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Introduction

In [W2], Waldhausen constructs a map

W : A(X) A(X) denotes the (Waldhausen)

K-theory of the space X) and showed that evaluation on the

image of induced by the inclusion of

monomial matrices produced a self-map

homotopic to the identity by a
co co

homotopy natural in X. This yielded a splitting of 0 1 (X+)

off of A(X) (as weIl as it's stabilization AS(X)), and this

fact plays a key role in the proof of the fundamental theorem

of Waldhausen relating A(X) to pseudo-isotopy theory ([W2],

[WM], [W]):

Thrn [Waldhausen] A(X) ~ Oco~co(x+) x WHDiff(X) where

02WhDiff(X) ~ ~(X) = the stable pseudo-isotopy space of X

(as defined by Hatcher-Wagoner-Igusa).

The construction of W is done in stages. Waldhausen first

shows that fibre (A(Sn A X+) ~ A(X)) can be described

through a certain range of dimensions (approximately 2n) in

terms of a "cyclic" bar construction. On this cyclic bar cons-
co co

truction he constructs a map to n ~ (X+) compatible with

s co co
stabilization. The result is a map A (X) ~ 0 ~ (x+) natural

in X, and precomposition with the stabilization map

A(X) ~ AS(X) yields W. In this sequence of papers we
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construct a generalization of Waldhausen's map Wand in-

vestigate it's properties. Specifically let X .and Y be

pointed simplicial sets, X connected. Then there exists a
I

generalized Waldhausen trace rnap (2.2.8):

(*) l!m nnfibre(A(I(X v ~ny)) ~ A(~X))
n
~ n(l)~(1)(!( V I X[q-l] A YI)).

q~l

This map is natural in X and Y. The first application of

this i5 to prove a conjecture due to T. Goodwillie:

Thm A For connected X there is a weak equivalence

p =~ P : n(l)!~(~( V EZ/q Az/qlxl[q])) ~ A(!X), natural
q~l q q~l

in x.

The action of Z/p on Ixl[q] i8 given by cyclic per

mutation, and as above A(Z) denotes fibre (A(Z) ~ A(*».

Theorem A has been announced previously in [CCGH] as weIl as

by myself in [01]. Unfortunately both of these papers contain

seriollS mistakes., The proof of theorem A we give here follows

the 1ine of argument attempted in [CCGH], with technical modi

fication along the lines of [W2]. An outline 15 as follows: in

chapter 1 we recall the necessary results from [W2] and

Goodwillie's Calculus of Functors [Gl], and in this context

'"define the maps Pq used in the proof of theorem A. In

chapter 2, we follow the arguments of [W2] in constructing the
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trace map Trx(Y) and in section 2.3 we complete the proof of

Theorem A by using Trx(Y) to explitely compute the 1
st

derivative - (this 1
stof Pq

at a connected space X

derivative is in the sense of Goodwillie. A crucical

ingredient here is the computation, due to Goodwillie, of the

derivatives of A(!) on connected spaces, generalizing

Waldhausen's proof of the equivalence

the homotopy fixed point set

[WM). Tom Goodwillie has also been able to prove Theorem A by

applying results of G. Carlsson to study the Goodwillie

"Taylor series" for the functor ~( ). In chapter 3, we in-

clude same results (initially circulated as the preprint

[02]), concerning splittings of homotopy functors.

As indicated by the title, this paper appears as part of

aseries. Part 11, which will appear as joint work with W.

Vogell, determines the effect on the decomposition of theorem

A under the involution on A(!X) induced by astahle spheri

cal fibration on !X. In Part 111 we use Trx(Y) and exten-

-sions of the representation Pq to determine the effect of

non-suspension maps f:!X ~!Y on this decompositioni this

can be used to ga1n information on i(x) for l-connected

spaces X not homotopy equivalent to a suspension.

In other installments, we hope to investigate the effect

of reduced power operations and transfer, as weIl as the con

nection of Trx(Y) to the 1
st derivative (at X, evaluated at

Y) of Bökstedt's topological Dennis trace map and it's lift to

m m Sl hS1
o ! (X )

+
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CHAPTER I

§l.l Background and Notation for,' AeX)

We recall the construction of A(X) as given in [W2].

Let X be a pointed, connected simplicial set, GX it's Kan

loop group. Let H~(IGxl) denote the total singular complex

k
of the topological monoid AutlGxl ( V Sn A IGxl+) of

IGxl-equivariant self-homotopy equivalences of the free base

k
pointed IGxl-space V Sn A IGxl+. H~(IGxl) identifies natu-

rally with a set M~(IGxl+) of path components of

k k
M~ ( IGX I+) = Map .(V sn, V Sn

n k
Hk ( IGX I) --+ Map IGX I (V sn A

k
V sn A IGxl+). One has stabilitization maps

M~(IGxl+) ~ M~+l(IGxl+) given by wedge product with the

identity map, suspension maps M~(IGxl+) ~ M~+l(IGxl+)

given by smash product with the identity, and pairing maps

M~(IGxl+) x ~(IGxl+) ~ M~+[(IGxl+) induced by wedge-sum.

This pairing restricted to {H~(IGxl)}k~O gives 1-1 H~(IGxl)
k~O

the structure of a simplicial permutative category for all

n ~ O. These operations - wedge sum, suspension, stabilization

- commute up to natural isomorphism. So letting

Hk ( IGxl) = l~m H~(-IGxl), H( IGXI) = l.!m H
k

( IGXI) we see that

1 t

1-1 Hk(IGxl) 1s also a simplicial permutative category under
k~O

wedge-sum. Waldhausen's definition of A(X) 1s
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Pef. 1.1.1 A(X) = OB(l-! BHk(IGxl» ~ Z x BH(IGxl)+.
k~O

.'

If X is a basepointed space, . A(X) is defined to be

A(Sing(X». similarly if x i8 a simplical ~pace,

def
A(X) = A (singlxl). If X ~ Y then A(X)'~ A(Y).

Note that 7 0 (Hk (IGxl» ~ G~(Z[71X]), so BHk(IGxl)

makes sense (as does BH~(IGxl) for all n ~ 0). We will use

the notation !U to denote the reduced suspension of U. If

lxi ~ ~lzl, where Z is a simplicial space connected in each

degree, then GX is weakly equivalent to the ~implicial James

monoid JZ, which in degree q i8 the free monoid on the

pointed space Zq. In this case we can use JZ in place of

the Kan loop group GX in the above constructions. The re-

sult i5 an equivalence A(!Z) ~ OB(l-! Hk(IJzl».
'k~O _

In studying, A(!Z), we will use constructions from §2 of

[W2]. The first, due to Sega1, generalizes the bar construc-

tion which associates to a monoid it's nerve. Thus, a partial.

rnonoid 1s a basepointed se~ M together with a partially de

fined composition law M x M ~ M2 ~ M.M2 1s required to

satisfy i) M v M C M2 , and i1) (~(m1,m2),m3) € M2 iff

(m1,~(m2,m3» € M2 · Associated to such a partial monoid is

it's nerve: {[p] ~ composable p-tuples in M}. Face and

degeneracy maps are defined in the usual way. One example of a

partial monoid 1s that of Waldhausen's generalized wedge.



8 -

Given an inclusion of monoids A ~ M one defines M2 to be

M x A U A x M. The nerve of the resulting partial monoid is
AxA

p
~';denoted by {[p].~ V (M,A) ~ .. where
;I~

1

P P j-l x AP- j .V (M,A) =:1 U A x M Taking A :c: {pt} yields the
j=l

trivial partial monoid structure on M; the realization of

p
IIMI.{[p] ....-..+ V (M,·)} is weakly equivalent to It i8 often

useful to appro~imate the nerve of a monoid M by generalized

wedges. A straightforward arguement (Lemma 2.2.1 of [W2])

yields that if A ~ M is an (n-l)-connect~d inclusion of

monoids, the induced inclusion

p p
{[p] ~ V (M,A)} ~ {[p] ~ V (M,M)} = NM 1s (2n-1)-con-

nected. As one can easily see, a fixed monoid may admit many

different partial monoid structures.

Let M be a monoid, S a set on which M acts. Then

one can form the cyclic bar construction of 'M with "coeffi

cients" in S. It is a simplicial set NCY(M,S) which in de

gree q 1s Mg x S. The face and degeneracy maps are given by

the following formulae (see [W2], §2):

(1.1.1.5)

8 0 (m1 ,··.·,mq ;s) = (m2 ,m3 ,···,mq ;sm1 ) .

8 l (ml , ••• ·,rnq ;s) = (tnl, ••• ,miTni+l, ••• ,rnq;S), 1 ~ i ~ q-l

8 (ml, ••• ,m ;s) Cl: (ml, ••• ,m 1;m s)q q q- q

si (m1 ,···,mq ;s) ;:: (rn l ,···,rn i ,1,m i + l ,···;s) 0 ~ i ~ q.
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As noted in [W2], the double bar construction is a special

case of the cyclic bar construction where S appears as a

cartesian product of a left M-set and a right M-set. When M

is a grouplike monoid (voM is a group) and S = M with in

duced M action of the left and right, NCY(M,M) 1s weakly

equivalent to BM
S1

• The construction of extends in

the obvious way to simp11cial monoid M aeting on a simpli-

eial set S.

It is often case that S itself 1s a partial monoid

whieh admits a left and right M-action. In this ease one wants

to know that the cyelic bar construction NCY(M,S) can be

done in such a way as to be compatible with the partial monoid

structure on S. A left M-module 1s a partial monoid E to-

gether with a basepointed M-action M x E ~ E compatible

with the partial monoid structure on E. A right M-module i5

similarly defined, and an M-bimodule is a partial monoid with

compatible left and right module structures. Given such an

M-bimodule E, the semidirect product M ~ E is the partial

monoid whose underlying set is M x E with composition given

by (m,e)(m',e') c (mm',em'Tm'e) (where the product in M i8

written mUltiplicatively, that in E additively). Clearly

this construction can be done degreewise when M and E are

simplicial. If the partial monoid structure on E has not

been specified, we will assume it i8 the trivial one. Note
p

that in this case it's nerve {[p] ~ V (E,*)} 1s aga!n a

partial monoid with trivial structure, and i8 a 1eft (resp.
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right reep. bi-) "module over M if Eis. Iteration of this

construction yields an M-module structure on aspace whose
I '. "

• : ~ - 11 P I ~

realization 1s an,iterated" suspension of lEI, and which "

agrees Cup to homotopy) with that induced by the given action

of M on E together with the trivial action on the suspen-

sion coordinates.""

A key result concerning the nerve of a semidirect product
)

is provided by lemma 2.3.1 of [W2]. It states that, under a

certain "saturation" condition, there is a map

u : diagCNcYCM,NE» ~ NCM ~ E), which 1s a weak equ1valence

when ~OCM) 18 a group. Here M 1s a simplicial monoid, E a

s1mplicial M-bimodule, and NCYCM,NE) denote the cyclic bar

construction of M acting on the nerve of the partial monoid

E. The "diagonal" structure 1s with respect to the simplicial

coordinates coming fram NCYC) and NE. The saturation con

dition referred to above, as weIl as the condition that wOCM)

is a group, will always be satisf!ed in our case. As we will

need to know u explicitely later on, we recall that it i8

given on n-simplices by the formula C[W2], p. 369):

C1.1.2) UCID1 ,··· ,IDn ;e1 ,··· ,en) =
n n n

= cm1'C~ mi)e1m1 : rn2 ,cr-T mi )e2 (m1rn2 ) : •.• ;mn,mnencr-T Mi»~ ·
~=l i=2 1=1

Let us return to considering JZ and H~cIJzl) Cfor con

nected Z). We will be interested in the case when Z = X v Y.
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Recall first that the James-Milnar splitting yields an

equivalence !IJZI ~ I( V Izl[q]), the spli~ting being in-
~A • • q~l

duced by the word' l~ngth filtr'ati~n of IJzJ"~ Jlzl. When

Z = X v Y ane can consider other coarser filtrations. Let

Fr(X,y) C J(XvY) denote the subset which in each agree con

sists of elements of word-length at most r in Y. This is

clearly a simplicial subset. Moreover the natural JX-bimodule

structure of J(XvY) restriets to a JX-bimodule structure on

Fr(X,y). There 1s also a natural partial monoid structure on

Fr(X,y), compatible with this action, where two elements are

camposeable if their product in J(XvY) lies in Fr(X,y).

Under suspension the Hilton-James-Milnor splitting yields an

r
equivalence IIF (X,Y) I ~ !( V IF (X,Y)/F l(X,y) I) of

.r q=O q q-

IJXI-bimodules, where F_1(X,y) = *, FO(X,y)'= J(X) C J(XvY).

In particular, IIF1 (X,y) 1 ~ I(IJ(X) I v IF1 (X,Y)/Fo(X:Y) I): we

will denote Fl(~,Y)/FO(X,y) by F
1

(X,y). The projection maps

F1 (X,y) ~ F
1

(X,*) C JX and F1 (X,y) ~ F1 (X,y) are JX-bi

module maps, whe~e the partial monoid structure on F1 (X,y)

18 the trivial one.

