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Abstract

Our aim is to find the irreducibility criteria for the Koopman representa-
tion, when the group acts on some space with a measure (Conjecture 1.5).
Some general necessary conditions of the irreducibility of this representa-
tion are established. In the particular case of the group GLy(200,R) =
l'gn GL(2n — 1,R), the inductive limit of the general linear groups we prove
that these conditions are also the necessary ones. The corresponding mea-
sure is infinite tensor products of one-dimensional arbitrary Gaussian non-
centered measures. The corresponding G-space X, is a subspace of the space
Mat (200, R) of infinite in both directions real matrices. In fact, X,, is a col-
lection of m infinite in both directions rows. This result was announced in
[20]. We give the proof only for m < 2. The general case will be studied
later.
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1. Introduction

1.1. Description of the dual for locally compact groups

The main problem in the representation theory for a locally compact
group G is to find the set of all unitary irreducible representations of G up to
unitary equivalence and to decompose reducible representations into a direct
sum or direct integral of irreducible. This set is called the unitary dual of
G and is denoted by G. For many locally compact groups this problem has



been solved, but for some particular cases it remains open, for example, for
the group SO(p,q). To find the dual for locally compact groups G, one can
use reqular, quasireqular or induced representations. In the case of locally
compact groups all these constructions are based on the existence of the
invariant Haar measure on the initial group G or some G-quasi-invariant
measure on the corresponding homogeneous space H \ G, where H is a closed
subgroup of GG or on some general G-space X.

1.2. Regular, quasiregular and induced representations for infinite-dimensional
groups

It is well known that there is no general method to describe G for infinite-
dimensional groups G. Our aim is to start the development of the harmonic
analysis on infinite-dimensional groups.

In the previous articles we have generalized the notions of the regular,
quasiregular and induced representations for infinite-dimensional groups by
constructing G-quasi-invariant measures on suitable completions of the cor-
responding objects (groups, homogeneous spaces and G-spaces). In addition,
we study the irreducibility of the constructed representations in the frame-
work of the Ismagilov conjecture (see 1.1).

In this article we consider the case when the infinite-dimensional group
G, the inductive limit of the general linear groups, acts on the space of m
infinite rows equipped with the Gaussian measure. We establish the criteria
of irreducibility of constructed representations (see Theorem 2.1) in terms
of the corresponding measure and express some general conjectures dealing
with the irreducibility. These conjectures are natural generalization of the
Ismagilov conjecture (see Conjecture 1.5).

Recall some previous constructions. Regular representations for infinite-
dimensional groups were defined and studied in [14, 15, 16]. Due to the
result of A.Weil [30], there is no invariant measure on non locally compact
groups. Therefore, to construct an analogue of a regular representation of
an infinite-dimensional group G' we can, for example, construct a G-quasi-
invariant measure on a suitable completion G of the initial group G. The
regular representation of an infinite-dimensional group can be irreducible,
which never happens for a locally compact group, except for the trivial one!

To define a quasireqular representation we should construct a G-quasi-

invariant measure on a suitable completion H \ G of the homogeneous space
H\ G [17, 18, 19].



To construct the induced representation for infinite-dimensional groups
we need to extend by continuity the representation of the subgroup H to the
corresponding completion H. The general construction of the induced rep-
resentations and the beginning of the orbit methods for infinite-dimensional
group of upper triangular matrices were done in [22].

To construct the regular representation for an infinite-dimensional group
G, first we should find some larger topological group G' and a measure p
on G such that G is a dense subgroup in G, and pf ~ p for all t € G,
(or pft ~ p for all t € G), here ~ means equivalence. The right and left
representations T+ T . G — U(L*(G, u)) are naturally defined in the
Hilbert space L2(G, ) by the following formulas:

(T ) (@) = (dp(at) fdp(x)) ' f(at),

(TP f)(@) = (dp(s™ ") fdp(a) 2 f(s™ ).
The right regular representation of infinite-dimensional groups can be irre-
ducible if no left actions are admissible for the measure p, i.e., when plt 1 p
for all t € G\{e}. In this case a von Neumann algebra A7 generated by
the left regular representation 7%* is trivial. More precisely:

Conjecture 1.1 (Ismagilov, 1985). The right reqular representation

TR" . G — U(L*(G, p))
1s irreducible if and only if

1) Pt L p vt € G\{e}, (where L stands for singular),
2) the measure u is G-ergodic.

This conjecture was verified for a lot of particular cases. In the general case,
it is an open problem. In the case of a finite field IF, we need some additional
conditions for the irreducibility [21].

1.3. Koopman representation
Let a : G — Aut(X) be a measurable action of a group G on a mea-
surable space (X, u) with G-quasi-invariant measure pu, i.e, u® ~ p for all

t € G. With these date one can associate the representation 7®*X : G —
U(L*(X,du)), by the following formula:

(57 ) () = (dplorr () /dp(2)) 2 o (), [ € (X, p0). (1)

In the case of an invariant measure this representation called Koopman’s
representation, see [13]. We would like to solve the following problems:
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Problem 1.2. Find criteria of irreducibility of the representation 7" de-
fined by (1.1).

Problem 1.3. Find the description of the commutant of the von Neumann
algebra generated by representation w**~ when representation is reducible.

To study properties of the Koopman representation, in particular, the
irreducibility, we need some conjectures to describe the commutant of the von
Neumann algebras generated by this representation. The Schur—Weyl duality
and the Dixmier commutation theorem below give us a very good hint for
such a conjecture, see Conjecture 1.6 in a general context.

1.4. Schur-Weyl duality

Schur-Weyl duality [25, 26, 31] is a typical situation in representation
theory involving two kinds of symmetry that determine each other.

From [32]: “If V is a finite-dimensional complex vector space, then the
symmetric group S, naturally acts on the tensor power V" by permuting
the factors. This action of S, commutes with the action of GL(V), so all
permutations o : V" — V@ are morphisms of GL(V')-representations. This
defines a morphism C[S,] — Endgr)(V®"), and a natural question to ask
is whether this map is surjective.

Part of Schur-Weyl duality asserts that the answer is yes. The double
commutant theorem plays an important role in the proof and also highlights
an important corollary, namely that VV®" admits a canonical decomposition

ver = S,
A

where A\ runs over partitions, V) are some irreducible representations of
GL(V), and Sy are the Specht modules, which describe all irreducible repre-
sentations of 5,,. This gives a fundamental relationship between the repre-
sentation theories of the general linear and symmetric groups; in particular,
the assignment V' — V), can be upgraded to a functor called a Schur functor,
generalizing the construction of the exterior and symmetric products.”

Let dimV = m then GL(V) = GL(m,C). The abstract form of the
Schur—Weyl duality asserts that two algebras of operators on the tensor space
generated by the actions of GL(m, C) and S, are the full mutual centralizers
in the algebra of the endomorphisms End¢(C" @ C" @ --- @ C™).



Denote by «a and f the corresponding actions of S,, and GL(m, C) in the
group of all automorphisms Aut(C" @ C" ® - -- @ C™):

a:S, - Aut(X), p:GL(m,C)— Aut(X).

Let M’ be the commutant of the subset M in the von Neumann algebra
B(H) of all bounded operators in a Hilbert space H:

M'={B € B(H) | [B,a] =0Va € M} where [B,a] = Ba—aB. (1.2)

Set M; = («(S,))" and My = (5(GL(m,C)))” then the Schur-Weyl duality
states that M| = My hence, M} = M.

In [27] the authors extend the classical Schur—Weyl duality between rep-
resentations of the groups SL(m,C) and S, to the case of SL(m,C) and the
infinite symmetric group S.. In [24] the authors extend Weyl results to the
classical infinite-dimensional locally finite algebras gl_, $lo, $Po; 50c0-

1.5. The Dixmier commutation theorem, locally compact groups

Let G be a locally compact group and let A be the right invariant Haar
measure on G, i.e., hf* = h for all t € G. Consider the left L and the right
R action of the group G on itself:

Ri(x) = at™!, Ly(v) = sz, x,t,s € G.

The right and the left regular representations of the group G are defined in
the Hilbert space L?(G, h) by

(pef)(@) = f(at),  (Af)(x) = (dh(s ') /dh(x)) P f(s7'2), | e LX(G,h),
where dh(s™'z)/dh(zx) is the Radon-Nikodim derivative.

Theorem 1.4 (Dixmier’s commutation theorem [5]). The commutant
of the von-Neumann algebra generated by the right reqular representation is
generated by the left reqular representation. More precisely, let p, A : G —
U(L*(G, h)) be the right and the left regular representations of the group G,
and let AP = (p; |t € Q)" and A = (\s | s € G)" be the corresponding von
Neumann algebras. Then

(A7) =A*  and (A =A°. (1.3)



1.6. G-action and irreducibility of the Koopman representation
In both examples we have two commuting actions of the group G; and
G9 on the same space X. Let Zg(H) be a centralizer of the subgroup H in
the group G:
Zo(H) = {g € G| {g,a} = ¢ Ya € H},

where {g,a} = gag~'a™!. In the first example, we have two commuting

actions a and (3 of the groups G; = S, and Gy = GL(n,C) on the space
X such that Zyuw(x)(a(G1)) 2 B(G2). In the second example, we have two
commuting actions R and L of the same group G in the space X = G. In this
case we have {R(G), L(G)} = e or Zaue)(R(G)) 2 L(G). In the general
case, if we have only one group G acting via « on the space X, the second
group should be the centralizer of the group a(G) in the group Aut(X), i.e.,
it is natural to consider G = Zau(x)(a(G)).

