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Introduction Geodesic flows on Euclidean polyhedra is an old
subject that goes as far back as 1906 (see [4] and a related
paper [3]). An example of such flow is the motion of a billiard
ball inside a polygon. If the angles of the polygon are rational
multiples of m , the direction of any geodesic takes only a
finite number of values as time varies. Fixing these values one
obtains invariant "surfaces" of the ééodesic flow ([6]).

Billiards in rational polygons are interesting because
they are so close tc integraoble Hamiltonian systems (with two
degrees of freedom). 1In fact when the numerators of angles of the
polygon P are egual to one the billiard flow is integrable. The
Dirichlet problem in P corresponds to the qﬁantum biliiard in
the polygon. When P Is as above eigenfunctions of the Dirichlet
problem are explicitly Xnowm, so the quantum billiard is integrable
as well (unfortunately such polygons are scarce).

It is natural to ask how much of what is known for billiards
in integrable polycons renains true for general rational polygons.
The reader can find some results in this directicn in [6] and [2]
for classical and quantum billiards respectively.

The purpose of thig paper is to clarify the structure of the
pPhase space, how it splits into invariant surfaces and the structure
of invariant surfaces themselves for general rational polyhedra.
Those are Euclidean polyhedra which are topological surfaces (pos-
sibly with boundary) and whose vertex angles are rational multiples

of % (Definition 3). A rational polyhedron S naturally defines
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an orbifold so (see [5], Ch. 13 for the definition of orbifold).

The geodesic flow on S naturally lives in the unit circle bundle
T(So). The gudlidean metric on S defines parallel translations

in T(So) . The holonomy group of S is a subgroup of 0(2) . Since
s is rational the restricted holonomy group (corresponding to
contractible loops) is a finite subgroup H of 0(2) . 1If ﬂl(S) = 0
there is a natural mapping £: T(so) = C/H (C = unit circle)
invariant under the geodesic flow (Theorem l). The level sets of

f are the invariant surfaces Re (their existence in case 23S = 4
was noticed in (1]).

Obviougly the most general assumption for Theorem 1 would
be that the holonomy group of S 1is finite. This will certainly
hold if ﬂl(s) lg finite which means if "i(S) # 0 .that ‘s 1is
homeomorphic te the real projective plane. All results of this paper
can be easily.extend‘d to this case.

The topology of invariant gurfaces R, is the subject of
Theorem 1, €Corcllary 2 to Proposition 2 and Theorem 4. If 23S = g
then all R, are homeororphic. If 23S # 4 then R, ave homeo~
morphic for interior points 6 of the parameter space [0,m/n] .

The typical level gurfoce R is orientable, closed and its genus
is determined by the vertex angles of S (formula 3). There is
a natural complex structure on R and S such that the holonomy

goup H acts on R by conformal and anticonformal transformations

and S=R/H. If 3 # g then H is the dihedral group Dn and

the reflections of D  act anticonformally on R . The two excep-
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tional invariant surfaces RD and R, are the quotients of R by
two basic reflections 89 and sl' respectively. Theorem 4 deter-
mines the topology of R, and R1 as far as it can be done from
the vertex angles of‘ S .

It is interesting to remark that if S is a polygon
T(so) is homgamorphic to the 3-sphere s3 and thé topology of
decompositions 53 =U‘Re 0£086<L1 is well known to kot~
theorists.

If the genus of R is greater than one, by uniformization
theorem there is a discrete group I' acting freely on the Poincare
plane H such that R = B/T' . In particular R has two conformal
metrics. One is pulled back from S , its curvature ié the
b—funétion supported at the vertices of R (formula 3 is essentially
the Gauss-Bonnet theorem for this singular metrlc)., The other is
Poincare metric of curvature minus one. Theorem 3 ghows that there
is a T-equivariant developing map o@: H + & which prcvides a
relation between the two metrics.

In section 3 I classify rational pelyhedra for which the
geodesic flow is integrable (flat polyhedra). Tetrahedra with
vertex angles T prdvide an interesting family of flat polyhedra
(Theorem 7). The last section consists of examples.

I would like to thank John Morgan for help in topology

and I.M. Singer fof his hospitality in Berkeley in Summer 1982

where the first draft was written.



1. ‘Invariant surfaces.

Let T be the complex plane with the standard metric

dzdz. A Euclidean polygon is a closed simple polygon in (.

Definition 1: A Buclidean polyhedron S (of dimension 2)
ié a finite collection of Euclidean polygons, where some poly-
gons are glued together along certain sides by isometries.

For example any Euclidean polygon is a Euclidean poly-
hedron. Two copi2s of the same polygon glued along corresponding
sides make a polyhedron which is a topological sphere. Any
Euclidean polyhedron S defines a topo;ogical space which is
denoted by ST' In fhis paper we consider poiyhedra which are
connected topological surfaces, possibly with boundary. Hence-
forth we simply call them polyhedra or polyhedral surfaces.

| If S 1is a polyhedron made of polygons Pi we call Pi
the faces of S, their edges and vertices are called edges and
vertices of S.