If E i5 a left (resp. right resp. bi-) module over M,

then M~(IEI) is a left (resp. right resp. bi-) module over

H~(IMI). If M i6 a partial monoid , then it sometimes makes

sense to talk about a partial monoid structure on H~(IMI)

even though the latter has not yet been properly defined. For

when M 1s a monoid one has an equivalence
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k k n
H~(IMI) ~ ~(IMI+) C Map (V Sn, V S A !MI+), and the latter 1s

defined as a set for all M. In particular when A C M is a

submonoid and M
2

= M x A U A x M, one can define
AxA

(~( IMI+» 2 to be

(~ ( IAI+) x M~ ( IMI+) u ~ ( IMI +) x M~ ( IAI+» C (M~ ( IMI+) ) 2. I f

f € ~(IAI+), 9 € ~(IMI)+), then gof c fg 1s the compo

sition

k f k k 'd k
IMI ~V Sn --+ V Sn A IAI+= V lAI A Sn 1 AqJ V lAI A Sn A

+ + +
k idAJ,L k
V Sn A lAI A IMI+ V sn A IMI+. fg is similarly defined)

+
when f € M~( IMI+) and 9 € M~ ( IAI +) · This applies to the

case M = F1 (X,y), A :::: JX. We summarize these observations as

Lemma 1,1.3 The Hilton-James-Milnor splitting of ~IJ(XvY) I
induces a splitting of IJxl-bimodules

!(IJ(XvY) I) ~ !( V IF (X,Y)/F l(X,Y) I) , Fr(X,y) as defined
q~O q q-

above. F (X,Y) admits a partial monoid structure, and ther

natural projection Fr(X,y) ~ Fr(X,*) = JX is a JX-bi-

module map. In particular F1 (X,y) is a generalized wedge,

inducing a partial monoid structure on M~(IF1(X,y)1+). The

projection map F1 (X,Y) ~ F1 (X,y) induces a map of

n I I -n I I P2 n 1- IHk ( JX )-bimodules Mk ( F1 (X,y) +) --+ Mk ( F1 (X,y) ), the lat-

ter being endowed with the trivial monoid structure. These

maps are compatible with suspension, stabilization and

wedge-sum.

o
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We also note that the equivalence

H~(IJ(XvY) I) ~ M~(IJ(XvY) 1+) is an equivalence of

H~(IJ(XvY) I)-bimodules and hence by restriciton an equivalence

of H~(IJxl)-bimOdUles. Now consider the map

~~ : X[q-i-q]A Y A xCi] ~ X[q-1] A Y given by

Wi ( ")~q x1,···,Xq_i'Y1,x1,···,xi

= (xi,X2, ••• ,Xl'X1'X2, ••• ,Xq_i_1'Y1). These piece together to

yield a "folding" map as in [CCGH]:

hence

= ~ : ~ x[q-i-1] A Y A XCi] ~ x[q-1] A Y, and
q i=1

= ~ : V
q

( V
i=l

X[q-i-l] A Y A xCi]) ~ V X[q-l]
q~1

A Y.

Under the James-Milnor splitting IIF1 (X,Y) 1 can be expanded

as I ( V (~ Ix[q-i-1]A Y A x[i]I». The IJxl-bimodule
q~1 i=1

structure on this wedge is clear, and hence ~ induces a map

ce = !I~I : ~IF1(X,y) I ~!( V IX[q-1]A YI). ce identifies
q~1

the 1eft and right IJXI-module structures, iri the sense that

~(a • m) = ~(m • a) for a € IIF1 (X,Y) 1 and m € IJxl.

Finally H~(IMI) is a mapping space (for a simplicial

monoid M), for which we will adopt the convention that AB

.denotes the compositon

k k k
V An A M ~ V sn A M ~ V sn A M

+ + +'

which as a composition product would be written as B· A.
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§ 1.2 Goodwillie's Calculus

We briefly,recall the setup for Goodwillie's calculus of

functors, aB presented in [G1]. We will only give construc

tions and results necessary for the following sections, avoid

ing the somewhat involved definitions describing the connecti

vity of various families of diagrams - definitions which are

needed for the general development given in [G1].

For simplicity we will only consider functors F:! ~ II

where ~ is either U,T,U(C) or T(C) and Q is T,T(C)

or the category Sp of basepointed spectra. Here U i8 the

category of (Hausdorff) topological spaces weakly equivalent

to a C.W. complex, T the category cf basepointed spaces in

U with basepointed homotopy type cf a CW complex. U(C),

T(C) denote the ccrresponding categorles of spaces over

C € obj(U). Note that an object of T(C) is a retractive

space Y over c, i.e., r: Y ~ C admits a right homotopy

inverse i(r 0 i ~ id). Each of these choices of ~ i8 a

closed model category in the sense of Quillen, so one has the

usual constructions of homotopy theory. In particular one can

consider the re8triction of F to ~n = the full sUbcate-gory

of n-connected objects in ~. Moreover one has a suitable

notion of weak equivalence, and F 18 called a homotopy func

tor if F preserves weak equivalences as weIl as (filtered)

homotopy colimits up to weak equivalence «2.• 2.1), [G1]). We

will only be concerned with homotopy functors.
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Let S be a· finite set, C(S) the category subsets of

S with morphisms corresponding to inclusions. An S-cube in !

i8 a covariant functor G : C(S) ~ C. If S = {1,2, ••• ,n} = n
. - ,I,

G is called an n-cube. Associated to an S-cube 18 the homo-

topy-inverse limit h(G) = holim(Gl c (S)) where Co(S) de-
O

notes the full subcategory of C(S) on all objects except •.

The natural coaugmentation map lim(G) ~ holim(G) induces a

natural transformation a(G) : G(~) ~ holim(Gl c (S). G 1s
o

h-cartesian if a(G) is a weak equivalence (which is the same

as requiring hOl~m(Glco(s)) to be weakly equivalent to a

point - see remark 1.2.8 of [G1]). We say F:! ~ ~ (as

above) has degree n if FoG is h-cartesian for every

homotopy co-cartesian S-cube G s ~ ~ where Isl = n + 1.

The condition that F has deg.n becomes less ·~estrictive as

n increases. That is, deg(F) = n ~ deg(F) = n+1 but not con-

versely (prop. 2.3.2 [G1]; one can think of degree n as

meaning "having <legree ~ n").

Given a homotopy functor F satisfying certain condi-

tions, there i8 a natural way of producing a functor PnF of

degree n and a natural transformation F --+ P F. In fact,n

PnF can always be constructed. Starting with X € obj (~) one

can define an (n+1)-cube X~(_) C(n±l)

which associates to T C n±A the space

~ ~ ~ U(C) or T(e)

X*T = the fibrewisec

join over C of X with the set T. Now let

a(Fo(X*( ))) definesc -
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a transformation (tnF) (X) : F(X) ~ (TnF) (X). One easily che

cks that X ~ (TnF) (X) is again a homotopy functor on ~

and that (tnF) = (tnF)(_) defines a natural transformation

from F to TnF. Note that X~(_) : C(n±l) ~ ~ i5 a

(strongly) homotopy co-cartesian diagram in ~, so that t Fn

is an equi-valence if F 1s of degree n., Iteration of this

construction yields PnF which i8 by definition the homotopy

colimit of the directed system {T~F,t~F}.

The transformations {t~F} induce a natural transforma

tion PnF: F ~ PnF. Moverover, choice of a distinguished

element m € m±1 induces a projection m±! ~ m (T ~ T -

T n {m}) and hence a natural transformation C(m±1) ~ C(m).

This in turn induces a natural transformation of directed sys

tems {T~F,t~F} ~ {T~_1,F,t~_lF} and hence a natural trans-

formations PnF iI.. P IF. Different choices of m yieldn-
naturally equivalent choices of qnF • The Goodwillie Taylor

series of F i8 then by definition the inverse system

{PnF,qnF} which 18 best viewed as a tower together with the

natural transformations

(1.2.1)

P F·
n •

.
1

F
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The closed diagrams in this tower are homotopy comrnutative.

The nth-derivative of F i8 by definiti~n the homotopy

I q F ,
• I n 'If1bre of gnF :.f DnF, = hOlim(Pn~, -----+ Pn-1F) r. We have not yet

explained the conditions necessary for PnF to have ~egree

n. The precise statement requires some terminology concerning

connectivity of diagrams, for which we refer the reader to

([GI], p.9i def. 2.4.5, p. 45). The following will suffice for

our purpose. It is a special case of Prop. 2.5.9 of [GI].

Prop. 1.2.2 If there exist integers r and ~ such that the

iterated homotopy fibre of FoG is (r·(n+l)-~)-connected

for all (n+l)-cubes G: c(n+l) ---+C-r then has degree

n (C = full sUb.category of r-connected spaces).-r

o

In this case DnF 1s homogeneous of degrae n (it has degree

n and PiDnF ~ -for 1 < n). We will write pnF for fibre

(F
PnF

PnF) , and ProF for fibre(PnF ProF) when PkF has~ ---+n

degree k for all k (This will always be the case for the

functors we are interested in). One also wants to know not

just when P F is of degree n, but also when the connectivi
n

P F
ty of F ~ P F tend to ~ as n tends to ~. For this

n

Goodwillie introduces the modulus cf F, which for cur pur-

poses will be the smallest integer p(F) such that the above

proposition applies with r = p(F) + 1 and ~ = ~, - np for
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all n, where ~, 1s independent of n (see def. 2.4.4,

[Gl]). Such an F is said to be analytic of modulus

p c p(F). Goodwil~ie then p~~~es
'\, .

, ,1 ~ ,

Theorem 1.2.3 (Th. 2.5.21, [G1]) The connectivity of PnF

tends to (I) over the category ~p' where p = p(F),

In analogy with f~nctions, c
-P

is sometimes called the disk

Q! conyergance of F. In applying this calculus to F, it i8

natural to restrict one's attention to the sUbcategory !p(F)

which in general is the largest sUbcategory of ~ for which

the Taylor series of FI~p(F) converges (in the homotopy-

theoretical sense). Within this range it provides a powerful

machinery for analyzing F, as weIl as determining the effect

of a natural trans.formation Tl : F1 --+ F2

It i5 clear from the above theorem that Tl

on.~omotopy groups.

will induce a weak

equivalence when restricted to ~p (p = Max(p(F
1
),p(F2»,

Fi : ~ --+~) if Tl induces an equivalence on 'derivatives:

Dn(n) : Dn (F
1

) --+ Dn (F2), under the condition that

PO(Fi ) ~ *. However, there is another way of getting at Tl.

Assume first that ~ = U(C) and that Fi : ~.~ ~ have the

same modulus p,i = 1,2. Let (X,p: X ~ C) be an object in

U(C). Then (X,p: X ~ C) defines a natural transformation

~(X/P) : U(X) ~ ~(C) given on objects by

~(X,p) (Y,r : Y --+ X) = (Y,por : Y --+ C). Analyticity is

preserved by the natural transformation



- 19 -

*1(X,p) F ~ F 0 ~(X,p). The next result of Goodwillie's

concerns only 1
st derivatives.

Theorem 1.2.4 (Th. 2.7.3, [GI]) If FI ,F2 : U(C) ~ n are

analytic of modulus p, and ~ : FI ~ F2 18 a natural trans

formation such that the square

i8 homotopy-cartesian for every (X,p) in U(C), then for

every f . Y---+X in U(C) the diagram.
p

F
1

(Y) T} (Y) ~ F2 (Y)

F1 (f) 1 1F2 (f)

F1 (X) 1}(X) ~ F2 (X)

is homotopy-cartesian.

o

In the case C = * we will denote fibre(ql(~~X,p)F») by

(D
1

F)X; p in this case is unique. The case we are interested

in i8 when F2 = A(~_) = ~(_), for which p = 0 (example

2.4.8, [GI]). Then theorem 1.2.3 yields
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Corollary 1.2.5 If ~ : Fi ~ ~(_) is a natural'transforma

tion which induces an equivalence

Dlfv, : D1D,X ' DfD Al,' tor all connec d spoces X,

then ~ induces an equivalence

,.,
~(f) fibre(F1 (Y) ~ F1 (X» ~ fibre (A(!Y) ~ A(IX»

for all maps f between connected spaces Y and X.

o

The result which makes these techniques applicable to the

study of A(X) is the computation, due to Waldhausen at

X = pt ([W2], [WM)], and Goodwillie for general X, of the

derivatives of A(X) : here (Y) denotes the retractive ob

ject (Y v X; r : Y v X ~ X) thought of as an object in

T (X) •

Theorem 1.2.6 [Wa~dhausen, Goodwillie]

(D
1

AI)X(Y) ~ noo!~(!( V IX[q-l] A YI» for connected X.
q~1

o

We have added the realization functor for consistency of

notation, as A(_) was defined on simplical sets in §1.1.