Come back to the Koopman representation (1.1). Consider the centralizer
Zpue(x)(a(G)) of the subgroup o(G) = {a; | t € G} in the group Aut(X)
and its subgroup G5 defined as follows:

Gy = ZXut(x)(O‘(G)) = {g € Zauy(x)((G)) | p? ~ H}-

Define the representation T' of the group G5 as follows:
(T,/)(@) = (dulge) /du(x) 2 (g). (1.4)
Consider two von Neumann algebras
W(G) = (m |t G, A(Ga)=(T,|g¢€GCa).

The conditions 1) and 2) below are necessary conditions of the irreducibility
of the representation 7®*X. It would be interesting to know when they are
sufficient, i.e., when the following conjecture is true

Conjecture 1.5 (Kosyak, [16, 18]). The representation
X G — U(LA(X, 1)

1s wrreducible if and only if

1)y L p Vg € Zawx)(a(G))\{e},
2) the measure u is G-ergodic.

Recall that a measure p is G-ergodic if f(au(x)) = f(z) p a.e. for all t € G
implies f(z)=const y a.e.(almost everywhere) for all functions f€ L*(X, u).
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Conjecture 1.6. The commutant of the von Neumann algebra generated by
representation w (1.1) of the group G coincides with the von Neumann algebra
generated by the representation T (1.4) of the subgroup Go in the centralizer
Zau(x)(a(G)):

(A™(G)) = AT (Ga).

For a lot of particular cases Conjecture 1.6 holds, but in general it fails.
Below we give several example for which Conjecture 1.6 fails.

1.7. Counterexample to Conjecture 1.6

1.7.1. Case X = S,_1\ S,

Example 1.1. Consider the group S,, acting on the homogeneous space X =
Sy—1\Sn. For corresponding right quasiregular representation of .S, in L*(X)
Conjecture 1.6 fails.

ProOF. To simplify details set n = 3. For general n the proof is the same.
Let 01,09 be two generators of the group Sj:

2 2
Sy = (al,ag | o] =e,05 = e, 010901 = 020102>. (1.5)

Let the group S5 is generated by oy, then the space X consists of three classes
xg = {e,01}, x1 = {09,0109}, x3 = {0901,010901}. The right action of Ss
on the space X is as follows:

To01 = To, X101 = T2, T201 = Tq,

To02 = T1, X102 = Tg, T202 = T3.

Therefore, in L?(X) the corresponding representations for T, and T,, are as

follows: oo .
T, :<001> T :<100).
o1 010/’ 72 001

The representation T is reducible, since the vector eg+ e; + €5 is invariant. It
splits into one-dimensional and two- dimensional irreducible representations.
But the group S; acts on X by permutations so, its centralizer is trivial. [J

1.7.2. Case X = O(3)\O(3)

Example 1.2. Consider the group O(3) acting on the homegeneous space
O(3)\O(3) =~ S2. The centralizer of O(3) in the group of all automorphisms
Aut(S?) consists of two elements I and —I by Lemma 1.7 but the representa-
tion of O(3) in L*(X) is an infinite direct sum of irreducible representations
generated by eigenvectors of the Laplace operator on S?, see [8, Chapter
1,83]. Therefore, Conjecture 1.6 fails.



1.7.3. Centralizer of SO(2k + 1)

Let n > 0, and SO(n) be the group of all real orthogonal n x n-matrices
with determinant 1. This group effectively and transitively acts n — 1-
dimensional sphere S™~ !, and so it can be regarded as a subgroup of the
group H(S™1) of all homeomorphisms of S™~1.

Let I be the unit matrix. Then —1I is an “antipodal” map, that is —I(p) =
—p for all p € S"~!. Evidently, I and —I commute with all elements from
SO(n), and so {£I} belongs to the centralizer of SO(n) in O(n).

Lemma 1.7. Suppose n = 2k + 1 is odd. Then the group {£I} is the cen-
tralizer of SO(2k + 1) in all the group H(S?*).

PROOF. (given by S. Maximenko.) Suppose h € H(S""!) commutes with all
matrices A € SO(n), that is ho A(z) = Aoh(x) for all z € S"~. We should
prove that then h = +1.

First we claim that h(z) € {£z} for each x € S""!. Indeed, since n is
odd, for each x € S"! there exists A € SO(n) such that {£z} is the set of
all fixed points for A. Hence

h(x) = ho A(z) = Ao h(x),

that is h(z) is a fixed point for A, and so h(x) = +=x.

Now, suppose h(x) = ez for some ¢ = +1. We claim that then h = 1.
Let F = {z € S" ' | h(z) = ex} be the set of points where i coincides with
el. We will show that F is a non-empty open-closed subset of S" !, which
will imply that F' coincides with all of S™~!.

As shown above xz € F, so F' # @. Moreover, as h and —I are contin-
uous, F' is closed. It remains to show that F' is open. Let U be a small
neighbourhood of z such that U N —U = &, that is U does not contain
antipodal pairs. Since h is continuous and h(x) = ex € €U, there exists a
neighbourhood V' of « such that h(V') = eU. Then for each y € V we have
that h(y) € {£y} NelU = ey. In other words, h = el on V, and so V C F.
This proves that F' = S™1. O

2. Representations of the inductive limit of the general linear groups
GL()(ZOO, R)

2.1. Finite-dimensional case
Consider the space X,,, = {:z: = Z1gk§m Z—ngrgn Tpr By Ty € R},

m,n

with the measure (see (2.4)) I ) () = RJL) D—n<r<n H(bprar,) (Trr). On the
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space X, acts two groups GL(m,R) from the left and GL(2n + 1,R) from
the right and these actions commute. Therefore, two von Neumann algebras
2l; and Ay ,, in the Hilbert space L?( X, , /L?ZZ)) generated respectively by the
left and the right actions of the corresponding groups have the property that
A7 C Ay, We study what happens when n — oco. As the limit we obtain
some unitary representation of the group GLy(200,R) = lim . GL(2n—1,R)
(see below). In generic case, this representation is reducible, ’namely, if there
exists a non trivial element s € GL(m, R) such the the left action is admissible
for the measure o a)s 1-€-, (;%L’a))LS ~ W(pq)- But when no non-trivial left
actions are admissible, i.e., when (M?Z,a))LS L pfp 4 for all s € GL(m, R)\{e}
we prove that this representation is irreducible Theorem 2.1. Here, as in the
case of the regular [14, 15] and quasiregular [17, 18] representations of the
group Bj we obtain the remarkable fact that the irreducible representations
can be obtained as the inductive limit of reducible representations!

2.2. Infinite-dimensional case

Let us denote by Mat(200,R) the space of all real matrices infinite in
both directions:

Mat (200, R) = {x = Z TnEn; Thn € R}v (2.1)

kn€Z

where Ey,, k,n € Z are infinite matrix unities.

The group GLy(200,R) = lim GL(2n—1,R) is defined as the inductive
limit of the general linear groups’Gn = GL(2n — 1,R) with respect to the
symmetric embedding * (2.2):

GL2n—1,R) >z — i) () = 24+ E_(ny1)—m+1) T Ent1n+1 € GL(2n+1,R).

(2.2)
We consider a G-space X,,,, m € N as the following subspace of the space
Mat (200, R):

m

X = {m € Mat(200,R) [z = Y ZxknEkn}. (2.3)

k=1 n€eZ

The group GLg(200,R) acts from the right on the space X,,. Namely, the
right action of the group G = GLg(200,R) is correctly defined on the space
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X,, by the formula Ry(x) = xt™!, t € G, v € X,,. We define a Gaussian
noncentered product measure p™ = I,y O the space X, :

m

H(b,a) (33) = @1 Onez /’L(bkn:akn)<xkn>’ (2'4)
where
d/"L(bk'n:akn)(mkn) = (bkn/ﬂ)l/2 exp(—bgn (Thn — akn)Q)dxkn
and b = (bgn)kms bkn > 0, @ = (Qkp) ks aen € R, 1 < k < m, n € Z. Define
the representation T*™ of the group GLg(200, R) in the space L?(X,,, u&"a))
by the formula:

(1)) = (A (0) iy () P 1), € B2, ).

Obviously, the centralizer Zau(x,,)(a(G)) C Aut(X,,) contains the group
L(GL(m,R)), i.e., the image of the group GL(m,R) with respect to the left
action L : GL(m,R) — Aut(X,,), Ls(z) = sz, s € GL(m,R), x € X,,. We
prove the following theorem for m < 2.

Theorem 2.1. The representation TTH™: GLg(200, R) — U (L*(X,,, 1{b a)))
is irreducible if and only if (u@a))Ls L pfy 0y Vs € GL(m, R)\{e}.

Remark 2.1. Any Gaussian product-measure i ,» on X, is GLo(200, R)-
right-ergodic [28, §3, Corollary 1]. For non-product-measures this is not true
in general.

To study the condition (ufy )" L pfy, for t € GL(m,R) set

t = (trs)—y € GL(m,R), B, = diag(bin, ban, ..., byun), Xn(t) = BY2tB1/2,
(2.5)

Let M;llg;: (t) be the minors of the matrix ¢ with i,1s,...,7, rows and

1572y -, Jr columns, 1 < r < m. Let d,5 be the Kronecker symbols.

