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MODULI SPACES OF PARABOLIC HIGGS BUNDLES AND
PARABOLIC K(D) PAIRS OVER SMOOTH CURVES

HANS U. BODEN AND KOJI YOKOGAWA

ABSTRACT. This paper is concerned with describing the moduli spaces of rank two
parabolic Higgs bundles and parabolic K (D) pairs over a smooth curve. Precisely
which parabolic bundles occur in stable K (D) pairs and stable Higgs bundles is
determined. ' Using Morse theory, the moduli space of parabolic Higgs bundles is
shown to be connected and simply connected, and a computation of its Poincaré
polynomial and Fuler characteristic is given.

1. INTRODUCTION

A deep result of Narasimhan and Seshadri states that, over a compact curve C, there
is a one-to-one correspondence between irreducible unitary representations of m(C')
and stable bundles with ¢;(E) = 0 [18]. This theorem was later extended to cover
arbitrary compact Kahler manifolds [7, 8, 27]. Hitchin then introduced Higgs bundles,
which are pairs (E,®) consisting of a holomorphic bundle £ and holomorphic map
®: F — E® K called the Higgs field. The nonabelian Hodge theorem establishes a
correspondence between irreducible representations of m; (X ) and stable Higgs bundles
with ¢;(E) = 0 for X a compact, Kahler manifold [12, 9. 6, 22, 25]. )

For noncompact curves Co with compactification C' = CoU{p;, ... ,pn}, Mehta and
Seshadri proved a correspondence between stable parabolic bundles E, over C with
pardeg E, = 0 and unitary representations of m1(Cp) with fixed holonomy around
each p;, the so-called parabolic points [17]. For regular bundles, the space of Higgs
fields H°(End(E)® K) is naturally dual to H'(End(E)), but because parabolic endo-
morphisms satisfy a vanishing condition at the parabolic points, duality implies that
Higgs fields of parabolic bundles can have poles of order one at those points. Allowing
the Higgs field to have either parabolic or nilpotent residues at the p;. we obtain the
two moduli spaces P, of parabolic K(D) pairs and N, of parabolic Higgs bundles.
The subscript a refers to a particular choice of weights. In [28], P, is constructed
using Geometric Invariant Theory and is proved to be a normal, quasi-projective vari-
ety. In [23], stable parabolic K(D) pairs are called filtered regular Higgs bundles and
are shown to correspond to filtered regular Dy modules. In {14], Konno constructs
N, using gauge theory and shows that stable parabolic Higgs bundles correspond
to irreducible parabolic Hermitian-Einstein Higgs bundles. In [21], the nonabelian
Hodge theorem for elliptic surfaces is used to show that parabolic Higgs bundles with
rational weights correspond to irreducible representations of m1(Co) with holonomy



around each p; equal to some root of unity.

The following factorization theorem, due to Simpson [24], states that for X a
projective algebraic variety, any SL(2,C) representation of m1(X) with Zariski dense
image is either rigid or factors through an algebraic map from X to an orbicurve.
We can interpret these representations as stable parabolic Higgs bundles using [21].
In this paper, we study the algebraic and topological properties of the moduli spaces
of stable, rank two parabolic Higgs bundles and parabolic K(D) pairs. We first
establish necessary and sufficient conditions for a given rank two parabolic bundle E,
to admit a field ® making (E.,, ®) a stable parabolic K (D) pair or nggs bundle. One
could theoretically give an algebraic description of the moduli spaces using only these
criteria, which we do in one particular case, but the problem appears too complicated
for this approach to work in general.

For that reason, we shift gears and study the topological properties of the moduli
space of parabolic Higgs bundles, using the approach of Hitchin [12]. There is a
circle action on N, which preserves its complex and symplectic structure, and the
associated moment map is a Morse function. Identifying the critical submanifolds
and their indices, we prove that A, is a noncompact, connected, simply connected
manifold and compute its Betti numbers, which turn out to be independent of the
weights «. This behavior is in marked contrast to that exhibited by the moduli space
M, of parabolic bundles, where the Betti numbers do depend on « [4]. In the sequel,
we plan to extend these results to higher rank bundles.

The paper is organized as follows. In §2, one finds the definitions, notation, and
preliminary results used throughout the paper. In §2.1, parabolic bundles with aux-
iliary fields are defined and the three moduli spaces M,, Ny, and P, are introduced.
In §2.2, parabolic sheaves are defined and proved to be in one-to-one correspondence
with parabolic bundles. The advantage of parabolic sheaves is that one can easily
define the natural operations, such as tensor products and duals. These are necessary
for the statement of the Serre duality theorem for parabolic bundles, also given in
this section. One operation unique to parabolic sheaves, called shifting, is exploited
to determine the Picard group of parabolic line bundles.

In §3.1, we establish algebraic criteria for a given parabolic bundle E of rank two
to admit a field ® so that (E,, ®) is a stable parabolic K (D) pair or a stable parabalic
Higgs bundle, and in §3.2, we use these criteria to give a complete description of P,
and N, in the case of rank two bundles over P! with three parabolic points.

The topological properties of N, are considered in §4. In §4.1, we describe the
construction of NV, as a hyperkihler quotient, following [14]. In §4.2, we extend the
arguments of [12] to the case of parabolic Higgs bundles and define a moment map
which can be used as a Morse function to calculate the Betti numbers of A2, In
§4.3, we use the Morse function to prove that A/? is a noncompact, connected, simply
connected manifold whose Betti numbers are independent of a. This last result allows
us to determine the Poincaré polynomial and Euler characteristic of A0 as a function
of the genus ¢ and the number of parabolic points n, which is done in §4.4.

Both authors are grateful to the Max-Planck-Institut fiir Mathematik for providing
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2. DEFINITIONS AND PRELIMINARY RESULTS

2.1. Three moduli spaces. Let X be a smooth curve of genus g with n marked
points in the reduced divisor D = p; + -+ + p, and E a holomorphic bundle over X,

Definition 2.1. A parabolic structure on E consists of weighted flags

E,=F(p)D>---DF,(p)D0
0<an(p) <+ <oy (p) < 1

over each p E D. A holomorphz'c map ¢ : E* — E? between parabolic bundles is
called parabolic if o (p) > o3 (p) implies $(F(p)) C H_1( ) for all p € D. We call ¢
strongly parabolic if ol (p) > az(p) implies ¢(F}(p)) C FZ,i(p) for all p € D.

. We use E, to denote the bundle together with a parabolic structure. Also, we use
ParHom(El, E?) and ParHom(E2, E?) to denote the sets of parabolic and strongly
parabolic morphisms from E! to E?, respectively. (The decorative notation will
become clear in §2.2.) If o}(p) # oi(p) for all 4,5 and p € D, then a parabolic
morphism is automatically strongly parabolic. On the other hand, using the notation
ParEnd(E,) = ParHom(E,, F.) and ParEnd"(E.) = ParHom(E*,E ), then strongly
parabolic endomorphisms are nilpotent with respect to the flag data at each p € D.

Let K denote the canonical bundle of X and give E ® K(D) the obvious parabolic
structure.

Definition 2.2. A parabolic K(D) pair is a pair (E,®) consisting of a parabolic
bundle E and a parabolic map ® : E — E @ K(D). Such a pair is called a parabolic
Higgs bundle if, in addition, ® is a strongly parabolic morphism.

Viewing a as a vector-valued function on D, we use it as an index to indicate the

parabolic structure on F,. Let m;(p) = dim(Fi(p)) — dim(Fi1+1(p)), the multiplicity

“of ai(p), and f, = 3(r® — LiZ;(mi(p))?), the dimension of the associated flag variety.
Define the parabolic degree and slope of E, by

pardeg B, = degFE + Z Z mi(p)ei(p),
peD i=1
_ pardeg E,
B = rank B

If L is a subbundle of £, then L inherits a parabolic structure from E by pullback.
We call the bundle E, stable (semistable) if, for every proper subbundle L of E, we
have p(L.) < p{E.) (respectively p{L.) < p(E.)). Likewise, we will call a parabolic

K{(D) pair (E., ®) stable (or semzstable) if the same inequalities hold on those proper
subbundles L of F which are, in addition, ®-invariant.

