover one has a suitable
notion of weak equivalence, and F is Called_a homotopy func-
tor if F preserves weak equivalences as well as (filtered)
homotopy colimits up to weak equivalence ((2;2.1), {G1l]). We

will only be concerned with homotopy functors.
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Let S be a finite set, C(S) the category subsets of

S with morphisms corresponding to inclusions. An S-cube in

16

is a covariant functor G : C(Ss) — ¢. If S = {1,2,...,n} =n

G 1is called an n-cube. Associated to an S-éﬁbe is the homo-

topy-inverse limit h(G) = holim(G|, (s))
0

where CO(S) de-
notes the full subcategory of C(S) on all objects except ¢.
The natural coaugmentation map 1im(G) — holim(G) induces a

natural transformation a(G) : G(¢) — holim(G| G is

).
| Co(S)
h-cartesian if a(G) is a weak equivalence (which is the same

as requiring holim(G| to be weakly equivalent to a

NE ,
point - see remark 1.2.8 of (G1l)). We say F : € — D (as
above) has deqree pn if F o G 1is h-cartesian for every
homotopy co-cartesian S-cube G : S — C where |s| = n + 1.
The condition that F has deg.n becomes less restrictive as
n 1increases. That is, deg(F) = n 2 deg(F) = n+tl but not con-
versely (prop. 2.3.2 [Gl]; one can thihk of degree n as

meaning "having degree ¢ n").

Given a homotopy functor F satisfying Eertain condi-
tions, there is a natural way of producing a functor PnF of
degree n and a natural transformation F - PnF. In fact,
PnF can always be constructed. Starting with X € obj(C) one
can define an (n+1)-cube Xé(_) : C(ntl) — C = U(C) or T(C)
which associates to T C n+l1 the space X2T = the fibrewise
join over C of X with the set T. Now let

(T,F) (X) = holim (Fo(Xé(_))|c0(Eil)). a(Fo(X*(_))) defines
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a transformation (tnF)(X) : F(X) — (TnF)(X). One easily che-
cks that X — (TnF)(X) is again a homotopy functor on ¢
and that (tnF) = (tnF)(_) defines a natural transformation
from F to TnF. Note that xg(_) : C(ptl) — ¢ is a
(strongly) homotopy co-cartesian diagram in €, so that tnF
is an equi-valence if F 1is of degree n. Iteration of this
construction yields PnF which is by definition the homotopy

colimit of the directed system {TiF,téF}.

The transformations {tiF) induce a natural transforma-
tion pnF ¢t F— PnF. Moverover, choice of a distinguished
element m € m+l induces a projection m+l — m (T~ T ~-
TN {m}) and hence a natural transformation C(m+l) — C(m).
This in turn induces a natural transformation of directed sys-

i

n_lF} and hence a natural trans-

i i i
tems {TnF,tnF} — {Tn_l,F,t

n
formations P F aF, P .,F. Different choices of m vyield

1
naturally equivalent choices of q,F- The Goodwillie Taylor
series of F is then by definition the inverse systenm

{PnF'an} which is best viewed as a tower together with the

natural transformations pnF:

(1.2.1) :
P, F
l q,F
p,F 1F
p,F 1 qQF
F
0 X .
F > PF
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The closed diagrams in this tower are homotbpy commutative.

The nﬁh-de;ivagixg of F 1is by definition the homotopy
. { q,F i
fibre of q,F :iDF = holim(PhEl———a Pn-lF)F We have not yet

explained the conditions ﬁecessary for PnF7 to have degree
n. The precise étatement requires some terminology concerning
connectivity of diagrams, for which we refer the reader to
([G1l], p.9; def. 2.4.5, p. 45). The following will suffice for

our purpose. It is a special case of Prop. 2.5.9 of [Gl)].

Prop, 1.,2,2 If there exist integers r and e such that the
iterated homotopy fibre of F o G is (re(n+l)-e)-connected
for all (n+l)-cubes G: c(n+l) — gr then PnF has degree

n (gr = full subcategory of r-connected spaces).

In this case D F is homogeneous of degree n (it has degree

n and PiDnF % for 1 < n). We will write P'F for fibre

p_F : .
n m
(F — P F), and P F for fibre(PnF — P F) when P/ F has

degree k for all k (This will always be the case for the
functors we are interested in). One also wants to know not

just when P F is of degree n, but also when the connectivi-

P F
ty of F 425 PF tend to = as n tends to ®. For this

Goodwillie introduces the modulus of F, which for our pur-

poses will be the smallest integer p(F) such that the above

proposition applies with r =p(F) + 1 and e = e’ - np for
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all n, where e’ 1is independent of n (see def. 2.4.4,

fG1l]). Such an F 1is said to be analytic of modulus

4

p = p(F). Goodwillie then proves R

Theorem 1.2.3 (Th. 2.5.21, [Gl]) The connectivity of P F

tends to « over the category gp, where p = p(F),

F:C—D

In analogy with functions, gp is sometimes called the disk
of convergance of F. In applying this calculus to F, it is
natural to restrict one’s attention to the subcategory ﬁp(F)
which in general is the largest subcategory of € for which

the Taylor series of FICp(F)

converges (in the homotopy-
theoretical sense). Within this range it provides a powerful
machinery for analyzing F, as well as determining the effect
of a natural transformation n : F1 — F2 on -homotopy groups.
It is clear from the above theorem that =n will induce a weak
equivalence when restricted to gp (p = Max(kal),p(Fz)),

F, : € — D) if 7 induces an equivalence on derivatives:
Dn(n) : Dn(Fl) — Dn(Fz), under the condition that

PO(Fi) ~ *, However, there is another way of getting at 7.
Assume first that ¢ = U(C) and that F, ¢ g:fa D have the
same modulus p,i = 1,2. Let (X,p : X — C) be an object in
U(C). Then (X,p : X ~— C) defines a natural transformation
1(x,p) : U(X) — U(C) given on objects by

1(x p)(Y,r : ¥ — X) = (Y,per : ¥ — C). Analyticity is
!

preserved by the natural transformation
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1*
(X,p)
concerns only 1%

F— Fod¥
t

(X,p) " The next result of Goodwillie’s

derivatives.

Theorem 1.2.4 (Th. 2.7.3, [Gl]) If F.,F, : U{C) — D are

1’72

analytic of modulus p, and 7#n : F1 —_ F2 is a natural trans-

formation such that the square

*
PN x,p)"

* *
, P10 x,p)Fa) > Pl"(x,p)in
G x,pF) | | a3 (x,p)Fa2)
*
* Po T (x,p) *
Po(x,p)F1) > PoT(x,p)F2)

is homotopy-cartesian for every (X,p) in U(C), then for

every f : ¥ — X in U(C)p the diagram

1l
o | | o
rox) HEL Fo(x)

is homotopy-cartesian.

In the case C = * we will denote fibre(ql(f:x,p)F)) by
(DlF)x; p 1in this case is unique. The case we are interested
in is when F, = A(2_) = AZ(_), for which p = 0 (example
2.4.8, [Gl])). Then theorem 1.2.3 yields
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Corollary 1.2.5 If n : Fi — AZ(_) 1is a natural transforma-
tion which induces an equivalence
Dl(n)x : (Dll))x rf“;D(DlAE)x; for alllconnecFed spaces X,

then 71 induces an equivalence‘
n(£f) : fibre(F (¥) > F (X)) =5 fibre (A(ZY) - A(3X))

for all maps f between connected spaces Y and X.

The result which makes these techniques applicable to the
study of A(X) is the computation, due to Waldhausen at
X = pt ([W2], [WM)], and Goodwillie for general X, of the
lderivatives of A(X) : here (YY) denotes the retractive ob-
ject (Y v X; r : ¥ v X — X) thought of as an object in

T(X) .

Theorem 1.2.6 [Waldhausen, Goodwillie]

s ( v |x{9°1) 1 y|)) for connected X.
q2l

R

(D,AZ) (Y)

We have added the realizafion functor for consistency of
notation, as A(_ ) was defined on simplical sets in §1.1.
Note that as a hémotopy functor A(_) factors by the realiza-
tion functor and hence can be viewed as a homotopy functor on
spaces, which is necessary in order to apply Goodwillie’s cal-

culus as it stands.
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Remark 1.2.7 i) Goodwillie’s classification theorem for homo-
geneous functo;s implies that derivatives are determined by
what they do oﬁ:sqsﬁeﬁsionsf In féct, theoremri.z.G can alter-
natively be written as: |

(D,A), (V) = 073" (179 v x4 Loy,
g2l '

ii) There is a slight difference in conventions concern-
ing "stabilization at X" (i.e., passing to fDlF)x) as de-
fined in [Gl], versus the natural generalization of the cons-
truction given iﬁ [W2]. In [Gl) one usually deals with homo-
topy functors which are reduced; for (Y,r:Y¥Y — X) in U(X)
F(Y,r) = fibre(F(Y) £, F(X)) and evaluatin on the base-
point yields F(X,id) =~ *, On the other hand, A(X) as de-
fined in (1.1.1) is unreduced. Given an unreduced functor F
defined in connected spaces, one can extend it to non-con-

nected spaces with finitely many components by defining
n S ' : n
F( | | Xi) to be T | F(xi), For non-connected X = ( I I Xi)
=1 i=1 =1
n

AX) =~ T 1 A(Xy) by [W], so this extension is what it should
1

be for A(X). Hence A(X), in the notation of this section, is
really A(X_ ,r : x; — *) for the object (X, ,r i X — %)
corresponding in T(*) to X. In what follows we will keep.
with the convention that A(X) 1s unreduced A(X),
A(X) = fibre(A(X) — A(*)) the reduced functor.

iii) It is an interesting question as to'What type of
constructions in‘the calculus of several variables (real or

complex) have a suitable analogue in Goodwillie’s calculus of
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functors. For example, there seems to be a chain rule that
computes the derlvatives of a composition F o G in terms of
the derlvativesg'of F and G. It is easy to show that

Dl(F o G)x is ~(D1F)GX ~ (DlG)X when G(X) 2= * and F |is

reduced. In general, it’s formulation seems to require the

notion of a gggg;éliggg spectrum.

We will need the next result in part III. If F is a
functor defined on spaces, we will say it is continuoug if for
each n 2 0 there are natural transformations
An x F(_) — F(Anx_) which induce a natural transformation of
realizations ¢ : |(x] — F( )| — F(l[k] — ()]|). Here the
range of F 1is either T,T(C) or Sp as before and An de-
notes the standafd n-simplex.

Lemma 1.2.8 If F is a continuous homotopy functor on U(C)
then the natural transformation

$p |k} — F(_)I — F(|[k) — ()]|) induces a weak
equivalence over the category of simplicial objects within the

disk of convergence of F.

Pf: Within the disk of convergence of F the Taylor series

converges, and the transformation ¢F induces a map of Taylor

¢
P, F

series {|([(k] — PnF(_)l( —_ PnF(l[k] — (D) and

n21l
hence a map of derivatives
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¢D_F
l(x1 — b F()| —— D F(|[(k] — (1) ]). Goodwillie’s classi-

fication theorem for derivatives implies that D F commutes
with realization, that is, ¢DnF is a weak equivalence for

all n. By induction ¢p is an equivalence for all n. As

nF
the Taylor series converges this implies ¢p itself is a weak

equivalence.