Lemma 2.2. For the measures N?E,a)» m € N the relation (NE’Z@))Lt L 'U’Z)L,a)
vVt € GL(m,R)\{e} holds if and only if

II mdet T+ XOXa() + DD b (Z(tm _ 57,8)@8”) = o0,

nez neZ r=1 s=1

where det (I + X (t)X,(t)) =

L+ > (M- (X (1))

r=1 1<i1<i2<...<1, <m;1<j1 <jo <...<jr<m

11



This lemma will be proved in Section 4.3.

Remark 2.2. The idea of the proof of the irreducibility. Let us denote
by 2™ the von Neumann algebra generated by the representation T%#m
A" = (TF*™ | t € G)'. For a = (o) € {0,1}" define the von Neumann
algebra L2°(X,,, ™) as follows:

L& (X, ™) = (exp(itBZ) | 1<k <m, teR, ne€Z)",

o Tkn, if Q. =0
Where Bkn:{ Dkn lf ap = 1

The proof of the irreducibility is based on three facts:
1) using the orthogonality condition (™))%t L p™ for allt € GL(m,R)\{e}

. R R
we can approximate by generators Ay, = A" = %TI s ;Elln |li=o the set of op-

erators (By.,)i,, n€Z for some a € {0,1}™ depending on the measure pu™,
2) the subalgebra L2(X,,, u™) C 2A™ is a maximal abelian subalgebra in
A,
3) the measure u™ is G-ergodic.
Here the generators AkRT’Lm are given by the formulas:

AkRﬁm:ZxrkDrm k,n €Z, where Dy, = 0/0Tkn — bin(Thn — Arn)-

r=1

Remark 2.3. The fact that conditions (™) L ™ for all t € GL(m, R)\{e}
implies the possibility of the approximation of x, and Dy, is based on some
completely independent statement about the properties of projections of two
infinite vectors f = (fi)ren and g = (gx)ren such that f, g, f + sg & Io
for all s € R (Lemma 4.10). This lemma is a key part of the proof of the
irreducibility of the representation.

Remark 2.4. Similarly, for the “nilpotent group” BY' and the infinite prod-
uct of arbitrary Gaussian measures on R™ (see [2]) the proof of the irre-
ducibility is based on another completely independent statement namely,
Hadamard — Fischer’s inequality, see Lemma 2.3.

Lemma 2.3 (Hadamard — Fischer’s inequality [9], [10] ). For any pos-
itive definite matriz C € Mat(m,R), m € N and any two subsets o and
with § C «, B CA{1,...,m} the following inequality holds:
Mo MO0 || 4@ AU | g
M(aUB)  M(B) Alanp)  AB) |

12



where M (a) = M2(C), A(a) = A%(C) and & ={1,...,m} \ a.

For details see [9, p.573], [10, Chapter 2.5, problem 36].

The conditions of orthogonality u** L p with respect to the left action of
the group B(m,R) on X™ were expressed as the divergence of some series,
SE (1) = o0, 1 < k < n < m. Conditions of the approximation of the
variables xy, by combinations of generators A,, were expressed in terms of
the divergence of another series ¥,. The proof of the fact that conditions
SE (1) =00, 1 <k <n < m imply conditions ¥, =c0, 1 <k <n<mis
based on the Hadamard — Fischer’s inequality.

3. The proof of the irreducibility

3.1. The casesm =1

As before, let us denote by (f,, | n € N) the closure of the linear space
generated by the set of vectors (f,)nen in a Hilbert space H. We shall write

Hv.a) = H{ba)
In the case m = 1 the generators Aﬁ;l have the form

A = 24Dy, kn €L
The following lemmas are proved in [1]

Lemma 3.1. The following three conditions are equivalent:
(i) (hwa)™ L ppa) for allt € GL(1,R)\ {e},
(1) (Hp.a)" 210 L pip,0),
(iti) Str(p) =437,z binai, = .

Lemma 3.2. For k,m € Z we have
Tiptiml € (AT ARY = 20, D? 1 | n € 7).
Lemma 3.3. For any k € Z we have
Tl € (xr1,1 | n € Z) < SE (1) = oo

So, operators x1y, k € 7Z are affiliated (see [6]) with the von Neumann algebra
2! (notation w1 n A') which completes the proof of the irreducibility for
m = 1.
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4. The proof of the irreducibility in the cases m = 2

In the case m = 2 the generators Ay, := A,f;f =

form:

Akp = 15 D1y, + 295, Day,

T4tk |t=0 have the

k,n € Z.

Lemma 4.1. Three following conditions (i)—-(iii) are equivalent for the mea-

sure L = u%bﬂ):

(i) ptt L p for allt € GL(2,R) \ {e}, where Ly(z) = tx, v € Xo;

(@) pbosem Ly, VEe R0},
(b) pheweran Loy, Ve R\{0},
(id) 4 (c) pheecrP 1oy, V€ R,
(d) uLeXP(tEm)Pz 1L ou, VteR,
(e) plr@o 1y V1_(¢,s) € GL(2,R) \ {e},
(CL) SILQ(M) = 00,
(b) S5 (p) = oo,
(i) () Sz (wt)=o00,  VtER,
(d) Sy~ (mt)=o0,  VLER,
(e) Xia(r-(¢,8)) =00, Vs>0,¢¢€[0,27),
where ) .
L Ykm 2
S0 = 2 (G k). K (a.1)
MEZ
SL,— _ t2 bkm bkm 9 2 4.9
kn (#»t)—z %ﬂLZ?(— g + tnm)”, (4.2)
meZ mEeZ
Y1o(7-(, 8)) = sin ¢21
bln b2n
¥ ( N/ \/ 4.
b2n bln ( 3)
Yo (1-(9,5)):= ;Z (4 sin? gbln—l—él cos? 2341)2”) (sin galn—sz coS %agnf,
(4.4)

1 ¢

exp(tElg) =1+ tElg = ( 0 1

1
> s exp(tE21) = [+tE21 = ( t

14



-1 t 1 0
exp(tEy,) Py = < 0 1 ) , exp(tEyn )P, = < ;1 ) )

B cos¢ s sing (=10 (1 0
T_(¢’S)_(s_zsin¢ —cosqﬁ) cmdPl—( 0 1)’P2_<0 —1)'
Moreover, (it)(8) < (iii)(t) for t = a,b,c,d,e.

Remark 4.1. We observe that

[ cos¢ s*sing\ (s O cos¢ —sing \ (st 0

T(¢’8)_(325in¢ —cosgb)_(O 51)(sin¢ cos ¢ >< 0 S)PZ'

Remark 4.2. We note [12, Chapter V ,§8 Problems, 2, p. 147] that every
element of SL(2,R) is conjugate to at least one matrix of the form

a 0 1t -1 cos¢ sin¢@
<0 a‘1>’a7£0’ (O 1)’ ( 0 —1)’ (—sin¢ cos¢>'

Remark 4.3. The three following conditions are equivalent:

(4) phe=@9 1y, ¢ €[0,21), s >0,
(i) X(7_(,8)) =sin? ¢%1(s)+35 (7_(, 8)) =00, ¢ € [0,27), s >0,
(ZZZ) 21(8) —|—22(Cl,02) = 00, s>0, <Cl,CQ)ER2\{O},

where 3 (s) is defined by (4.3) and

¥5(Ch, Cy) = Z(Clzbm + CgbZn)(Claln + 02(1211)2-

neL

PROOF. In Section 4.3 we shall show that (i) < (i7) (see (4.66)), i.e., that

ph=@0 1 N5(1-(6,8)) = sin® ¢X1(s) + 35 (7-(¢, 5)) =

To prove (i1) < (iii) set

Sin%:Sin 2(51112 2"‘3 cos? gb)*lﬂ, cos g s? cos g( 2 ¢+s cos” ¢)’1/2
then using (4.4) we get
35 (7-(¢, 8)):= (sin’ % + s* cos? %)24% (sin2 §b1n+5 8 cog2 yb%) >

15



(sin %aln—cos %agn)2 ~ Yo(1h) := Z (sin2 %bln + cos? %bgn) X
neZ

(sin %aln — COS %(Zzn)Q :E(Cl, CQ) :Z(Cfbln -+ C’gbgn)(Claln + CQCLQTL)Z.

nel

O

4.1. Some orthogonality problem in measure theory

Our aim now is to find the minimal set of conditions of the orthogonality
plt L pforallt € GL(2,R)\ {e}. To be more precise, consider more general
situation.

Let a : G — Aut(X) be a measurable action of a group G on a measurable
space (X, B, u) with the following property: pu® L p for all t € G\ {e}.
Consider a subset G () in the group G having the following property:

if ™ LpVteGH(p) then p®™ L uVte G\ {e}. (4.5)
Problem. Find a minimal subset Gy (¢) having the property (4.5).