Denote by M, the moduli space of a-semistable parabolic bundles, by A/, the
moduli space of a-semistable parabolic Higgs bundles, and by P, the moduli space



of a-semistable parabolic K(D) pairs. By [17], M, is a normal, projective variety of
dimension ;
dimM, =(g—1)r* +1+ Z I
‘ peD
(If g = 0, this holds only when M, # @.) Further, in [28, 29], P, is shown to be a

normal, quasi-projective variety of dimension
dimP, = (29 — 2+ n)r? + 1
which contains N, as a closed subvariety of P, of dimension

dimAN, =2(g~1)r* +2+23 f,.

peD

For generic «, a bundle (or pair) is a-semistable <> it is a-stable. In these cases,
the moduli spaces M, N, and P, are smooth and can be described topologically as
certain quotients of the gauge group G© = ParAut(E.). The same is true for M2, N/?
and P°, the moduli spaces with fixed determinant and trace-free ®. In this way, it is
shown in [14] that ./\f 9 is, for generic o, a smooth, hyperkéhler manifold of complex
dimension

dim N2 —9(g—1)(7’ —1)+2> fo

peD

22 Parabolic sheaves and Serre duality. Suppose now that F is a locally free
sheaf on X and D=p; +--- + Pn is a reduced divisor.

Definition 2.3. 4 pambolzc structure on E consists of a weighted filiration of the
form :

E = Ey= Ea;_ 2 2 qu 2 Eag,H - E(“"D)a

O:a0§a1<-~<al<a[+1:l.

We can define E, for x € [0,1] by setting E, = E,, if o;—1 < © < oy, and then extend
to z € R by setting E,1 = E (—D). We call the resulting filtered sheaf E, a parabolic
sheaf. '

We define the copambolzc sheaf E., by

- B, if  # o
71 E ifr = ;.

[TES ]

A morphism of parabolic sheaves ¢ : E} — E? is a called parabolic if $(ELY C E? and
strongly parabolic if $(EL) C EZ for all z € R. ~

- We shall denote by ParHHom(EL, £?2) and ParHom( EL, £?) the sheaves of parabolic
and strongly parabolic morphisms, and by ParHom(Ei, E?) and ParHom(E!, E2)
their global sections. We now show that there is an equivalence of the categories of
parabolic bundles on X and parabohc sheaves on X



Given a parabolic bundle £ with flags and weights as in Definition 2.1, we define
the filtered sheaf E. following Simpson [26]. For p € D and o;—1(p) < z < a;(p), set

E} = ker(E — E,/Fi(p)),
E. = [)EE
p€ED
Now extend to all z by E 41 = Ex(=D).

Conversely, given a parabolic sheaf E,, the quotient E/E; is a skyscraper sheaf
with support on D and, for each p € D, we get weighted flags in E, by intersecting
with the filtration at p. To be precise, let ai(p),... ,a,,(p) be the subset of weights
such that )

(1) oi1(p) <z L 0i(p) & (Ezx/Er)p = (Eaip)/ Er)yp-

Setting Fi(p) = (Ea,(p)/ £1)p, We obtain a parabolic bundle in the sense of Definition
2.1. :

Suppose now E! and E? are parabolic bundles and ¢ € ParHom(E*, E?). We want
to show that ¢ induces a morphism of the parabolic sheaves. So, suppose a}_;(p) <
z < of(p) and oF_;(p) < & < of(p). Since aj(p) > oi_y(p), S(F}(p)) C F}(p) and
we see that ¢ maps ker(E' — E!/F}(p)) to ker(E* — E?/F?(p)) for all p € D, from
which it follows that ¢ induces a map ¢ : E. — E2.

Suppose conversely that E! and E? are parabolic sheaves, ¢ € ParHom(E}, E?)
and of (p) > o?(p). Set © = o} (p) and y = o}, (p) for notational convenience. Then
¢(EL) C E2. Since z > of(p), it follows from (1) that (E2/E7), C (E]/E}), and
hence 6(F3(p)) C F2,,(p).

It is not hard to see the same correspondence for strongly parabolic morphisms.
Thus, we have an equivalence of the categories of parabolic bundles and parabolic
sheaves. We use the definitions interchangeably and denote by E. a parabolic bundle
or sheaf, reserving £ = Ej for the underlying holomorphic bundle.

For the convenience of readers, we briefly summarize the results in [29] dealing with
exact sequences and tensor products of parabolic sheaves. This is necessary for the
statement of Serre duality for parabolic bundles, which is a tool we use throughout
the paper. ’

E E
H EO‘Z —~ : EQ"_)
E, : \ Ea, = [, : :i B
—="° |E(-D i = | E(—D
: ¢—-—(9 ) : : 9———% )
- : . " : ! ; &
0 (4] a9 a3 1 1+011 0 (s3] 1876} 87 1 1+£‘£1

FIGURE 1. The simple relationship between E, and E,.



» The category of parabolic sheaves P is not abelian, but is contained in an abelian
category P as a full subcategory. Objects in P are also written by E, and a morphlsm
[+ El — E%is a family of morphisms f; : E; — EZ. A coparabolic sheaf E, is realized

in P. The set ParHom(E!, E?) is just the set of morphisms in P. In P, a sequence
(2) ~ 0— Li— B, — M, —0
is exact if and only if the induced sequence at z is exact for all z € R.

Remark. If the sequence (2) is exact, then so is the sequence obtained by tensoring
(2) with any parabolic bundle (cf. Proposition 3.3 of [29]) and

pardeg F, = pardeg L. + pardeg M..

We can define dual parabolic sheaves EY, parabolic tensor produc\%s L.® M,, Hom-
parabolic sheaves PBarfiom(L., M.)., and cohomology groups Ext'(L., M.). Clearly,

pardeg(L. ® M.) = rank(M) pardeg L. + rank(L) pardeg M..
In addition, we have

Ext®(L.,M.) = HYL!® M.) = H°(BarHom(L., M.)) = ParHom(L., M.),
Ext'(L., M.) = HY(LY® M.)= H'(Parsiom(L., M.)).

We can identify Ext'(M., L.) with the set of equivalence classes of exact sequences
of type (2).
The Serre duality theorem is generalized as follows (see Proposition 3.7 of [29]).

Proposition 2.4. For parabolic sheaves L. and M., there is a natural isomorphism
CHY(LY © M. @ K(D)) = H7H(MY ® L)Y
Gwen E. and g € R, define £, [/3]*, the parabolic sheaf E, shifted by /3 bv

ﬂ Ear+ﬁ;

E:mmple The Picard group of parabolic line bundles.
A holomorphic bundle E is regarded as a parabolic bundle with the trivial parabolic

structure E, D 0,01(p) = 0 at each p € D. We call this the special structure on .

Note that every parabolic line bundle L. is gotten by shifting the special structure on
the underlying bundle L, i.e., there is a unique 8 € [0,1)* with L, = L|f}. Viewing
Ox as a parabolic bundle with the special structure, then it is not difficult to verify
that

® y . E.[fl. = E.® Ox[fl.

Let e; denote the standard basis vector in R™ From (3) we have
E[#. 0 ENB%. = El® EIS'+ 67,
BB = EY-Al,
Elel. = E.® Ox(—p).



These three formulas determine the Picard group of parabolic line bundles on X.

Remark. FYor any parabolic line bundle L., the stability (or semistability) of F. ® L.
is equivalent to that of £,. Similarly, the stability (or semistability) of (E,® L., ®®1)
is equivalent to that of (E., ®).