There is a slightly more general result one can prove
along these lines. Namely, one can consider arbitrary simpli-

cial objects in U(C). Then restricted to such objects there

is a weak equivalence |({k] — F( )| iﬁ# F(lixkl — (L)1),

where F dgfhp_lim {P F,p F} denotes the analytic completion

of F (at C). The proof is the same. Now Waldhausen has shown
that A(_) is a continuous homotopy functor ([W]), and by

Goodwillie we know that A(_ ) has modulus 1. Hence we have

Corollary 1.2,9 If X = {Xk} and Xy is l-connected for

each k, then ¢, : |[k] — A(Xy)| = a(|[k] — X, 1) -

Goodwillie’s theorem 1.2.4 and it’s corollry 1.2.5 can be
applied to determine when two natural transformations between
homotopy: functors are equivalent within the disk of conver-

gence of these functors
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Prop. 1.2.10 Let F and G be homotopy functors from C to
D where g. is as before, D = Sp(C) or T(C). Let

NyeTly 3 F — G be two natural transformations of homotopy
functors. Then within the disk of convergence (which we define
to be the min. of the disks of convergence of F and G)

n, =M, iff (Dlnl)x(Y) x (Dlnz)x(Y) within the disk of con-
vergence.

Pf: By Goodwillie ([G2]), one knows that the nth

derivative
of a homotopy functor admits a description in terms of an
n-fold iteration of first derivatives. Thus the condition
(Dlnl)x(Y) o (Dlnz)x(Y) within the disk of convergence -
which is clearly necessary - implies that (Dnnl) o (Dnnz)

(at the basepoint (C,r = id:C — C), say) for all n (within
the disk of convergence). The hypothesis on D allows us to
take a C.W. approximation of any element in the image of F
or G. The result follows by standard obstruction theory on
the skelton of the C.W. approximation, the equivalence

(Dnnl) ~ (Dnnz) and induction on m. This homotopy can be ma-
de natural with respect to any diagram which (as a diagram)

admits a C.W. approximation. This argument is valid within the

disk of convergence.
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§1.3 Elementary Expansions and Representations in Hg(le[)

As in the previous sections X will denote a basepointed
connected simplicial set. Our object in the section will be to
construct the maps Eq : Bq(X) — i(zx) of [CCGH] as describ-
ed in the introduction, to provide some techniques for compu-
ting ;q on derivatives, and to relate certain restrictions
of pq ¥
used in section 2.3 where we compute the trace of pq' From

to products of elementary expansions. This will be

the construction of Fq, it is easy to extend it to a map
Sq(JX) : 5q(JX) — K(EX). We do this, and prove analogous re-

sults for Eq(JX) that we will need in part III.

Let ¢ : |X|] — |J3X| denote the standard inclusion. Fix-

9 n

ing an indexing of V S n

d n
and V S ~ |IX| we let (S

resp. (Sn - |JX|+)i denote the ith term in the appropriate

i

wedge for 1 < i ¢ g. Given (xl,....,xq) € |x]9 1et
pq(xl,...,xq) be the map which on (Sn)i is given by the
composition

(1.3.1)

idveE.
(Sn)i - gn pinch gh Sn i Snv(snnlel)in01

n n
(s7~lax[ )y V(sT~lax] ),
Here coefficients are taken mod q; thus i+1 =1 if
i = q, i+1 otherwise. The basepointed cofibration sequence
s0 i, |Jx|+ —P, |gx| splits up to homotopy after a single

suspension. Fixing j, : 2|ox| — z|3x], with 3p o j = id
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and letting j : 3I"|Jx| — 2“|Jx|+ be z“'l(jl), inc. is the
map induced by the inclusions s" = s" . s® — SoAle|+,

s —» g™ ~ |Jx| ~is s™ & |3%],. £,(8) = [s,c(x;)] € s ~ |ax|
for s € s". "pinch" denotes the pinch map associated to the

standard embedding s %

— sh (of course, any choice of
pinch map will do, however we want it to be the same for each
i and independent of X). Clearly Pq is continuous and de-

fines a map of spaces

n

(1.3.2) p.: |X|9—> IH’;(IJXI)I

q M (lax],) 1.

pq is also equivariant with respect to Z/q, where Z/q acts

on |X|q by cyclically permuting the coordinates and on

Hg(IJXI) via the standard embedding Z/p — Eq and the usual

action of Eq on Hg(lel) by conjugation.

Prop, 2.3.3 pq extends to a map

: EZ/q xz/Plxlq — 0A(ZX), which in turn induces a map

|

R

a”z" (z|EZ/q Az/qlxl[q]) — 0A(ZX).

Pf: In [01] this was proved by constructing a vVolodin model
for QK(EX) and using it’s associated configuration space
[FO] to produce Fq

to see why ;q and ;q exist. However it will turn out all

we need to know is that Fq and Eq are extensions of Py

To this end, note that g is compatible with suspension in

and ;q. This is probably the easiest way

the n-coordinate. So taking the direct limit under suspension
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and stabilization yields a map |X|%® — |H(|3X|)| which we
also denote by pq. This map is still Z/g-equivariant, where
Z/q acts on the second space via the embedding

/q — Eq — 3 _. It suffices to know now that the plus cons-
truction |H(|JX|)| — 1A(2X) can be done so as to be equiva-~-
riant with respect to the action of 32, and that the action
of 2, on 0A(3X) is trivial up to homotopy. This follows

i

from [FO]. The result is that QA(ZX) — Ezmxz 1A (ZX) ad-

[+ 4]

mits a left homotopy inverse p : Eme2 1A (ZX) — 0QA(ZX)
o

(p o i 2 id) and we can take Eq to be the composition
(1xp ) P,
EZ/q xl/q|x|q————9a E3 xzmlu(laxl)l - EzmewQA(EX) QA (3X) .

Taking the infinite-loop extension of the adjoint of ;q

yields a map Q3 (3(EL/qx [x]9)) — A(ZX). A well-known

Z/q
fact (which we re-prove in section 3.2) is that the projection
El/qxz/q|xlq — EZ/qxz/qlxl[q] = (EZ/q), - z/qlxl[‘?‘] admits a

gstable section s. ;q is then the composition

03" (S(EL/ang , |XI1T])) 2o 073" @Rz o 1X1T)) — AX).

Finally we note that all of the constructions are natural in

X, and hence factor through A(ZX).
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The space n°z°(z(Ez/qu/q|x|[Q3)) will be denoted by B_(X).
Bq(_) can alternatively bé thought of as a functor on connec-
ted spaces. The following is more or less contained in
([CCGH], §3).

~

Prop. 1.3.3 1) (DB, (v) = 0”7z |x!9H L vy

«_o q - -
i1) (D, F)(¥) = as°x¢ v |x[371) &y & x[971))yy, where
1 a'x i=1

Fq(z ) = n“zw(zlz[qll). The natural transformation
Fq(_) — Bq(_) induces the fold map on 1St derivatives which

is the infinite loop extension of the map

v xla-i-11_ o . 4[il_, yla-11_

ioq , (xl,...,xq_i_l,y,xi,...,xi)

— (xi,...,xi,xl,...,xq_i_i,y).
iii) The inclusion
iq(X,Y):X[q_llaY — (xvy) [ EZ/qu/q(XvY)[q] —

El/qkl/q(XvY)[q] induces an equivalence

0"z (z|xl¥7HL y|) — 14m 0™fibre (Bq(xvsz) — B (X))
m

= (D;D,) 4 (¥)
Pf. i) and ii) appear in [CCGH]; the simplest way to see
them is to first compute (Dqu)x(Y), which is easy, and then
realize that the term (El/qkl/qﬂ) simply has the effect of
"dividing by gq" (in Goodwillie's words - see [Gl]) via the
fold map. It should be said that X,Y and 2 all denote con-
nected spaces here. Finally iii) follows from i) and ii) since

the inclusion x(a711 [y — (XVY)[q] induces a map
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szw(z(lx[q-ll ~Y|)) — (Dqu)x(Y) which agrees up to homo-
topy with the infinite loop extension of the inclusion
x[971) | ¥ into the last term in the wedge

v x(1-11 . ¢ . gla-i1
i=1

Recall that for a ring R and r € R the elementary
matrix eij(r) is the matrix id + Eij(r) where
(Eij(r))kn =r if (k,2) = (i,j), o otherwise. One should
not try to push the analogy between Hg(lel) and the group
GLq(l[JX]) too far, especially for finite n. However one can
construct elements of Hg(IJxl) which behave enough like ele-
mentary matrices to be useful. We call these elementary expan-
sions since they corrospond to the elementary expansion in

classical Whitehead simple homotopy theory.

Def. 1.3.5 Let X be a connected simplicial set and

¢ : |X] — |3X| the standard inclusion. For x € |X|,

q
es5(t(x) € IH;(IJxI)I is given on (s™), C kil (s™), by

id
oz i (sTy =— (8N, — (5" ~ |3xl,),
0 = j (Sn)i=sn pinch shy g

LA VE, §™ (5™ lax]) 2% (8" lax] ) vis® ~ (ax])g

where (as before) we have identified Hg(IJxl) with
ﬁg(IJx|+). The sequence for 2 =1 1is exactly as in (1.4.1)

with £(8) = [8,t(x)] € S™ ~ |JX|; the only difference is the
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indexing of the last term. eij(-t(x)) is defined the same
way, but with idvf replaced by idv(-f) where <-f is f

composed with a fixed choice of sh 1), s™ representing

loop inverse. The reduced elementary expansion Eij(n(x)) is

given by

g 2 i (s — *

9 = (s™ 4

£ (8™~ Jax|) B8 (8" & |ax,) -

Similarly one can define Eij(-c(x)).

Remark 1.3.6 When 1 = j, one could define eii(it(x)) to be
id + Eii(iz(x)) (loop sum). Also, the definition of
eij(i((x)) depends on a choice of parameters: choice of pinch

map, choice of 3 : s™ ~ |Jx| — s™ ~ |JX|,, and choice of

+7
sm (G239 IR sm representing -1. These, however, can be fixed so
as to be compatible under suspension in the n coordinate and
independent of x € |Xx| and X. We assume this has been
done. All of the manipulations we will do with these elements

will be functorial in X and x € |Xx].

Often we will want to now that two maps depending on
x € |X| (resp. a diagram depending on X,Y,...) are homotopic
by a homotopy which is independent of x € |X| resp. homo-
topy-cartesian by a homotopy which is independent of the spa-
ces X,Y,...) If this can be done, we will say the two maps

are canonically homotopic (or that the diagram is canonically

h-cartesian).
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Prop, 1,3.7 Suppose f =0, . (R(x.))*..." . (t(x.)) for
a y iljl 1 injn n
x; € |X|. Then there is a canonical homotopy,::éf-f-1 ~ %, where

. -1 . .
f = e (""L (x ))‘...’E ('-L (x ))o
injn ' n‘ i1j1 o1

Pf: There is certainly a homotopy. It can be made canonical
by noting that the homotopy can be concentrated in the portion

of the sequence which involves finding a null-homotopy of the
id _.n (-1)

composition s" » s for our fixed choice of

S

(-1), and this is independent of x; € |x].

Note that we are not making any claims that such a homotopy is

unique, even up to:homotopy. We will also need

€ |xX|, y € |Y|, there is a

Prop. 1.3.8 For XyreeorXgoa

canonical homotopy between

e12(—L(xl)).e23(—9(x2))."' (-L(XQ‘l))€q1(L(Y)) and

‘e
q-lq

-1 -1 _
all((T;I -L(xi))L(Y))EZI((T;I —L(xi))L(Y))'-.,'eql(L(Y)).