Example 4.1. Consider the nilpotent group B(m,R) of upper triangular
real m X m matrices with units on the diagonal acting on the space X,, with
the Gaussian product measure y = 4.y where X, and p are defined as
follows (see details in [17, 18]):

X ={I+ DY D B}y 1" = Or<ham Dhen b arn):

1<k<m k<n

Using results form [17] and [18] we conclude that the three following condi-
tions are equivalent:

(i)  whLp  Vte B(m,R)\{e},
(id) preeesw) 1y Vi€ R\{0}, 1<k<n<m,
(i) SE(u)=o00 1<k<n<m,

where SE (1) is defined by (4.1)




In fact, it is sufficient to fix a nontrivial point tz, # 0 on any subgroup
exp(tEy,) = [ +tEy,, t € R, 1 <k <n < m. In this case the subset G5 (1)
is discrete and consists of m(m — 1)/2 points:

Gi(p,t)= (I—i—tknElm | tin € R\{O}, 1 <k<n<m ),

where t = (tgn)rn € (R\{0})™""D/2_ For t; # ty € (R\{0})™™D/2 we get
two distinct minimal subsets Gg (1™, ;) and Gp (u™, t2).

Example 4.2. Consider the solvable group Bor(m,R) of upper triangular
real m X m matrices with nonzero elements on the diagonal acting on the
space X,, with the Gaussian product measure pu = I{b,a) where X,, and p
are defined as follows (see details in [1])

Xm = {$ - Z Z:EknEk:n}a N?I;b,a) = ®1§k§m ®k:§n H(bpr,apn) -

1<k<m k<n

Using [1, Theorem 5] we conclude that the following three conditions are
equivalent:

(4) ph L op, vt € Bor(m,R)\{e},
(i3)  prewtEa) |Vt e R\{0}, 1<k<n<m,
plevtEnr, | Yt € R, 1<k<n<m,

(iti) Sk(n) =00, S (1) =00, 1<k<n<m,

where S©o7 (u,t) is defined by (4.2). As before, it is sufficient to fix a non-
trivial point tx, # 0 on any subgroup exp(tFEg,) = [ + tEy,, t € R. But on
the curves exp(tFEy,)P, we can not omit any point ¢ € R. Finally, a mini-
mal subset depending on the choice of t = (t,)in € (R\{0})™™~1/2 can be
chosen as follows:

GOL(M, t)= (exp(t;mEkn) =1+t FErn | ten € R\{0}, 1 <k <n<m ) U

(exp(tE,m)Pk | Vte R, 1<k<n< m)

where Py = [ — 2Ey;. For example, for m = 2 we get P, = diag(—1,1) and
P, = diag(1, —1).
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Example 4.3. In the case of the group G = GL(2,R) acting on the space X,

defined by (2.3) with the measure ,u?b’a) defined by (2.4) using Lemmas 4.1,
we conclude that the description of the set G&(,u%b ) is as follows:

,a

Gé(ﬂ%b,a), ti2, to1) = (eXp(tmElz), exp(to1Far) | tio, tor € R\{0}> U

(exp(tEu)Pl, exp(tEa) Py | Vit € R) 9 (T_<¢, s)| Vs >0, ¢ €0, 27r)).

Remark 4.4. We note that except the one-parameter groups Eg,(t) = I +
tEk,, t € R all other element from the set Gy (1) for G = GL(2,R) are of
order 2, i.e., if g € {exp(tEx,) P, T_(¢,s)} then ¢g* = e.

4.2. Approximation of xy, and Dy,

We will formulate several lemmas, which will be useful for approximation
of the independent variables z, and operators Dy, by combinations of the
generators Ay,. For short, we shall write Ay, instead of AkR;LQ.

In what follows we use the following notation for f, g € R™

L) +T(f9)

A(f,g9) = T+ 1

Lemma 4.2. For any k,t € Z one has

Tt € (AnpAul |k € Z) < lmY; ,(x,x) = oo,

where ¥y (v, ) = A(fL, gt) and

b m b m

1 1k 1 2k

Jm = ( ARSI )k:_m, Im = ( ERETI? )k:_m. (4.7)
vV Y1k 1kV2Ek vV Y1k 1kV2Ek

Lemma 4.3. For any k,t € Z we have

TopTot € (ArnAwml | n € Z) & lim Y, ,,(z,z) = oo,

where Yo (2, ) = A(f2, g2,) and

Dok " 2 b1k m
£ = . gh = . (48)
( by, + 2blk52k>k——m ( b2, + 2b1kb2k>k_—m

18



Remark 4.5. We say that two series ) a, and ) b, with positive a,, b,
are equivalent if they are simultaneously convergent or divergent. In this case
we shall use the notaions ) a, ~ > b,. Using the obvious equivalence of
the following two series with positive a,, and b,

an an
P e Db (49)
neN "0 peN 7T
we have the following estimation (we set ¥12 = 37, , 21t and 322! = 37, ) 32%)
b 212
2 1k
171 262 +2b1kb2k Zszk 2
b 221
22 2%
PP~ e~ = 7

b2 by, X2
9" 1P=)  m—or——<D 5 =5
é B3 + 2buboy = by 2

192 = Z Ui <Zb1_kzz_12
Bt 2bubo o= Ty 2

we conclude that lim,, ¥, ,,(z, ) =00 if

- i (S D) (g b _
hrlr(LnE'Lm(:v,m). hnrln( Z )(k;m ) N2/ =00

b
o 2k 1k

and lim,, 39, (z, x) =00 if

: : T~ Doy T~ by !
lim Y, (z,z) :=lim ( —> ( —) =2 /v =0
m 2, ( ) m k:z—m blk} kz /

—  bak
Lemma 4.4. For any n € Z we have

where 31 ,(D) = A(fm, gm) and

o= ((grtag) e = (o) ) 010
m= 9k 2b1k 2b2k k:fm7 Gim =\ A2k 2b1k 2b2k k:fm' ’
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Lemma 4.5. Set X9 ,,(D) = A(gm, fm). For any n € Z we get
D5, 1 € <Akn]- | ke Z> < lim Egﬂm(D) = 00.

Lemma 4.6. For any k € 7 we get

bin
r1kl € (D1 Al | n€Z) & 2 .
b2n
ne’l
Lemma 4.7. For any k € 7Z we have
bay,
Torl € (Do Akl | n €Z) & bi = 00.
neL In

Our aim now is to show that some of the expressions Xy, (x, ), Yo mn(x,x)
and Xy ,,(D), Ya,,(D) tend to infinity if p* | p for all t € GL(2,R) \ {e}.

Let T'(fi1, fo, ..., fn) be the Gramm determinant and v(fi, f2, ..., f,) be
the Gramm matrix of n vectors fi, fa, ..., f, in a Hilbert space (see [7]). The
following lemma is trivial and well known but we need exact formulas.

Lemma 4.8. Let fi, fo be two wvectors in a Hilbert space. The distance
§{fo, f1) of the vector fy from the line (f1) generated by fi is given by the
following formula:

(f2, f1) L'(f1, f2)
(f1, fr) L(fi)

PRrROOF. Obviously, 6*(f2, f1) = || f2— fol|* where fo=C1 fi such that
(fo— fo, f1)=0. We have

8 (fa, 1) = || f2 — Al = (4.11)

(f2, 1)

0= (f2=fo, 1) = (fo, 1) = Ci(f1, 1) hence, Cl:(flafl).

Finally,

8 (fo, 1) = If2 = fol® = Lo = CLA1I® = (fo, fo) — 2C1(fo, 1) + CF(f1, f1) =
C2fe f)fe /1) | (o, 1) _

Uondo) = =0 Ty (e e e ) =

<f27f2)(f17f1> - (anfl)(flan) o F(f1>f2)‘

(f1, fr) — I(f)
O
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Lemma 4.9. Let f = (fx)ren and g = (gx)ren be two real vectors such that
| fII> = oo where ||f||* = Y, f7. Denote by fin), gy € R™ their projections
to the subspace R", i.e., fo) = (fu)ie1, 9m) = (9r)j=y and set

U(fm) + T (fn)> 9m))

A(fm), 9m)) = then  lim A(fm), gm)) = o0 (4.12)

in the following cases:
(a) lgll* < oo,
(b) lgl? = 00, and Timy e 25 = oo,

() IIfI*=1lgll* = IIf + sgll* = 00,  forall s €R\{0}.

PROOF. Obviously lim, oo A(fm), 9m)) = oo if conditions (a) or (b) hold.
The implication (¢) = (4.12) is based on the following lemma. O

Lemma 4.10. Let f = (fx)ren and g = (gr)ken be two real vectors such that
L1 = [lgl* = [CLf + Cagll* = 00, for all (C1,Cs) € R*\ {0}, (4.13)

L(fon)s 9n)) U(fn)> 9n))

then lim ——————*> =00 and lim —————- = 0. (4.14)
n—oo I'(g(m)) n—oo  I'(fin))
PROOF. Assume that H;E";” < (4, Vn € N. The case H > (] is similar.
. T(f(n)s9(n)) 2 T(f(n)»9(n)) oy .
In this case o) f o5 T therefore, to prove (4.14) it is sufficient
to prove that lim,,_,ec (ﬁ(g(’g;;‘)) = 00. Let us suppose the opposite, i.e., that

for all n € N holds
L(fin)s 9m))

<. (4.15)
Set t, = ”;E";H then by the inequality ”;ﬁ";” < () there exists a subsequence

tn, such that the limit exists

lim tnk = to € [O, Cl]

k—o0

Let «, be an angle between two vectors f(,),gmn) € R". Since FF({;)’) is

the square of the distance of the vector f from the line generated by ¢ by
Lemma 4.8, we have

L(fm), 9n))

= || fm|I?sin® oy, < C,  therefore a, ~ ||fu]|7" = 0. (4.16)
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For k,n € N set M(k,n) = ’ ;k In ‘, then by the Lagrange identity for
E 9n

Ty = (fo)ie1s 9em) = (9r)jer € R™ ([3, Ch.11, §6, formulae (7)]) we have

C(fimys gomy) = >, M*(k,n),

k<n<m

therefore, the inequality (4.15) will have the following form

F(f(m)v g(m)) _ Zk<n§m M2(k’ n)
F(g(m)) ZZL:I gl%

For t € R and f(,), 9(n) € R" introduce the function

<C, meN. (4.17)

Fu(t) = 1 fim) — tamI* = (Fy, fny) = 26(fin), 9m)) + 12(9m)» 9m))-

The minimum of the function F,(t) is reached at t(()n) = % therefore,
we have
n L(fn), 9n)) )y L(fm), 9m)
Fot) = (9my» ) (8 = 167 + =52, Fu(ty”) = ,
) 9 ['(g(m)) ° ['(g(m))
hence,
Fo(to) = Fa(t”) = (9 9m) (to — 16)* (4.18)

Since F,(t) = % is bounded by assumption and

lim F,(t) = lim || fo) — tgm|> = oo forall teR,
n—oo n— oo

by the condition (4.13), we conclude that lim,, ., (Fn(to) — Fn(tg)) = 0.