In particular, apply this to the case of a rank two parabolic bundle E, with full
flags at each p; and weights 0 < oy(p;) < a2(p;) < 1. Using equation (3) with
B; = z(e1(ps) + aapi) — 1) notice that E.[B], has weights 0 < a;(p;) < 1—ai(p;) < 1
at pi, where ai(p;) = (e (pi) ~ az(pi) + 1)-

3. AN ALGEBRAIC DESCRIPTION OF THE MODULI SPACES IN RANK Two

3.1. Criteria for the existence of stabilizing fields. In this section, we suppose
that F, is a parabolic bundle of rank two with the weights o; < 1 — «; at p; and that
n > 1. Consider the following existence questions:

(I) Does there exist @ : E, — E. ® K(D) with (E., @) stable?
(IT) Does there exist & : E. — E. ® K(D) with (E., @) stable?

Such @ are called stabilizing fields. Of course, if E. is itself stable, then any ® {e.g.,
® = 0) gives us an affirmative answer. The other possibilities are if E, is unstable
(meaning not semistable) or if F, is strictly semistable. In either case, by choosing
L, a line subbundle of maximal parabolic degree, we get a short exact sequence

(4) 0— L, 5 E, 25 M, — 0

with p(L.) > p(E,). Let £ € HY(M) ® L.) be the extension class representing (4).
If E, is unstable, then u(L.) > p(FE.) and (4) is the Harder-Narasimhan filtration of
E. and is canonical. If E. is strictly semistable, then u(L.) = u(E.) and (4) is the
Jordan-Hélder filtration of E, and is not, in general, canonical. For example, if E.
is strictly semistable, then the subbundle L, is canonically determined if and only if
the extension £ is nontrivial.

In the following proposition, the assumption g > 2 is not essential and after the
proof, we treat the case g < 1.

Proposition 3.1. If g > 2 and E, is not stable, then

(i) (B., ®) is a stable parabolic K(D) pair for some ® & h*(M) © L) >1;
(ii) (E.,®) is a stable parabolic Higgs bundle for some ® & A M) & L) > 1 or
MP(MY®L.) =1 and £ =0.

Proof. Notice first of all that if such a ® exists, then we can assume it is trace-
free. Now consider the short exact sequences of the sheaves of parabolic and strongly
parabolic bundle endomorphisms

(5) 0= EYQL, ®K(D)— EY @ E.® K(D) "+ LY ® M.® K(D) -0,
6) 0= E'®L ®K(D)- E & E.0 K(D) s LY ® M.® K(D) =0,

&



where 7, # are the natural surjections, ¢, are the natural isomorphisms to the kernels
of m,# and t
EY ®g E. = ParCndy(E.)
denotes the sheaf of trace-free endomorphisms of £,. Notice that H°(EY ® L.® K(D))
and HYEY @ L.@ K (D)) are the relevant subspaces of fields @ for which L. is a
®-invariant subbundle. If (E., ®) is stable, then L. is not ®-invariant, and m.(®) # 0
(similarly for #.(®)). This proves one implication of the following claim.

Claim 3.2. Suppose that either E. is unstable or £ # 0, then

(i) for ® € HY(EY ®¢ By ® K(D)),(E\, ®) is stable & 0 # m,(®);
© (i) for ® € H(EY ® Ex ® K(D)), (E.,®) is stable < 0 # 7.(2).
Proof. To prove (<=), we just show that L, is the unique parabolic subbundle of £,
with p(L,) > w(E.). Suppose L is another such subbundle. If E, is unstable, then
p(E.) > p(M.) and the projection L] — M. is the zero map, which shows L] = L..

On the other hand, if L’ — M., is not the zero map, then it is an isomorphism and
defines a splitting of (4), hence £ =0. I

Now consider the coboundary maps in the cohomology sequences of (5) and (6)
HO(LY @ M. © K(D)) >+ HY(EY ® L. ® K(D)),
HO(LY © M. ® K(D)) s HY(EY ® L. ® K(D)).
Here § is the zero map since by Serre duality
RYEY ® L, @ K(D)) = h%(LY ® B.) = h°(LY ® L) + hO(LZ ® M,) =0.

A diagram chase shows that the dual map of &, §Y : HY(LY ® E.) — HY (MY © L.),

maps i to £. Hence, § is the zero ‘map if and only if £ = 0. If £ # 0, then its image is
one dimensional because

1 if L # M. or £ 0,

RHEY ® L. ® K(D)) = h%(LY ® E.) =
(,*® ® K{(D)) (L ® E.) {3 if L, = M, and £=0.

In the cases covered by the claim, the proposition follows by another application of
Serre duality ‘

KLY @ M. ® K(D)) = h'(MY ® L.,

KLY @ M, ® K(D)) = k(M) ® L.).
The remaining cases follow by replacing the claim by the lemma below, which we
note is the only step of the argument where we use the assumption ¢ > 2. O
Lemma 3.3. If g > 2 and E, is not stable, then |

(i) (E., ®) is a stable parabolic K (D) pair for some ® < kerd # 0;
(ii) (E., ®) is a stable parabolic Higgs bundle for some ® & kerd # 0.



Proof. Since the lemma is a consequence of the claim, when it applies, we can assume
that E. is strictly semistable and ¢ = 0. Furthermore, we only need to show (<=).
We introduce some notation. Define the intersection numbers ¢; and ¢é; by

o [EmLu 0 Rm) i B £0,
1 if Fg(p,') = 0,
éi = dimLpi N Fg(p,,)
If B; = &+ (—1)%q; and v; = 1 — [3; are the weights of L,, and M,,, respectively, then
0 B <~ if 3 :
s — ?ﬂ3_717 and o = 0 }fﬁz<%,
1 1fﬂ,;>%', 1 lfﬂiZ’)’i.
Set |e] = 3 e; and |é] = 3 é; and notice that e; > §; —v; and & > 5; — v;, with
equality only when é; =0 and 3; = ..

If keré # 0 or kerd # 0, then for generic @, L. is not ®-invariant. Suppose L’
(# L.) is a line subbundle with w(L.) > p(E.). Semistability of F. implies u(L.) =
p(Fy). Then the restriction of p to L., written pys : L, — M,, is an isomorphism
since otherwise, prs = 0 and L, = L.. Such subbundles are identified with sections
of p and are parameterized by H°(M) ® L.). The relevant subspaces of @ leaving L]
invariant are H°(EY @ M. ® K(D)) and H°(E; ® M. ® K(D)). Thus, (i) will follow
once we prove the inequality
(7 RAMY ® L) + h%(EY @ M, ® K(D)) < h%(EY ®o E. ® K(D)),
which is equivalent to h°(M) ® L.) < h°(M) ® L. ® K(D)). Likewise, (ii) will follow

from

(8) RY(MY @ L)+ h°(EY @ M. ® K(D)) < h°(EY ® E. ® K(D)),
which is equivalent to h°(MY @ L.) < h®(MY ® L. ® K(D)). Since u(MY @ L,) =0,

0 if M, # L.,

(0 V; L* -
WML @ L) {1 if M, = L..

On the other hand, because A (MY @ L. @ K (D)) = h%(LY @ M.) = 0, it follows that
ROM) @ L. @ K(D)) = deg(MY®L® K(Zemp:)) + x(X)
= degl —degM + le|] +g—1.
Notice that deg L — deg M + |¢| > ;L(L*)‘— (M) =0, hence (7) holds provided
(9) ' deg L — deg M + le| = 2 — g with equality & L. # M..
This proves part (i) of the lemma when g > 2. As for part (ii), notice that

0 if M. # L.,

MY @ Lo K(D)) = k(LY ® M,) = '
RN M) ® L. ® K(D)) = h°(L{ ® M) {1 if M. = L.,



«and so (8)“follows as long as x(MY @ L, .® K(D)) > 0. We have ‘
x(M® L.® K(D)) = deg(M"® L® K(TiLép)) +x(X)
‘ = degL ~deg M + |é] + g — 1.
Hence (8) holds provided
(10) : deg L —deg M + || > 2 — g.