Pf: On the level of matrices this is clear; the product here

is taking place in |J(XvY)|. Properly speaking, we should
-1

-1
write -t (x;) as (-1)q-1—j ?_T t(x;) as |T(xvy)] is a
i=j i=j

monoid without any strict inverses. To realize that the ob-
vious homotopy is canonical, we note that it involves i) re-
paramerization to pass between the sequence of pinch maps used

to evaluate the compositons and ii) reparametrization to
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reposition the iterated power of (-1) appearing in the ex-

-1
pression (-1)q 1 i | ¢t (x4). Both of these can be done inde-

pendently of the elements x.,...,X involved.

1’ q-l’y

The next result relates the representaions pq of (1.3.1) to
products of elementary expansions. This is needed for the com-

putation of the trace on Eq given in $82.3. We define repre-
1 =2

sentations ;q ,pq as follows:
(1.3.9) PLix x_ .) = (p.(x X_ .,%) X. € X
- » q l'...’ q-l q 1'...' q-l' i

=2

pq(Y) = pzpq(*r*a"“r*l)’) Y €Y
where p, : Hg(lJ(XvY)I) — Mg(l(lfl(x,Y)I) is as in lemma
1.3, X and Y connected.
Proposition 1.3.10 As continuous maps Fé and Fé are

canoincally homotopic to the following products of elementary

expansions:
Pl(x X, ) —
pq 1!“'!‘ q_l
eq_lq(t(xq_l))eq_zq_l(a(xq_z))-...-elz(z(xl))

-1 & -
Pql¥) == &g (¥)

Pf: This again only involves reparametrization in the spheri-

cal coordinate independent of X and Y, in the case p;. In
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the case of Fq

P, kills the identity maps along the diagonal and we are left

we needn’t do anything, as the projection map

with a single non-zero entry (which in this case we gan think

of as an entry).

Remark 1.4.11 The above canonical homotopies arise from
Steinberg identities, which hold in HE(IGXI) up to canonical
homotopies. Most types of identities among elementary expan-
sions which hold up to homotopy do pot hold up to canonical
homotopy. For example, it is not true that the entire repre-
sentation pq is canonically homotopic to a product of ele-
mentary expansions. This type of problem arises whenever one
tries to analize such cyclic representations in terms of

elementary expansions of matrices.

We have stated the above results using elementary expan-
sions with entries in ¢ (|X|) € J|xX|, which is all we will
need for chapter 2. However all of the above constructions
apply to the more general case where one allows arbitrary en-
tries in J|X| (or even |GX| when |X| is not a suspen-
sion). This will be needed in part III. Thus for
y € J|x| = |JX|, one defines eij(Y) € |H3(|JX|)| exactly as
in definiiton 1.3.5 where f : s — Sh ~ |gx| 1is the map
f(s) = [8,Y] € s™ . (IJX). Similarly for the reduced elementary
expansion Eij(y). Remark 1.3.6 and propositions 1.3.7, 1.3.8
and 1.3.10 apply in this more general context. The version of

proposition 1.3.8 we will need is
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Proposition 1.3.12 For a;,...,a € |JxX|, b e |?1(X,Y)I

q-1
there is a canonical homotopy between

elz(-al)-e23(-a2)°...oeq_l(—aq_l)'qu(b) and

-1 -1
e -1y9°1 ?‘T . e -1y9°2 . .
e, ((-1) (i=1 a;)b) - e, ((-1) (i=2 az)b)e...

Eq_l((-1)aq_1b)3q_l(b).

The representations pq also extend in a natural way to yield
a continuous map Pq lox|9 — |H2(|Jxl)|, which on a g-trip-
le (al,...,aq) € |3x|? is given exactly as in (1.3.1) where
£; is now the map f,(s) = [s,a;] € s™ ~ |Jx|. Proposition

1.3.3 applies with |JX| in place of |X| for the domain of
Eq; in fact it is easy to see that the map of prop. 1.3.3 fac-

tors by this extension. The analogue of proposition 1.3.10

that we will need in part III is

Proposition 1.3.13 . o
Propos o For a,, ,aq_1

_1 _
let pq(al""'aq~1) = Pq(al'az""'aq-l'*)' and

€ |ax|, b e |F (x,0)],

Fz(b) = pzpq(*,*,...,*,b) as in (1.4.9). Then as continuous

maps Eé and E; are canonically homotopic to the following

product of elementary expansions:

=1
pq(al'a2'°"'aq-1) x eq-lq(aq-l)eq-zq—l(aq-z)'"'°e12(a1)

-2 =
Pq(b) = eql(b)-
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The proofs follow exactly as before.

As a final remark, we should note that in the above proposi-
tions involving minus signs, we are pot requiring any type of
coherence conditions to apply for this minus sign with respect
to composition product (which in the limiting case n — o
will involve the product structure on the generalized ring
QQEQ(IGX|+)). We are only stating that certain homotopies can
be made canonical. The restriction on the "ring'" under con-
sideration thaF must be made in order for such a coherent (-1)
to exist are substantial, as shown by Schwidnzl and Vogt in

[SV].
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c ER
§2.1 Mapnjpulatjon in the stable range

We follow closely the arguemeﬁ% of Waldhausen ([W2], Th.

3.1) in proving

Theorem 2,1.) et X and Y be pointed simplicial sets, with
X connected and Y m-connected. Then the two spaces
NEp (13 (xv) ) and N¥(HR(lax), MpEIF (x,v)]) are g-equi-

valent, where q = min (n-2,2m+1) and n 2 1.

Pf; The notation is that of §1.1. Here the monoid structure
on Hﬁ(lJ(XvY)I) and Hi(lel) is the usual one, while the
partial monoid structure on the HE(IJXI)—bimodule
H£(|F1(X:Y)|)) is trivial. The equivalence follows as in
([W2], Th. 3.1) by the construction of 5 maps, each of which
is suitably connected.

The 1%%map HD(|3(xv¥)|) adnmits a partial monoid structure
where two elements are composeable iff at most one of them
lies outside the submonoid Hﬂ(IJXI). The nerve of this par-

tial monoid is by definition the generalized wedge

P
{p] — V (H2(|J(XVY)|), HE(lel))}. As Y is m-connected,
the inclusion Hﬁ(lel) — Hz(lJ(XvY)l) is also m-connected.

It follows ([W2], Lemma 2.2.1) that the inclusion

P
{tp1 — V (1 (13(xv) ), Hp(lax]))} — wHp(lT(xv¥) |)  is

(2m+1) —connected.
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The 2™%map By §1.1, HY (|3 (XvY) |) =, ﬁ£(|J(XvY)|+). is
an HE(IJX[)—bimodule equivalence. The inclusion
Fl(x,Y) — J(X,Y} is (2m+1)-connected, hence induces a
(2m+1) -connected map ﬁg(lpl(x,Y)|+) — ﬁ£(|J(XvY)|+) of
HE(lel)-bimodules. This in turn induces an inclusion of ge-

neralized wedges:

P _ . .
{tp) — Vv (M (IF (x,¥) 1), H(I3X]))} ‘ .

p .
— {[p] — V (M£(|J(XVY)|+), He(1J%[))}. This inclusion is
(2m+1) -connected in each degree by the gluing lemma ([W2],
lemma 2.1.2) and induction on p. It follows that the inclu-

sion of simplicial objects is also (2m+1) -connected.

The 3%%map ME([Fl(X,Y)l) is an HE(]JX])—bimodule with
trividl monoid structure. So the semi-direct product
Hﬂ(IJxl) ™ ME(lFl(X,Y)I) is well-defined. From §1.1, we have
projection maps Py ¢ Fl(x,Y) — JX, p, Fl(X,Y) — Fl(X,Y)
(which induce the splitting of F,(X,Y) after suspension).
Taken together, Py and P, induce a map of simplicial par-
tial monoids which on the level of simplicial sets is
=n =n n, =
M (P x,0) 1) — Mo(lax]) x M (IF (x,¥) ). As in ([W2), p.
374), we consider the restriction to the path components cor-

responding to HE of the inclusion

n n l
M (P (X,Y)])) s” ~ |F (%, 1) [))

il
=
2

e
<
L42]

k
v
n k n
» Map( V s, T T s" ~ |F (X,¥)],)

S
k Kk n.n
=T TTTasr x,0l,).
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This is an (n-1)-equivalence. Lemma 1, p. 374 of [W2] yields
an (n-2)-equiva1énce , '

nn ' nen = nen
st F x| = a3 (JaxvF (X, v) | ) — 0727 (]ax],) x
n“z“(lfl(x,y)l). The gluing lemma now applies to show that the

above map of partial monoids yields a map

| S . .
{tp1 — V(M (IF (x, V) |,), Ho(lax])))
P —
— {1 — vV (H (13x]D) « m(IFy x, 0 D) g (13x)))

which is (n-2)-connected.

The chmag Taking the trivial monoid structure on
ME(lFl(X,Y)I) and forming it’s nerve, Lemma 2.3 of [W2]

provides an equivalence

aiag (N¥(up(lax]), =.m7 (IF (x,v)])))
— N (1Ix]) « MI(IF (X, 0) 1)

| 4 —
= N({[p] — V (H (lax]) « Mp(IF (x, ) 1), B (lox[))}).

PR p
Here Z.A denotes the simplicial space {[p] = V (A,*)}

which arises on taking the nerve of a trivial partial monoid.

The 5th map Partial geometric'realization sends

n,| = 1
E.Mk(lFl(X,Y)|) to S

st . MY (1F (%, 1) |) — Mﬁ(s1 ~ |F,(X,¥)|) together with par-

~ ME(|F1(X'Y)|)- The pairing map

tial geometric realization produces a map from the partial

geometric realization of
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NY g (laxh), z.p (IF (x, 1)) to N¥(u (lax]),

1 —
ME(sT ~ |F (X, 1) 1))
By the realization lemma, this map is (2m+1)-connected.

These 5 maps taken together yield the required sequence
connecting N(Hﬁ(IJ(XvY)l)) and Ncy(Hﬂ (laxly,
ME(E]fl(X,Y)I)). Each of the maps is min (n-2,2m+1)-connected

and the theorem follows.

The maps constructed in the above theorem are compatible
with respect to suspension in the n-coordinate as well as
pairing under block sum, by which we will always mean the
wedge-sum of section 1.1 for the appropriate monoid in ques-
tion. Taking the limit as n goes to ® yields a sequence of

maps connecting | | N(Hk(IJ(XVY)I)) and | | Ncy(Hk(lJXI),
k20 k20

Mk(Elﬁl(x,Y)l)); each of these maps preserves block-sum and is
(2m-1) -connected for (m-1)-connected Y. We thus get a sequ-
ence of maps between their group completions which is also

(m-1) -connected. We will denote 0B( | | NCY(Hk(IJxl),
k30

Mk(Elfl(x,Y)l)) by C(X,Y). C(X,_) 1is a homotopy functor on

the category of retractive spaces over

X ¢ C(X,_)(XvY) = C(X,Y). Denote C(_,_) by C.
Lemma 2.1,2 (compare [W2], Lemma 4.2) There is an equivalence
t

of 15%derivatives
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(D,A3) (¥) = lim oM (A (Xv (s ~ Y))) — A(3X))
n
= (D1C)y (Y) = I%m atc(x,s™ ~ ¥) > c(X,*))

Pf: This is an immediate consequence of the above theorem;
for each n, we have an equivalence A(3X) =~ C(X,*) and a
(2n-1) -equivalence between A(S(X (8" ~ Y))) and

C(X,Sn ~ Y). This gives a (2n-1)-equivalence between fibre
(A(Z(X,(8"~ ¥))) — A(3X)) and fibre (C(x,8™~ Y,) — C(X,*))

which in the above limit yields a weak equivalence.