The unit tangent bundle T(P) of a polygon is the set of

unit vectors in € with the base points in P and pointing

into P. The unit tangent bundle T(S) of a polyhedron is made

out of T(Pi) where Pi are faces of S, with obvious identifica-

tions.

Pefinition 2: Let S be a polyhedral surface. The geodesic



flow on S takes place in T(S) and is modeled on the motion
of the billiard ball on S. The ball goes straight when
inside a face. Wheh it hits an interior edge the ball passes
to the adjacent face and it bounces off boundary edges. We
temporarily agree to stop the ball when it hits a vertex of S.

The set T(S) has a natural topology and a natural measure.
According to our definition of the geodesic flow on § the
lifetiﬁe of some trajectories is finite. It can be shown that
elements v € T(S) that generate finite lifetime trajectories
form a set of measure zero.

The angie a of avertex A of S is the sum

4 =a q teeeta K of plane angles of faces containing A,

Definition 3: A polyhedral surface S is éalled rational if
the angles at interior (boundary) vertices of S are of the fo
2qr {nr) where r is a rational n&mber depending on the vertex.
Let S be a r;tional polyhedron. We associate to S an

orbifold So (51, ch. 13) thch coincides with S as a topo-
logical space. The isatropy group Gx is nontrivial if x ¢ 3s
or if x is a vertex. The isotropy gfoup of a boundary sdge

b is generated by the reflection about b, If x is a bounda:
vertex with the angle w m/n (m,n are relatively prime) then-Gx i
the dihedral group Dn naturally acting in €. If x is an

interior vertex with the angle 2nqm/n then Gx = z/n acting by



rotations in (.

The tangent unit sphere bundle T(so) is a topological
3-fold and there is a natural continuous mapping p:T(S) » T(So)

so that the diagram below is commutative.

T(S) ¥ T (S,)
(1) p p
L e
<+ S

¢ maps fibers into fibers and it is not an isomorphism only

2t the vertices with angles 2ym/n (mm/n) where it is m-to-1.

Theorem 1: Let S Dbe a rational connected simply connected
polyhedral surface and let n be the least commbn multiple of
the denominators n, of the vertex angles of S. We set H = Dn
if s # ¢ and H = z/n otherwise and we consider H as a sub-
group of the group 0(2) of isometrics of the circle C. Let
)1 i=1,...,v be the vertices of 8§, |

1. There exists a function £ on T(S\JAi i= ;,...,v])
with values in C/H which is invariant with respect to the
geodesic flow on T(S) and uniquely extends to a continuous

function on T(So).

2. For any § € C/H the level set Re c T(so) given

by the equation f£(v) = ¢ is a compact connected topological



surface. If 3S = @ then all the surfaces R, are homeomorphic.

8
If 3S # # then C/H = {0O,n/n] and se are homeomorphic to each.
other for 0 < § < w/n.

3. Denote by R that typical level surface in T(so).
R 1is a closed orientable surface and the restriction of the
projection p:T(So) + S to R is a ramified regular covering
with the group H of deck transformations., If 3S # Z the
exceptional surfaces Ro(e = 0) and Rl(a = q/n) may have

boundary. The projections p:Ri + S i=0,1 are ramified ccver-

ings of order n.

o)

and identify the fiber T(S)x with C. PFor any piecewise smooth
(0]

eurve y on S going from x

Proof: 1. Choose a reference point x, inside a face of S ‘

0 to x and avoiding vertices we
will define the parallel tranlation Lyzc > T(S)x along y.
Parametrize y by [0,1] and.let 0.<'t1 IR ¢ t:.n < 1 be times
when y hits an edge of S, \Denote by v(t) the

vector wé translate along y (v(0) = v is the initial condition}
For ti—l £« ti’ v(t) is sitting inside a face Pi c € which
detarmines the translation.. Let v(t;) be §n an edge b. 1If

b € 3S then v(ti) bounces off by the reflection in b. If b
iz an interior edge, we unfold Pi and the adjacent polygon

Pi+l along b on € and continue v(ti),into Pi+1 parallel

to itself. This defines v(t) for all t and we set Lyv'- v(l).



If we change y by 2 homotopy (leaving the ends fixed) LY
changes only when y crosses a vertex A or contacts (looses
contact) with a boundary edge b. At these moments Lyv
instanteneously rotates by the angle a at A or reflects
about b respectively. Henée for v e T(S)x’ L;lv € C changes
by the action of H under any homotopy of . Thus the image

1v mod H € C/H does not depend on the choice of y and we

:
set £f(v) = L;lv mod H. It is obvious from the definition that
f is invariant under the geodesic flow.