But deg L — deg M + |é] > u(L.) — p(M.) = 0 (with equality 1mply1ng that 5; =
for all 7). This proves part (ii) of the lemma when g > 2. O

One can deduce the following corollary usmg Riemann-Roch.

Corollary 3.4. If g > 3, then for every semistable E,, there exisls a Hzggs field @
making (E.,®) a stable parabolic Higgs bundle.

‘We now explain how to extend these results to lower genus. Clearly, the proposition
holds for g € 1 whenever E, is unstable or £ # 0 by virtue of the claim. So assume
that E, is semistable and ¢ = 0. The only place where we make essential use of the
assumption g > 2 is in the proof of Lemma 3.3. In particular, we observe from (9
and (10) that the inequalities (7) and (8) fail (respectively) if

 (i).0 < deg L — deg M + |e} < 2 — g with equality & L, = M,,

(i) 0 <deg L —deg M + || <1—g.

Thus, the only cqunterexamplés to Lemma 3.3 for g < 1 are given by the semistable,
split bundles F, satisfying (i) and (ii) along with the additional requirements (i)
ker§ # 0 and (ii') ker é # 0. First, we list these counterexamples to Lemma 3.3, then
we show that the bundles satisfying (i) and (ii) never give rise to any stable parabolic
K (D) pairs or stable parabolic Higgs bundles, respectively.

If £, is semistable and split and satisfies (i) and (i), ie., if AH{MY @ L «) > 1, then
there are but two possibilities:

(i-a) (g,7) € {(0,2),(1,1)}, Ex = L ® M, and L. = M., ,
(i) g=0, E. = L. ® M., p(L.) = p(M.), deg L — deg M + |¢] = 1.
Now if E, is semistable and split and satisfies (ii) and (ii"), i.e., if AH(MY @ L) > 1
then again, we have only two possibilities:
(iica) g =0, B, = L. ® M., p(L,) = p(M,), and 0 < deg L — deg M + [¢] < 1,
(b)) ¢=1, E.= L. ® M., L. = M..
We now show that if £, satisfies (1}, then (E,, @) is not stable for any ® € H M(EY S
E. ® K(D)) and if E. satisfies (ii), then {E,, ®) is not stable for any ® € HY(EY ¢ Do
E. & K(D)). For example, suppose that deg L — deg M + |e] = 2 — g in (i), so that
L, = M.. Then either g =0 and n =2 or g = 1 = n. In either case, :

HYEY ®, E.® K(D)) = H(K(D))® = H(Ox)%".

Thus, any @ is a constant matmx, one of whose eigenspaces determines a $-invariant
subbundle vielating the condition for stability. Otherwise, if deg L—deg M+[e| =1—g
in (i}, then A% MY ® L. ® K(D)) = 0 so that M, is ®-invariant for all ®.

10



As for (ii), suppose first of all that g = 0 and deg L — deg M + |¢] < 1. Then
R(MY ® L. ® K(D)) = 0 and M, is ®-invariant for all ®. Now if g = 1 and deg L —
deg M + |é| = 0, then either L, # M, and M, is ®-invariant for all ® or L, = M,
and H°(EY ®q E’* ®@ K(D)) = H°(Ox)®3, in which case every ® is a constant matrix.
This proves the following proposition.

Proposition 3.5. If F, is not stable and g < 1, then

(i) (E., ®) is a stable parabolic K(D) pair for some ® < E, is not one of the
bundles occurring in (i-a) or (i-b) and RY(MY @ L) > 1;

(i) (E.,®) is a stable parabolic Higgs bundle for some ® & E, is not one of
the bundles occurring in (ii-a) or (i—b) and either h'(MY ® L.) > 1 or
R{MY®L.) =1 and £ =0.

We could ask questions (I) and (II) replacing stability with semistability. Of course,
if E. itself is semistable, then so is (F., ®) for any ®. So we can assume that E., is
unstable and apply the claim to determine precisely which ® make ( E,, ®) stable. One
last comment is that if (E,,®) is stnctly semistable, then E, must also be strictly
semistable. The converse, however, is false.

3.2. Example: Rank 2 parabolic bundles over P! with 3 parabolic points.
In this section, we describe the moduli spaces M, Ny, and P, of rank two bundles
over X = P! with parabolic points in the reduced divisor D = p; + py + ps. We
suppose that p(F.) = 0 and that the weights at p; are o; and 1 — a; for some
ae W= {(al az,03) | 0 < o < 3}. Note that this is equivalent to saying that
det E. = Ox (as parabolic bundles) and E. has full flags at each p;. For e = (¢, e, 63)
where g; € {0, 1}, we use #(a, e) (or simply 3) to denote the weights 3; = e;+(—1)%¢;
Let

I'={(0,0,0),(0,1,1),(1,0,1),(1,1,0)}.
Inside W there are four hyperplanes

He={a|ﬁ(a,e):1+|§i}

for ¢ € I whose complement W \ UEGIH consists of five chambers: C. = {a |
Bla,e} > 1+ te}foreEIandC’o—{al Bla,e) <1+ 2 I for all e € I}.
The following is an immediate consequence of the cmtena, established in the previous
section.

Lemma 3.6. If (E.,®) is a semistable K(D) pair, then the bundle E. is described
as an ertension

(11} 0— L, — E, — L —0

where L, satisfies B*(L9%) = 1.
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Proof. If E, is not stable, then by Proposition 3.5, we see that h'(L2*) > 1. Since
u(L.) > 0, we see that u(L®%) > 0, and because there are only three weights, this
implies deg(L®?%)g > —2. Thus AY(L3?) = 1.

If E, is stable, then by Grothendieck’s Theorem, F = O(—1) @ O(—2). Let L. be
O(~1) with weights inherited as a subbundle of E.. Notice that h'(L%?) < 1. But by
stability of E., the extension (11) must be nontrivial, so '(L%?) > 1. O

We now determine all possible line subbundles L. with A} (L®?) = 1. For fixed
a € W, there are four posmble line subbundles L, with A'(L?) = 1, namely

= 0x(-1 - st

for e € I. We denote by G the nontrivial extension gotten from (11) with L, = L¢.
Notice that G¢ is unique up to isomorphism because h'(L¢®?*) = 1. Let Ff = L@ LY.

It is not hard to see that G¢ and G¢ are isomorphic for e,e’ € I. Set G = G°.
This, together with the previous lemma, shows that if (E«, ®) is semistable, then E,
is one of the five bundles in the set {G., F}.

Recall that two bundles E. and F. are called S equivalent (written E, ~g E.) if
their associated graded bundles are isomorphic, i.e., if gr £, ~ gr E.. We use E, to
denote the isomorphism class of a bundle and [E,] for its S-equivalence class.

Proposition 3.7. (1) If a € Cy, then M, = {G.}.
(2) IfaECe,eEI then M, = 0.
(3) If a € H., then M, = {[F¢]} and G, ~s F¢ are the two distinct zsomorphz:m
 classes of semistable bundles. »

Proof: From the above considerations, if E, is semistable, then E, = G. or F?. But
G, is stable if and only if & € Cp, and F° is never stable. On the other hand, if
a € H,, then G, and F? are clearly strictly semistable with associated graded bundle
Lo (L)Y, O

The next lemma shows which auxiliary fields can arise for these five bundles.

Lemma 3.8. For any o € W, we have

(i) G. is simple, h%(GY @ G ® K(D)) =5, and h°(GY @ G. @ K(D)) =0,
(ii) Aut Fie = C x C*, hO(F¥ @ F2 @ K(D)) = 5, and h(F¥ @ Ff @ K(D)) = 1.