Note that as a hqmotopy functor A(_) factors by the realiza-

tion functor and henee ean be viewed as a homotopy funetor on

spaces, whieh is neeessary in order to apply Goodwillie's cal-

culus as it stands.
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Remark 1.2.7 i) Goodwillie's classification theorem for homo

geneous functor~ implies that derivatives are determined by
I,
I' '.:

what they do on suspensions. In fact, theorem 1.2.6 can alter-

natively be written,as:

(1: 1-q(V IX [ q-1 ] ... Y I) ) .
q~l

ii) There i~ a slight difference in conventions concern

ing "stabilization at X" (i.e., passing to (D1F)x) as de

fined in [Gl], versus the natural generalization of the cons-

truction given in [W2]. In [GI) one usually deals with homo

topy functors which are reduced; for (Y,r:Y ~ X) in U(X)

F(Y,r) = fibre(F(Y) F(r) » F(X» and evaluatin on the base

point yields F(X,id) ~ *. On the other hand, A(X) as de-

fined in (1.1.1) i5 unreduced. Given an unreduced functor F

defined in connected spaces, one can extend it to non-con-

nected spaces with finitely many components by defining

n
to be TI F(Xi ) .. For non-connected

i=1

n
X=( Ilx)

W i
n

A(X) ~ TI A(Xi) . by [W], so this extension is what it should
1

be for A(X). Hence A(X), in the notation of this section, is

really A(X+,r: X+ ~ *) for the object (x+,r: X+ ~ *)

corresponding in T(*) to X. In what follows we will keep.

with the convention that A(X) i5 unreduced A(X),

Ä(X) = fibre(A(X) ~ A(*» the reduced functor.

iii) It i8 an interesting question as to what type of

constructions in the calculus of several variables (real QX

complex) have a suitable analogue in Goodwillie's calculus of
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functors. For example, there seems to be a chain rule that

computes the d~ri~atives of a composition FoG in terms of

the derivatives ':);.; o~' Fand· G~ It is easy tc?' show that

D1 (F 0 G)X is .(D1F)GX A (D1G)X when G(X) ~ * and F is

reduced. In general, it's formulation 8eems to require the
..

notion of a generalized spectrum.

We will need the next result in part 111. If F is a

functor defined on spaces, we will say it is continuous if for

each n ~ 0 there are natural transformations

An x F(_) ~ F(Anx_) which induce a natural transformation of

realizations ;F: I [k] ~ F{_) I ~ F(I[k] ~ (_) I). Here the

range of F is either T,T(C) or Sp as before and A
n de-

notes the standard n-simplex.

Lemma 1.2.8 If F is a continuous homotopy functor on U(C)

then the natural ~transformation

;F : I [k] ....-.. F(_) I ~ F(I [k] ....... (_) I) induces a weak

equivalence over the category of simplicial objects within the

disk of convergence of F.

EX: Within the disk of convergence of F the Taylor series

converges, and the transformation ;F induces a map of Taylor

;p F
series {I [k] .......... PnF(_) I ( n J PnF( I [k] .......... (_) I) }n~1 and

hence a map of derivatives
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90 F
I[k] ~ 0 F( ) 1 n J 0 F(I[k] ~ ( ) I). Goodwillie's classi-n n -

fication theorem for derivatives implies that o F
n commutes

with realization, that ls, 90nF 18 a weak equivalence for

all n. By induction 9p F i5 an equivalence for all n. As
n

the Taylor series converges this implies ~F itself is a weak

equivalence.

o

There 1s a slightly more general result one can prove

along these lines. Namely, one can consider arbitrary simpli

eial objects in U(C). Then restricted to such objects there

is a weak equivalence I[k] ~ FC_) I ~ Fcl[k] ~ C_) I),

where F d~fholim {P F,p F}
~ n n denotes the analytic completion

of F Cat Cl. The proof is the same. Now Waldhausen has shown

that A() i5 a continuous homotopy functor ([W]), and by

Goodwillie we know that A() has modulus 1. Hence we have

Corollary 1.2.9 If X = {Xk } and

each k, then .A: I[k] ~ ACXk ) I

is l-connected for

o

Goodwillie's theorem 1.2.4 and it's corollry 1.2.5 can be

applied to determine when two natural transformations between

homotopy·functors are equivalent within the disk of eonver-

gence of these funetors
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Prop. 1.2.10 Let Fand G be homotopy functors from ~ to

n where ~ i8 a8 before, n = Sp(C) or T(e). Let

~1'~2 : F ~ G be two natural transformations of homotopy

functors. Then within the disk of convergence (which we define

to be the mint of the disks of convergence of Fand G)

iff within the disk of con-

vergence.

Pf: By Goodwillie ([G2]), one knows that the nth derivative

of a homotopy functor admits a description in terms of an

n-fold iteration of first derivatives. Thus the condition

(Dl~l)X(Y) ~ (D1~2)X(Y) within the disk of convergence -

which is clearly necessary - implies that (Dn~l) ~ (Dnn2)

(at the basepoint (C,r = id:C ~ C), say) for all n (within

the disk of convergence). The hypothesis on n allows us to

take a C.W. approximation of any element in the image of F

or G. The result follows by standard obstruction theory on

the skelton of the C.W. approximation, the equivalence

(Dn~l) ~ (Dn~2) and induction on m. This homotopy can be ma

de natural with respect to any diagram which (as a diagram)

admits a C.W. approximation. This argument i8 valid within the

disk of convergence.

c
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§1.3 Elementary Expansions and Representations in H~(IJxl)

As in the previous sections X will denote a basepointed

connected simplicial set. Our object in the section will be to

construct the maps Pq : Dq(X) ~ A(~X) of [CCGH] as describ

ed in the introduction, to provide some techniques for compu-

-ting Pq on derivatives, and to relate certain restrietions

of Pq to products of elementary expansions. This will be

-used in section 2.3 where we compute the trace of Pq • From

the construction of P , it 18 easy to extend it to a mapq

Pq(JX) : Dq(JX) ~ A(~X). We do th1s, and prove analogous re-

sults for Pq(JX) that we will need in part 111.

Let L : lxi ~ IJxl denote the standard inclusion. Fix-
q q

ing an indexing of V sn and V sn A IJxl we let (Sn).
1

resp. (Sn A IJxl+)i denote the i th term in the appropriate

wedge for 1 S i S q. Given (X1 ' •••. ,Xq) € Ixlq let

Pq (X1 ' ••. 'xq ) be the map which on (Sn)i i8 given by the

composition

(1.3.1)
idvf.

(Sn)i = sn pinch.sn v Sn 1 Snv(snAIJxl)inCl.

(snAIJxl+)i v(sDAIJxl+)i+1

Here coefficients are taken mod q; thus i+1 = 1 if

i = q, i+1 otherwise. The basepointed cofibration sequence

s° ~ IJxl+ ~ IJxl splits up to homotopy after a single

suspension. Fixing jl: ~IJXI ~ IIJxl+ with !p 0 j ~ id
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and letting j : ~nIJXI ~ ~nIJXI+ be ~n-1(jl)' inc. is the

map induced by the inclusions Sn = sn A SO ~ SOAIJxl+,

sn ~ sn A IJxl ~ sn A IJxl+. f. (s) = [S,l(X.)] € sn A IJxl
~ ~

for s € sn. "pinchll denotes the pinch map associated to the

standard embedding sn-1 ~ sn (of course, any choice of

pinch map will do, however we want it to be the same for each

i and independent of X). Clearly Pq is continuous and de

fines a map of spaces

(1.3.2)

P q 1s also equivariant with respect to l/q, where l/q acts

on Ixl
q

H~( IJXI)

action of

by cyclically permuting the coordinates and on

via the standard embedding Z/p ~!q and the usual

~q on H~(IJxl) by conjugation.

Prop. 1.3.3 Pq extends to a map

Pq EZ/q xz/plxl q
~ OA(~X), which in turn induces a map

Pq OcoIco(IIEZ/q Az/qlx l [q]) --+ nA(~X).

EI: In [01] thls was proved by constructing a Volodin model

for OA(!X) and using it's associated configuration space

[FO] to produce Pq and Pq . This i8 probably the easiest way

"'"to see why Pq and Pq exist. However it will turn out all

"'"we need to know i8 that Pq and Pq are extensions of Pq •

Tc this end, note that Pq i5 compatlble with suspension in

the n-coordinate. So takinq the direct limit under suspension
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and stabilization yields a map Ixlq ~ IH(IJxl) I which we

also denote by Pq . This map i8 still l/q-equivariant, where

l/q acts on the second space via the embedding

l/q ~ !q ~ Im. It suffices to know now that the plus cons

truction IH(IJXI) I ~ OA(!X) can be done so as to be equiva-

riant with respect to the action of !m and that the action

of !m on OA(!X) i8 trivial up to homotopy. This follows

from [FO]. The result i8 that OA(!X) ~ E!m x! OA(!X) ad-
m

mits a left homotopy inverse p: E!ooX! OA(!X) ~ OA(!X)
00

(p 0 i ~ id) and we can take Pq to be the composition

Taking the infinite-loop extension of the adjoint of Pq
00 m q

yields a map O! (!(EZ/qxz/qlxl » ~ A(!X). A well-known

fact (which we re-prove in section 3.2) is that the projection

EZ/qx Ixl q ~ EZ/qX Ixl[q] = (EZ/q) A Ixl[q] admits aZ/q Z/q + Z/q

-stable section s. Pq is then the composition

Finally we note that all of the constructions are natural in

x, and hence factor through A(!X).

o
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The space O~~m(~(EZ/qAZ/qlxl[q]» will be denoted by 0q(X).

0q(_) can alternatively be thought of as a functor on connec

ted spaces. The following is more or less contained in

( [CCGH], § 3) •

Prop. 1.3.3 i) (D
1

0
q

)X(Y) ~ nm~~(Ilx[q-1] A YI)

i1) (DIFqlxeYl = om~me~e ~ Ix[i-i] A Y A x[q-i]lll, where
i=1

Fq(Z) = nmI~(Ilz[q]I). The natural transformation

Fq (_) ~ Dq (_) induces the fold map on 1st derivatives which

is the infinite loop extension of the map

~ x[q-i-1]A Y A x[i]~ X[q-1]A Y,
i=1

~ (Xl,···,xl,xl,···,Xq_i_1'y)·

iii) The inclusion

iq(X,Y):X[q-l]AY ~ (XVy)[q]~ El/qAZ/q(XVy)[q] ~

EZ/qAZ/q(XVy)[q] induces an equivalence

~ l~m Omfibre (0 (Xv!my )
m q

= (D10q )x(Y)

~. i) and i1) appear in [CCGH]; the simplest way to see

them i8 to first compute (D1Fq)X(Y)' which i5 easy, and then

realize that the term (El/qAZ/ q_) simply has the effect of

"dividing by q" (in Goodwillie's words - see [Gl]) via the

fold map. It should be Baid that X,Y and Z all denote con

nected spaces here. Finally iii) follows fram i) and ii) since

the inclusion x[q-l] A Y ~ (XVy)[q] induces a map
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O=~=(I(lx[q-1) A YI» -1 (D1Fq)X(Y) which agrees up to homo

topy with the infinite loop extension of the inclusion

x[q-1) A Y into the last term in the wedge

~ X[i-1) A Y A X[q-i).
i=1

[J

Recall that for a ring Rand r € R the elementary

matrix e ij (r) is the matrix id + eij(r) where

(eij (r) ) JdL = r if (k,o.) = (i,j),o otherwise. One should

not try to push the analogy between Hn (IJX I) and the groupq

GL (Z[JX) too far, especially for finite n. However one can
q

construct elements of which behave enough like ele-

mentary matrices to be useful. We call these elementary expan-

sions since they corrospond to the elementary expansion in

classical Whitehead simple homotopy theory.

Def. 1.3.5 Let X be a connected simplicial set and

l : lxi -1 IJxl the standard inclusion. For x € lxi,

q
e .. (t(x» € IHn(IJxl) I 1s given on (Sn)o. C V (Sn)k by
~] q k=1

~ i i (Sn)o. ~ (Sn)o. ~ (Sn A IJxl+)o.

0. = i (Sn) .=Sn pinchtSn y Sn
~

id vf, Sny(snAIJxl) inc t. (snAIJxl+)i V(Sn A IJxl+)j

where (as before) we have identified H~(IJxl) with

~(IJxl+). The sequence for 0. = i 1s exactly as in (1.4.1)

with fes) = [S,l(X)] € sn ~ IJxl: the only difference 18 the
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indexing of the last term. eij(-l(X)) is defined the same

way, but with idvf replaced by idv(-f) where -f is f

composed with a fixed choice of Sn (-1) • Sn representing

loop inverse. The reduced elementary expansion eij (l (x) ) is

given by

Q. z! i (Sn)Q. ---+ *
Q. = i (Sn) . -L (Sn A IJxl) inc •• (Sn A IJxl+)i·1.

Similarly one can define eij(-l(X)).