The function £ extends by continuity to all of T(s).
Let A be an interior vertex of S with the angle 2up/q.
The angular fungtion cn '.L‘(s)A defined as a limit from T(Sfx
as x - A will take valueg in [0,2n/q) = C/(Z/q), so it can be
pushed down to T(SO)A' Thus f which is obtained from the
angular functicn by further moding out C/(Z/q) + C/(Z/n) is
well defined on T(Sd)A. Analogous argument goes for a boundary
vertex. The pushed dGown function £ on T(So) is continuous
by construction and it ig¢ imvariant under the geodesic flow,

2 and 3, The level Seots RB G T(So) are closed hence compaét,
invariant under the geodesic flow and we have the projection
p:Re -+ S onto S for each §. Assum; first that as = g.

If x e S and x ié not a vertex the parallel translation

Provides an isomorphism of T(s)x onto C which is unique



modulo the action of Z/n on C. Thus Re.n T(S)x consists of

n points. Let P be a face of S. We can choose isomorphisms
q,x:'l'(s)x + C for x € P\(vertices] in a coherent way. Thus

p-1 (P\[vertices}) n Rg is a disjoint union of n copies of
P\{vertices} and p:Re > S is an unramified n-sheeted covering
over the complement to the vertices of S.

Let A be a v§rtex of S with the angle 2qi/j. When we
translate v € T(S) along a small loop around A it rotates by
2ni/3j which corresponds to 2n/j in T(So). Thus we have to go
around A 3j times to close the loop in R so p.l(A) n Re
consists of n/j points and at each of tham p is ramified with
the branching number 3j. If D is a small disc around A
then p-l(D) n RB is a disjoint union cf n/j discs thus Re is a
closed surface which is obviously connected and orientable.

The rotation group SO(2) naturally acts on C and on
C/(Z/n). Since SO(2) is abelian, by parallel translation we
make SO(Z).act on T(So). If a € SO(2) andj& is the corres-
ponding rotation of T(SO) then by construction h':ne » Re_*_u is
a homeomorphism. In particular Z/n acts on R0 by deck trans-
formations and the quotient is clearly S.

Let now 3S # #, so S is homeomorphic to the cloéed disc.
Let mS denote theipolyhedral surface which is obtained by
taking two copies of S and glueing them naturally along the

boundary. This operationAia called the doubling of S. Let

o be the natural orientation reversing involugior ~»f mS, let



g:ms‘» S be the natural projection and let ©, :T(mS) »> T(S),

- 6,3T(mS) > T(mS) be the induced mappings.
The action P of SO(2) on T(mS) is normalized by o, and
OuPoSs = P_q4° The group 0(2) is generate§ by S0(2) and the
reflection s about ni/n (or any other reflection). The
homomorphism a » Pg? 5 * Oy defines an action of 0(2) on T(mS)
which preserves the fibration of T(ﬁs) into invariant surfaces
Ké. The induced action on the parameter space C/(Z/n) is
isomorphic to the natural action of 0(2) en C/(q/nz. In
particular the subgroup D_ preserves'ﬁ9 v ﬁzn/n~o which for
8 ¥ 0, n/n is a disjoint union and ¢:1(Re). Hence R = K. For
¢ = 0, n/n the surfaces in the union coincide and we obt;in
éctions of D on ﬁb = w:l(Ro) and ﬁ;/n = ¢;1(R"/h) respectively.
The actions are isomorphic by the rotation P“/h:ﬁo-+ ﬁﬁ/n and
thus define the action of D on R “such that R/bh = S, Denote

by s two basic refleztions that generate D - 8y our con-

0°%1
struction R, = R/{si] i =0,1s0R, >S5 are n-sheeted (not

regular) coverings.

Corollary: If‘as = @ the covering p :R = S is ramified above
the vertices of S. The branching number at a vertex A with
angle 2ni/j is j. The surface R has a natural structure of
a Euclidean polyhedron so'that.p:R.+ S is a covering of

polyhedral surfaces. The angle at a vertex & of R above



A € S with angle 2qi/j is 2qi. The geodesic flow on T(R) goes
along invafiant surfaces which are isomorphic to Re via the
projection p,:T(R) > T(S). Analogous statements hold when
s £ 2.

The corollary has been proven in the course of proof of

Theorem 1.

Definition 4: A singular conformal meﬁric g on a Riemann
surface S is called almost flat if

1. g is nonsingular and flat on § with & £inite number
of punctures.