Proof. For « € Cy, G, is stable, and ‘therefore simple. But this propertv is mdepen—
dent of the weights, and it follows that for any o € W,

= W(GY R G.) =h(GY ® G, ® K(D)),
0 = RGY®G.) = hl(CV®G*zulx(D))

Direct computation shows deg(GY ® G.)o = —3 and deg(G) © G.)o = —9, and part
(1) follows using K(D) = O(1) and Riemann-Roch. :
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As for (i), since (L2®%)y = O(—2) and (L¢®?)y = O(—1), every automorphism
of F7 is diagonal and Aut Ff = C* x C*. Also, h%(L:®* @ K(D)) = 0, so every
® € H(F*Y @ Ff @ K(D)) has the form

ay 0
o= (3 o)

with ¢ € H(L®? @ K(D)) = C and ¢; € H*(K(D)) = C*. Morevoer, H*(F:¥ ®
Ft @ K(D)) = H(L®? @ K(D)), which completes the proof of part (ii) [J

We can identify the action of Aut(F¢) on HO(FY ® Ff @ K(D)), it is given by

conjugation

) % 0 ay 0 Z{l 0 _ ay 0
(z1,22) Q)_(O 22) <§I5 02)(0 z3') T \# 20 az)’

Suppose that o € C, and set V' = Ext'(L¢",L2) = C. Let & be the universal

parabolic bundle on V x X which, when restricted to {¢} x X, is the bundle G% in
(11) with L, = L¢ and extension class £. For £ # 0, G¢ ~ G, and obviously G° = F¢.

Let px and py denote the two projection maps from V x X and define £, to be
the pullback bundle p% L:. Consider the direct image sheaves of £ ® &, @ K(D)
and £L87? @ K(D) under pyv, which, by the previous lemma, are locally free sheaves
over V whose associated vector bundles, M and V, are trivial with ranks 5 and 1,
respectively. Notice that N is canonically isomorphic to V x H°(L¢®~?@ K(D)). This
is key to following construction.

The canonical map 7 : &Y ® & ® K(D) — L2872 @ K(D) of the previous section
induces 7, ;: M — N which is surjective, because the restriction of 7. to a fiber above
£ can be identified with #¢ : H(GY' ® G¢ ® K(D)) — H°(L:®"* @ K(D)), whose
cokernel is H'(GEY @ Lt ® K(D)) = 0. Fix some 0 # ¢ € HY(L¢® 2 & K(D)) and
set YV = a7 {{do} x V) = C* x V. '

Proposition 3.9. (1) If a € Cy, then P, =~ HYG) ® G. & K(D)) = C and
PO~ CB.
(2) IfaeC,, then Py =Y =~ C° and P2 = C°.
(3) If a € H,, then P, ~ HYGY ® G. ® K(D)) = C and its strictly semistable
part can be identified with a hyperplane.

Remark. In the course of the proof, we will determine the isomorphism classes
of semistable parabolic K(D) pairs. This differs from the above only for strictly
semistable bundles, because the S-equivalence class of a stable bundle is precisely its
isomorphism class. For a € H,, we will find that there are three distinct components
of isomorphism classes of strictly semistable bundles, each is just a copy of C*.

Proof. Part (1) follows from the fact that RO(L:®* ® E(D)) = 0, hence LY is a ®-
invariant subbundle of F® for any ®. Thus, if (E., ®) is stable and o € Cy, then
E. ~ G,. For part (2),if (f, ®) € Y, then the associated K{(D) pair {G%, ®) is stable
by Claim 3.2 since 7&(®) = ¢ # 0. This gives amap n: Y — Pa, Which we claim
is a bijection. To see this, write Y = Y' U Y", where Y’ = Y|y\o and ¥” = Y, and
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P, =P UPY where P, and P/ consist of the K(D) pairs (E., ®) with underlying
bundle E, isomorphic to G. and Ff, respectively. The restriction of M to V' \ {0} is
naturally isomorphic to (V \ {0}) x H*(GY ® G. ® K(D)). For (£, ®) € M|v\jo} and
teC,
TH(®) = 17'7i(®).

It follows from this formula that 1 induces a bijection between Y’ and P/,

Using the description of the action of Aut Ffon H°(F*¥ @ F? @ K(D)) following
the proof of the previous lemma, every (£, ®) € P is isomorphic to (F?, ®q) where

a; 0
o = (d)i) a2> ’

Hence, 7 gives a bijection between Y and P”.

To prove (3); notice that we have a map 7 : HO(CV ® G.® K(D)) — 73 Since
P, is normal, it is enough to show that this map is bijective. Now by Claim 3.2, we
see that P2 ~ H O(GV ® G. @ K(D)) \ Kerm.. The strictly semistable bundles are
pairs of the form (F¢,®) for any ®, and (G., ®) with & € Kerr,. If ® € Kerm,, the
subbundle L° is @—invariant and we get the extension of parabolic K{D) pairs

(12) 00— (L5¢) — (G, ®) — (LY, ) — 0.
Thus gr(G., ®) = (L8, ¢) B (L2, ) for & € Kerm,. Consider now the map
X :Kerm, —s HY(LY @ L © K(D)) ® HY(LS ® LY @ K(D))

defined by ® +» (¢, ). For ¢ =9 = 0, then the extension (12) induces the zero map
LY — Lt @ K(D) (because H°(L:®* @ K(D)) = 0) and it follows that ® = 0. So
A is injective. But the domain and range of A are both 4-dimensional, and so A is
an lSOIIlOI‘phlSIIl Clearly gr(Fe, ®) = (L, ¢) & (L&Y, ), and it follows that A gives a
bijection between Kerm, and P3. O (

Choosing some 0 # ®¢ € HO(FY @ F¢ @ K(D)) = C and using the action of
Aut(Fy), it is easy to verify that (F£, ®) is isomorphic to (F ¢ @0) for all ® # 0. The
proof of the last proposition is left as an entertaining exercise in applymg the above
lemmas.

Proposition 3.10. (1) Ifa € Cq, then N, = {(G,,0)}.
(2) fa e C.eel, then Ny = {(F¢,®0)}. -
(3) If a € H,, then Ny = {[F£,0]} and (G.,0) ~g (F£.0) ~s (F£, ®g) are the
three distinct isomorphism classes of semistable Higgs bundles. '

4. - A ToPOLOGICAL DESCRIPTION OF N2 IN Rank Two

4.1. The function spaces of Biquard and construction of Konno. We begin
with a brief averview of the gauge theoretical description of A, following [14].

It is convenient to think of the parabolic bundle separate from its holomorphic-
structure, so we use E, to denote the underlying topological parabolic bundle (weights
a) and 9g its holomorphic structure. By tensoring with an appropriate line bun-
dle, we ecan always assume that p(Z.) = 0. We shall also restrict our attention to
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generic weights, i.e., weights a for which a-stability and o-semistability coincide.
Let C denote the affine space of all holomorphic structures on F, and G¢ the group
of smooth bundle automorphisms of E preserving the flag structure. Introduce a
metric k adapted to I (x is unitary and smooth on E|x\p, but singular at p € D
in a prescribed way, see Definition 2.3 [3]), and let A denote the affine space of x-
unitary connections. Define G to be the subgroup of G¢ consisting of k-unitary gauge
transformations. Letting C;s and Agp, be the subspaces of a-semistable holomorphic
structures and the flat connections, respectively, Biquard proved that

Moz Cl:ef Css/g{C = Aﬂat/g

by introducing the norms || [|pr, defining the weighted Sobolev spaces C? and A? of
DY holomorphic structures and DY s-unitary connections, and taking quotients by
the groups G and G? of D} gauge transformations for a certain p > 1 [3].