Remark 1.3.6 When i = j, one could define e .. (±l (x))
1.1.

to be

id + e.. (il(X)) (loop sum). Also, the definition of
1.1.

eij(±((X)) depends on a choice of parameters: choice of pinch

choice of j . sn IJXI
n

IJxl+, and choice ofmap, . --+ S ,..

Sn (-1) J Sn representing -1. These, however, can be fixed so

as to be compatible under suspension in the n coordinate and

independent of x € lxi and x. We assume this has been

done. All of the manipulations we will do with these elements

will be functorial in X and x € lxi.

Often we will want to now that two maps depending on

x € lxi (resp. a diagram depending on X,Y, ... ) are homotopic

by a homotopy which is independent of x € lxi resp. homo-

topy-cartesian by a homotopy which is independent of the spa-

ces X,Y, ... ) If this can be done, we will say the two maps

are canonically homotopic (er that the diagram is canonically

h-cartesian) .
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~ There i8 certainly a homotopy. It can be made canonical

by noting that the homotopy can be concentrated in the portion

of the sequence which involves finding a null-homotopy of the

composition sn~ Sn (-1) t sn for our fixed choice of

(-1), and this i8 independent of xi € lxi.

Note that we are not making any claims that such a homotopy is

unique, even up to"homotopy. We will also need

Prop. 1.3.8 For x
1

, ••• ,x 1 € lxi, y € lyl, there i5 a, q-

canonical homotopy between

e 12 (-t (xl) ) • 8 23 (-t,'(X2 ) ) • • • • • eq_1q (-t (Xq _ 1 ) ) e q1"( t (y) ) and

9=! 9=!
e 11 ((1 1 -t(Xi ))t(y))e21 ((! I -t(Xi))t(y)) •.. ~."e l(t(y)).

i=l 1=2 q

~ On the level of matrices this is cleari the product hare

15 taking place in

9=!
write 1 1 -tex!)

i=j

monoid without any

IJ(XvY) I. Properly speaking, we should

j 9=!as (_l)q-l- I 1 t(X
i

) as IJ(xvY) I 1s a
i=j

strict inverses. To realize that the ob-

ViOU8 homotopy is canonical, we note that it involves i) re

paramerization to pass between the sequence of pinch maps used

to evaluate the compositons and ii) reparametrization to
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reposition the iterated power of (-1) appearing in the ex-

9.::!
pression (_1)q-1! ~ t(xi). Both of these ean be done inde-

1=)

pendently of the elements x1 , .•. ,xq_1 ,y involved.

D

The next result relates the representaions Pq of (1.3.1) to

produets of elementary expansions. This is needed for the eom-

putation of the traee on given in §2.3. We define repre-

sentations as follows:

(1.3.9) -1
P (x1 '···'x 1) = (p (x1 '···'x 1'·)q q- q q-
-2Pq(y) = P2Pq (*,*, ... ,·,Y)

x. € X
1

Y € Y

where P2 : H~(IJ(XVY) I) ~ M~(I(IF1(X,y) I) is as in lemma

1.3, X and Y eonneeted.

Proposition 1.3.10 As eontinuous maps P~ and P~ are

eanoineally homotopie to the followinq produets of elementary

expansions:

E!i This aqain only involves reparametrization in the spheri
-1eal eoordinate independent cf X and Y, in the ease Pq . In
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the ease of P~ we needn't do anything, as the projection map

P2 kills the identity maps along the diagonal and we are left

with a single non-zero entry (whieh in this ease we QSD think

of aa an entry).

Remark 1.4.11 The above canonical homotopies arise from

Steinberg identities, which hold in H~(IGxl) up to canonical

homotopiea. Most types of identities among elementary expan-

sions which hold up to homotopy do D2t hold up to canonical

homotopy. For example, it is not true that the entire repre-

sentation P q is canonieally homotopic to a product of ele

mentary expansions. This type of problem arises whenever one

tries to analize such cyclic representations in terms of

elementary expansions of matrices.

We have stated the above results using elementary expan

sions with entries in t(IXI) C Jlxl, which is all we will

need for chapter 2. However all of the above constructions

apply to the more general case where one allows arbitrary en-

tries in JIXI (or even IGxl when lxi is not a suspen-

sion). This will be needed in part III. Thus for

y E JIXI ~ IJxl, one defines eij(y) E IH~(IJxl) I exactlyas

in definiiton 1.3.5 where f: sn ~ Sn A IJxl is the map

fes) = [a,Yl € Sn A (JX). Similarly for the reduced elementary

expansion eij(y). Remark 1.3.6 and propositions 1.3.7, 1.3.8

and 1.3.10 apply in this more general context. The version of

proposition 1.3.8 we will need is
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Proposition 1.3.12 For a 1 , ••• ,aq _1 E IJxl, b E IF
1

(X,Y) I
there is a canonical homotopy between

o

The representations Pq also extend in a natural way to yield

a continuous map Pq : IJXl q
~ IH~(IJxl) I, which on a q-trip

le (a1 , ••• ,aq ) € IJxjq is given exactly as in (1.3.1) where

f i is now the map fies) = [s,a i ] € Sn A IJXI. Proposition

1.3.3 applies with IJxl in place of lxi for the domain of

p ; in fact it i5 easy to see that the map of prop. 1.3.3 fac-
q

tors by this extension. The analogue of proposition 1.3.10

that we will need in part III is

Proposition 1.3.13 For a 1 , ... ,aq _1 E IJxl, b E IF1 (X,Y) I,

-1
let Pq(a1, ... ,aq_1 ) = Pq(al,a2, ... ,aq_l'*)' and

P~(b) = P2 Pq(*,*, ..• ,*,b) as in (1.4.9). Then as continuous

-1 -2maps Pq and Pq are canonically homotopic to the following

product of elementary expansions:

o
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The proofs follow exactly as before.

As a final remark, we should note that in the above proposi-

tions involving minus signs, we are not requiring any type of

coherence conditions to apply for this minus sign with respect

to composition product (which in the limiting case n ~ m

will involve the product structure on the generalized ring

Om2m(IGxl+». We are only stating that certain homotopies can

be made canonical. The restriction on the "ring" under con

sideration that must be made in order for such a coherent (-1)
\

to exist are sUbstantial, as shown by Schwänzl and Vogt in

[SV] .
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CHAPTER II

§2.1 Manipulation in the stable range

-We follow closely the arguement of Waldhausen ([W2], Th.

3.1) in proving

Theorem 2.1.1 Let X and ~ be pointed simplicial sets, with

X connected and Y m-connected. Then the two spaces

NH~ ( IJ (Xv Y) I) and NCY(Hnk(IJxl), ·~(~I-F (X Y) I)1'lk L. 1 ' are q-equi-

valent, where q = min (n-2,2m+1) and n ~ 1.

~ The notation 1s that of f1.1. Here the monoid structure

on H~(IJ(XvY) I) and H~(IJxl) is the usual one, while the

partial monoid structure on the H~(IJxl)-bimOdUle

~(IF1(X,y) I» i8 trivial. The equivalence follows as in

([W2], Th. 3.1) by the construction of 5 maps, each of which

i8 suitably connected.

The lstmap H~(IJ(XvY) I) admits a partial monoid structure

where twoelements are composeable iff at most one of them

lies outside the submonoid H~(IJxl). The nerve of this par

tial monoid i8 by definition the generalized wedge

p
{[p] ~ V (H~(IJ(XvY) I), H~(IJxl»}. As Y is m-connected,

the inclusion H~(IJxl) ~ H~(IJ(XVY) I) is also m-connected.

It follows ([W2], Lemma 2.2.1) that the inclusion

p
{ [p] t--+ V (H~ ( IJ (Xv Y) 1), H~ ( IJX I ) )} ~ NH~ ( IJ (Xv Y) I ) i s

(2m+l)-connected.
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- nd ~

The 2 map By §l.l, H~(IJ(XvY) I) ~ M~(IJ(XvY) 1+) is

an H~(IJxl)-bimOdule equivalence. The inclusion

F1 (X,Y) ~ J(X,Y) is (2m+l)-connected, hence induces a

(2m+l)-connected map M~(IFl(X,y) 1+) ~ M~(IJ(XvY) 1+) of

H~(IJxl)-bimOdUles. This in turn induces an inclusion of ge

neralized wedges:

p
{ [p] .......... V (M~ ( I F~ (X, Y) I+), H~ ( 1J X I ) ) }

p -n I I n I I~ {[p] .......... v (Hk ( J(XvY) +), Hk ( JX »}. This inclusion i5

(2m+l)-connected in each degree by the gluing lemma ([W2],

lemma 2.1.2) and induction on p. It follows that the inclu-

sion of simplicial objects is also C2m+l)-connected.

is an
n '

HkCIJxl)-bimodule with

trivial monoid structure. So the semi-direct product

H~(IJxl) ~ H~(IF1(X,y) I) i5 well-defined. From 11.1, we have

projection maps . PI : F1CX,Y) ~ JX, P2 F1 (X,Y) ~ F1 (X,Y)

(which induce the splitting of F
1

(X,Y) after suspension).

Taken together, PI and P2 induce a map of-simpliclal par

tial monoids which on the level of simplicial sets 18

M~(IFl(X,y)1+) ~ M~(IJxl+) x M~(IFICX,y) I). As in ([W2], p.

374), we consider the restrietion to the path'components cor-

responding to of the inclusion

k k
M~(IFl(X,y) 1+) = Map( V Sn, V sn ~ IF1(X,Y) 1+)

k k
~ Map( V sn,r-T sn ~ IF1(X,Y) 1+)

k k n n
~ r-T r-T n I (IF1 (X,Y) 1+).
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This is an en-l)-equivalence. Lemma 1, p. 374 of [W2] yields

an en-2)-equiv~lence
, . ,

onIneIFlex,y) 1+) ~ OnIneIJx~Fle'x,y) 1+) -+ o~~neIJxl+) )(

nn~neIFlex,y) I). The gluing lemma now applie~ to show that the

above map of partial monoids yields a map

{[P 1 >-+ t (M~ ( IF 1 (X. Y) I+). H~ ( IJX I) )}
p'

--+ {[ p] ~ V .(H~ ( IJX I) P< M~ ( 1F1 eX, Y) I ) ,H~ (I JX I) }

which is (n-2)-eonneeted.

thThe 4 map Taking the trivial monoid strueture on

M~(IF1(X,y) I) and forming it's nerve, Lemma 2.3 of [W2]

provides an equivalence

diag (N
ey

eH~( !JX I), ~ .M~ (IF1 (X, Y) I»)

~. N (H~ e1JX I) P<' M~ elF1 ex, ~) 1)

= N ({ [p] >-+ e (H~ ( IJX I) " M~ ( IF1 (X. Y) I ). H~ ( IJX I» }) ·

... p
Here I.A denotes the simplieial spaee {[p] ~ V (A,*)}

whieh arises on taking the nerve of a trivial partial monoid.

The 5
th map Partial geometrie realization sends

~.M~eIFleX,y)I) to SI ~ M~(IFlex,y) I). The pairing map

sI ~ M~eIFlex,y) I) --+ M~(Sl ~ IF1(X,Y) I) together with par

tial geometrie realization produces a map fram the partial

geometrie realization of
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is min (n-2,2m+l)-connected
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NCYCH~cIJxl), I.~ CIF1 CX,y) I» to NCYCH~CIJXI),

~CS1 A IF1cx,Y)I»).

By the realization lemma, this map is C2m+l)-connected.

These 5 maps taken together

connecting NCH~CIJCXvY) I» and

~(!IF1(X,y)I»· Each of the maps

and the theorem foliows.

o

The maps constructed in the above theorem are compatible

with respect to suspension in the n-coordinate as weIl as

pairing under block suro, by which we will always mean the

wedge-sum of section 1.1 for the appropriate monoid in ques-

tion. Taking the limit as n goes to m yields a sequence of

maps connecting 1-1 N(HkCIJ(XvY) I»
k~O

Mk (!IF1 (X,y) I»; each of these maps preserves block-sum and is

(2m-l)-connected for (m-l)-connected Y. We thus get a sequ-

ence of maps between their group completions which i5 also

(m-1)-connected. We will denote OB( 1-1 NCY(Hk(IJxl),
k~O

Mk (!IF1 (X,Y) I» by C(X,Y). C(X,_) is a homotopy functor on

the category of retractive spaces over

X : C(X, ) (XvY) = C(X,Y). Denote C(_t_> by C.

Lemma 2.1.2 (compare [W2J, Lemma 4.2) There is an equivalence

of 1stderivatives
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= lim nn(A(~(Xv(Sn A Y») ~ A(~X»
n

= lim nn(C(X,Sn A Y) ~ C(X,*»
n

~ This is an immediate consequence of the above theorem;

for each n, we have an equivalence A(!X) ~ C(X,*) and a

(2n-l)-equivalence between A(~(X (Sn A Y») and

C(X,Sn A Y). This gives a (2n-1)-equivalence between fibre

n(C(X,S A Y+) ~ C(X,*»

which in the above limit yields a weak equivalence.

o

§2.2 The Generalized Waldhausen Trace Map

In this section we construct a trace map, generalizing

the construction of Waldhausen in [W2]. The techniques are

essentially those of ([W2], §4).