§ he Generalized Wa us race Ma

In this section we construct a trace map, generalizing
the construction of Waldhausen in [W2]. The techniques are

essentially those of ([W2], &4).

We begin by recalling (Lemma 4.2, [W2]) that for an

(m-1) -connected space F there are pairing maps

(2.2.1)

x kK _k
Map(V s™,s™™) . Map (s™™,s™™. F) — Map(v s",v s™™ . F)

Map(sn-i-m n+m_ ~F) ~ Map (Sn Sn+m) Map(sn+m Sn+2m F)
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which are (3m-1)-connected. The second pairing is induced by

n+m n+mh

first stabilizing: Map(S S n gn+m

F) ~ Map(s ,S ) —

F) - Hap(sn+m . F'Sn+2m ~ F),

m

n+m _n+m
Map(S 'S -

f~g— f ~ (g~ id) where id : S®™ ~ F — 8™ « F.

ILet Y Dbe a connected space. By abuse of notation we

will denote IFl(x,sl

N Y+)| by Z3F - this is not the sus-
pension of |F1(x,y+)] as the latter is not properly defined.
In what follows we will always have suspended F at least

twice. By lemma 1.1.3 there is an equivalence

q -1 .
32 x 3% (v (v xIETETH Ly o x(3,
Q1 i=1

q it .
svo(vo xR st Ly - x[H])) o gx-bimodules.
q2l i=1

As with Waldhausen’s construction, the trace map is
constructed degreewise on the cyclic bar construction by
topologically mimicking (in the appropriate range) the proof
of Morita invariance for Hochschild homology ([{Il1], [B1l],
[W2]). Under stabilization this agrees with the constructions
of Bokstedt, who shows in [B1l] that Morita invariance holds
for topological Hochschild homology. The point to keep in mind
is that in order for this type of technique to work we need a

"tensor" (i.e., smash) product decompositon of

X _k
Map (v s",V s™?™ L F) as an H](]|3x|)-bimodule.

We consider the following diagram
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kK X
Diag. 2.2.2 HY(|9%])P x Map(v s™,v s™*2® . )
P
£

x X
H};(|Jx|)p x Map(V s%, ™™ . F) ~ Map(s™'®, v s"2® [ )

P
£
p P k n n+m n+m X n+2m
g1 Hﬁ(leI) x Map(V S", 8 ) ~ Map(s" ",V 8 ~ F))
| o
Map (Sn+m Sn+3m A (V Ix[q-l] R Y+|))

Q21

The map £fP  is induced by the pairing (2.2.1): it

factors as fP = fg o fg where fg,fg are given explicitly

1
where g? is the unique map of quotient spaces induced by the

in the proof of theorem 2.2.5 below. Also gp = gp o fg

following sequence of maps (compare [W2], p. 380):

(2.2.3)
n P X n .n+m n+m X n+2m
Hk(IJX|) x Map(V s,S F) x Map(s  ,V S ~ F)
p
| n
n+m X n+2m n p X n .n+2m
Map(s ,V S ~ F) x Hp (|l3x|¥ x Map (v s,S ~ F)
p
| 2
n+m x n+2m k k n+2m n+3m_
Map(s™®,v s ~ F) x HE(]3X])P x Map (v s""2",s F)
hP
Map (Sn+m n+3m (V |x[q 1) Y |))

Q21

The map h? is given by a cyclic switch of factors.

hg(a,ﬁ,w) = (u,zzmﬂ,w ~ id), id : s® ~ F— s®™ ~ F as above



- 43 -

hg is given explicitly on a (p+2)-tuple (il;jl,...,jp:iz)
by the composition
(2.2.4)
i,
sn+m 1 Vv Sn+2m ~ F
k
~ V F A gh*t2m
k n+2m o
— V F ~ (S ~ [3x],) (induced by s~ — |3X]|,)
id~j k id~i id~j k
— v~ (8™ ax| )—B. . — By v R s™T ax]y)
k
~ v s"E L F . |ox],
k
— v g*2m | g (induced by pairing F - IJXI+ — F)
i ~id
2 Sn+3m ~F ~F
— ght3m | F, (F2 = composable pairs in F x F)
id~p Sn+3m ~ F (r : Fz — F)
id~€ Sn+3m A (v (x[q—l] R Y+|)
q21

The map ¢ 1is induced by the inclusion F, — F x F. The
map p 1is such that p o ¢ = id; it arises from the splitt-
ings of the spaces involved and is explained in more detail in
the proof below. We note that the same type of diagram could
be used to define gp directly (and leave it to the reader to
verify that gp, so defined, is homotopic to gg ° fg). How-
ever this wouldn’t simplify matters - it is gﬁ that we need

to use in the construction of the trace map, given in the fol-

lowing theorem.
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Theorem 2.2.5 Diagram 2.2.2 determines a map

———

. wCY, N n .2m (3m=-1)
Tom (H, (lax]) M (s F))

n+m _n+ 3mh

Map (s™*™,s (v IxtaT Ly )y,

q21

functorial in X and Y, where Z(p) denotes the p-skeleton
of Z and n 2 2. These maps are compatible with respect to
suspension in the n and m coordinates, and take block sum
to loop-sum. Thus taken together they induce in the limit a

map

T : 1im 02™(0B( 4:7% NY (1, (19x]),05(s*™ ~ 3F))))
m

— " v [XITH Ly ).
q21

Pf: Recall first that the composition of elements in Fl(x,Z)
is defined iff at most one of them lies outside JX. This in-
duces the trivial monoid structure on ?I(X,Z) for connected

Z. In the above diagram F will always have been suspended at

2

least twice and by lemma 1.1.3 3“F splits as a wedge sum.

The map ¢ in (2.2.4) under this splitting is homotopic to

the inclusion of a wedge summand (i.e.,

sht3m | p . pa gPtIR (F,vF’)) and so admits a left inverse

p:s™®F.F— gttm, F, (i.e., po ¢ =x id). So after

fixing a choice of p for n=1, m=1 - call it p’ - we

n+3(m-1)p,

can take p to be = . This operation commutes with
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suspension and avoids the problem of trying to invert ¢ up

to homotopy. The, same situation arises in the definition of
b

the map fg 1n;diag. 2.2.2. 1t is induced by the pairing

k

- +
which sends (f ~ g) € Map( v s",s"™

n+m

~ F) - Map(S ~ F) ¢to

the composition

5 gh N ghtm o g-~id 5 ghtam o o A 5 gh+2m F,

— 5 Sn+2m ~ F.

Again we invert i by choosing a fixed splitting

3%F - F B, 24F2 and replacing i by 5 22(m 2) going
the other way (this is where the condition m 2 2 is used).

The splitting of EzF of lemma 1.1.3 is moreover a splitting

into a wedge of |JX|-bimodules. Thus the projection p" as
well as it’s suspensions will be |JX]|-bimodule maps. It fol-

n+2(m-2)p

k . :
lows that V =3 is a map of H£(|Jxl)-bimodules

which implies the same for the pairing map

X X
Map( V s™,8™™ . F) ~ Map(s™™™, Vv s
ko k
Map(V s,V s

n+2m F) —

n+2mAF). The map fg is induced by the natural

inclusion s— 3F (induced by sl sta Y — 3F). It is

easy to see that £P = fg o fg. 3 s™ F is (m;l)-cohnected,
so fP is (3m-1) -connected. thus fg is a split surjection
on homotopy groups through dimension (3m-1). The splitting is
obviously compatible with the maps (a.)# on‘homotopy groups
induced by the face maps ai : CY( ) — N ( ) except
possibly ap, as the inclusion

k k k

Map(v s, s“*m) ~ Map(s™™, v s"2™ p) — Map(v s", s F)
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n+m n+2m

Map (S vV S ~ F}) 1is an inclusion of right
HE(IJKI)-modules but pot H;(lJXI)-bimodules. We need to show
that the spliting can be done in a way that is also compatible
with the last face map, in the appropriate range. The situa-
tion is summarized by the following diagram for the case

p = 1. The same diagram applies for arbitrary p by taking
the product with I-Iﬂ(IJ)(I)p-1 everywhere on the left, and

crossing with the identity on that factor

X k
(2.2.6)  HR(|3X]) x (Map(V sP, g™y | Map(s™tB,y g"*20y))

2
£,
kK _k
31 HR (19%]) x Map(v s™,v s"T™ . )
k n n+m n+m k n+m
Map(V §,S ~ |JX|+) ~ Map(s' T,V S ~ F) a1
~0
I 1
X _k
3" | Map(v s,v s"?® [ F)
|
!
X n n+m n+m k n+2m
Map(Vv 8 ,S ) ~ Map(S ,¥Y S ~ F) a;
0
L1
XK _ X
Map(v s™,v "R .

The vertical composition of maps on the right is

81 : Niy —_ Ngy. It is easy to see that there exist maps Ei

and ?g making the top square commute. fg is (3m-1)-con-

nected, and so the desired map 5; (indicated by a dotted ar-



row) can be defined at least through the (3m-1)-skeleton of
the middle Spaqg.on the left, in such a way that the lower
square commuteé”ph restriciton to (3m-1)-§£eleta. The same
arguement appligs to yield a map a; in degree p on
(3m-1)-skeleta. The result is that, upon replacing the spaces
appearing in diaé. 2.2.2 by their (simplicial (3m-1)-skelta,

the collection of simplicial objects

k k ’
{ (a2 (13xX])Px (Map (v s™, ") ~Map(s"T,v ") F)))""’"'”)pzo

can be given the structure of a bisimplicial object in such a

way that {fg}pzo' and {fg}pzo induce bisimplicial maps
fi,f; with f = fi ) f; an equivalence. By the realization

lemma, we get that fi (which extends to a well-defined map of
bi-simplicial objects without restriction ta skeleta) is
split-surjective on homotopy groups through_dimension (3m-1),
so that we can cénstruct a ;iéht homotopy inverse through the
(3m-1) -skeleton of the realization of N°Y¥(u](|3x|),

Mﬁ(sz’“n F)). Taking the disjoint union over n, we see that

the basepointed mép | | fi = | | fi(n) commutes with block
n21i n21

sum. Hence | | fi(n) induces a map of group completions
n2l

which admits a right homotopy inverse through the
(3m-1) ~-skeleton after group completion. Finally we need to

prove:

Claim a) The collection of maps {gi’}p20 taken together

define for each n and k a map
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g(n,k) = lg;| ¢ IN¥@p(laxly,
X n n+m n+m X n+2m
Map(V 8 ,S ~ F) ~ Map(S' ,V S ~ P
+ + -1
— Map(s™®,s"0 L (v |x[9TH Ly )

q21

b) Under | | g(n,k), block-sum maps to loop sum. Hence
k20

| |g(n,k) extends over grdup completion, yielding a map
k20

CY , N X n _n+m n+m X n+2m
nacisl IN®Y (Hy (13X]) ,Map(V s",8" "F)aMap (s ",V S ~ ) )
0

+m _n- -1
—— Map (s™™, 8" L (v x[TTH Ly )

Q1

The map is compatible with respect to suspension in both the

n and m coordinates.