The same approach works for parabolic Higgs moduli, at least for generic weights,
as was shown by Konno. The arguments in [14] are given for moduli with fixed
determinant, but remain equally valid without this condition. We set

H = {(Jp,®) €CxQEndE)|Fg® = 0on X \ D and at each p € D,
® has a simple pole with nilpotent residue with respect to the flag}.

Note that # (this is denoted by Din [14]) is just the differential geometric definition
of the space of parabolic Higgs bundle structures on E., for example, the nilpotency
condition implies that @ is strongly parabolic.

For A € A, we use d4 for its covariant derivative, Fi4 for its curvature, and d% for
the (0,1) component of dg4, so d§ € C. Define & = A x Q% (End E) and &7 as its
completion with respect to the norms || ||pr, and set

Eaat = {(da,®) € E7 | d4® =0, Fa + [, 0"] = 0}.

(This last space is denoted DYy by Konno.) Using the usual definition of stability on
H, Theorem 1.6 of [14] shows that for some p > 1,

Né! d:ef %ss/g(c = 8ﬂat/gp-
The advantage of the second quotient is that it endows A, with a natural hyperkahler

structure, namely by viewing it as a hyperkahler quotient of £? {in the sense of [13]),
whose hyperkahler structure is given by the metric

: g((6,6), (6 8) =2 [ THEE + b6,
which is Kihler with respect to each of three complex structures

1(6.6) = (i6,i9), J(6,:9)= (i6",~i€), K(§6) = (=676,
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. 4.2. The Morse function for the moduli space of parabolic Higgs bundles.
Assume that F, is a rank two parabolic bundle with generic weights o; and 1 — o at
p; and that po(E.) = 0. Write & = (o1, ... ,a,). We will always assume n > 1. We
consider the moduli with fixed determinant and trace-free Higgs fields, requiring the
following minor modifications in the definitions of the previous section:

(i) the induced connection dj or holomorphic structure gy on A?E be fixed;
(ii) the Higgs field be trace-free, i.e. ® € QV%(Endg E).

We denote the corresponding spaces by .4°%,C°%, €°, and HC.

_ As in [12], we consider the circle action defined on £° by € - (d4, ®) = (d4,e?®).
I This action preserves the subspace £3,; and commutes with the action of the gauge
group GP, thus it descends to give a circle action p on A2. This action commutes with
Hl the complex structure defined by [ and preserves the symplectic form wy(X,Y) =
g(IX.,Y), so the associated moment map p,{d4,®) = i“@“%,;, renormalized for

convenience, is a Bott-Morse function and can be used to determine the Betti numbers
o of NC. ’

1 We introduce some notation which will be used throughout the rest of this section.
For any line subbundle L, of E,, let e;(L) = dim L,; N Fa(p;) € {0,1}. The weight
inherited by L. is then 3;(L) = €; + (—1)%q;. We will often suppress the dependence
on L and simply write e = (e1,...,e,) and § = (By,... ,0,). We will also write
B(a, e) when we want to emphasize the functional dependence of § on o and e. We
also use le| = 307y €.

Theorem 4.1.  (a) The map y, : NO — R is a proper Morse function. ,
(b) Whenever nonempty, M® is the unique critical submanifold corresponding to
the minimum value p, = 0. The other critical submanifolds are given by Mg,
B for an integer d and e € Z} satisfying |

(13) =3 Bilee) <d<g—1—le|/2
. . =1
- Along Mg, p, takes the value d 4+ 37572, B;.
(c) The eritical submanifold Mg, is S"4<X, the 2% cover of the symmetric product
Shie X under the map z 5 2z on Jx. Here, hg. = 29 — 2 — 2d — |e|.
(d) The Morse index of My, is given by Mg =2(n +2d 4+ g — 1 + |e}).

Remark. If g = 0, there are always a with M =0 (but N? # (). For these e, the
minimum value is achieved along some M, ., which we identify in the next section.

Proof. Properness of p, follows from the global compactness result for parabolic bun-
dles of Biquard (Theorem 2.14 in [3]). This proves (a). All the other statements rely
on the following correspondence between the circle action and the moment map given
in [10]. '
(1) Critical submanifolds are connected components of the fixed point set of p.
(2) The Morse index of a critical submanifold equals the dimension of the negative
weight space of the infinitesimal circle acfion on its normal bundle.
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Suppose that (d4, ®) is a fixed point of the circle action upstairs in Egyy. Then @ = 0
and this shows that one component of the fixed point set in N2 consists of M2, the
moduli of stable parabolic bundles with fixed determinant.

The other fixed points arise from when € - (d4, ®) is gauge equivalent to (d4, ®),
i.e., when there is a one parameter family gy € G? such that

ggl@ge = eiﬁ@’
g5 'dage = da.

By the first equation, gg is not central, and by the second, we see that d4 is reducible
and consequently the holomorphic parabolic bundle splits according to the eigenvalues
of gg. Write E, = L.®M, as a direct sum of parabolic bundles. We assume (wlog) that
pal{Lls) >0 > po(M,). Let d = deg L and e = (ey, ... ,e,) where ¢; = dim L,, N F5(p;).
Then L inherits the weight §8; = €; + (—1)%; at p; as a parabolic subbundle of E,
and

(14) | 0< uo(L)=d+ 3. 8

Since gy is diagonal with respect to this decomposition, @ is either upper or lower
diagonal, which means either L or M is ®-invariant. But a-stability of the pair

(E., @) implies that
0 0
= (i0)

where 0 # ¢ € ParHom(L., M, @ K(D)). Thus ;

0£ HYLY @ M, ® K(D)) = H(LY @ M ® K(X%, (1 ~ e)p;))-
Let Je| = 3_7, €;, then a necessary condition is that |
(15) 0<deg(LY @M@ K(X%q (1 —e)p)) =2(g—1) — le].

Now (13) follows from (14) and (15).
We can use the defining equations for £f,, to determine the associated critical
values. Take (E., ®) as above, then

o (P& 0
0:m+m®b(LO¢‘%+w>‘

Using the Chern-Weil formula for parabolic bundles (Proposition 2.9 of [3]), we get
polda,®) = o) = — [ To@8%) = = [ 68" = o= [ Fi = pardeg(L.).

This completes the proof of (b).
Given E. = L.® M, and ® as above, then the zero set of ¢ is a nonnegative divisor
of degree

hie = deg(l)v @M@ K(3 Ll (1—e)pi)) =29 —2—2d — el
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son X, which is just an element of $"¢ X. Conversely, given a nonnegative divisor of

degree hg ., then we obtain a line bundle U of degree 2d + n along with a section of
UY @ K(3% (1 —e;)p;)) vanishing on that divisor. There are 2% choices of L so that
U = L®? @ A*E, and each choice gives a stable parabolic Higgs bundle (E., ®). The
line subbundle L* is canonically determined from E,, but @ is only determined up to
multiplication by a nonzero constant. However, it is easy to see that (E., ®) is gauge
equivalent to (E,, A®) for A # 0, and (c) now follows.

We now calculate the index Ade of the critical submanifold Mg., which is given
by the negative weight space of the infinitesimal action of p, or equivalently, of the-
gauge transformation gg. Letting H°(ParEndgy(E)) - ® be the subspace of Higgs fields
of the form [, @] for ¥ € H°(ParEndo(E)), then the subspace

W = H(PazEnd)(E) ® K(D))/H%(ParEndy(E)) - &

1s Lagrangian with respect to the complex symplectic form

w((&r, d1), (€2, 82)) = /A Tr(pabs ~ #162)-

So once we determine the weights on W, the weigh’cs on the dual space W* are
given by 1 — v for some weight v on W (since p(#)*w = ew). With respect to the
decomposition E, = L, & M,, we have

e—i9/2 4]
9o = 0 : ei9/2
with weights (0,1, —1) on

ParEnd((F.) = ParHom(L., L.) & ParHom(L,, M.,) & ParHom( M., L)

Further, there are no negative weights on H°(ParEndo(E))-® and the weights on W™*
are (1,0,2), so we get

Me ‘= 28°(MY @ L.® K(D)) =2(n+2d +g— 1+ [e]).
This completes the proof of (d). [I

4.3. The topology of N2. Using the results of the previous section, we deduce the
following theorem.

Theorem 4.2.  (a) Ifg >0 0rg=0 and n > 3, then N2 is noncompict.
(b) The Betti numbers of NP depend only on the quasz-pambolzc structure of E..
(¢c) Ifg>00rg=0 andn > 3, then N? is connected and simply connected.