We begin by -recalling (Lemma 4.2, [W2]) that for an

(m-l)-connected space F there are pairing maps

(2.2.1)

k k k
Map(V sn,Sn+m) A Map (Sn+m,sn+mA F) ~ Map(V sn,V Sn+m A F)
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which are (3m-1)-connected. The second pairing is induced by

first stabilizing: Map(Sn+m,Sn+mAF ) A Map(Sn,sn+m) ~

Map (Sn+m, Sn+mAF ) A Map(Sn+m A F,Sn+2m A F),

f A 9 ~ f A (g A id) h °d m mw ere ~ : S A F ~ S A F.

Let Y be a connected space. By abuse of notation we

will denote 1- 1 y+) I by }:F - this is not the sus-F1 (X,S A

pension of IF1 (X,Y+) I as the latter i8 not properly defined.

In what follows we will always have suspended F at least

twice. By lemma 1.1.3 there i9 an equivalence

:I 2F ~ :I 2 ( V
q

Ix[q-i-1] x[i]I»( V A Y A

q~1 i=1 +

q
Ix[q-i-1] (Sl A Y+) A x[i]I»! ( V ( V A of JX-bimodules.

q~l i=l

As with Waldhausen's construction, the trace map i8

constructed degreewise on the cyclic bar construction by

topologically mimicking (in the appropriate range) the proof

of Morita invariance for Hochschild homology ([11], [B1],

[W2]). Under stabilization this agrees with the constructions

of Bökstedt, who shows in [B1] that Morita invariance holds

for topological Hochschild homology. The point to keep in mind

is that in order for this type of technique to work we need a

"tensor" (i.e., smash) product decompositon of

k k
Map (V sn,V sn+2m A F) as an H~(IJxl)-birnodule.

We consider the following diagram
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Piag. 2.2.2

I f~
gP ~(IJxl)p x Map(~ sn,

1 n

1 gP

Map (Sn+m,sn+3m A (V IX[q-1]
q~l

The map fP is induced by the pairing (2.2.1); it

factors as fP = fi 0 f~ where fi,f~ are given explicitly

in the proof of theorem 2.2.5 below. Also gP = gP 0 fP1 2

where is the unique map of quotient spaces induced by the

k
Map(Sn+m,v sn+2m A

following sequence of maps (compare [W2], p. 380):

(2.2.3)

The map hi is given ~y a cyclic switch of factors.

h~(a,ß,~) = (~,!2mß,~ A id), id : sm A F ~ sm A F as above
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h~ i8 given explicitly on a (p+2)-tuple (i1 ;jl, ••. ,jp;i2 )

by the composition

(2.2.4)

F A IJxl ~ F)+

(Sn+2m A IJxl+) (induced by S° ~ IJxl+)

idAi idAj k
A IJxl+) 2.... p. V FA(Sn+2mA IJxl+)

F A

(Sn+2m

k
~ V sn+2m A F A IJxl+

k
V sn+2m A F (induced by pairing

idAjl k
-----+. V F A

P 3
~-L--' sn+ m A F2 (F

2
= composable pairs in

idAJl sn+3m
- • A F (Jl: F 2 -+ F)

• sn+3m A ( V (X[q-l] A Y I)
q~l +

F x F)

The map L is induced by the inclusion F2 ~ F x F. The

map p i5 such that POt = id; it arises from the splitt-

ings of the spaces involved and i5 explained in more detail in

the proof below. We note that the same type of diagram could

be used to define gP directly (and leave it to the reader to

verify that gP, so defined, is homotopic to gi 0 f~). How

ever this wouldn't simplify matters - it is gi that we need

to use in the construction of the trace map, given in the fol-

lowing theorem.
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Theorem 2.2.5 Diagram 2.2.2 determines a map

NCY(H~(IJxl),M~(S2mAF»(3m-l) ~

Map(Sn+m,sn+3mA( V !X[q-l] A Y+I»,
q~l

functorial in X and Y, where z(p) denotes the p-skeleton

of Z and m ~ 2. These maps are compatible with respect to

suspension in the n and m coordinates, and take block suro

to loop-sum. Thus taken together they induce in the limit a

map

~ nm!m(!( V Ix[q-l] A Y+I».
q~l

Pf: Recall first that the composition of elements in F1(X,Z)

i5 defined iff at most one of them lies outside JX. This in-

duces the trivial monoid structure on F1(X,Z) for connected

Z. In the above diagram F will always have been suspended at

least twice and by lemma 1.1.3 !2F splits as a wedge sum.

The map L in (2.2.4) under this splitting is homotopic to

the inclusion of a wedge summand (i.e. ,

sn+3m A F A F ~
Sn+3m A (F2vF')) and so admits a left inverse

p . Sn+3m A F A F --+ sn+3m A F2 (i.e. , p 0 L ~ id). So after.
fixing a choice of p for n = 1, m = 1 - call it p' - we

can take p to be I n+3 (m-1)p'. This operation commutes with
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suspension and avoids the problem of trying to invert L up

to homotopy. Thai same situat~on arises in the definition of
~ .

the map fi in Idiag. 2.2.2.- It i5 induced by the pairing

.. k + . n+m
which sends (f A g) € Map( V sn,sn m A F) A Map(S A F) to

the composition

k
V sn L sn+m A

k
--+ V sn+2m A F.

Again we invert i by choosing a fixed splitting

k
I 4F A F ~ ~4F2 and replacing i by V I 2 (m-2)p" going

the other way (this is where the condition 'm ~ 2 i8 used).

The splitting of I
2F of lemma 1.1.3 is moreover a splitting

into a wedge of IJXI-bimodules. Thus the proj~ction pli as

weIl as it's suspensions will be IJxl-birnodule maps. It fol

k
lows that V ~n+2 (m-2) pli is a map of H~ ( IJx.1 )-bimodules

1s (m-l)-connected,

is induced by the natural

Sl--+ SlA Y --+ IF). It 1s
+

fP
2

by

k
fP = fi 0 f~. Veasy to see that

which implies the same for the pairing map

k + n+m k +2Map( V sn,sn m ~ F) A Map(S ,V sn m A F)

k k
Map(V Sn,V Sn+2mAF ). The map

inclusion Sl~ IF (induced

so i8 (3m-l)-connected. thus 1s a split surjection

on homotopy groups through dimension (3m-l). The splitting is

obviously compatible with the maps (8 i )# on homotopy groups

induced by the face maps 8 i : NCY ( ) --+ NCY () exceptp - p-l

possibly 8 p ' as the inclusion

k k k
Map(V sn,sn+m) A Map(Sn+rn,v Sn+2rnA F) --+ Map(V sn,sn+mA F) A
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k
Kap (Sn+m,V sn+2m A F) is an inclusion of right

H~(IJxl)-modUles but D2t H~(IJxl)-bimOdules. We need to show

that the spliting can be done in a way that i8 also compatible

with the last face map, in the appropriate range. The situa

tion i8 summarized by the following diagram for the case

p ~ 1. The same diagram applies for arbitrary p by taking

the product with H~(IJxl)p-1 everywhere on the left, and

crossing with the identity on that factor

k
Sn,Sn+m

k Sn+mMap(V A IJxl+) A Map(Sn+m,V A F) a'1
-0

I f 1

I k k
Sn+2m A F)an Map(V sn V

1 ,
I
!

k
sn,sn+m)

k sn+2mMap(V A Map(Sn+m,v A F) an
1

fO
1

k k
sn+2m A F)Map(V sn V,

The vertical composition of maps on the right i8

8 1
. NCY --+ NCY It is easy to see that there exist maps 8'. 1 o · 1

and -0 making the top square commute. fO 1s (3m-l)-con-f 1 1

nected, and so the desired map an (indicated by a dotted ar-
1
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row) can be defined at least through the (3m-l)-ske1eton of

the middle spa~~ ~n the 1eft, in such a w~~ that the lower

square commu~es 'on restriciton to (3m-l)-skeleta. The same

arguement app1ies to yield a map 8" in degree p on
p

(3m-l)-skeleta. The result is that, upon replacing the spaces

appearing in diag. 2.2.2 by their (simplicial (3m-l)-skelta,

the collection of simplicial objects

can be given the structure of a bisimplicial object in such a

way that {fi}p~o' and

f~,f; with f· = f~ 0

lemma, we get that

{f~}p~O induce bisimplicial maps

f; an equivalence. By the realization
.

f
1

(which extends to a well-defined map of

bi-simplicial objects without restrietion to skeleta) i8

split-surjectiv~.onhomotopy groups through dimension (3m-l),
, .

so that we can construct a right homotopy inverse through the
I

(3m-l)-skeleton'of the realization of NCY(H~(IJxl),

M~(S2mA F». Taking the disjoint union over n, we see that

the basepointed map 1-1 f. = 1-1 fi(n) commutes with block
n~l 1 n~l

sum. Hence 1-1 f. (n) induces a map of group completions
n~l 1

which admits a right homotopy inverse through the

(3m-l)-skeleton after group completion. Finally we need to

prove:

Claim a) The collection of maps {gi}p~o taken together

define for each n and k a map
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g(n,k) = Ig~1 : INCY(H~(IJXI),

k k
Map(V Sn,Sn+m A F) A Map(Sn+m,V Sn+2m A F)) I

~ Map(Sn+m,Sn+3m A ( V IX[q-l] A Y+I))
q~l

b) Under

1-1g(n,k)
k~O

1-1 g(n,k), block-sum maps to loop sum. Hence
k~O

extends over group completion, yie1ding a map

~ Map (Sn+m,sn-3m A ( V IX[q-1] A Y+I))
q~1

The map i8 compatible with respect to suspension in both the

n and m coordinates.

Pf. of Claim The statement a) follows from the fact that the

maps gi are compatib1e with respect to the face maps in the

cyclic bar construction. For 8 i , 0 < i < p this is c1ear.

P-1 p-1The identity 91 0 8 = 9 0 8 fo11ows by the factoriza-o 1 p

tion of g1 given in (2.2.3) and (2.2.4) which imp1y that, up

to stabi1ization via suspension, the difference between the

two is simp1y whether we let IJxl act on the 1eft or right

of Fand under the fo1ding map ~ this difference i8 eli

minated. The point about suspension is that from (2.2.3) one

sees there 18 a difference at which stage certain suspensions
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in (2.2.3). So this is not a problem. b) i8 also

i · p-lare performed n compar1ng 9 1 0 8 0

this difference dissappears,by the time

p-lh 2

p-land. g1 0 8p . But

we have evaluated

straightforward,' for under the ~ame sequence of maps block

suro, which i5 given by wedge suro, maps to wedge eum in the

range of and this i8 exactly how loop-sum i5 defined. The

reader i8 invited·to check this by "adding" two maps in the

range of (2.2.4) between ii and i 2 A id. It follows im

mediately that 1-1 g(n,k} factors through the
k~O

group-completion with respect to block-sum. Compatibility with

respect to suspension also follows, since this amounts to

showing that every diagram we have constructed so far can be

simultaneously suspended in the n and m coordinates in a

compatible way. This follows by a standard type of argument,

completing the proof of the claim.

The proof of the theorem follows by passing to the limit

in m. One must take care in making the maps f~ and f; de

fined on (3m-l)-skeleta compatible as m increases. That this

can be done follows by obstruction theory. The .result is that

T is defined on all subskeleta in the limit as m~ m Note

that in the domain of T we have replaced F by IF, which

accounts for the extra suspension term on the right-hand side.

o

The map constructed in the above theorem yields a map

which we also denote by T:
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(D1C)X(Y+)

= l!~ nm(fibre(C~X,SmAY+) ~ C(X,*»)
m l

. , ,I

~ O~I~(I( V IX[q-1] A Y+I».
_q~l

Precomposing by the equivalence of lemma 2.1.2 we get

~ n~~~(~( V IX[q-1]A Y+I»
q~l

which we will call the generalized Waldhausen trace map (In

the case X = pt we recover the map constructed in [W2]).

This map is natural· in both X and Y. Taking the fibre with

respect to the map X ~ pt yields (for basepointed Y) the

reduced trace map

~ n~Im(I( V IX[q-1]A YI»
q~l

where on the right we have for q ~ 1 composed with the

(basepointed) projection Y ~ Y) • Finally, we can follow by
:~ , +

projection to the qth factor n ooI oo (Ilx[q-1]A YI): this

yields a map TrX(Y)q : (D1AJ:)x(Y) ~ nooIco(Ilx[q-l] A y I) and

for connected X TrX(Y) ~ TI Trx(Y) ·
q~l q

Remark 2.2.9 It would be very interesting if one could prove

directly that TrX(Y) is an equivalence for connected X

without appealing to theorem 1.2.6. This would entail proving,

via K-theoretic techniques, that the mystery homology theory
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(1.e., the homology theory represent1ng the unknown factor of

the 1st derivative of A) vani~hes at all spaces X. Note that
• C'

I

the difference between (2.2.7) and (2.2.8) is:mainly one of

notation, as Trx(Y+) = TrX(Y). For this reason we will usual

ly be interested in the reduced trace map, with results hold

ing for the unreduced trace map by the above equivalence.