Pf., of Claim The statement a) follows from the fact that the

maps gﬁ are compatible with respect to the face maps in the
cyclic bar construction. For 61, 0 < i< p this is clear.
The identity gg-l ° 60 = gg-l o ap follows by the factoriza-

tion of gg given in (2.2.3) and (2.2.4) which imply that, up
to stabilization via suspension, the difference between the
two is simply whether we let |JX| act on the left or right
of F and under the folding map € this difference is eli-
minated. The point about suspension is that from (2.2.3) one

sees there is a difference at which stage certain suspensions
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-1 p-1
1 ° 60 and. 9, o ap. But

this difference dissappears. by the time we have evaluated

are performed in comparing g%

nP™' in (2.2.3). So this is not a problem. b) is also
straightforward, for under the same sequence of maps block
sum, which is given by wedge sum, maps to wedge sum in the
range of hg and this is exactly how loop-sum is defined. The
reader 1is invited to check this by "adding" two maps in the
range of (2.2.4) between i, and i, ~ id. It follows im-

1 2

mediately that | | g(n,k) factors through the
k20

group-completion with respect to block-sum. Compatibility with
respect to suspeﬁsion also follows, since this amounts to
showing that every diagram we have constructed so far can be
simultaneously suspended in the n and m céordinatés in a
compatible way. This follows by a standard type of argument,

completing the proof of the claim.

The proof of the theorem follows by passing to the limit
in m. One must take care in méking the maps fi and f; de~-
fined on (3m-1)-skeleta compatible as m increases. That this
can be done follows by obstruction theory. Thé,result is that
T is defined on;all subskeleta in the limit as m — @, Note
that in the domain of T we have replaced F' by 3F, which

accounts for the extra suspension term on the right-hand side.

0]

The map constructed in the above theorem yields a map

which we also denote by T:
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(D1C) 5 (Y,)
= lim o™ (fibre(C(X,S .y ) > C(X®)))

E» Q3% (3( v Ix[q ooy, .

g2l

Precomposing by the equivalence of lemma 2.1.2 we get

(2.2.7) Tr,(¥):(D,A3),(v,) — 0727 (z( v [xITHay |y
q21l

which we will call the generalized Waldhausen trace map (In

the case X = pt we recover the map constructed in [W2]).
This map is natural in both X and Y. Taking the fibre with
respect to the map X — pt yields (for basepointed Y) the

reduce ce ma

(2.2.8) Tr,(¥): (D, (A3),(¥) — 0°3" (3( v _|x!THa v]y)
Q@1

where on the right we have for q 2 1 composed with the
(basepointed) projection Y, —Y). Finally, we can follow by

projection to the qth

factor 073" (3|x[971]. v|); this
yields a map TE,(Y¥) : (D;A%)y(Y) — a”s%(z|x(97] L y|) and

for connected X Trx(Y) = T ] Tr (Y)
a2l

Remark 2.2.9 It would be very interesting if one could prove
directly that Trx(Y) is an equivalence for connected X
without appealing to theorem 1.2.6. This would entail proving,

via K-theoretic techniques, that the mystery homology theory
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(i.e., the homology theory representing the unknown factor of

t

the 1° derivative of A) vanishes at all spaces X. Note that

Y E I
the difference between (2.2.7) and (2.2.8) is. mainly one of

notation, as TEX(Y+) = Try(Y). For this reason we will usual-
ly be interested in the reduced trace map, with results hold-

ing for the unreduced trace map by the above equivalence.

§2.3 Computating the trace on Eq
In this section we will complete the proof of theorem A,

following the approach used in [CCGH].

In section 1.4 we produced a map

p =TT p.: D(X) =TT D.(X) — A(ZX) for a connected
@1 1 Sl T T

simplicial set X. This map is nafural in Xf and is induced
(1.4.2) by representations Pq * 1|9 — IHE(IJXI)I. Replacing
X by XvY, we can consider the restriction - which wé will
denote by pq(x,y) - of Py to leq-l x |Y] c. |xvyl9. Note

~ that this inclusion induces the inclusion iq(X,Y) of prop.
1.4.4 iii) after passing to smash products. Thus the composi-

tion

n”z“(ziq(x,y))

Eq(X,Y):QNEQ(EIX[q-llaYI) y 0737 (2 xvy | 19]) —

~

@ o ~ p —
0= (E(EZ/qAZ/qI(XvY)[q]I)) = Dq(XvY) A5 A(Z(XvY))
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can alternatively be described as the precomposition of
n”z'”(zpq(x,y)) with the stable section

s : 2”3 xS vy = 2”@ |x[97! x |¥]), followed by
the map into A(Z(XvY). Proposition 1.4.4 tells us that the
map n“zm(ziq(x,y)) induces an equivalence

2”s% z|xIT°) L oy)y) = (D;B)4(¥), and Goodwillie’s results
tell us that ; induces an equivalence for connected spaces
iff (Dls)x(¥) is an equivalence for all connected X. They
also tell us that (DIKE)X(Y) and (Dlﬁ)x(Y) are the same
for connected X. So we need to show that T?x(Y) ) (DIE)X(Y)
is an equivalence for all connected X, for this will imply by
Goodwillie that (DIE)X(Y) is an equivalence for all connec-

ted X.

Theorem 2.3.1 , Tr p ~ o,

e For p# g Trx(Y)p o pq(X,Y) *, When

p = g, TEX(Y)q o Eq(X,Y) & (-1)q—1. These homotopies are
canonical in X and Y, and hold for all connected X and

qg 2 1. Thus TEX(Y) o (T | Eq(x,Y)) is an equivalence for
a2l

connected X, which implies TEX(Y) o (Dls)x(Y) is an

equivalence for connected X.

Pf: The last implication follows by proposition 1.4.4. The
main object is the evaluation of the trace map TFX(Y) on
Sq(X,Y), which we will do in stages. First, we determine what
happeps to the image of the representation pq(X,Y) under the
maps constructed in theorem 2.1.1. This will bring us into the

cyclic bar construction. Chasing through the diagrams
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(2.2.2)-(2.2.4) will then determine the composition TEX(Y).
This method applies to a slightly more general class of repre-
sentations we shall consider in part III. There are points in

the proof where particular care is required. We will point

them out as they arise.

As in §2.1 we will assume Z = XvY where X 1is connec-

it’s restriction

ted and Y 1is m’-connected. pq (resp.
74

pq(X,Y)) is induced by a simplicial representation
(resp. x3°1 Y) — Hg(lJZI) which we will also denote by

(resp. pq(x,Y)). The adjoint of Pq (and it’s restric-

p
qd
tion) can be represented simplicially by a map of partial

monoids:

P
P {Vp_}
{[p] — v (z2%%)) —3— NHE(IJZI) .

We will construct five diagrams, one for each of the maps

in the proof of theorem 2.2.1.

mhg_lffgigg;gm The first map in th. 2.2.1 was induced by the

(2m+1)-conn. inclusion of partial monoids:

p n n l'1 n
{[p] v (Hq(IJZI). Hq(IJXI))} NHq(IJZI>.

The generalized wedge on the left contains the image of

p P P -
{v pq} and hence ({V pq(X,Y)}. Thus ({V pq(X,Y)} =ty 0 Pg 1,
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were Fq 1 is a map of generalized wedges, induced in each
r
degree by the representation pq(X,Y), which fits into the

commutative diagram:

(2.3.2)

p

P
Vo _(X,Y
{tp1 — v(x31 x v,%)} Vog %/}

> Nng(IJZI)
II I ‘1

P ._ P p
{tp) — v(xT 1 x v, %)) —LL, (1p] — V(Hg(IJzI).Hg<IJx|))}

The znd diagram The second map in theorem 2.1.1 is the
(2m’ + 1)-connected map of generalized wedges induced by the
(2m’+1) -connected inclusion

ﬁg(IFl(X,Y)|+) — ﬁ;(lJz|+ > Hg(IJZ|) . As the image of p_

is contained in ﬁg(IFl(X,Y)|+) , we can further factor

Pg(X/¥) as ty 0 Pg.5 - Pq,2 Pq,1

- it is the (unique) map of generalized wedges induced by

is defined exactly as
pq(X,Y) which makes the following diagram commute:

(2.3.3)

P o P P _
(Pl — VT v, ) —Ss (1p] — V(G (132] ) HY(19X])))
|| I ‘2

P . ) P _
(rp1— V(x¥ ™ v, %)) s (1) — V(P (X, 1) 1) B (l3x]) [)

The 3T9

diagram The (n-2)-connected map

= P1XPy  h n, =
Hg(lFl(X,Y)|+) —_, Hq(lJX|) x Mq(lFl(X,Y)|) induces the
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third map in theorem 2.1.1, where the projections p,/p, are
induced by the projections of Fl(x,Y) to JX and fl(x,Y)
i

respectively. Let Fq =p; o pq(X,Y) for i1 = 1,2. Then we

have a commuting square

(2.3.4)

P . P P _
(tp1— V(xThxy, %)) s ((p) — VILIF (X, 1) 1) Hy(|3X]))

P - p P _ =
(rp1—V (X3 w0 )= (o) (Mg |ox] DG CIFy 0,00 D g 19X

where p

=1 2
Pq X Pq-

q,3 is induced in each degree by the product
L4

Ihg_if&_gigg;gg This is the first place where one encounters
complications in computing the trace map on arbitrary repre-
sentations. From equation (1.1.2) we can see the problem -
when M is not a group but only grouplike there may be no

simple way to choose f '

for f£f € M , which one needs to do
in order to formally invert the equivalence

u diag(Ncy(M,NE)) = N(M x E). In our case by first re-
ducing the representation under consideration to Fq(X,Y) we
are able to circumvent this difficulty. For by proposition

1.4.10, |pé| and |F§| are canonically homotopic (i.e., can
be reparametrized in a way independent of X and Y) to a

product of elementary expansions:
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(2.3.5)

P (Xyr e Xg g)¥eq g (X 1)) g po 1 (1(Xg o)) eenreyy(L(xy))
Pa(¥)Z 8, (1(y)) (the reduced expansion with (q,1) entry ¢(y))

where ((X) denotes the image of x € }x| in |J3X| under

the natural inclusion X -— JX, and similarly for Y (for

notational simplicity, we have used |pé| and |F§| and |y|
respectively. To recover Fé and Fé as above one applies

Sing( ) and precomposes with the map A — Sing(|A|)). The
notation is explained in section 1.4. For such a product of
elementary expansions propdsition 1.4.7 yields a canonical

homotopy between £ lf, * and f£f ® where

f-l = 312(_'- (xl))923(-" (xz))."'.e (-L (xq-l)) for

q-1q

f = F;(xl,...,x as above. We can define a map

q-1)
-1 . gq-1 CY , .,
lpg, ol = 1XI57 Y] — INTE (ax]),

n,| = ' n =
Mo (F 0y I | = [Hghaxl) < M (IF x, 1) )| by

1l 1l

- - =1
(xl,...,x 1,y) — (f,f "ef ) where f = pq(xl""'xq—l)'

q-
e = qu(y) as given in (2.3.5). Extending degreewise and pas-
sing to the simplicial setting yields a map Fq ., and a
canonically homotopy-commutative diagram

(2.3.6)

P - ] P _
(1p1—V (X3 y, ) =2 (p1—V (g (Lax D= (IFx, 1) 1) HG(19x1)))

] e

p - P -
(tpr— VXTI v, %)) L asag (v (Hg (191 ,) 2 MO (F (X, 1) 1))
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(recall that 3.A. is just shorthand notation for

P
{[p] — V(A,*)}). The fact that the diagram is canonically

homotopy-commutative is important. Note also that on

"l-simplices" on the left part of the diagram p is given
q,4
=1
by pq'4'
The 5P diagram In theorem 2.1.1 the fifth map is induced by

partial geometric realization

1

E.ME((FI(X,Y)I) — s° ~ M_(|F (X,¥)]) and the pairing

p:st - MuIF (0 ]) — Myst ~ [Fpx,m])

lll?