2. At any singular point A the metric has the form

-1

& -
g = C|z| dzdZ (¢ and C can depend on A),

Proposition 2: Let S be a compact connected pelyhsdral surface
with interior vertices A. i = 1,...,; with angleS‘di and boundary
vertices A; j = u+l,...,u+v with angles dj. Then the Euler

characteristic of S is given by
' +v -
(2) x(S) = X‘;.:al (1 - Gi/2n)+ (1/2)#;.F+1(1 dj/ﬂ)

If S is oriented there is a canonical complex structure on
S which makes S a Riemann surface (with boundary if as # 4)
and there is a canonical almost flat metric g on S whose

singular support is contained in the set of vertices of S.

dimo

Proof: By definition, y(S) = Eu(-l) vhere the summation

is over the cells of S, Let P be a face of S with p



sides. The contribution to x(S) from the edges of P is
-p = -n-l ziel Bk'- 2 where Bk are the plane angles of P.
Let 3S = #. Summing up over all faces and noticing that each
edge will appear twice we get for the edge portion of y(S)

- (2n)-125k - |faces| where the summation is over all
plane angles of S. Since ZBk = zg=x“i we obtain (2). If
?3s #lﬂ'consider the doubling mS and notice that y(mS) = 2y(S).
Comparing vertices of S and mS we immediately get the general
formula (2).

Let S be orientable and let 3S = #. We will define a
complex coordinate patch [(Uo’zb)} of § where ¢ runs
through the set of cells of S. For any ¢ we define Uo to
be the interior of the union of polygons containing o. If
dim ¢ = 1 or 2, U& is an open subset of & vwhich defines

z. Let ¢ be a vertex with angle 2nd and let P ,Pn be

EREE
polygons containing ¢. Cut Uo along ar edge and unfold it
into © around . Choose coordinate 2z im & seo that ¢
corresponds to g = 0 and the cut goes along the positive
real axis. The function z = zL/a is well definea on Uc and
gives an embedding Ua > €. It is straightforward to check
that the transition functions of this covering are complex-
analytic.

If 3S ¥ £ then the doubled surface mS has a complex

structure, The canonical invclution s of mS is an orientation
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reversing automorphism of the polyhedral surface mS hence s
is anticonformal in the canonical complex structure on mS.
Thus S = mS/{s) is a Riemann surface with boundary.

Define the conformal metric g in U by g = dz dz if-
g g c o o

-ldzod;; if o0 is a vertex. wit

2 - &
dim 0 and b -
g > abyg = | & (zaza)
the angle 2%, We will show that local metrics gc coincide
in the overlappings. Let (Ul,zl) correspond to a vertex with

angle & and let (Uz,zz) correspond to a polygon containing the

1/ -1 (1/a)-1 -1
vertex. Then z, =z, and dz1 =a "z, dz2 = @ (zl/zz)dz2
-1_l-a 2, - Gl .~ - .
z, d«z. Therefore |a| (zlzl) dzldzl = dzzdzz, i.e,

9, = 9, in U, n u,. Other cases are verified analogously. Thus

(gc) define the canonical almost flat metric g on 8.

corollary 1: Any orientation preserving automorphism ¢ of

a polyhedral surface S preserves the canonical complex
structure and the metric on S. If ¢ 1is orientation reversing
then it changes the complex structure to its conjugate and

preserves the canonical metric.

Proof: The complex structure on S is uniquely defined by
the Euclidean polyhedral structure and an orientation on S.
RPaversing the orientation conjugates the complex structure.
The metric g is determined by the Euclidean structure alone.

The corollary follows.
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Corollary 2: Let S be a rational connected simply-connected
polyhedral surface and let R be the closed surface constructed
in Theorem 1. Let Ai i=1,...,u be the interior vertices of

S with angles 2"mi/ni and let Aj J = utl,...,v be the boundary
vertices of S, Let n be the least common multiple of the

denominators.

l. The genus of R is given by
v _
(3) g(R) =1+ (n/2)%;_, (m -1)/n,.

2., Let 3S = g. The group H = Z/n preserves the canonical
complex structure and the almost flat metric on R. p:R > S
is a regular ccvering of Riemann surfaces. If 3S ¥ @ the group
H = Dn acts by conformal and anticonformal transformations
and preserves the canonical metric on R. We have S = R/H

as a Riemann surface with boundary.

Proof: 1, fcllows directly from (2j. 2. follows from
Corollary 1 and the proof of Theorem 1.

Let S, R, Ai i= i,.,.,v, mi/ni, n, H and p:R > S be as
in Theorem 1. By (3), g(R) > 1 so R = D/T where
D= if g(R) = 1 and D = H (the hyperbolic plane) if g(R) > 1.
Lef SO (D) (0(D)) denote the group of conformal (and
anticonformal transformations) of D. We have R = D/r where
r = ﬂl(R) is a discrete torsion-free subgroup of SO(D).

Denote by g:D + R the projection and let G ¢ 0(D) be the group
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of all liftings of h € H to transformations of D. Then G
acts in D properly discontinuously, I' is normal in G,

H =G/I', S = D/G and pgq:D + S is the natural projection.