§2.3 Computating the trace on P
q

In this section we will complete the proof of theorem A,

following the approach used in [CCGH).

In section 1.4 we produced a map

p = r-r p : O(X) = r-r D (X) ,~A(!X) for a connected
q~ 1 q l' q~ 1 q , .

simplicial set x. This map 1s natural in x," and is induced

(1.4.2) by representations p : Ixl q
~ IHn(IJxl) I. Replacingq q

X by XvY, we can consider the restrietion - which we will

todenote by p (X,Y) - of p
q q

that this inclusion induces the inclusion of prop.

1.4.4 1ii) after .pass1ng to smash products. Thus the composi-

tion

.....
p

Omlm(I(El/q~z/ql (Xvy)[q)I» = Dq(XVY) ~ A(~(XvY»
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can alternatively be described as the precomposition of
m mo ~ (!Pq(X,Y» with the stable section

s : OmI m(Ilx[q-1] A YI) ~ om~m(~lxlq-l x IYI), followed by

the map into A(I(XvY). Proposition 1.4.4 teIls us that the
m m

map 0 ~ (~iq(X,y» induces an equivalence

Om~m(~lx[q-1] A YI) ~ (D
1
D

q
)X(Y)' and Goodwillie's results

-tell us that P induces an equivalence for connected spaces

iff (D1P)X(~) is an equivalence for all connected X. They

also tell us that (D1~)X(Y) and (D1D)X(Y) are the_same

for connected X. So we need to show that Trx(Y) 0 (D1P)X(Y)

i5 an equivalence for all connected X, for this will imply by

Goodwillie that (D1P)x(Y) is an equivalence for all connec

ted X.

For p # q, Trx(Y) 0 p (X,Y) ~ *. When
p q

- q-1o P (X,Y) ~ (-1) • These homotopies are
q

and Y, and hold for all connected X and

q ~ 1. Thus

connected

Trx(Y) 0 ( r-T p (X,Y» i5 an equivalence for
q~l q

X, which implies Trx(Y) 0 (D1P)X(Y) 1s an

equivalence for connected x.

~ The last implication follows by proposition 1.4.4. The

main object is the evaluation of the trace map Trx(Y) on

Pq(X,Y), which we will do in stages. First, we determine what

happens to the image of the representation Pq(X,Y) under the

maps constructed in theorem 2.1.1. This will bring us into the

cyclic bar construction. Chasing through the diagrams
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(2.2.2)-(2.2.4) will then determine the composition TrX(Y).

This method applies to a 8lightly more general class of repre-

sentations we shall consider in part 111. There are points in

the proof where particular care i8 required. We will point

them out as they arise.

As in 12.1 we will assume z ~ XvY where X is connec-

ted and Y is m'-connected. Pq (resp. it's restriction

Pq(X,Y» is induced by a simplicial representation zq

(resp. Xq - 1 x Y) ~ H~(IJzl) which we will also denote by

Pq (resp. Pq(X,Y». The adjoint of Pq (and it's restrIe

tion) can be represented simplicially by a map of partial

monoids:

p

{Lp .. ? :n. } {V Pg} • NH~(IJzl) •

We will construct five diagrams, one for each of the maps

in the proof of theorem 2.2.1.

stThe 1 diagram The first map in th. 2.2.1 was induced by the

(2m+l)-conn. inclusion cf partial mcnoids:

p
{[p] ......... V (H~(IJzl), H~(IJxl»}

The generalized wedge on the 1eft contains the image of

p
and hence {V Pq(X,Y)}. Thus
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were Pq ,1 is a map of generalized wedges, induced in each

degree by the representation Pq(X,Y), which fits into the

commutative diagram:

(2.3.2)

P

{[p] ........ e(Xq- 1
x Y,*)}

{VPg(X,y)}
t NH~( IJZ I)

11 I LI

e(Xq - 1 Pg ,l p
{[p] ........ x y,*)} t {[p] ........ V(H~(IJzl),H~(IJxl))}

The 2nd diagram The second map in theorem 2.1.1 is the

(2m' + l)-connected map of generalized wedges induced by the

(2m'+1)-connected inclu5ion

~(IFl(X,y) 1+) ~ ~(IJzl+) ~ H~(IJzl) . As the image of Pq

15 contained in ~(IFl(X,y) 1+) , we can further factor

- -Pq(X,Y) as L 2 0 Pq ,2 · Pq ,2 is defined exactly as Pq ,l

- it is the (unique) map of generalized wedges induced by

Pq(X,Y) which makes the following diagram commute:

(2.3.3)

{[p] ........ ~(xq-l x Y,*)}

11

g • Cr ~ Hl'( JZ

I L 2

rdThe 3 diagram The (n-2)-connected map

p xp
~(IFl(X,y) 1+) 1 2 I H~(IJxl) x M~(IFl(X,y) I) induces the
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third map in theorem 2.1.1, where the projections P1,P2 are

induced by the projections of F1 (X,Y) to JX and F1 (X,y)

respectively. Let -i
o Pq(X,Y) for i ;:: 1,2. Then weP ;:: p.

q 1

have a commuting square

(2.3.4)

where Pq ,3 is induced in each degree by the product
-1 2
Pq x Pq •

The 4th diagram This i5 the first place where one encounters

complications in computing the trace map on arbitrary repre

sentations. From equation (1.1.2) we can see the problem 

when M 1s not a group but only grouplike there may be no

simple way to choose f-1 for f € M , which one needs to do

in order to formally invert the equivalence

cy -u : diag(N (M,NE)) ~ N(M ~ E). In our case by first re-

ducing the representation under consideratlon to Pq(X,Y) we

are able to circumvent this difficulty. For by proposition

I-Pq
1 1 and I-Pq

2 11.4.10, are canonically homotopic (i.e., can

be reparametrized in a way independent of X and Y) to a

product of elementary expansions:
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(2.3.5)

-1 'V

P (X1 '···'X l)=e 1 (t(x 1»e 2 l(t(X 2»·····e12 (t(x1 »q q- q- q q- q- q- q-
-2 -
Pq(Y)~ e q1 (t(y» (the reduced expansion with (q,l) entry t(Y»

where teX) denotes the image of x € lxi in IJxl under

the natural inclusion X ~ JX, and similarly for Y (for

I-Pq
1 1 I-Pq21notational simplicity, we have used and and

. -1-2respect1vely. To recover Pq and Pg as above one applies

Sing(_) and precomposes with the map A ~ sing(IAI». The

notation is explained in section 1.4. For such a product of

elementary expansions proposition 1.4.7 yields a canonical

homotopy between f- 1f, * and ff- 1 where

-1
f = eI2(-t(Xl»e23(-t(X2»· ... ·eq_lq(-t(Xq_l» for

-1
f - P (X1 ' ... 'X 1) as above. We can define a mapq q-

Ipl 4 1 : Ixlq-l x IYI ~ INc1Y(Hn(IJxl),q, q

M~ ( IF1 (X, Y) I)) I = IH~ ( IJX I) x ~ ( IF1 (X, Y) I)) I by

-1 -1 -1
(x1 ,···,x l'Y) ~ (f,f ef ) where f = P (x1 ,···,x 1)'q- q g-

e = eq1 (y) as given in (2.3.5). Extending degreewise and pas-

sing to the simplicial setting yields a map Pq ,4 and a

canonically homotopy-commutative diagram

(2.3.6)

{[n~v 3 lXYJ*)/Ur3{p7~YeT(!JX )vL(W XJY)I)JH~(IJxl»}

11 l il u
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(reeall that I.A. is just shorthand notation for

p
{[p] ~ V(A,*)}). The faet that the diagram i8 eanonieally

homotopy-eommutative is important. Note also that on

"l-simpliees" on the left part of the diagram is given

by
-1
Pg ,4·

The 5
th diagram In theorem 2.1.1 the fifth map 15 indueed by

partial geometrie realization

~.~((Fl(X,y) I) ~ SI A M~(IF1(X,y) I) and the pairing

p : S
I

A ~ ( 1F1 (X, Y) I) --+ M~ ( S
1

A IF1 (X, Y) I)

~ M~(IF1(x,s1A Y) I). Let M~(IFl(X,!.y) I) denote the

simplicialobject {[p] ~ ~(IF1(X,e(y,*))I)}, where the face

and degeneraey maps are indueed by those of I.Y. There i5 an

obvioU5 map of simplieial objeets

I.~(IF1(X'Y) I) --+ M~(IF(x,!.y) I) whieh in degree p is

P - q 1- p Igiven by the inelusion V M~(IF1(X,y) I) --+ Mn ( F1 (X,V Y) ).

Partial realization sends M~(IFl(X,I.Y) I) to

~(IF1(x,s1 A Y) I) and the eomposition

! .M~ ( IF1 (X, Y) I) --+ ~ ( IF1 (X,! . Y) I) ....L. M~ ( 1F1 (X, SI AY) I) i 5

equivalent to the previous composition of partial realization

followed by the pairing p. Note that the partial realization

map above is (n-2)-connected by the same type of argument u5ed

in the eonstruetion of the third map in theorem 2.1.1. Now

the map !.~ (IF1(X,Y) I) ~ M~(IFl(X,!.y) I) i5 an

H~(IJxl)-bimOdulemap, and so induces a bisimplieial map:



- 58 -

Let N~Y(M,NE) denote the simplicial object

{[k] ~ N~:k(M,NE) = HP x (NE)k}. The representation

P~,4 : Xq-1 x Y ~ H~eIJxl) x ~eIF1(X,y) I) = N~:1eH~(IJxl),I.

~ elF1ex, Y) I» c: N~:1eH~ eIJX I ) ,~ elF1(X, I • Y) I ) ) extends

uniquely to a map of simplicial objects:

It is not true that there is a map I.Xq- 1x Y ~ xq- 1 x I.Y

of simplicial objects which makes the appropriate diagram

q-lcommute X x I.Y 1s the simplicial object

{[p] ~ Xq- I x eeey,*»}). However there is after passing to

smash products. As will be shown in section 3.2, we have

stable splitting 11 ,12 such that PI 0 11 ~ P2 0 12 ~ id in

the square

(2.3.7)

f 11
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where P = om~mlp j' I for j = 4,5 and ß is induced byq,j q, - -(ß). By the construction of Pq ,4 and Pq ,5 it 1s straight-

forward to see that the diagram is canonieally h-eartesian.

Note that the space appearing in the lower right-hand cover 1s

(n-2) equivalent to Om~mINeY(Hn(IJxl),~(IF1(X,SlA Y) I) I.
q q

This i8 our fifth diagram.

Before evaluating the traee we make a useful simplica

tion. In order to be eonsistent with notation, we will assume

Y = ~2m-l A z+ and use ~2mF to denote ~IF1(X,y) I. There is

no loss of generality here, because eomputation of Trx(Y)

involves passing through a direct limit in which Y becomes

more and more highly suspended. Now we know that the partial

realization map r: NCY(H~(IJxl),M~(IF1(x,!.y)I»

~ NCY(H~(IJXI),~(IF1(X,S~ A Y) I» commutes with the simpli

eia1 structure in the first eoordinate (i.e., the face and

degeneracy maps of the eyelic bar eonstruction), and that it

maps the simp1icial space N~~(H~(IJxl),~(IF1(X,~.y)I» to

the spaee N~Y(H~(IJxl),M~(F1(X,S1A Y)I». And in theorem

2.2.5 we proved that the maps f~ and g~ in diag 2.2.2 were

well-defined simplieial maps, where the simplicial structure

on the range of 9
1
• - Map(Sn+m,sn+3m A ( V IX[q-1] A Y I» -

q~1 +

was trivial. Restricting to the qth component of the reduced

trace map Trx(Y)' we have a canonically homotopy-cartesian

diagram:
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(2.3.8)

~(IF1(X,}:.y) I) -

r

Mn
q

sn,sn+m Mn n+m q sn+2mwhere = Map(V A. F) , = Map(S ,V A F) , 1rq,l q,2 q

i8 the obvioU8 reduced projection onto the th componentq

{}n+m~n+3mlx[q-l]
z+1 and j j are as in (2.2.2) . Our objectA f. , g.