We show that condition (4.15) implies that F,(ty) — Fn(t(()n)) is bounded.
This contradiction will prove the lemma. Indeed, we have

() ) _ (11 9010) — Fmr9m) Dy MK, 1+ 1)grgnsn
0 0 (In+1)s Imr1))  (9n)s I(m)) (9(n)> 90)) (Int1)5 Int1))
and

t(n+m) _ t(n) . (f(ner)vg(ner)) _ (f(n)ag(n))

0 o (g(n—i—m)a g(n+m)) (g(n)7 g(n))
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_ zzzl Z:—’—VTH M<k 7’)gkgr _ (Mn,mgn’ma g(")) (4 19)
(9> 9 (Gntm)> Gnrm)) (9()> 9)) (Gn+m) s Gntm)) '
where the vector ¢™™ € R™ and the rectangular matrix M, ,, € Mat(R,n x
m) are defined as follows:

gn,m — (Qk)Z;T+1 and M’n,,m = (M(kjy/’ﬂ))k‘,r 1 S k} S n, n+1 S T S n-—+m.

We observe that lim,, tg") = lim, t,, = ty. Indeed, if n — oo by (4.16) we have

1 (Je:9e) _ Menlllgenll cosen 0y

(9(n), In)) lg(m)ll?

Finally, for all n,m € N we get by (4.18), (4.19) and the Schwartz inequality

Fu(t5™) = Fou(t57) = (gnys 9 (A5 = t0)? =

Mnmmm n 2
(Mymg™™, 9n)) }é

9(n)> 9n)) (Gn+m)> Gntm))
9 1P| Mo g™ ™ 12| gy |12 - | M2, 1™ (12 - | M sml|2,
Ign ()M gmemllt = N9memllt 7 N9t I?

where M, .= (M (k,7))k<r<m and

(9(n)s 9(m)) { (

<,

n n+m
M2, =0 > MP(k,r),  (IMul2, = > MP(k,r) = T(fm), gom)-
k=1 r=n+1 k<r<m

Fix € > 0. Since lim,, t(()m) = tp and the functions F,(¢) are continuous we

conclude that there exists m,, > n such that F, (t(m)) > F,(to) —e,Ym > m,,
in particular, Fn(t(()m")) > F,(ty) — €. Since lim, F,(ty) = oo we conclude
that

lim F,(t{™)) > lim(F, () — €) = 0o
that contradicts the condition F,(t{"™™) — F,(t") < C for all m,n € N. O
Lemma 4.11. If p™ 1 p for all t € GL(2,R) \ {e}, we can approzimate

one of the following pair of operators: (xin, Tan), (T1n, Don), (Din, T2n), or
(Dlna DQn)
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PROOF. For the convenience of the readers we collect the important formulas
below:

bZ,

1 1
(fl ) + F( m?gm) Zk——m b2k+2b1kb2k F(fma gm)
Bm(®,2) = (gl)+1 - 52 , (4.20)
2k
" 2 k=m b2, +2b1xbar
b2, 9
F(f?n) + F(fr%wg?n) Ek—*m b2k+2b1kb2k + F( m> gm)
Som(z,x) = RN = 2 @)
1k
" D k=m B abn o
2
S e+ T (fons gm)
= R
El,m(D) _ F(fmr? + F(_J;rri, gm) _ 2b1k 21722 , (4.22>
(9m) Y e I i’“ +1
2b1k 2b2k
2
Zk - i + F(gm, fm)
r I =—m _L1 4 1
EQ,m(D) _ (gmr) + (gm17 fm) _ 2617 2172:;2 ’ (4'23)
(fm) Do T 41
2b1g - 2bgg
b m b m
fn = ( = ) = ( 2k )k_ , (4.24)
b%k + 2b1xbog; - b%k + 2b11bay, =—m
fo=( )= 1 ) . @)
b3, + 2bigbor” =T b2, + 2bigboy” =

Jm = (alk(%llk +

1 )—1/2>m ( ( 1 n 1 )—1/2)m
—_— m = | a —_— —_— .
2bgk k=—m’ g 2k 2b1k 2b2k k=—m

(4.26)
To estimate 4 ,,(z, z) and o ,,(x, x) consider three possibilities:
b1k b2k: bik bar
1) 212 .= — <00, (2) %% .=
R <00 Q=) g <o () ) 5, =05, =
(4.27)

We present the results in the table I.
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table I | (1) ) Ba) | (3b) | (30)

yi2 < 0 00 00

»2t < 00 00 00

[FA <

lg°]] <

Lemma | 4.3, 4.4, 4.2, 4.4, 4.2, 4.3, 4.2, 4.3,
4.5, 4.10 4.5 4.10 4.10, 4.13

Zon, Din, Don | Tin, Din, Don| Tin, Ton| Tin, Ton| Tin, Ton

Case (1). If X2 < oo then X* = oo and we have lim,, o Yo (7, 2) =
oo by Remark 4.5. Hence, xo,x9; n 2, by Lemma 4.3 and x5, n 2, by
Lemma 3.3. We can approximate Dy, and D, by Lemmas 4.4, 4.5 and
Lemma 4.10:

U'(gm) + T(gms fm)
C(fm)+1

L(fm) + TS, gm)

Dy, n 2 if
T () + 1

— 00, Dy, n A if

— 00,

where f,, and g,, are defined by (4.26). Set

1 1 -1/2 1 1 —-1/2
= —  — = —_— 4 — . (4.28
f <a1k<2b1k + 2b2k> )ICGZ7 g <a2k<261k + 2b2k) )kEZ ( )

Since D,y Z;—Z < 00, we conclude that
LFIIZ = llgll* = IIf — sglI* = oo. (4.29)
Indeed, we have

a’? bypa®
1£1? = Z% =) 3 - P~ 2 Cbigaly, = S (n) = o0,

keZ 2big 2boy; keZ 2 2bag, keZ

bi,a? b
ol = 30 5~ S b~ 3 2 (g + a8) = Shw) = o,

b1k
kEZ 2 + 2bag keZ

bi(a sa 1
||f—ng2:Z lk(llk _2k szlk alk—sagk :ZZblk(—2a1k—|—28a2k)2

b
kez 2t 21712kk kez kez
25 b b 1 _;_
( Z blk Z 1k( 2a1; + 2$a2k)2> = §S1Lz’ (p,t) = oo,
kez 2 kez
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for t = 2s (see (4.2)). Therefore, by Lemma 4.10 we conclude (see(4.14)) that

C(ftn)9n)) . C(ftn)9(n))
Ty — ® and lim, Ty 00 SO D1, Da, n 2 by

Lemmas 4.4 and 4.5. Finally, x9, D1, Do, n 2. Now we get Ay, — xor Do, =
1. D1, k,n € Z and the proof is complete since we are in the case m = 1.

Case (2). If X*!' < oo then X' = co and we have lim,, o X1 (7, 2) =
00, by Remark 4.5. Hence, x1,21; 72, by Lemma 4.2 and x1,, n 2, by Lemma 3.3.
As in the previous case, the condition ), , gf—’; < 00 implies

IFI? ~ S5i(u) = 00, [lgl® ~ Sp(p) = 00, |If = sgll® ~ Sy~ (u,1) = o0,

for t = % Exactly, as in the case (1), we can approximate Dj, and Dsy,.
Finally, x1, D1, Do, n 2. Further, Ay, — 1. D1, = wor Doy, k,n € Z and
the proof is complete.

Case (3) Let ZkeZ ik =3 her Zi’; = 00. Set ¢, = bL n € Z. The

are defined as follows (see (4.24) and (4.25)):

lim,, 00

1
vectors f, gm, m, gm

1 m m
1 _ _ Cn
pe ) Al
2 _ Cn \™ _ 1 m
fon = < c, + 2>7m7 gTQn N <\/C%+20n>m. <4.31>

We show that
I = 11207 = llg' 1P + gl = (4.32)

Indeed, we have

1712 =3+ 20) " ~ St =5 = o,

nez neZ
||f2||2 = ch(cn + 2)_1 ~ ch = 221 = OQ.