Theorem 3: 1. The preimage (pq)-lb of any boundary edge b of
S 1is a union of geodesic segments in D and (pq)—las is a
union of geodesics. |

2. Let Ai be an interior vertex of S with angle 2nmi/ni
and denote by Pa the rotation of D around A ¢ (pq)-lhi
by Zn/ni. The group G is generated by xotations Pa and
geodesic reflections rj'(z € (pq)-laS),

3. There is a holomorﬁﬁic developing map p:D -+ T and a
homomorphism y:G > O(TC) (so(x) if 3as = @) such that
9egd = x(9)ep for any g € G. Let V C I be the preimage of the
set of vertices of S. Let A ¢ V be such ﬁhat<A1 = pgA has
angle 2mni/ni (ﬂmi/ni if Ai € 3S). The mapping ¢ is a covering,
the branching locus belongs to V, the branching number at A'
is m. . For any A € V and any geodesic { < (pq)-las. x(pA) is
the rotation around ¢(A) by the angle Z"mi/hi and X(rg; is
the reflection about ¢(4). Let x be the compasition of
and the projection O(€) » 0(2). Then Ker ; = [, i(c).a Z/n
if 3S = g and x(G) = D if 3S # #. The daveloping map ¢ and
the homomorphism y are unique up to a conjugation by any

element of O(L).
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Proof: 1. Let b be a boundary edge of S, let b' c R be

an edge above‘ b and let b be a connected curve in D such
that g:5 + b' is one-to-one. There is a reflection h ¢ H

that fixes b'. Lift h to K ¢ G that fixes 5. Since |
fixes B it is the geodesic reflection 1':‘c where 5 ¢ 4, is a
geodesic segment. Since rL projects onto the canonical reflec-
tion of mS about as,‘the geodesic ( projects onto 3S. Thus
(PQ)-laS is a union of geodesics'and for any g € (pq)-las,

rz € G.

2. Let G' be the minimal normal subgroup of G contain-
ing all rotations Pa and reflections rz. Then G' is the kernel
of the natural homomorphism G - “1(8) + 1, Since § is simply
connected, G' = G.
| 3. Let ;s = . One can order the vertices Al,...,hv
of S so0 that 6 has a prasentation
G = <gl,...,gv:g1 ‘e gv = l,g:ﬁz =li=1,,..,v.

Choose a reference polygon P, €S. A polygonal path on

is a gequence P

S starting at P ,...,Pn of faces where

G 0
Pi-l’Pi are adjacent for i = 1,...,n. Each polygonal loop

y = (Po,...,Pn = Po) defines a loop on s‘\{Al,...,Av] thus
defines an elemerit of tﬁ!S\[Al,...,Av]). The loop y 4is called

trivial if this element i5 identity. Two polygonal paths

¥ = (Py,...,P) and y' = (P,,...,P) are equivalent if their

difference is a trivial loop. The set of equivalence classes
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of polygonal loops with the natural composition law is a

group which is called the fundamantalvgroup of the polyhedron

S and denoted by w, (S,). Obviously m (S,) = = (S\(a),...,A ]).
By virtue of the assumption nl(s) = 0 the group ﬂl(sp) has a
presentation <gl,...,gv:gl---gv = 1> where 9; is a simple loop

around A..
i

Definition 5: Let S be an arbitrary closed polyhedral surface.
The universal covering polyhedron § of S is the set of

pairs (x,y) wheré X € PcS and y is an equivalence class of
polygonal paths (Po,...,P). S has an obvious polivnedral
structure and the natural projection §:§ + § is a covering of
Euclidean polyhedra. The group ﬂl(sp) naturally acts on s

by isometries and S = §/ﬁ1(sP).

It is obvious that the covering ﬁ:é + S is universal in
the usual sense, that is if P: R+ S is a covering of polyhedra
| there exists a covering p':§ <+ R such that pp'’ = ﬁ.

One can define in a similar way the universal covering
polyhedral surface § without the assumption 36 = # but we will
not need this here.

Let g, be an isometric embedding of P, into &. The

o)

identification By-= (Py,1) defines ¢ on (Py,1) ¢ 8, If

0
Yy = (?0,...,Pn) is a polygonal path we successively develop

polygons P, i = 0,...,n into € starting with 9o (Py). This
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defines :P » € for any polygonal path from Po to P. Equiva-
lent paths define the same embedding so ¢ is well defined

on 8. By definition ¢ is an isomorphism on any face of S.

Definition 6: ILet S be a closed rational connected simply-
connected surface. Let Ai i=1,...,v be the vertices of S
with angles 2ﬂmi/ni. Denote by G, "l(SP) the minimal normal
subgroup containing gzi i=1,...,v.