Proof. Notice that, whenever dim N2 > 0, then for all (d, e), Age < dim AP, Thus,
the Morse function g, has no maximum value and (a) follows. The only case where
dimN? = 0 is, of course, g = 0 and n = 3.

We first recall Theorem 3.1 of [4]. Let W = {a 10 <o < 1} be the weight
space and for any (d,e), define the hyperplane Hy, = {a | d + B(a.e) = 0}. The
set W\ UgeHy, consists of the generic weights, i.e., those for which stability and
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semistability coincide. Suppose § € Hy,, then stratifying M3 by the Jordan-Holder
type of the underlying parabolic bundle, we see that

= (Mg\zé) U 257

where X5 consists of strictly semistable bundles, i.e., semistable bundles E, with
gr B, = L. ® M, for two parabolic line bundles of parabolic degree zero. Suppose
that o and o are generic weights on either side of Hy. and that pardeg,(L.) < 0.
If both M2 and M2, are nonempty, then Theorem 3.1 of {4] states that there are
canonical, projective maps

Mo MY,

PN P
M3

which are isomorphisms on M{ \ X5 and are P* and P* bundles along Y, where
a = h (MY Q® L,)~1and o = h' (L ® M,) — 1. In particular, since X5 = Jx,
Corollary 3.2 of [4] gives

P(ME) — P(M2) = (P(P*) — P(P*))P(Jx).

To prove (b), we must show that P(N2Y) = P,(NJ) for weights on either side of
a hyperplane H,.. Note that d = deg L and e = e(L), and set d = —n — d and
é; =1~ e;. Since ‘

d+ B(a,e) = pardeg,(L) < 0 < pardeg(L) = d + 5(c/. e),
and d + Blal,é) <0< d+ e, €), it follows that the indexing sets of (d, e) satisfying

(13) for MO and N, are identical except for (d,e) and (:cZ,Ké) listed above; the pair
(d,e) satisfies (13) for & but not for o and vice versa for (d, é). Thus, we claim

0 = P(MO) = P(MO) + t4e P(My,) — thae P (M),
which, setting A = ¢'dz P,(M is) — e P(Ma,) is equivalent to

(tZa’+2 . t2a+2)(1 + t)?g

First, we compute
hae =29 —2—2d—le|, Age=2(n+2d+g—1+le]),
;, h_,;’é:‘7g~2+n+2d+[el, Aie=2(g—1—2d~|e]).

Next, notice that if A > 29 — 2, then Py ah( X)) = P(S*(X)) (see p. 98 of [12]). But
both hd o and h; ; are greater than 2g~2, which we see as follows. Since & < Fi{a, e) <
L= we have l L < Sr L Bila,e) < “*'e' . It now follows that 2d-|e| < 3(2—1—73(a e)< 0
and 7d+n+[e[ >2d+22 B, e)>0

Now use the result of [15] to interpret P;(5"X) as the coeflicient of 2" in

(1+zt)%
(1 —a)(1—xt2)’
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and compute in terms of residues to see

A : t)\&,éB(Shd"aX) - tAd’ePt(Shd’eX)
tAci,é t)‘d,é Y 1 2g
= Res|——— (1+=zt) .
2=0 \ ghaet ghd.etl (1 — 2z}l —at?)/

This last function is analytic at z = oo and has a removable singularity at z = 1/#2,

thus
thae thae \ [ (1 +zt)¥
A = —-1}_63< hgetl whd,e+1) ((1 —z)(1 — t?)
‘(t'dvé . t/\d’e)(l‘“{_ t)zg .
1— '

But we can compute directly that 2¢’ + 2 = A;, and that 2a +2 = X;. and (16)
follows. This proves (b) in case both M2 and M2, are nonempty. In case one of the
moduli is empty, we use the following lemma (see the remark).

To prove (c), we use the fact that M2 is connected and simply-connected, which
follows for g = 0 from [2] and for g > 1 “from [5]. Since Ay is always even, (¢) will
follow if Az. > 0 for all (d,e). This is true if M2 # {. However, if g = 0 we must
be careful since there are weights a with M, = 0. In that case, we must show that
there is a unique pair (d, e) with Ay, = 0, and also that M, is connected and simply
connected. This is the content of the following lemma. O

Lemma 4.3. (i) If g > 1, then Ay > 0 for every (d, e) satisfying (13).
(ii) If g = 0 and n > 3, then there is at most one pair (d, ) satisfying (13) with
s Xie = 0. Such a pair (d,e) ezists if and only if M, = 0, and in that case,
Mgy, =P"2 Here, M = MP since g = 0. :

Remark. We now explain why this lemma proves part (b) of the Proposition when
one of the moduli is empty. Suppose M, = (4, then it follows that the moment map
L, is positive with minimum value d + 37, #(e, e) for the pair (d, e) identified in
part (ii) of the lemma. Since (d,e) does not satisfy (13) for o, Hy,. is the relevant
hyperplane. This identifiés the birth and death strata as M, and My,., and thus
all the other strata for a and ¢ are identical. The rest follows from ’che fact that
M, =P, first proved by Bauer [2].

Proof. Suppose that Az, = 0‘ for a pair (d, €) satisfying (13). We first show that g=0.
Recall that G;(a, ) = €;+ (=1)%a;. Using the fact that 0 = M. = n+2d+g+|e/ -1,
the condition (13) and the inequality B{(’a e) < %L we see that

an ”He[” Za(ae' ”“el

u

==l

This is only possible if ¢ = 0, which we now assume.
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Setting v; = 1 — f; = (1 — &;)(1 — o) + e;¢%;, then equation (17) is equivalent to

n

n—e[ Z nf-]e|+1‘

=1 2 :
Writing 7 = 5% + (1 — ei)(3 — o) + e;0i, we get immediately
‘ : 1
(18) 0 < ; (1—-e)z—o)+em< 5

The advantage of the (18) is that each summand is positive.

We now prove uniqueness of the pair (d,e). If Ay o = 0 for (', &) # (d, e), then it
follows that |e| — [¢/| = 2(d' — d) is even, which implies that e; # ¢! for at least two
¢, which we assume (wlog) to include ¢ = 1,2. Now (o, ¢) and (o, ¢’) both satisfv the
inequality (18). Add them together and notice that since e; # €| and ey # €}, the
sum of the left hand sides is at least a; + (1/2 — a1) + a2 + (1/2 — a2) = 1, which
violates the (summed) inequality and therefore gives a contradiction. -

It follows from Ay, = 0 and ¢ = 0 that n + |e|] — 1 is even and Ay = n — 3. Thus
Mg, = ShX = 8 hlP’l P"~3. The rest of the lemma follows from the the inequality
(17), together with the following proposition, which we have chosen to state as it is
of independent interest. [J

Proposition 4.4. If g = 0, then the moduli space M, # 0 &

(19) ée + (=10 < ”—ﬂ;—’“—l

for every e = (ey,... ,ey), € € {0,1}, withn — |e} + 1 even.

Remark. For n = 3, M, is either empty or a point. In this case, the proposition
can be verified directly by comparing the inequalities (19) to the well-known fusion
rules {or the quantum Clebsch-Gordan conditions):

Mo #0 & o — az] < az <min(og + 2,1 — a3 — o).