Mg(lﬁl(x,51A Y)|). Let M3(|F1(X,E.Y)|) denote the

_ p
simplicial object {[p] = Mg(|F1(X,V(Y,*))|)}, where the face
and degeneracy maps are induced by those of X.Y. There is an
obvious map of simplicial objects

z.ug(lﬁl(x,Y)l) — Mg(lf(X,E.Y)l) which in degree p is

given by the inclusion 5 Mg(|F1(X,Y)|) — Mg(lfl(x,e ).
Partial realization sends Mg(lfl(X,E.Y)I) to

Hg(lfl(x,sl ~ Y)|) and the composition

s (IF (xo0 1) — M (IF x50 ) o up(IF st ) is
equivalent to the previous composition of partial realization
followed by the pairing p. Note that the partial realization
map above is (n-2)-connected by the same type of argument used
in the construction of the third map in theorem 2.1.1. Now
the map z.ug (IF, (x,v) ) = Mg(|Fl(x,2.Y)|) is an

Hg(IJxl)—bimodule map, and so induces a bisimplicial map:
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CY ... - L CY,.n -
N (g (13x]) 2. Mo (IF) (x, 1) ) N g (1ax]) Mg (IF) (x,2.7) )

Let NgY(H,NE) denote the simplicial object

{[k] N;Yk(H,NE) = MP x (NE)k}. The representation
[

ol
q,4

Mo (IFy (x,0) 1)) = N3 Ho (o)) Mo (IF) (X,2.9) ) extends

. yd-1 n = _ wCY N
P XTI x ¥ — Ho(lax]) x Mo(IF (x, 1) ) = NTY (Hp(lax]) 3.

uniquely to a map of simplicial objects:

. va-1 cy,.,n n, =
p : X x 2.¥Y — (NJ (Hq(IJxl),Hq(IFl(X,E.Y)|)).

q,5
. . g-1 g-1

It is not true that there is a map 2.X x Y —X x Z.Y

of simplicial objects which makes the appropriate diagram

commute X971 x 3.y is the simplicial object

- p '
{(p] — x9 1 (V(Y,*))}). However there is after passing to
smash products. As will be shown in section 3.2, we have

stable splitting 11,12 gsuch that p; ° il ~ p, o 12 ~ id in

the square
(2.3.7)
i1
0”3”2 |x[ Ty ]y 2 075" 3 (1x3 )
1 .
Pq,4
S 0”s" (aiag N ((ug(laxl), 2. Mo (IF) (x,¥) ) |
i
2”s" (x| (1) L oslv]) &= o"s"(1x97! x (=.9)])

™

2\\\
Pq,5

®_©  CYy, N ' =
0”s" [N (g ([ax]) MO (IFy (x,5.¢ 1)) |
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~ o000 - — .
where »p =Q2|p, | for j=4,5 and B is induced by
d,3 d,)

(B). By the construction of » and it is straight-

q,4 Pq,5
forward to see that the diagram is canonically h-cartesian.
Note that the space appear{ng in the lower right-hand cover is
(n-2) equivalent to n"z"lucy(ag(laxl),ngclﬁl(x,sl ~Yhi.

This is our fifth diagram.

Before evaluating the trace we make a useful simplica-
tion. In order to be consistent with notation, we will assume
2m-1 2

Y =2 ~ 2Z and use 2

+ "F to denote 2|?1(X,Y)I. There is

no loss of generality here, because computation of TFX(Y)
involves passing through a direct limit in which Y becomes
more and more highly suspended. Now we know that the partial
realization map r : NCY(Hg(lel),Mg(lﬁl(x,E.Y)|))

— Ncy(ug(laxl),ug(lﬁl(x,sl ~ ¥)|)) commutes with the simpli-
cial structure in the first coordinate (i.e., the face and
degeneracy maps of the cyclic bar construction), and that it
maps the simplicial space NS?(HE(IJKI),ME(I?I(X,E.Y)I)) to
the space N;y(Hg(lel),Hg(Fl(x,Sl ~ ¥)[)). And in theorem
2.2.5 we proved that the maps fi and gi in diag 2.2.2 were

well-defined simplicial maps, where the simplicial structure

on the range of gi - Map(s™'®, s3I | (v |x[q'1] a Y+|)) -

Q1
was trivial. Restricting to the qth component of the reduced

trace map T;X(Y), we have a canonically homotopy-cartesian

diagram:
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(2.3.8) x3 1 (z.v)
- ~ cy n -—
MaCIF 2.0y ) = WY g (laxDy Mg (IF (x,3.9) ) l
&\\\60 Pq,s
r r NTY g (laxly M (IF (x,3.9) )
= 1 ~ CY, N n,|s 1
Mo (IFy (x,87~¥) [) & Ng¥ (o (13x]) M (IF, (x,87~0) ) ‘
’ d r
' \ 0
' f0

cy ,.n n,| s 1l
N T (H (13%]) M (IF) (X,87-0) ]))

d {

. 4
3
Cy ,.n _n
No (Hg(19x1) Mg o ~ Mg ) ~_ Y [ "1

CY ;N n
NTY (HG(lax]) My o~ My o)

= 0 J 1
7,09, wqogl
Qn+m2n+m(|x[q-1]A z+|)

q q
where M} _ = Map(vV s",s"™ . F), Mg , = Map (sPtD y ghtem
!

q,1
is the obvious reduced projection onto the qth component

n . n+m =
~ F), Wq

nn+m2n+3m|x[q-1] A Z+| and fi,gi are as in (2.2.2). Our object
is to show that the composition of the maps on the right is, after

realization and up to sign homotopic to the projection

1|9 sly] = |x|97) « 32" z|, — 22|19 Lz, followed

by the standard inclusion

Ezmlxl[q-ll A IZI+ — nn+m2n+m22m|x[q-1] A Z+|, by a canonical
homotopy. The point is that (2.3.8) implies that it suffices to
prove this for the sequence of maps which starts off with

a, © ;q 5 and then runs down the left-hand side. In order to do
f!

this, we need to find a map »p defined on x971 x (Z.Y) or

q,6
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it’s realization, whose range is Ngy(Hg(IJxl),Mg

. 1 - Mg'z) such
that fl ° Pq,6 is canonically homotopic to r o 60 ° Pq.s (of
course, it would suffice to do this r o ;q 5 directly without

L4
using 80, and in fact such a lifting by fi can be written down

explicitly. However, it is much simpler to do this gfter mapping

first by 8, ; this incidentally makes the computation of T _ o gg

easier as well). Now p is the unique extension to

q,5
x371 « (Z.Y) of the representation Fé 4 ©On l-simplices
I
x3 1 x v given by
-1 _.-1 -1 -2
(xlf"'rxq_er) — (f£,f "ef 7) £ = pl(xl""'xq—l)’e = pq(Y)

where these are in turn expressed as a product of elementary

expansions by (2.3.5). Under 60 this element maps to
(£ lef™1.£) which is canonically homotopic to (£ le). It follows

that we can describe r o 3 o Eq 5 on the realization of

Xq-l x .Y as the map of gspaces given by the representation

;1
a,6

1Y) — (f

(2.3.9) : x93 x sy - [MP(|F. (x,3.0) ) |
g ¥

1~

(XpreenrX €), £ = Pg(Xy,eeiXog), & =81 (t(})

q-

where f is now considered as a product of elementary expansions

yielding a point in |M2(|F1(X,E.Y)|)|. Note that y denotes an

element of |3¥|. Writing £ ' as

elz(-a(xl))e23(-t(x2))-... (—L(xq_l)) and applying

"Cg-1q
-1

proposition 1.4.8 yields a canonical homotopy between pq 6 and
r

the representation
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(2.3.10) ;é,s : x93t x 3.y — |ug(|Fl(x,z.Y)|)|
(xl,..,xq_l,y) — ell(zl)e21(zz)-...-eql(zq)
_1 - _ 2
where z; = ( - L(xi))t(y) € % (|F1(X,Z.Y)| = £3°0F (were
=i

"-"denotes the inverse under loop sum). We can write

ye€z|y|] £s™~ |2] ~s™ as y = (s,z,58,). Define 3
2

q,6 °Y

(2.3.11)
-3 -1 m
Pq,6 ° X975 x (8™ A |z| ~87) — IHg.l a Mg,2|
- - 1
(xl,..,xq_l,s,z,sz) jﬂ (ell(zi)"°'ieq1(zé)) aA L (Sz)

1

where Mg i is as in (2.3.8), is the inclusion

[ 4

L L
m 1 Qn+msn+2m 2 lMap(Sn+m n+2m

S

q
vV S ~ F)lr

where is the standard inclusion and ¢ is induced by the

1 2
nt2m ‘2 3 ni2m 0 3 _n+2m -
map S — V S ~ 8 — VS ~ F where t, maps to the
-1 mn
first factor in the wedge. zi = (i [ - L(Xi))L(Sl,Z) € £+ 3°F, and

j=i
the product of reduced elementary expansions in (2.3.11) is viewed

9 n+m

as an element of Map(V Sn,S ~ F). It is straightforward to

verify that the diagram

-3
P
q-1 m el 6 n . D
(2.3.12) [x27 | x (s |z|+ st A2, qu'l Mq'zl
0
| | 1€9)
;2
1x97L » sy| 9.6

» Mo (IF (x, 2.0 ) |
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is canonically homotopy-commutative. So Pq,6 provides the
necessary lift in order to evaluate Tr(Y). This evaluation is
achieved, according to (2.2.4) and theorem 2.2.5, by switching the
terms in (2.3.11) and composing. Since T just the standard
inclusion to the first factor in the wedge, we get

(81 (2]) e 2By (2) o ..1(32) =&,,(2]) o Ll(Sz) which implies
that ;p o gg o 3;,6
and that 7 o g3 © 33'6
leq-l ~ S0 . |Z|+ ~ gt - nn+m2n+3m(|x|[q-1] R |Z|

is canonically null-homotopic for p # q,
is the map

+) given by

~1
q_l,sl,z,sz) — (i [ - L(xi),sl,c(z),sz) which up to
=1

(xl,...,x
reparametrization independent of X and 2 is (—l)q-l. The
standard inclusion of Ezmlxliq-ll ~ |Z|+ composed with the
projection [x|¥7! x (3*™|z],) — |x|[97H] . 32®|z|,. This implies
that the composition of the maps on the right is as required,

completing the proof of the theorem.