The universal rational covering & of S is the quotient
g = §/Go. By definition P:%5 + s is a regular covering with

the group ﬂl(s = "1(SP)/Cb of deck transformations.

o)
Let ¢:S » € be the developing map defined above. Let 9,
.be a generator cof nl(sp) and develop the corresponding sequence

Po,...,Pn = P, of faces into €. The vertex Ai will go into a

0
point m(Ai) € €. The polygon Pn will go into ¢(Po) rotated by
21711\:.L/n:.L around "(Ai)' Thus if we develop along 9, n. times we
come back to Q(PO). Therefore ¢:§ + € is invariant under the
action of Go and we can push ¢ down to & mapping of %, Denote
" the pushed down wapping by 3 also and call it the developing
map of §. oObviously g is uniquely defined by the initial
embedding ¢0:P0<+ . Such ®p is uniquely defined up to the
conjugation by any g € 0{TC). When we conjugate o by g, o

obviously changes by the same conjugation, By construction

v is equivariant with respect to the homomorphism x:nl(so) -+ sO(CT)



where x(g;) is the rotation by 2mm./n, around ¢(Ai)'

Both pg:D + S and §:§~+ S are universal coverings in the
sense of orbifolds therefore they ar; isomorphic regular
covérings and the construction above gives the promised equi-
variant developing map ¢:D - €.

Let now 3S # 4, let ¥ be the universal rational covering
of mS and let ¢:3 > € be a developing map. The canonical
reflection s of mS lifts to a reflection 8 of ¥ and
the composition @.5:5 > € is another developing map thus there
is x(5) € O(C) such that g.5 = x(S)«p. If P is a face of
4 whose edge b is fixed by § then @e3(P) is the mirror
image of p(P) with respect to g(b). Thus ¢(b} < ¢ = straight
line and x(8) = T, The isomorphism § = p takes § into
geodesic reflection rx where )\ < (pq)-las.

It remains to check a few prope;'}:ies of the.developing
map ¢. It is obviously holomorphic and ramified only at the
vertices of ¥, Let A be such and let the angle at Ai=m(pq)A
be 2“mi/ni’ Then the Euclidean angle at A 1is Znni and it
is preserved by ¢. Thus the branching number at A is m, .

The group yx(G) is generated by rotations by 2-mai/n1 about
®(A;) and by reflections about g(b), b € 28. Thug x(G) = zZ
if 38 = g and ;(GB = Dn otherwise. The composition G = ;(G) is
isomérphic to the projection G + H, 30 Ker y = T, This

completes the proof of the Theorem.
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2. Exceptional level surfaces

Throughout this section S is a polyhedral surface
satisfying assumptions of Theorem 1 and 3S # £. We recall
that T(S) is foliated into invariant level surfaces Re
0< 8< n/nand for g € (0,n/n) the surfaces Ra are homeo-
morphic to é closed surface R whose genus is given by formula
(3). Thus the topology of R is determined by the vertex
angles of S. The dihedral group Dn with the presentation

<{s s2 = (sosl)n = 1> acts on R by conformal and

» 8 :s2 =
0°°1°0 1

antiéonformal transformations and exceptional surfaces Ro, R

1
-~

are the quotients R/so, R/s1 respectively.

Theorem 4: 1. If n is odd then RO and R1 are homeomorphic

and p:aRi -+ 3S are homeomorphisms.

2. Let n be even. Let A ,A be consecutive verticers
v

l,c--

of S such that the denominators n, of their angles ﬂmi/ni are
even, For i =1,.,.,v denote by Ii the closed interval of 3S

-1
between Ai and A (A = Al). Then ci =p (Ii) n a(Ro ¥ Rl)

v+l

is a circle and p:Ci - Ii is the natural 2-fold covering. The

i+l

circles ci i=1l,...,v exhaust the boundary a(Ro U Rl).

Let Ii’ Ii+1 be two consecutive intervals and let

"mi/ni be the angle at the vertex Ai between them. Then c;

and c;+ belong to the same exceptional surface if and only

1



if n/ni is even.

3. If n is odd and g(R) is odd then R, and Rl are not

orientable. If n is even and VY is odd then Ro and R1

are not homeomorphic and at least one of them is not orientable.
If n is even and V = O then R, is closed and nonorientable
and R, has two boundary components. If n is even and V=1

then RO is closed and nonorientable and Rl has one boundary

component,

Proof: When n is odd all n reflections of D are conjugate
to each other, therefore R/sc and R/s1 are homeomorphic.
For any boundary segment b c 3S only two segments in the

preimage p-l(b) n (Ro v Rl) belong toc the boundary aRo u aRl.

They correspond to the baii going along b in the positive or

negative directions. Let bl and b2 be two consecutive boundary

segments and let nnr/nl be the angle between them., Assume first

that m, = 1. The ball going along b1 in the positive direction

will continue along b, if Ry is odd and will bounce back along

2

b1 if nl is even. Thus in the first casaea the segment above

b1 corresponding to the poesitive direction on b1 is joint to

the positive segment ahove b In the second case the two

2.
segments are disjoint and the positive b1 is joint to the

negative b, instead. Since the topology of the projection

1

p:Rn + S does not depend on the numerators m, the same holds
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vhen my > 1.

l. If n 4is odd then all denominators n, are odd. Thus
vhen we go along 3S in the positive direction the loop lifts
uniquely to aRo. The opposite loop lifts to aRl.