Proof. Like the proof of part (b) of the theorem, we shall use the techniques of [4].
Recall the weight space W = {a | 0 < a; < 1/2} and the hyperplanes Hy. = {a |
d + B(a,e) = 0} defined earlier. We call connected components of W \ Uy Hy.
chambers. A chamber C is called null if the associated moduli space M, is empty
in genus 0 for every a € C. The proposition follows once we show that every null
chamber is given by Cy. = {a | d + B(a,e) > 0}, where 2d =1 —n — |e|.

Associated to the configuration of hyperplanes in W is a graph with one vertex
for each chamber and an edge between two vertices whenever the two chambers are
separated by a hyperplane. We shall see that in terms of this graph, null chambers
have valency one. The (unique) hyperplane separating a null chamber flom the rest
of W is called a vanishing wall. If § € Hy., a vanishing wall, and «, &/ are nearby
weights on either side of Hy., then the proof of Proposition 5.1 of [4 [ ] shows that
M = 55 and. assuming that My = 0, the map ¢ is a fibration with fiber P*, where
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*q = h'(M) ® L.) — 1. Moreover, h}(LY ® M,) = 0 and this last eguation in fact
characterizes vanishing walls.

We claim now that every vanishing hyperplane is given by Hy, for 2d =1—-n—le|.
Now if d = deg L and e = ¢(L), then direct computation shows that A*(LY @ M.) =
2d +n + |e] — 1. On the other hand, if n + |e] — 1 is even and d = ﬂ{—'e—’, then Hy,
is a vanishing hyperplane.

Along H,., the relevant line bundles of parabolic degree 0 are given by L. =
@X(:n;z‘el—ﬂ)[——ﬁ]* and M, = C’)X(:llﬂ—e‘_—}-)[—-'y]*, where 6 € Hy.,8 = §(6,¢) and
v = 1 — G;. Since Y (LY @ M.) = 0 and h'(M) ® L.) = n — 2, it follows that the
null chamber is defined by Cy. = {a | Ble,€) > Eﬂﬂ—} To verify this is indeed a
chamber, we prove that no other hyperplane cuts through Cy.. This will also show
that null chambers have valency one in the graph associated to the configuration of
hyperplanes.

So suppoSe to the contrary that o € Hy o NCy.. Then we have 3 (—1)%a; >
and 3(—1)%q; = —|e/| —d' =k € Z.If ¢; = €, = 0, then ((=1)% +(—1)%)a; < 1 and
in all other cases, ( (=1)% + (=1)%)ey; < 0. Using a similar property for ¢’ =1 — ¢/,
we see

n—le[—1
2

- H —i—k < Z 1)6€+(—1)62)Oti< Z 1,

=1 eize‘;:O
?’_]T‘_ L < Z l)ez+ )eg)ai< Z 1.
8,’:5?::0

These are strict inequalities' of integers, so after adding one to the left hand sides
and summing the two inequalities (which are no longer strict), we see n — |e| +1 <
261:@ l=n~]le|, a contradlctlon |

4.4. The Betti numbers of the moduli space of parabolic Higgs bundles
The results of the previous section show that the Betti numbers of N? depend only on
the genus ¢ and number n of parabolic points. In this section, we give a formula for
the Poincaré polynomial of A/2. Such a general calculation is not possible for P,(M?5)
without first specifying o, so take a = (2,... ,3n) Using Proposition 4.4 (taking
e=1(0,1,...,1)) it is clear the e lies in a null chamber. We could calculate P,(M5)
using the Ad;wah—BoL‘t procedure for parabolic bundles as in {5], but there is an easier
method which exploits the fact that « lies in a null chambm First of aﬂ usmg the
results of §6.4 in [5], we get

(1+45)" (1 + t3)29 (1 +1)2

P(MY) = A o Z f2dxe

Note that dy. depends on g (‘d,\’e = dy.(g = 0) + g), but the indexing set {X, e} is
independent of g. Since M2(g = 0) = §, this determines the sum and we see that
N (L +£3)% —120(1 +2)%0
(1 —1¢2)2 ’

B (M) = (141 (
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It follows from Theorem 4.1 that
P(N7) = P(M2) + ZtAd’EPt(Md,e)v

dse

where the sum is taken over (d, ) satisfying (13), which, for our choice of «, is simply
e —lel £d<fg—-1~ L;l]’ where [2] is the greatest integer less than z. Setting
J=2d+n+ |e| — 1, then j satisfies: ~ ‘

n+2e—lef]-1<j<29+n—-3 and j—n-—le|+1iseven.
Also Age =2(g+j) and hge =2¢g+n—j—3.

Fixing e; and |e|, for each d, there are (l;i:;) strata given by the choice of e. Thus,
for each j, there are ¢; = Y7_g (“@Tl) strata (note that ¢; = 2! for § > n — 1) and
we see

; n n—1 fg—1~lel/2] .
Z t'\d"ePt(Md,e) — Z ( ) Z tAd,ePt(Shd,eX)
d.e lej=0 Iel —&a d=e; —}e|
- 29+n-3 ] - )
- Z qjtg(gﬂ) P,(§tn—i=3 X)
7=0
n—-2 29—2
— Z qjt2(9+j)pt(§2g+n*j—3X) + Z Qn—1t2(g+n+j—l)pt(§2y—j~2X).
7=0 7=0

We refer to the last two sums by S; and S,. Using the Binomial Theorem and the
general formula (p. 98 of [12]) Py(S*X) = (2% - 1) (29h_Q> t" + P,(S8*X), we see that

n—2 . )
Sl - Z qj‘tz(g-’_])Pt(SQg_*-n‘]_sX) - 51,

J=0
~ 2g—2 29-2 ‘7g _ .
.S = Z 2"—1t2(9+n+1—1)pt(gzg—j—zx) + Z r_)n—l(22g ~1) (“ ; “) photantj—a
7=0 7=0 /

= 5'2 +2n-1(22g _ 1)t2(2g+n—2)(1 + t)2g—2’

where Sy and Sz are the sums obtained by removing the tildes from the summands
of Sy and S,. According to a result of [15], P;(S*X) is the coefficient of =* in

(14 zt)™
(1-2)(1—=z2)

This allows us to evaluate 5; as follows:

n—2 2(0+) (1 3+ )29
51 = RSS (}: %t ( ki ) ) v
7

a=0 \ <2 g20+n=i=2(] — z)(1 — zt?)

. 2n—1¢2(g+n~1)(1 +$t)2g
20 (:c29—1(1 o)1 —a?) )
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» But each of these rational functions is analytic at & = oc. so we can use the Cauchy
Residue F01mula to evaluate instead at the p’oles = 1and z = 1/t Letting Q,(t) =
78 qit®* and noticing that Q,(1) = Yice qr = 2" %(n — 1), we get

(1 +1¢)%
(1—1%)"

o 1/ _ T ‘ . 14 ¢)%
S5 : gn~1 (tZ(g-F-n 1) + ptgt+2n=3 (29— 1)t — 29}) ((1 - tz)g .

{
But since Q,(2)(1 — £2) 4 212"~ = (1 4+ )1, it follows that

S = (Qalt)® =272 (n — 1))

P(AD) = P(M+ 5+ 5, o
= PMO®) + Sy + 8y + 277122 — )20 (] 4 p)Pe?

(1 4 £2)20(1 4 §2)n=1 4 gr=dg2ntio=3(1 L )20[(2g — 1)t — 2g]
S -2
2n—‘2(n — l)t2n+4g—4(1 + t)?g
- 12 '

+ 2n—1(‘22g - 1)t4g+2n-4(1 -+ t)2g—2‘

Evaluating this at ¢ = 1 shows that the Euler characteristic of N0 is

on 4 ~n-2) .
Y(A0) = p2+n=3 (297 (20 —1)g + (n )7(" ) g2 1) .
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