The equivalence E(X) £, A(IX) is natural with respect to
X, so that if f : X — Y 1is a map of connected simplicial sets

there is a homotopy-commutative diagram

(2.3.13) D(X) —=— A(ZX)
D(£) l l A(Zf)
~ p -
D(y) —5 A(3Y) .

It also follows that p restricts to yield equivalences
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m
n - P
(2.3.14) [T D.(X) = PPD(X) —=—— P"A(3X)
q=m+1 9 n n

natural in X for all 0 { m < n { @, because p is a natural
transformation of homotopy functors and hence commutes with
Goodwillie Calculus. However, it is pot true that p or ng are
natural with respect to maps 32X -4, 3Y which do not desuspend up
to homotopy. This point is important to keep in mind if the
ultimate aim is to understand A(X) for l-connected simplicial
sets X which are not homotopy equivalent to suspensions. We will

return to this point in part III.
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CHAPTER IIT

§3.1 Splittings of Homotopy Functors and Weight Filtrations

We will establish a simple criterion for splitting a
homotopy functor F (cf. §1.2) as a product of it’s deriva-

tives on the subcategory U(C) of U(C), where p(F) |is

p(F)
the modulus of F. For simplicity we will take € = pt and
assume that F 1is reduced (i.e. that we have passed to the
fibre of F(x) — F(*) for all (X — *) in obj(U(*))). All
of the results however apply with an arbitrary base space C
in place of *, We leave it to the reader to make the neces-
sary translation. The nth derivative of F at * will

simply be written as D, F.

Def., 3.1,1 A weight filtration of a reduced homotopy functor
F 1is a direct system of reduced homotopy functors {wrF}rzo
satisfying:

i) There are compatible natural transformations

n. :wF-—F inducing a weak equivalence of reduced functors

hglir_q {0 F} = F.

ii) N, induces an equivalence of approximations

pi(nr) : Pi(mrF) = Pi(F) i{r forall r > 0.
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iii) p(OrF) 2 p(F) for all r 2 oO.
{0 F} yo 1= minimal if

iv) moF ~ % and fibre (wr-l

degree r for all r 2 1. We note that inductively this is

F — o_F) is homogeneous of

the same as requiring

iv’) w F — Pr(urF) is an equivalence for all r 2 0 within

the disk of convergence of wrF.

The following is implicit in Goodwillie’s short proof of

the Snaith splitting of 0°3 (JX) (p.p. 66-68, [Gl]).

Lemma 3.1.2 If F as above admits a minimal weight

filtration {wrF}, then F = T | D F within the disk of
n2l

convergence of F.
Pf: As on p. 68 [Gl], consider the diagram

(3.1.3)

[ -1
wr_lF —ep wrF —— 0 “fibre (w

l Pr_y (@ r-lF) l Proy (@ F) l

_q ()
F) —E—l———a Pr 1(w F) = Pr 1(9 flbre(m

r—lF e wrF)

F — mrF)).

Prog(opy r-1

By ([G1l], chap. III), fibre (“r-l —_ mrF) is homogeneous and
hence canonically deloopable, pr(wr_lF) is a weak equiva-

lence and P._4 (N -1 fibre (u 1F— o F)) by iv) or iv’)
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and induction on r. Hence P._,(¢) is an equivalence.

r-1
~r ~ 3 !
(wr_lF) o Lzl Dn(wr_lF) o A=l Dn(F) by induction on r, iv’),

ii), and iii), within the disk of convergence of F. Now the

splitting o _F =~ o F x G_ via the equivalence P (¢)
r r r-1

r-1

r
yields G, = Dr(wrF) and hence wF = Lzl Dn(mrF) x L=l Dr(F)

within the disk of convergence of F.

We will want to apply this lemma to simplicial functors.
Recall (e.g., [W3], prop. 6.3) that if X. —m Y. — 2. 1is a
sequence of simplicial spaces which is a fibration in each de-
gree and Zn is connected for each n then
|X.] — |Y.|] — |2.] is a fibration up to homotopy. Although
one can do better, this implies (by induction on n) that an
n-dimensional cube of simplicial spaces is homotopy cartesian
(upon realization) if, in each degree, it is homotopy-carte-
sian and all of the spaces are (n-l1)-connected. We can remove
the condition on connectivity if we start with a diagram of
simplicial spaces which can be sufficiently delooped in a way
compatible with the simplicial structure, for then by deloop-
ing we can make the diagrams sufficiently connected and proce-

ed as above. Thus we have

lemma 3.1.3. Suppose F. = {Fr}rZO is a simplicial

object in the category of reduced homotopy functors from

(spaces) to (w-loop spaces) = the category of basepointed
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infinite loop spaces. Suppose each F. admits a minimal
weight filtration and that the face and degeneracy maps of F.
are weight-preserving. Finélly assume that p(|F.[) 2 p(Fr)
for each r . Then the Goodwillie Taylor series of |F.]|
splits as a product of it’s derivatives within the disk of
convergence of |F.| . Moreover Dn(IF.I) ~ |[r] — Dn(Fr)I

for each n 2 0 .

Pf: The condition on p(Fr) ensures that the Taylor
series for F_ converges on the disk of convergence of |F. |
for each r . Since F. 1is a simplicial «-loop space functor,
the delooping arguement above shows that Tg(IF.I) and
ITg(F.)I are weakly equivalent for each r and k, where

Tﬁ(F.) is the simplicial functor {r — Tﬁ(Fr)} . Passing

r20
to the limit as k — o yields a weak equivalence
Pn(lF.l) ~ IPn(F.)I for each r . Since the weight filtra-
tions on F. are compatible with the simplicial structure,

lemma 1.2 yields equivalences
n n n
PR =P (Fol = ITT oj(F)| = TTIog(Fo)| = TT py(lF.1)
j=1 i=1 j=1
for each n . Note that we are using the equivalence
Dj(|F.|) ~ |Dj(F.)| = |[r] — Dj(Fr)| which follows from
Goodwillie’s classification theorem for homogeneous functors.

o

Remark 3.1.4 The conditon that F. be a simplicial functor
to (»-loop spaces) rather than (spaces) is not really a res-

triction in the presence of a minimal weight filtration, since
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the resulting splitting of F. for each r as a pro-duct of’
derivatives makes F. an w=-loop space functor within the disk

of convergence of Fr'

§3.2 Some Applications

lLet X be a basepointed space, G C En . We can consider

the functor FG(X) = ﬂmzm(EG X6 xn), which is a homotopy

functor on the category of basepointed spaces. G fixes the
basepoint (*,%,%,...,*) of X" , so the fibration

EG X x® —5 BG admits a section s : BG — EG xGXn deter-

mined by this base point. Let EG xGxn/BG denote the cofiber
of s, and let F,(X) = 0°3 (EG X x"/BG) . F,(X) is then a

reduced homotopy functor and F,(X) = FG(X) x 037 (BG).

Proposition 3.2.1 Over the category of basepointed connected

spaces FG has degree n and splits as a product of it’s

derivatives. In particular, (D F.)(X) =0°3 (EGr; x[™])

naturally splits off of FG(X). This splitting of FG yields

th

a splitting of the n delooping B"F for all n 2 1.

G

Pf: The proof is easy, and typical of the way in which the

methods of the previous section apply. Let Lj : Xj — XM
j’*'*
Let 3j(x“) denote the orbit of ¢j(xy) in x™ under the

,...,*).

denote the embedding Lj(xl,...,xj) = (xl,...,x

usual action of En which permutes entries. Let
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(ijG

§j(x“) = EG AG($j(Xn)+). Certainly o (F.)(X) = *. Assume by

) (X) = n”zm(ij(xn)) C Fo(X) where

induction that mrFG(X) is of degree r and splits as a
product of it’s derivatives (at *).

-1

Q™" fiber (v, Fe(X) — o F.(X) = n”z”(EGxG$r+1(x“)/sr(x“)).

k

n n, [r+1]
$r+1(x )/sr(x ) =V X

where k = This is a

n
(rea)
homogeneous functor of degree (r + 1) by ([G]). By induc-
tion the weight filtration is minimal, and after splitting de-

lopable. The proposition follows.

Of course, this splitting is known. We have included it

as an example, as we have referred to it previous sections.

As another example, let Cm = {Cm(n)}nzo denote the
little n-cubes operad of Boardman-Vogt. Cm(n) is a topologi-
cal space via the standard function-space (compact-open) topo-
logy. Precomposition with an element o € En yields a
well-defined action of En on Cm(n) given by f ~ foo.
Then n ordered inclusions ij ¢t n=1 — n = ordered set of n

elements induce restriction maps ij : Cm(n) — Cm(n-l). The

n ordered projection maps hj :n — n—l+ (m+ =nm ll pt)
given by hj(k) =1i) k if k < 3j, ii) *» if k = 3, iii)
k-1 if Xk > j yield maps

nd . x1 - Map, (n-1,,X) — X" = Map, (n,,X) given by

hj(g) =g o h?. one can form the configuration space
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C(Rm,X) = (|2A C (n) x X /~ with ~ generated by the two
n

compatible types of identifications : (f,g o o)~ (f o o,q9),

(£,87(3) ~ (56,5 for fecyn), gex’, gex"h

The approximation theorem yields a map C(Rm,X) — ofs™
which is an m-fold loop map and a weak equivalence (as before

X 1is a basepointed connected space). C(Rm,X) is filtered by

st n(X) = (1_1 c, (n) x x™ /~ ¢ ¢(R™,x). The inclusion
n2o

r
L

1(X) 2, gr (X) is a closed cofibration with cofibre

gt~
m
L; x Cm(n) Ay X[n]. Under the associative pairing
n
m m 0 m :
C(R™,X) x C(R,X) — C(R,X) induced by the action of the
operad Cm' 3;(X) X 3:(X) maps to 3;+S(X). Using the monoid

C(Rm,X) is place of n™s™x we have

Lemma 3.2.2 Let X be a connected basepointed space. The

filtration {3;(X)} of C(R™,X) induces minimal weight fil-
. ©_® _m.m

trations of the functors X — 0 2 (1 27X),

1
x — 2737 (@™ 13™x)5") and x — 03" (Es! x (@ 1z® )S /Bsty.

Pf: The filtration of 0 3 (™™ by n“z”(si(X)) is mini-
mal by the same type of argument as in the previous proposi-

tion and yields the Snaith splitting. Recall ([W2], §2) that
1
for a grouplike monoid M, |[N¥Y(M)| = (BM)S .c(R",x) is

1
grouplike and so |N°Y(c(®™,x))| = (@™ 13Px)S 0727 () com-
mutes with geometric realization and so it suffices to show

that F.(X) = {[p] ﬂmzm(N;y(C(Rm,X)))} admits a minimal
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weight filtration in each degree compatible with the simpli-

cial structure. Let

(3.2.3)
C m i1 i +1 C m
wt_(NY (c(R™,%))) = U g “(X)x...xF_PTH(x) ¢ ¥ (c(r®,x))
r''p i i m m P
I B p+1
3., =r
*3

r+s

9(3;(X) x 3$(X)) c s

(X) and so {[p) — ot NZY(C@®™,X)))
defines a well-defined simplical subset mtrn?Y(C(mm,X)) of

NSY (c(R™,X)). cofibre (wtr_lNgy(C(Rm,X)) — utrNSY(C(Rm,X)))

is of the form v EEr AGx[r] where the wedge is over all
GC=
r
G of the form 2, ©...9 2 c 3 (2i, = r), and we have
i1 i r j
p+1
w_m [r] )
seen that X — 0 = (EErka ) 1s homogeneous of degree r.