2. According to the previous argument the path formed
by going along Ii in the positive direction and returning in
the negative direction lifts to a circle Ci in R, U R,. The

0 1

circles C, and ci+ belong to the same component of R

i 1 0 1l
if and only if mi/ni = 2k/n for some X. Since m, is odd this

UR

happens if and only if n/ni is even.

3. It suffices to show that R, is not orientable, Assume

0
that R, is orientable. We have R, = R/s &nd cince s 1is

0 o
orientation reversing the number of connautsd components of
aRo must be of opposite pairity with g(R). Since ano is a
circle we come to a contradiction.

If n is even and VvV is odd then the number nb(aRo U aRl)
of connected components is odd so ﬂo(aRD} and “o(akx’ have
opposite pairities. Thus one of them hes the same pairity as g(R),
so that surface can not be orientable. Ifvy = 0 then 3R, U @R,
consists of two circles corresponding to the positive and |
negative directions along the boundary. $Since n is even

these directions belong to the same surface, say 31. Ify =1

then one of the surfaces (call it Ro) has no boundary, thus
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it can not be orientable.

Remark: If S 1is a polygon then T(so) is homeomorphic to the
three~sphere 83. In this case Theorem 1 and Theorem 4 provide
decompositions 83 = R x (0,1) y RO u Rl' Representations of
this kind have to do with knots and links in s3 and seem to

be well known to topologists,
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3. Flat polyhedral surfaces

Proposition 5: Let S be a polyhedral surface satisfying
assumptions of Theorem 1. The following conditions are
equivalent.

l1. g(R) =1

2. All vertex angles of S are 2n/ni and "/nj'

3. The canonical almost flat metric on R is flat,

4. The developing map g:D » T of Theorem 3 is a conformal
equivalence.

5. The natural mapping T(S) - T(SO)'is an isomorphism,

6. The geodesic flow on T(SO) has a unique ccntinuous

extension to 311 times.

Proof: If g(R) = 1 then by formula (3) all numerators m, = 1.
Singularities of the canonical almost flat metric on R (see
Theorem 3) correspond to vertices with mo > 1, If all m, = 1
the developing map ¢:D + € is conformal and since € is simply-
connected it is one-to-one. The natural mapping T(S) - T(SO)

is one-to-one everywhere except at the vertices wanere it is
m,-to-one. Tpis proves the equivalence of 1 through S5,

i
Around any nonvertex point of Re the geodesic flow in the

8

. : . i .
natural coordinates 1s z <+ z 4+ te °, Around a vertex A with
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m, °
angle 2gm, the flow takes form z -+ (2 j + teie)l/mj. The

3

vertex A has mj incoming and mj outgoing separatrices (see
fig. 1). Thus the flow "extends through A" if and only if

m, = 1,

Definition 7: A polyhedral surface S is called flat if any
of the conditions of Proposition 5 is satisfied.

We will classify flat bolyhedral surfaces. obviously
we don't tell befween isometric surfaces. Wé also don't tell
between S and S' if one is a dilation of another. Given
a polyhedral surface S we can subdivide some of its faces
into smaller ones without changing any of relevant properties
of S. Such operation might create vertices with zngle 2g

inside S or w on 3S. We call them fictitious vertices,

Definition 8: 1. Polyhedral surfaces S and S' are equivalent
if one can be obtained from another by dilation and adding and
erasing some vertices and edges.

2, Rationai polyhedral surfaces S and S' are weakly
equivalent if there exist a conformal equivalence £:R > R’
commuting with the action of H and H'.

3. Rational polyhedral surfaces S and S' are equivalent

and S/

in the sense of orbifolds if S 0

0 are isomorphic orbifolds.

bbviously 1l implies 2 implies 3.
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Theorem 6: Let S be a flat poliyhedron satisfying assumptions
of Theorem 1.

1, 23S = fg. Then either S is_equivalent to a tetrahedron
with vertex angles ¢ or S is equivalent to a doubled

triangle. Possible triangles are 90°, 450, 45°; 900, 60°, 30o

and 60°, 60°, 60°,
2. 3S # f. Either S is equivalent to a doubled rectangle

o

with one slit side or to the doubled 900, 457, 45° triangle

slit along the hypothemuse or 2 side or ¢ is equivalent to

the double 90°, 60°

s 30° triangle slit along the longer side
or S is a polygon. Possible polygons are rectangles and the

three triangles of 1.

Proof: A fla! polyhedral surface has the form S = /G where
G 1is a discrzte subgroup <=f O(C). There are 17 such groups up
to isomorphism which correspond to 17 types of flat orbifolds,
The condition-ul(S) = 0 ziagles 12 out of 17. A case by case
verification shows that these are the twelve possibilities listed
in the Theorem. Thus the Theorem gives a compl-te list of flat
.polyhedral surfaces uvp to weak equivalence. An elementary
argument which we omit shows that any flat polyhedral surface
is in fact equivalent tc¢ cne in the list,

‘Only rectangles, double slit rectangles and the tetrahedra

have moduli. For rectangles and double rectangles eguivalence
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coincides with the weak equivalence. Equivalence classes are
determined by the ratioc r of the sides, for rectangles
l £ r, for double rectangles 0 < r.