1. 1.

is to show that the composition of the maps on the right is, after

realization and up to sign homotopic to the projection

Ixl q- 1 x ~Iyl ~ Ixl q- 1 x ~2mlzl+ ~ ~2mlxl[q-l] A Izl+ followed

by the standard inclusion

~2mlxl[q-l] A Izl+ ~ {}n+m~n+m~2mlx[q-l] A z+l, by a canonical

homotopy. The point is that (2.3.8) implies that it suffices to

prove this for the sequence of maps which starts off with

8 0 0 Pq,s and then runs down the left-hand side. In order to do

this, we need to find a map Pq ,6 defined on xq- 1
x (~.y) or
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it's realization, whose range 1s N~Y(H~(IJxl),~,l A ~,2) such

that f~ 0 Pq ,6 is canonically homotopic to r 0 8 0 0 Pq ,5 (of

course, it would suffice to do thi8 r 0 Pq ,5 directly without

using 8 0 , and in fact such a lifting by fi can be written down

explicitly. However, it is much simpler to do this after mapping

first by 8 0 ; this incidentally makes the computation of

easier as weIl). Now Pq ,5 is the unique extension to

q-1 -1X x (z.Y) of the representation Pq ,4 on l-simplices

q-lX x Y given by

where these are in turn expressed as a product of elementary

expansions by (2.3.5). Under 8 0 this element maps to

(f-lef-l·f) which i5 canonically homotopic to (f-la). It follows

that we can describe r 0 8 0 P 5 on the realization ofq,
q-1X x I.Y as the map of spaces given by the representation

(2.3.9) P~,6 : Ix
q

-
l

x ~.YI --+ IM~(IFl(X,~.y) I) 1
..... -1..... -1 ..... - .....

(X1, ... ,Xq_l,y) ~ (f e), f = Pq (XI , ... ,Xq_1 ), e = e q_1 (t(y»

where f i8 now considered as a product of elementary expansions

denotes an
.....
yyielding a point in 1~(IFI(X,z.y) I) I. Note that

element cf IzYI. writing i-I as

e12(-t(Xl»e23(-t(X2»· .•• ·eq_lq(-t(Xq_l» and applying

proposition 1.4.8 yields a canonical homotopy between P~,6 and

the representation
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(2 • 3 •10) P~, 6 : IX
q

- 1
x I. Y I -+ I~ { IF1 (X, I • Y) I) I

(X1 ,··,Xq_1 ,Y) ~ e11(Z1)e21(Z2)·····eq1(Zq)

S=!
where zi = (I I - L{Xi»L(Y) € ± (IF1 (X,I.Y) I = ±I 2mF (were

j=i
"-"denotes the inverse under loop sum). We can write

(2.3.11) ,

-3
P q ,6

(x1 ,··,xq _ 1 ,s,Z,S2)

- -3as y = (s'Z'S2)· Define Pq ,6 by

where is as in (2.3.8), 1
L is the inclusion

where is the standard inclusion and i8 induced by the

t q q
map Sn+2m ~ V sn+2m A SO -+ V sn+2m A F where t

2
maps to the

S=!
first factor in the wedge. zi' = (I I - t(x.»t(s1'z) € ± ImF, and

. i 1J=

the product of reduced elementary expansions in (2.3.11) i5 viewed
q

as an element of Map (V sn ,sn+m A F). -It is straightforward to

verify that the diagram

(2.3.12)

-3
q 1 m m Pq ,6.Ix - Ix(s A Izi AS) -- .

+

\1 1
IHn A Mn I

q,1 q,2

1If~ I
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i8 canonically homotopy-commutative. SO P~,6 provide8 the

necessary lift in order to evaluate Tr(Y). This evaluation i8

achieved, according to (2.2.4) and theorem 2.2.5, by switching the

terms in (2.3.11) and composing. Since L
1 i8 jU8t the standard

inclusion to the first factor in the wedge, we get

1 - 1
o L (82) = e11 (zi) 0 L (82) which implies

i8 canonically nUll-homotopic for p ~ q,

standard inclusion of ! 2m lx l[Q-1] A Izi composed with the
+

projection IX!q-1 x (! 2m lz l+) ~ Ixl[q-1] A ~2mlzl+. This implies

that the composition of the maps on the right is as required,

completing the proof of the theorem.

o

The equivalence O(X) ~ A(!X) 1s natural with respect to

x, so that if f: X ~ Y 1s a map of connected simplicial sets

there is a homotopy-cornmutative diagram

(2.3.13) O(X)

D(f) 1
O(Y)

Px
-----+ A(2:X)

1A(2:f)

P -...:...:t..... A(2:Y) •

It also follows that p restriets to yield equivalences
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n ~p
r-T Dq(X) = Pmo(X) n J Pmx(~X)

q=m+1 n n

natural in X for all 0 ~ m < n ~ m, because p is a natural

transformation of homotopy functors and hence commutes with

Goodwillie Calculus. However, it is n2t true that p or p~p are

natural with respect to maps zX ~ zY which do not desuspend up

to homotopy. This point is important to keep in mind if the

ultimate aim is to understand A(X) for 1-connected simplicial

sets X which are not homotopy equivalent to suspensions. We will

return to this point in part 111.
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CHAPTER II!

§3.1 Splittings of Homotopy Functors and Weight Filtrations

We will establish a simple criterion for splitting a

homotopy functor F (cf. §1.2) as a product of it's deriva-

tives on the subcategory U(C)P(F) of U(C), where p(F) is

the modulus of F. For simplicity we will take C = pt and

assume that F is reduced (i.e. that we have passed to the

fibre of F(x) ~ F(*) for all (X ~ *) in obj(U(*»). All

of the results however apply with an arbitrary base space C

in place of *. We leave it to the reader to make the neces

sary translation. The nth derivative of F at * will

simply be written as DnF.

Def. 3.1.1 A weight filtration of a reduced homotopy functor

F is a direct system of reduced hornotopy functors {WrF}r~o

satisfying:

i) There are compatible natural transformations

~r wrF ~ F inducing a weak equivalence of reduced functors

~

holi~ {w F} ~ F.
r r

ii) ~r induces an equivalence of approximations

P. (w F)
1 r i ~ r for all r ~ o.
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11i) p(~rF) ~ p(F) for all r ~ o.

{~rF}r~o 18 minimal if

iv) ~OF ~ * and fibre (~ 1F ~ ~ F) i8 homogeneous ofr- r

degree r for all r ~ 1. We note that inductively this is

the same as requiring

Iv') W F ~ P (~F) i8 an equivalence for all r ~ 0 withinr r r

the disk of convergence of w F.
r

The following 1s implicit in Goodwillie's short proof of

the Snaith splitting of
00 00o ~ (JX) (p.p. 66-68, [GI]).

Lemma 3.1.2 If F as above admits a minimal weight

filtration F ~ r-T DnF within the disk of
n~l

convergence of F.

~ As on p. 68 [GI], consider the diagram

(3.1.3)

w 1F t __~. wrF~ n-1fibre (w 1F~ w F)
r- r- r

1Pr-1(wr - 1F) 1Pr_1(w r F) 1
Pr_let)

Pr-l(wr-1F) •

By ([GI], chap. III), fibre (w r - l ~ wrF) i8 homogeneous and

henee canonically deloopable, Pr(wr_1F) i8 a weak equiva

lenee and Pr - 1 (0-1 f1bre (wr_1F ~ wrF» by Iv) or Iv')
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and induction on r. Hence Pr - 1 (L) is an equivalence.
r-1

(w 1F) ~ r-T D (w 1F) ~ r-T D (F) by induction on r, Iv'),
r- n~1 n r- n=1 n

1i), and iii), within the disk of convergence of F. Now the

splitting wrF ~ wr_1F x Gr via the equivalence Pr-1(L)
r

yields Gr C Dr(wrF) and hence w F ~ r-T D (w F) ~ r-T Dr(F)
r n~l n r n=l

within the disk of convergence of F.

o

We will want to apply ~his lemma ~o simplicial functors.

Recall (e.g., [W3], prop. 6.3) that if X. ~ Y. ~ Z. is a

sequence of simplicial spaces which i8 a fibration in each de-

gree and Zn 18 connected for each n then

Ix.1 ~ IY.I ~ Iz.1 i8 a fibration up to homotopy. Although

one can do better, this implies (by induction on n) that an

n-dimensional cube of simplicial spaces i8 homotopy cartesian

(upon realization) if, in each degree, it 1s homotopy-carte-

sian and all of the spaces are (n-l)-connected. We can remove

the condition on connectivity if we start with a diagram of

simplicial spaces which can be sufficiently delooped in a way

compatible with the simplicial structure, for then by deloop

ing we can make the diagrams sufficiently connected and proce-

ed as above. Thus we have

Lemma 3.1.3. Suppose F. = {Fr}r~o i8 a simp11cial

object in the category of reduced homotopy functors from

(spaces) to (w-loop spaces) c the category of basepointed
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infinite loop spaces. Suppose each Fr admits a minimal

weight filtration and that the face and degeneracy maps of F.

are weight-preserving. Finally assume that p(IF.I) ~ p(Fr )

for each r. Then the Goodwillie Taylor series of IF.I

splits as a product of it's derivatives within the disk of

convergence of IF.I • Moreover DncIF.I) ~ I[r] ~ Dn(Fr ) I

for each n ~ 0 •

if: The condition on p(Fr ) ensures that the Taylor

saries for Fr converges on the disk of convergence of IF.I

for each r. Since F. is a simplieial ~-loop spaee funetor,

the delooping arguement above shows that Tk ( IF. I) andn

IT~ (F. ) I are weakly equivalent for each r and k, where

T~ (F. ) is the simplicial runetor {r .......... k PassingTn(Fr)}r~o .
to the limit as k ~ ~ yields a weak equivalence

Pn(IF.I) ~ IPn(F.) I for each r. Sinee the weight filtra

tions on Fr are compatible with the simplicial strueture,

lemma 1.2 yields equivalences
n

P (I F. I) ~ IP (F.) I ~ ITI D. (F. ) I
n n j=l J

n
~ TIID. (F.) I

jel J

n
~ n Dj(!F.I)

J=l

for eaeh n. Note that we are using the equivalence

Dj(IF.I) ~ IDj(F.) I e I[r] ~ Dj{Fr ) I which follows from

Goodwillie's classification theorem for homogeneous functors.

o

Remark 3.1.4 The eonditon that F. be a simplicial funetor

to (~-loop spaces) rather than (spaees) i8 not really a res

trietion in the presenee of a minimal weight filtration, einee
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the resulting splitting of Fr for each r as a pro-duct of"

derivatives makes Fr an m-loop space functor within the disk

of convergence of Fr.

§3.2 Some Applications

Let X be a basepointed space,

the functor

Ge! . We can considern

which i5 a homotopy

FG yields

n ~ 1.

functor on the category of basepointed spaces. G fixes the

basepoint (*,*,*, •.. ,*) of xn , so the fibration

EG xG xn ~ BG admits a section s: BG ~ EG xGxn deter

mined by this base point. Let EG XGXn/BG denote the cofiber

- co m n
of s, and let FG(X) c 0 ~ (EG xG X /BG). FG(X) is then a

- co (X)

reduced homotopy functor and FG(X) ~ FG(X) x n ! (BG).

Proposition 3.2.1 Over the category of basepointed connected

spaces FG has degree n and splits as a product of it's

- co co
derivatives. In particular, (DnFG) (X) : 0 ! (EGAG

naturally splits off of FG(X). This splitting of

a splitting of the nth delooping BnF for all
G

Pf: The proof is easy, and typical of the way in which the

methods of the previous section apply. Let t j : xj ~ xn

denote the embedding

Let 'j(Xn ) denote

usual action of !
n

t j (xl' · · · , X j ) = ( x l' . . . , X j , * , * , • • · , *) ·
nthe orbit of tj(X j ) in X under the

which permutes entries. Let
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(WjFG) (X) = Om~m(Sj(Xn)) C FG(X) where

- n n
~j(X ) = EG AG(Sj(X )+). Certainly wO(FG) (X) ~ *. Assume by

induction that wrFG(X) is of degree rand splits as a

product of it's derivatives (at *).

0-1 fiber (w r FG(X) ~ Wr +1FG(X) ~ nm!m(EGAG~r+1(Xn)/~r(Xn)).

k
~ (Xn)/s (Xn ) ~ V x[r+1] where k = (rn+1). This is ar+l r

homogeneous functor of degree (r + 1) by ([G]). By induc-

tion the weight filtration is minimal, and after splitting de-

lopable. The proposition follows.

o

Of course, this splitting is known. We have included it

as an example, as we have referred to it previous sections.