Hence the weight filtration is minimal in each degree and

1
lemma 3.1.3 applies to split 0”3 (@™ 13%x)%) as a product

of it’s derivatives. For the last functor, we use the result
of Dunn and Fiedorwicz [DF] which provides a configuration-
1 1

space model for [ES™ x 1x5 )/BS1 for connected X. To state
s

their result, let EZ/*+1 denote the cyclic space

{{p] — E(Z/p+1)} ([DF], Example 1) with cyclic simplicial
structure induced by the cyclic simplicial structure on the
crossed simplicial group Z/*+1 = {[p] — Z/p+l1l} (in the
sense of Fiederowicz and Loday) whose standard realization is
~ gl, Any cyclic space can be viewed as a cocyclic space by

precomposition with the duality isomorphism

D : A(C)) = A(C*)OP of Connes ([Cl], where A(C)) is
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denocted A). Via this identifcation, one can form the tensor
product (over A(C,)) of EZ/*+1 and a cyclic simplicial

space S,, resulting in a space

BZ/4+1 8, (c,)S% = LL B/nt1 x s /-, AT 0,1 ~ (% (00

for x € EZ(n+l), y € Sm and A : [(m] — ([(n] a morphism in

A(C,). Dunn and Fiedorowicz prove

Theorem 3.2.4 ([DF], p.8) Let S, Dbe a cyclic space. Then

EZ/ *+ OA(C )S* is equivalent to the pushout of the diagram
. ,

1

BS" x Fix(|s,|) — ES" xg1ls,|

L

Fix (|s,.|)

where Fix(|s,|) is the st

fixed-point set of |[s,| (with
sl-action induced by the: cyclic structure on S_, as. in [BF]).

o

In particular taking S, to be NYY(c(R™,X)) with the

usual cyclic structure we get

1 -
gst xsl(nm‘IEEX)s'/lez Estx 1| (NY (c/R™,X)) | /BS® =

EZ/*+1 GA(C*)NSY(C(Rm}X)). Now EZ/*+1 @A(c*)s*- is filtered
r

by {g(s,) = L_% EZ/n+l x S_/~}. Denote NZY(C(R", X))
n=

temporarily by S,. The above filtration (3.2.3) is invariant
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under the cyclic structure on §,, and hence induces a cyclic
simplicial filtration {Wtrs*) of S, (functiorial in X).

In order to show that {Q°3 (EZ/*+1 © wt S,)} is 2 minimal

A(c,)
weight filtration we note'it-suffices to prove the homogeneity
-of the fibre of
o . ® N n-l o @ N . n-1

(0737 (g (Wt _18,)/g" (Wt _18,)) = 03 (g (Wt S,)/g" (Wt S,).
This latter space can be written as

®_ , . (4,3,

0=z (i v ‘ EZ/n+1 Al/n+1(¢m(11)kzi XtT1)A...

1'°°° ' n+l1 ' 1

i =r,i 21

37452

~(Cqlineny, ¥l
n+l

Each term ;n the wedge sum is of the form EErkG(AG ~ X[r]j
for some G C Er -and AG a G-space where we take the
diagonal G-action on -AG ~ X{r].AAgain, the functofs

X — ﬂwim(EerG(AG ~ x[¥ly} are homogeneous by [G1]. This

completes the proof.

Remarks 3.2.6 1) The above theorem applies more generally, by

the same arguments, with glzh+l

(X) replaced by a functor
F(X) satisfying the property thﬁt OF (X) admits a filtration
{grﬂF(X)} functorial in X such that

o~ (r] ¢ -
$rF(X)/$r_1F(X) x Arkz X for some Er space Ar.

r



1

Yx1(2x)° /st as a

ii) For n =1 the splitting of 03 (ES
product of derivatives was qng'fhe main results of [CC]. Also,
many of these splittings have been obtained ﬁy |

C.F. Bédingheimer; The techniques described here can be used

to recover his results.

iii) These techniques can be "equivariantized" to yield
equivariant splitting theorems for the functors described in
lemma 3.2. In the simplest case one recovers the equivariant
Snaith splitting of QVEVG(annX) proved by.Lewis, May and
Steinberger for a:cémpact Lie group G and basepointed

G-space X.

It is often the case that there exists a number of
different weight filtrations on a given homotopy functor,
which yield different splittings. This occur;'in particular
when F can be written as an iterated composition of homotopy
functors G, e...o G where each G; has a natﬁral weight
filtration. The result in this case is a sequence of filtra-

tions of F, each of which is a refinement of the one pre-

vious.

As an example, one could consider the homotopy functor

= a%s®(sT mom mem [q]
F(X) nz (2 EEqAGq[(Q 2 )o...0(727) (X)] , Wwhere Gq c Eq

acts on the g-fold smash product on the right by the usual
action of Eq. FtX) is really then a homogeneous functor of

degree g evaluated on (szm)(s)(X). Considéred as a functor
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in X not it is no longer homogeneous. There are s

different weight filtrations that we could construct on F,
the ith one arising from using the lexicographic ordering on
the pro-duct of the filtration of szm(_) described above
for the first i terms in the composition. In constructing
such a filtration one needs to start with a product filtration
of ((nmzm)(s)(x))[q] and then group by orbits under the
action of Gq to get a Gq-equivariant filtration of
((nmzm)‘s)(x))[q]. Starting with the finest filtration of
@) (8) () which uses all s copies of Q™™ and essen-
tially just measures word-length in X, the result is a weight
filtration of F(X) which is minimal - the argument is exact-
ly as in lemma 3.2.2 above. One uses the filtration of
[(QmEm)(s)(X)][q] made Gq-equivariant to yield a descriptipn
of EquGq((nmzm)(s)(x))[q] up to homotopy as an iterated co-
fibration sequence where the nth subquotient is of the form

EZ A A_ - x[n] for some Z2_«space A_. So we conclude
n En n n n

Corpllary 3.2.6 F(X) = n“zw(erquG ((n™s®) (8) (xy, (9],
q
splits as a product of it’q derivatives (at a point) for all

r,m,s,q2l and connected X. The splitting is, moreover,

functorial in X.
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We will want an explicit description of this splitting in
the case r = 1,.'_'Gq ; Z/q, m = s = 1. For fixed n and q,
let Sg = get of the equivalence classes of g-tuples
[il,...,iq], where ij 2 1 and Eij = n, with the equivalence
relation [il,...,iq] = {ii,...,ié] if there exist Tt € Z/g
such that iﬁ = iT(j) for all 1< j £ gq. Z/g acts on the
indices {1,...,q} by cyclic permutation: if m_  is the in-

teger corresponding to T under the usual identification of

Z/q with. {0,1,2,...,gq-1} as a set, then
j+m_-1

T(j) = (j+mr) - [——al——]q, [r] = the largest integer ¢ r.

Under this action of Z/q, the set of g-tuples
Eg = ((il""'ié)lij > 1, Eij = n} break up into orbit ty-

pes: the orbited a g-tuple (i iq) will contain g‘ele-

1'...’
ments if and only if 27 is an integer dividing n and

(il"°"iq) is in the equivalence class of

r o . .
(ill""iql)q/q =('ill,iz,...,lq,l,il,.--,iq,,-.l.',ril,lz,...,iq,).

For such g’ 1let §g(q') denote the subset of such g-tuples

and Sg(q') the equivalence class of such g-tuples. Note that
79 .
. . Lo n _ ~q q
the projection map Sg(q') S Sn(q')/l/q = Sn(q') is a

principle Z/q’-fibration of sets. Now the word-length
filtration of J(X) = NXX induces a product filtration on
(JX)[q], which when made Z/g-equivariant and extended to a

filtration of EZ/qAZ/q(JX)[q] describes EZ/q\,, (3X)[9]  as

Z/q
an iterated cofibration whose nth subquotient 'is of the

form:
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(3.2.7) 8 (B/g,o (301 y/z (52790, (%) 1))

~ V EZ A X(I) = V V EZ A X(T
. /9 g, X(1) o E /? 2% (1)
Iesn a’|q and ngn Iesn(q )
where, for an equivalence class I € Sg(q’), X(I) is the
[i,] [i,] [i,]
wedge v X 1. X 27 . oo A~ x 97,
q,-1
Note that as spaces all of the terms in the wedge descri-

bing X(I) are the same. However the Z/q action or
(JX)[q] induces a free basepointed Z/g’-action on this wedge

(for I € Sg(q’)) which cyclically permutes the terms.

m_m .
Application of 2 2 (2_) to the subquotient in (3.2.7)
yields a homogeneous functor of degree n in X. So in this

case the splitting of Corollary 3.2.6 is given explicitly by

(3.2.8] 0”s" (3EZ/q Az/q(Jx)[q])
~ 737 (E(V (Vv (v EZ/qQN, , X(I))))).
1 qf resd(q) /4

q’(q and g7|n'

Of course, up to weak equivalence natural in X this can

also be written as a product
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(3.2.9) TT(TT (TT  Fr(x)))

n2l q’ d,.»
q’|g and 37|n Iesp(a”)

def

where FI(X) = QNEW(EEZ/qR X(I)). We will, finally, want

Z/q

to know about the 1St derivative of F. at an arbitrary spa-
ce. As before (DlF)x(Y) denotes

(DlF)X(x v Y¥,r : Xv Y —X).

n

Proposition 3.2.10 Let m = Egi = with n,qgq and g’

(q,)
as above. Then there is a natural inclusion
m (4,-1)

Q”3%(z( v xUT1) ooy . xImily o xImlytat T
i=1

— FI(X v Yy for T € Sg(q’) such that the induced map

Fo(x;y) 9&F

FI(X,Y) e FI(X v Y) = fibre(FI(X v ¥) — FI(X)) — (DlFI)x(Y)
is an equivalence.

f: This is another example of how El/qkz/q(_)

q" upon passage to 1St derivatives. One simply has to look at

"divides by

how Z/q acts on X(I). First, there are ¢’ terms in the

wedge describing (X), and Z/q cylically permutes these

terms via the epimorphism » : Z/q —/8=— Z/q’. This has the ef-

fect of "dividing by g’" which can be realized on the level
st

of spaces before passing to 1 derivatives by the equiva-

lence
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(3.2.11)

EZ/q\ v xthd.axligly = Ez/pxz/p(x[illﬁ___Ax[iq’])[p]

(
Z/q -
SPEMEICA 1)

(1,

where p = g, and Z/p 2 Ker(w:l/q — Z/q’) acts on
(x[i1] Araan x[lq'))[p] by cyclically permuting the copies of
xM1da oa xUigely | writing xUia)a. ..~ x[igr]y, as x[™), i¢

follows as in proposition 1.4.4 iii) that the inclusion

m .
(3.2.12) {V, x[171) Ly o [Py o (xImly D1

— ((x v vy [Pl __, EZ/Phg o (X v ¥) [7]) [P

induces the equivalence described in the statement of the pro-
postion after applying szm(E_) and passing to (DlFI)x(Y)

on the right.

This corollary will be used in part III to extend the
computation of TEX(Y), in much the same way proposition 1.4.4
iii) was used in §2.3 when we computed the trace on the image

of ;q after passing to first derivatives.
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