The case of tetrahedra is more interestihg. The surface
R oOf a tetrahedron S is of course a topological torus.
The group H = Z/2 is generated by a 180° :otation of the torus.
As a Riemann surface R 1is the quotient of € by a lattice,

i.e. R is an‘elliptic curve.

Theorem 7: Equivalence classes of tetrahedra with vertex
angles ¢ are in one-to-one correspondence with triangles (up
to similarity). Tetrahedra S and S' are weakly equivalent |
if and only if the corresponding elliptic curves R and R' are
conformally equivalent.

The projection g: R+>S is identified with the canonical
2-£f0ld covering of Riemann sphere given by the Weierstrass
p-function.

Let K be the upper half-plane and let Z/3 be the subgroup

-11
-10

from the tetrahedra into elliptic curves is naturally identified

Of PSL(2,Z) generated by ( ). The mapping £:{S} - (R]

with the covering £:E/(Z/3) -+ E/PSL(2,Z).

Proof: Let A, B, C, D, be the vertices of S. Slit S along

the edges AB, AC, AD and let the faces ABC, ACD, ABD fall down
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on thé plane of BCD. The poiygon that we get there is in fact
a triangle AA'A", The triangle BCD is formed by the midpoints
of AA'A", It follows that all four faces of S are equal
triangles and AA'A" is similar to the face of S. The con-
struction goes the other way too and establishes a one-to-one
correspondence between tetrahedra and triangles,

Let AA'A"A"™ be a parallelogramm built on AA'AY and let
L Dbe the lattice generated by the vectors AA' and AA", The
group G corresponding to S is generated by 180° rotations
in the vertices of L/2, thus G is complétely determined by
L. Therefore the weak equivalence class of § is “Z=termined
by the elliptié curve R = /L. The projection g:R =+ S is
identified with ¢/L 212 €t/G, the latter being the canonical
covering of elliptic curve onto the Riemann sphere given by
the Weierstrass p-function.

The covering B/Z/3 - H/PSL(2Z) comes from the correspondence:
tetrahedrop S - triangle AA'A" - parallelogramm AA'A*A'™ -
lattice L. The group Z/3 accounts for 3 possible parallel-
ogramms that can be built on a triangle.

In view of Theorem 7 it is interesting tc study the corres-
pondence between equivalence classes of poulyhedral surfaces
S and Riemann surfaces R. We will return to these gquestions

in a future publication.
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4. Examples

Using Theorem 4 we determine the exceptional surfaces for
eight types of flat polyhedral surfaces with boundary.
1. Slit double rectangle. Two boundary vertices with

n, = nz =1, Thus V=0 and n = 2, By Theorem 4, 3) RO is

closed and nonorientable and Rl has two circles on the boundary.

Therefore Ro is the Klein bottle and R1 is the cylinder.

2. Double 90°, 45°

, 45° triangle slit along the hypothe-

nuse. We have n=n,=n=yvs= 2. By Theorem 4 both Ro and

R1 have one circle on the boundary, thus ﬁb = Rl = Mobius

band.
3. Same double triangle slit along a side. We have n, = 1

nz « 2, n=4, V=1, By Theorem 4, 3) Ry, = Klein bottle,

31 = Mobius band.

(o]

4. Double 90°, 60, 30° rectangle slit along the long

8ide. Heren, = 1, n_. = n =3, Since n is odd, RO = R1 =

1 2

Mébius band.

S. Rectangle. Here n, =,..=n, = n = 2, Four segments o:

1 4
the boundary correspond to 4 circles of aRO u aRl. - Consecutive

eircles belong to different surfaces, hence Ro - R1 = cylinder.

6. 900, 4504 4s° triangle. Here n = n

1 2 3
v = 3, Two circles corresponding to the sides belong to

=2, n an =4,

the same surface, thus Ro = cylinder and Rl = Mobius band.
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(*]

7. 90°, 60°, 30° triangle. Heren, = v =2, n_ = 3,

1 2

n3 = n = 6. Two circles belong to different surfaces, thus

Ro and Rl are Mobius bands.

8. Equilateral triangle. Here n = 3 therefore Ro = R1 =

Mobius band.
Information that serves as data in Theorem 4 does not

suffice in general to determine Ro and Rl' The simplest example

is diamond (120° - 60° parallelogramm) and the 120° - 60°

trapezoid. For both, n = 3 and g = 2. By Thecrem 4, RO and

R1 are homeomorphic and have one circle on the boundary. A

direct verification shows that for the diamond Ro = handle (torus

with a hole) and for the trapezoid RO = Klein beottle with a

hole.
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The flow around a

vertex with mi = 2,



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 