As another example, let Cm = {Cm(n)}n~o denote the

little n-cubes operad of Boardman-Vogt. em(n) i8 a topologi

cal space via the standard function-space (compact-open) topo-

logy. Precomposition with an element a € J:
n yields a

f ........ foa.given by

n-1 ~ n = ordered set of n

i j
. C (n) --+ C (n-1). The.

m m

TI+ ~ n-1 (ID+ = ID 11 pt)--+

j , ii) * if k = j , iii)

.j
1.

on

elements induce restrietion maps

well-defined action of

Then nordered inclusions

nordered projection maps h j

given by hj(k) = i) k if k <

k-1 if k > j yield maps

h
j

: X
n

-
1

= Map*(n-l+,X) --+ Xn
= Map*(D+,X) given by

hj(g) = 9 0 h j . One can form the configuration space
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c(mm,X) = (l-! c (n) x xn/_ with
n~O m

compatible types of identifications :

(f,h j (g» - (i j (f) ,9) for f € cm(n),

The approximation theorem yields a map c(mm,X) ~ Om~m

which is an m-fold loop map and a weak equivalence (as before

X is a basepointed connected spaee). c(mm,X) i5 filtered by

r
Sr(X) = (l-! c (n) x Xn )/_ c C(~m,X). The inelusion

m n~O m
r

t

Sr-leX) ~ Sr(X) is a elosed eofibration with eofibre
m m

t
r ~ C (n) h~ x[nJ. Under the assoeiative pairing
m m n

c(mm,X) x c(mm,X) ~ c(mm,X) indueed by the action of the

operad c
m

' S~(X) x s:(X) maps to s~+s(X). Using the monoid

c(mm,X) is place of nm~IDx we have

Lemma 3.2.2 Let X be a eonneeted basepointed space. The

filtration {Sr (X)} of c(mm,X) induees minimal weight fil
m

trations cf the funetors X ~ nooIoo(nmImX),

by is mini-

mal by the same type of argument as in the previous proposi-

tion and yields the Snaith splitting. Reeall ( [W2 J , § 2) that

1
for a grouplike monoid M, INC:Y(M) I ~ ( BM) S . C (IR n , X) is

INCY(C(mn,X» I ~
1 S1 00 00

grouplike and so (Om- ImX) .0 I ( ) com-

mutes ,with geometrie realization and so it suffiees to show

that F.(X) = {[p] ~ nooI~(N~Y(C(mm,X»)} adrnits a minimal
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weight filtration in eaeh degree eompatible with the simpli

eial structure. Let

(3.2.3)

i 1 i p+ 1= U 7 (X)x ••• xS (X) C NpCY(C(mm,X»)
· i m m
1., • ., p+1
1:. =r

1..
J

8(Sr(X) x Ss(X» C Sr+s(X) and so {[p] ~ wt NCY(C(mm,X))}
m m m r p

defines a well-defined simplical suhset wtrN~Y(C(mm,X» of

N~Y(C(mm,X». Cofibre (wtr_1N~Y(C(~m,X» ~ wtrN~Y(C(ffim,X»)

is of the form V E~r AGX[r] where the wedge is over all
GC}:

r

as a productlemma 3.1.3 applies to split

G of the form ~i $ •••e ~i C ~r (~ij = r), and we have
1 p+1

seen that X ~ nm~m(E~ A x[r]) is homogeneous of degree r.
r G

Hence the weight filtration is minimal in each degree and

m m 1 1o J: «Om- ~IDx)s )

of it's derivatives. For the last functor, we use the result

of Dunn and Fiedorwicz [DF] which provides a configuration

1
space model for [ES l x 1xs )/BS1 for connected X. To state

s

their result, let El/*+1 denote the cyclic space

{[p] ~ E(Z/p+1)} ([DF], Example 1) wlth cyclic simplicial

structure induced by the cyclic simplicial structure on the

crossed simplicial group Z/*+1 = {[p] ~ Z/p+1} (in the

sense of Fiederowicz and Loday) whose standard realization is

~ SI. Any cyclic space can be viewed as a cocyclic space by

precomposition with the duality isornorphism

D : A(C*) ~ A(C.)oP of Connes ([Cl], where A(C*) is
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denoted A). Via this identifcation, one can form the tensor

product (over A(C*» of EZ/*+l and a cyclic simplicial

space S*, resultinq in aspace

* *EZ/*+l 'A(C )S* = 1-1 EZ/n+l x Sn!-, (A (x),y) - (x,(OA) y)
: * n~O

for x € EZ(n+l), y€S and A,m
[m] ~, [n) a morphism in

A(C.). Dunn and Fiedorowicz prove

Theorem 3.2'.4 ([OF], p.S) Let S* be a cyclic space. Then

EZ/*+ 8A(c*).S* ia equivalent to the pushout of the' diagram

BS
1 x Fixels.l) ~ ES

1 xs1Is*,

1.

where' Fix(ls.l) 1a: the', s1 fixed-point set of Is.1 (with

sI-action indu~ed: by the~ cyclic structure on' S.' as. in [BF).

[]

In particular takinq S. to be- N~Ye~(mm,X» with. the

usual cyclic' structure we qet
1 .

ES l Xsl(Om-lIInx)'S /BSl~ Eslxsll (N7Y(C/lRm,X» Ilas l ~

EZ/*+l (I A,(C.) N? (C (mm-, X) ). Now EZ/*+l (I A(C.) S. 18 filtered

r
by {qr(s*) - 1-1 EZ/n+l x S /-}. Oenote N~(C(mm,X»

n=-Q n

temporarily by S*. The above> filtration (3.2.3) is- invariant
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under the 'cyclic structure on S*, and 'hence induces a cyclic

fwtrs*} of S* (functiorial in X) '.
CI) CI)

{O 1 (EZ/*+l I A(c.)wtrS*)} is.a minimal

weight filtration·we note it ·suffices to prove the homogeneity

'ofthe fibre of

(OCl)lC1) (gn (wt
r

-
1
S.) /gn-l (wt

r
-

1
S*» ..... OCl)lC1) (gn (wtrS~)/gn-'l (wtrS.) .

This latter :space can be written :as

Each term in the wedge sum i8 cf the form El A (A· ,.. x[r])
r G G

for some Gel ·andr

diagonal G-action on
• CI) co

X ...... 0 I (ElrAG (AG ,..

completes the proof.

a G-space where·we take ±he

xTr] •.Again, the functors

are 'homogeneous ,by [Gl]. This

c

Remarks 3.2.6 i) The above theorem applies more generally, by

the same arguments, with on1n+l(X) replaced by a functor

F(X) satisfying the property that OF(X) ·admits a -filtration

{'rOF(X)} functorial in X

SrF(X)/Sr_1F(X) ~ Ar~~rx[rl

such that

for some ! -spacer
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as a

product of deriva~ives was ~ne·the main results ·of [CC]. Also,

many of these splittings have been obtained by

C.F. Bödingheimer. The teehniques deseribed here ean be used

to reeover h1s results.

1ii) These teehniques ean be "equivariantized" to yield

equivariant splitting theorems for the funetors deseribed in

lemma 3.2. In the simplest ease one reeovers the equivariant

Snaith splitting of nVIv (On!nX) proved by Lewis, May and
G

steinberger for a eompaet Lie group G and basepointed

G-spaee X.

It is often the ease that there exists a number of

different weight filtratlons on a given homotopy funetor,
: .

whieh yield different splittings ..This oeeurs -in particular

when F can be written as an iterated eomposition of homotopy

funetors G1o ... o -Gm where eaeh Gi. has a na~ural we1ght

filtration. The result in this ease 1s a sequenee of filtra-

tions of F, each of which is a refinement of the one pre-

vious.

As an example, one could consider the homotopy functor

F(X) = Om!m(!rE! AG [(Om!m)o ... o(Om!m) (X)][q], where Ge!
q q q q

acta on the q-fold smash product on the right by the usual

action of ! . F(X) i5 really then a homogeneous funetor of
q

degree q evaluated on (Om!m) (s) (X). Considered as a functor
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in X not it i8 no longer homogeneous. There are s

different weight filtrations that we could construct on F,

the i th one arising from using the lexicographic ordering on

the pro-duct of the filtration of Om~m(_) described above

for the first i terms in the composition. In constructing

such a filtration one needs to start with a product filtration

of «Om~m)(s) (X»[q] and then group by orbits under the

action of Gq to get a Gq-equivariant filtration of

«OmIm)(s)(X»[q]. starting with the finest filtration of

(Om~m)(s)(X) which uses arl s copies of Om~m and essen

tially just measures word-length in X, the result is a weight

filtration of F(X) which i8 minimal - the argument 1s exact-

ly as in lemma 3.2.2 above. One uses the filtration of

[(Om~m) (s) (X)][q] made G -equivariant to yield a description
q .

of EI h «OmIm) (S)(X))[q] up to homotopy as an iterated co
q Gq

fibration sequence where the nth subquotient is of the form

E~ A A A x[n] for some I -space A. So we conclude
n In n n n

Corollary 3.2.6 F(X) = OmIm(IrEI h «OmIm) (s) (X»[q])
q Gq

splits as a product of it's derivatives (at a point) for all

r,m,s,q~l and connected X. The splitting is, moreover,

functorial in X.

o
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We will want an explicit description of this'splitting in

the case r = 1, G CJ Z/q, m = 5 = 1. For :fixed n and q," q

let sq CI set of the equivalence classes of q-tuplesn

[i1,···,iq ], where i j ~ 1. and !ij = n, with the equivalence

relation [i
1

, ..• ,iq ] Cl% [i1,···,iq] if there exist T € l/q

such that ij CI iT(j) for all 1 ~ j ~ q. l/q acts on the

indices {1, ••• , q} by cycl!c permutation: if m i5 the in-
T

teger corresponding to Tunder the usual identification of

Z/q with. {O,1,2, ••• ,q-l} as a set, then
j+m -1

T(j) = (j+mT) - [ qT ]q, er] = the largest integer ~ r.

Under this action of Z/q, the set of q-tuples
-q ,
Sn = {(i1,···,iq)!i j ~ 1,

pes: the orbited a q-tuple

!ij = n} break up into orbit ty

(il, ... ,iq ) will contain q'ele-

ments if and only i~ ~ i5 an integer dividing n and

(i1, ••• ,iq ) i8 in the equivalence class of
qjq'- "

(i 1 ,···,iq ,) -(,~1~i2,···,i ",fl,···,i " ... ~·il'i2'···,i ,).. q q; ,-.: q
For such q' let sq(q') denote the Buhset of 'such q-tuples

n

and sq(q') the equivalence class of such q-tuples. Note thatn .

lT
q _

the projection map' snq,q') n )) sq(q')/Z/q = sq,q') is a
n n

principle Z/q'-fibration of sets. Now the word~length

filtration of J(X) ~ O!X induces a product filtration on

(JX) [q], which when made Z/q-equivariant and extended to a

nth 5ubquotient ·i5 of the

filtration of EZ/qA (JX) [q]
Z/q

an iterated cofibration whose

form:

describes El/gA (JX) [q]
Z/q as
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S (El/qA (JX) [q])/S (RZ/qA (JX) [q])n l/q n-l l/q

wedge

where, for an equivalence class

[il] [i2 ]
v x A X A

q -1(i
1

, ••• ,iq)€(lTn ) (I)

XCI) i8 the

Note that as spaces all of the terms in the wedge descri

bing XCI) are the same. However the Z/q action or

(JX)[q] induces a free basepointed Z/q'-action on this wedge

{for which cyclically permutes the terms.

Application of to the subquotient in (3.2.7)

yields a homogeneous functor of degree n in X. So in this

case the splitting of Corollary 3.2.6 is given explicitly by

{3.2.8]

v (V EZ/qAZ/ XCI))))).
q' I€Sq(q') q

q'(q and ~In- n

Of course, up to weak equivalence natural in X this can

also be written as a product
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(3.2.9)

def co co
where Fr(X) = 0 ~ (~EZ/qXZ/qX(r)). We will, finally, want

to know about the 1st derivative of Fr at an arbitrary spa

ce. As before (D1F)X(Y) denotes

(D1F)X(X v Y,r : X v Y ~ X).

withLet m = !29...: = nProposition 3.2.10
q (})

as above. Then there is a natural inclusion

n,q and q'

F (X Y) d~f (}co~co(~(r ; .L.. ~

m [9 -1]
V x[i-1] A Y A x[m-i)) A (x[m]) q' )

i=l
r € sq(q') such that the induced map

n

is an equivalence.

Pf: This is another example of how EZ/qXZ/ q (_) IIdivides by

q" upon passage to 1st derivatives. One simply has to look at

how Z/q acts on X(I). First, there are q' terms in the

wedge describing (X), and Z/q cylically permutes these

terms via the epimorphism v : Z/q~ Z/q'. This has the ef-

feet of "dividing by q'" which can be realized on the level

of spaces before passing to 1st derivatives by the equiva-

lence
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where p =~, and Z/p ~ ker(v:Z/q ~ Z/q') acts on

(x[i1 ] ~ .•. ~ x[iq,»[p] by cyclically permuting the copies of

(x(i1]~ ••• ~ x[iq ,]). writing X[i1]~ ••• ~ x[iq ,]), as x[m], it

follows as in proposition 1.4.4 iii) that the inclusion

m
(3.2.12) (V x[i-1] ~ Y ~ x[m-1]) ~ (x[m]) [p-1]

i=1

~ «X v Y) [m] ) [p] ---+ EI/pX «X v Y) [m] ) [p]
Z/p

induces the equivalence described in the statement of the pro-

postion after applying

on the right.

co co
n ~ (~ ) and passing to

o

This corollary will be used in part 111 to extend the

computation of TrX(Y)' in much the same way proposition 1.4.4

iii) was used in §2.3 when we computed the trace on the image

of after passing to first derivatives.
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