Let us suppose that ||g'||* + [|¢*||* < oo then

1912 2112 2: Ci 1 1+Ci
o0 > [lg"lI” + llg°lI" = <1+26 +C2+2C>>Z(1+C)2’
n n n nez "

nez

hence, 3,7 Grer < o0 and ) i ey < oo therefore,

nez (
1+¢,)?
oo>zl+; Zlf
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This contradiction proves that ||g*||>+||¢?||* = co. We shall come back to the
case I(3) later. We show that in the case A (see (4.38)) we can approximate
T1p and Top,.

Now we study the possibility of the approximation of Dy, and D,, by
Lemmas 4.4, 4.5 and 4.10. Recall the notations:

m 1 1 -1 m 1 1 -1
2= 2 (L 1 2= 2 (—+—) . (433
=" a1k<2blk+262k> llgmlP =) a2k<2b1k+2b2k> (4.33)

All the different cases are presented in the following tables:

table 11| (1) (2) (3a) (3b) (3c) (4)
IFI? | o < 0o 00 00 00 < 00
llgll? < 00 00 00 00 00 < 0
Lo —oo |20 |O<i=b<
Cy

Lemma| 4.4 4.5 4.4 4.5 4.4 ,4.5

4.6 4.7 4.6 4.7 4.14, 4.10

Dlna Tin D2n7 Ton Dlna T1n D2n7 Ton Dln7 D2n

Remark 4.6. We show that if ||g||* < oo and St () = oo then Y Z;—Z = o0.
Indeed, let us suppose that Z;—Z < 00, then

CL2n bln 1
lolP = > 2~ D baad, ~ 3 (g + ) = Stal) = o

nezZ 2bin 2ban, nez nez
(4.34)

We explain the tables II in details. The first two case (1) and (2) are inde-
pendent of the case 1(3).

(1) It ||g]|* < oo and || f||* = oo, we have Dy;, n 2 by Lemma 4.4. The con-
dition ||g||* < oo implies >, Z;—: = 00, by Remark 4.6 therefore, z1; n 2,
by Lemma 4.6. Further, Ay, — x1xD1,, = 221 Do, k,n € Z and the proof is
complete since we are reduced to the case m = 1.

(2) If ||lg]|* = oo and || f||* < oo, we have Dy, n 2 by Lemma 4.5. By
remark similar to the Remark 4.6, we conclude that >, , lgf—i = oo therefore,
ZTop m A by Lemma 4.7 and Ay, — xop Doy, = 11 D1, k,n € Z, case m = 1.

(3) Consider now the case 1(3). Let both series be divergent: ||g||>= oo
and || f||*=o00. We show that in the case (B) (see (4.38)) holds || f +sg||*= o0
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for all s € R, by Lemma 4.13 therefore, by Lemma 4.10, we can approximate
Dy, and Dy,. To be more precise consider three possibilities:

(3a) let ”me2 — 00, then Dy n 2L, Since ) 7 bin — o0, we have 1, n 2
by Lemma 4.6 and finally, 1, D1, n %, n € Z. We are reduced to the case
m=1.

(3b) Let ”g;“z — 0, then Dy, n 2L Since ) 7 b2" = 00, we get o, n 2,
by Lemma 4.7 and finally, x,, Do, n 24, n € Z. We are reduced to the case

=1.

(3c) The case when || f[2 = [|g||> = co and Cy<[L2lo<Cy .

(4) The case when || f||* + ||g]|* < oc.

To complete the proof of the lemma it remains to consider 1(3), i.e., the

last case (3) in the table I and the last two cases in the table II, i.e., II(3c)

and II(4), where:
bik bar
> 2 e = (4.35)

keZ keZ by
1 1 \! 1 1 \1!
) > a (—+—) :E a2 (—+—) — 00, (436
(<3) p W\2by ' 209 Py K\ | 2bo (4:36)
1 1 \1!
H(4) E <af,€ + a§k> <% + m) < 0. (437)

keZ

Come back to the condition p”t L p. By Remark 4.3 we have
pr=6o 1y ¢ e [0,27), s >0 < Xi(s) + 2(Ch,Cy) =00, s >0,
for (Cy,Cy) € R?\ {0}. Recall that (see (4.4))

bln bZn
E ‘ [~ ‘ [ 22
b2n bln

22(01, CQ) = Z(O%bln + Cgbgn)(Claln + CQCLQn)Q.

nez
The condition ¥ (s) 4+ 35(C1, Cy) =00 splits into two cases:

(4) 2i(s) = oo,

(B) Si(s) <oo but Eu(Cy,Ch) = oo (4.38)

(A)&I(3). In this case independently of the conditions II(3c) and II(4) we
can approximate x1, and x, by Lemma 4.2 and 4.3.
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(B)&II(3c) In this case we can approximate Dy, and Ds,, by Lemmas 4.4 and

4.5 respectively. More precisely, to use Lemma 4.10 we show that conditions

(4.13) are satisfied for two vectors f and g defined by (4.26) (see Lemma 4.14).

(B)&II(4) This case (see (4.37)) can not be realized if ¥5(Cy, Cs) = 00
Case (A)&I(3). Using Lemma 4.10 we conclude that

L(fs 9m) (T (g)) ™" = 00 and T(f7, 97)(T(g)) ™" — 00, (4.39)

To use Lemma 4.10, it is sufficient to show that in the case (A) relations (4.13)
hold for f! g and f?, g2 i.e., for all s € R\ {0} we have (see Lemma 4.13)

LA =1g" 1= 1"+ sg'I* = oo, [IF*1*=lg*lI*=II/* + sg”[|* = o0. (4.40)

Consider three possibilities in the case 1(3):

(3a) If ||g"|| < oo then ||g?|| = oo therefore, we have || fL1]/|lgk || — oo so,
71, N A by Lemma 4.9 (a). In the case (A) by Lemma 4.13 holds || f?||*> =
lg%11? = || f* + s¢?||* = oo therefore, x5, n 2 by Lemmad4.10.

(3a) If ||g?|| < oo then ||g*|| = oo therefore, we have ||f2|/|lg%| — oo
80, To, N A by Lemmad.9 (a). In the case (A) by Lemma 4.13 holds || f]| =
llgtll = [|f* + sg*|| = oo therefore, x1,, n 2 by Lemma 4.10.

(3¢) If [|¢*|| = ||¢g%|| = oo then by Lemma 4.13 all relations (4.40) hold in
the case (A) therefore, z1,, w9, n A.

To prove (4.40) we need the following auxiliary lemma.

Lemma 4.12. The following two conditions are equivalent:

(i) 4 \/g - \/g (4.41)

(if) Tal(s) = <s4%: - 1) + (5—4% - 1) — . (4.42)

neL

PROOF. We show that (i) = (i¢). Indeed, we have
(> =172+ (@ =12 =@ -1)*1+a*) =(a—a")(a®+a?).

Set a = 5%(b1, /by, )2, then

E l /bQTL bl?’L 4b2_n> 2 221 (S)
nEZ bln b2n bln
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We prove that (ii) = (z). Denote by s"3'* =1+ a,, then we have

21(3)22(\/1+an_ﬁ>2:%<¢%>2:§1?&n,

ne”L

22(3):2 (afﬂt(l Jrlan_1>2> :Z <a2+(1f—7;n))(492 +Z 1 + —.

ne ne

Let Yy(s) = o0. If ) % = 00, the proof is complete. Suppose that
> ez @r = 00. We show that in this case ¥y (s) = oo. It is sufficient to prove

that
Zai = oo implies Zai(l +ap)t =

neN neN

Consider three cases:
(a) f0<e<1+a, <C <ooforall n €N, then

c~ Za <Z (1+a,)” Sé_lzai.
neN neN neN

(b) If limg 00 (1 + @y, ) = 0, then

-1 _ 2 -1 _
klggoa (14 ay,) " =oc0 and ZNan(1+an) = 00.
ne

(c) If limp o0 (1 + @p, ) = 400, then

Zai(l +a,)t > Zank(a;kl + 1)~ Zank = 00.

neN keN keN

Lemma 4.13. If ¥(s) = oo for any s > 0, then

If* = Cg'IP =00 and ||f*—=Cg*||* =00, forany C >0

PROOF. Set as before ¢, = Z?—”, n € Z. Suppose that 3(s) = oo, then

3 () e

nez
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where s*c,' =1+a, or ¢, = . We show that

1+a
Is*f' = g'|* =00 and |[ls™'f* —Cg*|* =

Indeed, using (4.30) and (4.31) we get

st — g = 30 ot 1+2¢ Z(——l)( %)L

keZ EZ
%(ifk) pTeried Dl e T i

DI S g

_— ~ = 0
2

k623+4ak+ak P 1+ a

2

and (-2 1)
—4p2 212 _ S ¢ _
D I

kEZ
4 4

1 2 S 2 S -1
> () ()~ -
e 1+ a 1+ a 1+ a

aj aj
Z558—1—234(14—@,16) Nzl+akzoo

keZ kEZ
O
So, in the case (A)&I(3) we can approximate x1,, and xa,.
Case (B)&II(3c).
Lemma 4.14. When 31(s) < oo and ¥5(C4, Cy) = oo, we get
Chay, + Coasy)?
(1,0 = Crf+Cagl? = 32 DL EmE o6, 0 e 2\ (0},
neZ 2b1n m
(4.43)

where f and g are defined by (4.28)

1= (g v o) e 9= (g v 3) )
-\t 2b1k Zbgk k€Z7 9= 92 2b1k 262]9 kEZ'
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PROOF. Let ¥4(s) = > % < 0, where s*r = 14 q, or siby, =

nez ”g" ban
1+ ay)ba,. We see that lim, —2— = 0 hence, lim,, a,, = lim,, st _ 1) = 0.
1+an b2n
We have
bin(Cray, + 02a2n)2 bin(Cray, + 02a2n)2
U(Cl,cz)zz T buy :Z 1y 1ltay
nel 2 2ban neZ 2 2 st

~ Z C%bln(C&a/ln + C2a2n)27

nel

ban(Cray, + Caasy,)? ban(Cray, + Caasy,)?
o(Cr,Co) =) = =)
neZ %1, 2 nel 2Tran T2

~ Z Cgbzn(&am + Czazn)z,

neL

hence, o(C1, Cz) ~ Znez(cfbln + C3bon) (Chrar, + Cragn)? = Xa(Ch, Ca). O

Finally, we can approximate Dy, and Ds, in the case (B)&II(3c).

Case (B)&II(4). The last case (B)&II(4) (see (4.37)) can not be real-
ized if 35(C4,Cy) = oco. Indeed, in this case by Lemma 4.14 o(Cy,Cy) ~
Y9(C1, Cs) = oo. This contradicts (4.37):

Z(a2 + a’ )<L+L)_l < 00
1k 2k Zblk 2b2k :

kEZ

This completes the proof of Lemma 4.11 for m = 2. ([l

The proof of the irreducibility for m = 2 follows from Remark 2.2. Depending
on the measure, we can approximate four different families of commuting
operators B® = (B, BS )nez for a € {0,1}2:

B(Oyo):(xlnalén)na B(Oyl):(xlnaDQn)rw B(170):<D1n7$2n>n7 B(O’O):(Dlna DZn)n

The von Neumann algebra L°(Xy, u?) consists of all essentially bounded
functions f(B®) in the commuting family of operators B® (see, e.g., [4]) as,
in particular, Lfg}o)(XQ,/ULZ) = L*>(X,,p?). Since the von Neumann alge-
bras L (Xa, p?) are maximal abelian, the commutant (2(%)" of the von Neu-
mann algebra 21 generated by the representation is contained in L5°(Xy, u?).
Hence, the bounded operator A € (Ql2)/ will be some function A = a(B®) €
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L>(Xy, ). The commutation relation [A,T;"**] = 0 gives us the fol-
lowing relations: a((B*)f*) = a(B?®) for all t € GLy(200,R). Set B® =
(B2 )n, T = (Ten)n, Dr = (Xpn)n, 7 = 1,2, n € Z and set as before,
Epn(t) == I +tEy,, t € R, k,n € Z, k # n. Then the action (B*)f: is
defined as follows:

(Bfé?Bg)Rt = ((B(ll)Rt7 (Bg)Rt)7 (IT)Rt = Iyt, (DT)Rt = D,t",
a(...,q:rk,...,ajm,...)REkn“) =a(ee o Trgy ooy Top + gy -2 ),
al..., Doy Dy, .. VBB ® = a(... Dy 4+tDpn, ..., Dyp,...), tER.

In all the cases, by ergodicity of the measure p?, we conclude that a is
constant.

4.8. The proof of Lemmas 2.2, 4.1

Lemma 2.2 follows from Lemmas 4.15- 4.18.

I;emma 4.15. Fort € GL(m,R)\{e} we have (,u?;’a))Lf L ulyqtf and only
i
(#?g,o))Lt 1 lﬂ(?bl,o) or M@Lta) 1 N?I;,ay (4.44)

Let us define the following measures on the spaces R and X,,:

(Bn,0) _

plh (Broan) —

®1];:n=1/’l/(bkn70)7 Ium ®?:1M(bknaakn)7

where a, = (a1p, -, Gmp) € R™ and B, = diag(bin, ..., bmn) € Mat(m, R).

Since

M?Z,a) = ®nEZ,u7(anan)7 ,U?Z,()) = ®nEZ:u7(n mO)a

()™ = e ()™ ()™ = Onez ()™

and
M?Z,Lta) - ®n€Z,U7(n mLtan)?
by Kakutani criterion [11], we have two lemmas:

Lemma 4.16. For measures u(,, m € N and t € GL(m,R)\{e} we obtain

(BG0) " L 1oy < HH< (n00) M(B"’O)> = 0.

neL
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Lemma 4.17. For measures py ), m € N and ¢t € GL(m,R)\{e} we get

l,l/(b Lta) _]_ /,L ba PN H H Bn Ltlln) Mgfn an)) — 0
nez

To prove Lemma 2.2 it is sufficient to show, due to Lemma 4.15, that

1 ~1/2
H( Lm0) t,(B")>= ————det (I + X:(t) X, (1 , (445
()l et 745t (1 X20X(1) (1.45)
to prove the equivalence
m 2
H H Bn LtCLn 7#7511 (ln — O = Z Z an< 7‘8 — (57'8)0/811) e OO)
nez neZ r=1 s=1
(4.46)
and to use the following lemma:
Lemma 4.18. For X € Mat(m,R) we have
det (I +X"X) =1+ > (M- (X))
r=1 1<i1 <i2<...<ip <m;1<71 <jo <...<jr<m
(4.47)
The proof of equality (4.45) is based on the exact formula of the Hellinger
integral (see [23] for definition) for two Gaussian measures pu = ,ugf 9 and
v = '™ in the space R™ (see [23])
dpd det Bydet G, \
wdy et B,det C),
——dp=| —5—— . 4.48
dpdpp (detZB"TW"> (4.48)

The latter formula is based on the following formula for a positive definite
operator C' in the space R™:

Let, as before, t = (t,)7=; € GL(m,R), B, = diag(bi,, ban; .., bn), Xn(t)=
B)*tB,'? e Mat(m, R). Let M~ (¢) be the minors of the matrix ¢ with

J1j2--Jr
11,19, ..., 1 rows and ji, Jo, ..., J, columns.

exp(—(Cz, z))dx = (4.49)
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Let us denote by p(#4) = li(C,a) the Gaussian measure with the covariance

— -1 m . dpB@)
operator C' = (2B)~" on the space R™ defined by the formula: = =

/det B 1 1, .4 duc(x)
o exXp (- (Bl’,fﬂ)) —\/WGXP (— 5(0 x,x))) = de
(4.50)
Recall that by definition u/(A) = u(f~1(A)). Since Lz = tz, we get
uLfl(x) = p(tz) therefore,

(Mgfn,a))L{ () = pBr®17'0)  where B, (t) = t*Byt. (4.51)
Indeed,

~1 det B
A (uPr)" (1) = || e (= (But(e — 7)o — 1)) ) dtw =
ﬂ-m
det t|2det B -1
\/ w exp ( — (t*Bnt(x —tta), (v — t’la))>dgg = dpBr0t7") (g),
ﬂ-m

where B, (t) = t*B,t, B, = diag(bi,, ban, ..., bn), det B, (t) = |det t|*det B,.
Using (4.48), (4.50) and (4.51) we obtain

L. det B, (t)det B, \ */*
H((uSF0)™ P00} = 1 (00, B0 — ( > x

Tmrm

1/4
/eX <_<.Bn(t)+an x))(m_ det B, (t)det B, /_ det C,(t) \ /?
P 2 : T\ der? 207 ) T\ [dettldet B, )

where C,,(t) = B"(t;JrB" = UBultBn Now we show that

det C(t) 1
|det t|det B, ~ 2m|det t|

det (I + X(t) X, (1)), (4.52)

where X,,(t) = By/*tBy'/?. The latter equation is equivalent to

det (t*B,t + By,)
det B,
To complete the proof of (4.45) it is sufficient to see that

I+ X)X, (t) =1 + B;Y**BY?BY*tB-1/? = B-Y%(B, + t*B,t)B; /2.

= det (I + XX (D) Xn(t)) .

The proof of relation (4.46) is based on the following theorem that one can
find, e.g., in [29, Ch. III, §16, Theorem 2].
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Theorem 4.19. Two Gaussian measures jip, and jipp are equivalent if and
only of B~'/?(a —b) € H.

Indeed, we have

|C~Y2(ta — a)||% Zuc—l/?t— Yan %, 2221”“(2 6rs)asn)2dkn.

nez neZ r=1

To explain the latter equality let us describe H and C. To find an operator C
we present the measure /ﬂ(ﬁ a) in the canonical form pc, defined by its Fourier
transform:

[ exwityuca(o) = exp (ia) - 5Cv)) v e (453)
H

where C' is a positive nuclear operator (called the covariance operator) on
the Hilbert space H, and a € H is the mathematical expectation or mean.

Recall the Kolmogorov zero-one law. Let us consider in the space R>® =
R x R x --- the infinite tensor product p, = ®penptp, of one-dimensional
Gaussian measures pp, on R defined as follows:

dpy(x) = \/b/Texp(—bx?)dz. (4.54)
Consider a Hilbert space ls(a) defined by
= {Z‘ € R™ : HxHZZQ(a) = szak < 00}7
keN
where a = (ag)ren is an infinite sequence of positive numbers.

Theorem 4.20 (Kolmogorov’s zero-one law, [28]). We have

ity = { 1 ek =0

Define the Hilbert space H C X, as follows:
H=LR"d) = {x=(tm)n € Xn | |zl := D af,din < o0},
1<k<m,neN

where a sequence d = (dkn)1<k<mnez of positive numbers is chosen such that
D l<k<mmeN b’m < 0o. Then by the Kolmogorov zero-one law, uiy (H) = 1.

We show that C' = diag(cky,), where cg, = d’“" . Indeed, we get

1 205 _
Z DknTry = 3 Z ¥ Rt gy = 5(0 'z, 2)p

1<k<m,neN 1<k<m,neN kn
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Proof of Lemma 4.18. Let as recall the definition of the Gram determinant
and the Gram matrix (see [7], Chap IX, §5). For vectors x1, xa, ..., T, in some
Hilbert space H the Gram matrix y(z1, x9, ..., Z,,) is defined by the formula

7("51; L2y eeey 'Tm) = ((xku xn)znzl)'

The determinant of this matrix is called the Gram determinant for the
vectors xy, T, ..., Ty, and is denoted by I'(xq, o, ..., z,,). Thus,

[(xy, o, ..., ) := dety(xy, 29, ..., Tpp).

Let
T11 T12 o T1im
X — T21 T2 o Tom
Tml Tm2 -« Tmm

Set xx = (T1g, Tok, - Tmr) € R™, 1 < k < m, then, obviously, we get

(x1,21)  (21,22) . (%1, 20)
Rl I EE TR}
(T, 1) (T, T2) oo (T, T

We would like to find an exact expression for det (I + (1, X2, ..., Ty)) . It is
convenient to consider the following function:

F;}L,X = [ MAzeAm det(Z)\kEkk + (1, 29, ...,xm)>, AeC™.

M;T1,22,-.,Tm
k=1

It is easy to see that for m = 2 we have

FAR et ( A+ (21, 21) (21, 22) )

21,22 (w2, 21) A2 + (22, T2) -
)\1)\2 + )\1F($2) + )\QF(SCl) + F(Q?l, .1'2) =
Mz (1+A'T(21) + A 'T(22) + (MA) Tz, 22)) - (4.55)
The general formula is
Fm’};ﬁ‘;;“’)‘;”m = det(z Mo Err + v(x1, 22, .., :Um)> = (4.56)

k=1
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H)\k;( Em: Z ()\ilx\h,,,)\ir)_l[‘(xil,xiQ,...,xir)> —

k=1 r=1 1<i1<i2<...<ir<m

HAk(1+Z 3 (hido A ) (M;;;; ;;(X))2).

r=1 1<i1<i2<...<i, <mM;1<j1 <jo <...<jr<m

We have used the following formula (see [7], Chap IX, §5 formula (25)):
1119...0p 2
F(xinx’iga ) xz}) = Z (]\4}1]2 ]T<X)) . (457)
1<j1<g2<...<jr<m

Finally, using (4.56) for (Ay, Ag, ..., Am) = (1,1, ..., 1) we get (4.47).
We study the case m = 2 more carefully.

Lemma 4.21. Fort € GL(2,R) we have, if dett > 0,

(M%b,O))Lt 1 M%b,O) A

bin b n
3 [(1— L dett )2+ (t11 — ta)? tm [T+ oy b2 . (4.58)
2n 1n

neL
If dett < 0 we have
(N? ))L Lop 2

bin b n
3 [(1— | dett )2 + (ty + ta)? tm /bi oy / b2 . (4.59)
2n 1n

ne’l

PRrROOF. Using (4.45) set

1 ) ~1/2
Hoolt) = 1 ((20)"" 2 ) = (oot (4 X:0%,0))

For m = 2 using (2.5) we get X (t) = BY/?tB~'/2 hence,

X(t) = by, O 2 t11 12 bi, 0 1z _ tu Z;_:tu
0 by to1 22 0 by bon 4 L
poxtan 22

Therefore, using (4.55) we get

1

_ bln b2n
Hy2(t) = T detl] <1+ | dett |? 442, + t5y + —t1, + t§1> .

an bln
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Using Lemma 4.16 it is sufficient to calculate Hy () — 1. Indeed, for dett > 0
we have

1
H2(t) — 1= —————x
2n(?) 22 | dett |
1 2d 2 bln 2 b2n _
—2det t+ | dett |* +12, + 13, + 7 —tiy + ™ 2 — 2ty itgy — tioty) | =
2n

]_ ln b2n
— (1= |dett N?>+ (t;; — t t t
22|dett|[( et )"+ (b = t22) 12\/ B bln

For dett < 0 we get

1
H2t)—-1=——x
2n(?) 22 | dett |
2 bln 2 b2n
(1 + 2det t+ | det t |* +12, + 13, + b—t12 + b 2 4 2t tay — t12t21)> =
2n

1 2 2 bln b2n
m[(l— | det t |) + (tll +t22) + (tlg’”a tglwla) ]

0
Using Lemma 4.17, Lemma 4.21 and (4.46) we get
Lemma 4.22. Fort € GL(2,R) we have
(:u%b,a))Lt 1 :u%b,a) Zf | dett |7A L.
If dett =1, we have
(:u?b,a))Lt 1 :U’%b,a) < EJF(T’) = Ef(t) + ZQ(t) = Q.
If dett = —1, we have
(:u?b,a))Lt 1 :u%b,a) Ang Zi(t) = Zf(t) + ZZ(t) = 00,
where
+ bln an
Xy(t) = Z [(tu — ty)? t12 b_
ne”Z
2‘(1&)—2[@ +t t ,/bl—”—t ,/bzn
1 (t) = 11 + t22) 12 by, 2 bln
nez
So(t7) = Z |:b1n [(t11—1) a1, +t12a2,] *Fbay [ta1010+ (t2o — 1) ag,] 2} . (4.60)

ne”
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PROOF. of Lemma 4.1. We show that it is sufficient to consider only five
particular cases:

1 ¢ 10
exp(tEu) = I+tE12 = ( O 1 ) s exp(tEgl) = I+tE21 = ( " 1 > s

1 ¢ 1 0
exp(tElg)Pl = ( 0 1 ) ) eXp(tE21>P2 = ( t -1 ) )
and 9
B cos¢  s°sin¢
7-(¢5) = < s7?sing —cos¢ ) ’
where

A=(9 1) 2=(05)
We note that 7_(¢, s) =
( cos ¢ SQSin¢)2<S 0 )(cosqﬁ —singb)(s‘l O)P
s72sin¢ —coso 0 st sing  cos¢ 0 s z
Using Lemma 4.21 we see that we have to consider only two special cases:
te GL(2,R), dett=1, ti = to,

and
t € GL(Z,R), dett = —]., tll - —t22.

In the first case we have

a t
t= ( t21 ;2 >, dett:a2 —t12t21 =1.

In the second case we have

[ ot 2 _
t= < t21 —a ), dett = —« t12t21 = —1.

We can see that in the first (respectively second) case, when ti5ty; > 0 (re-
spectively t15t9; < 0), we have X7 (t) = oo (respectively X () = 00).
Indeed, if dett = 1 and tyate; > 1, then |to;| > |t12|™' and we have

bln b2n bln b2n bln -1 b2n
t — 4+t — | = |t —+1t — >t —+|t — > 2.
121/ Doy + 211/ br |t12] b2n+| 21 b, = | 12|\/ b2n+| 12] \/ b, =
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When dett =1 and ty5t9; € (0,1), then |t;5|™! > |to;| and we get

[b1n [ba, _1 [bin _1 [ba
tiag ) o+ tory [ | = tator | o] 7N el T o | > 2ftaatal.
b2n bln b27’b bln

The same is true for the second case, i.e., when dett = —1 and t12t5; < 0.
When

dett = 042 — t19t91 = 17 and t1ote1 = 07

we have four cases

1 ¢ 10 -1 ¢ -1 0
(01>, (t 1), (O _1>, (t _1), FER. (461)
When

dett = —a® — t1oto; = —1, and ty9t9 =0,

we also have four cases:

(_01 i) (1 _01) ((1) _tl) (_tl (1)) teR. (4.62)

Thus, it remains to consider two cases:
dett = CYQ — t12t21 = 1, and t12t21 € [—1, O),

dett = —042 — t12t21 = —1, and t12t21 € (O, 1]

Finally, we can set in the first case a = cos ¢ since a? = 1 + tyote; € [0,1).
Then —tiots; = sin® ¢ s0, t1o = —s’sin ¢ and ty; = s 2sin ¢, with s > 0.

In the second case we can set o = cos ¢ since a® = 1 — 1oty € [0,1).
Then t1ats; = sin? ¢ so t1o = s2sin ¢ and ty; = s~ 2sin ¢, with s > 0. Finally,
in the first (the second) case we have to consider

B B cos¢p  —s?sing B B cos¢  s?sing

t_T+(¢’S)_( 572sing  cos¢ ) ) t=7-(¢,5) _( s72sing —cos¢ )’
(4.63)

We show that only the first two cases in (4.61) and (4.62) and the sec-

A1n

ond case in (4.63) are independent. Indeed, we have for a =

Lemma 4.22)

(5 e () ) () = (e,
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1 b 1

+ 22 : ~ oL _2 : 1n 2

> ( ) =t bln (b_ a2n) - SlQ(M) - 7 <2b2n + a2n) ) 13 7é 07
o+ _t2§:b NSL(M):E:b?_n 1 + a2

ne”L

(=1t bin
b ( 0 1):t22b1 —I—Zbln 2a1n+ta2n> - SlLZ (Ma)

2n

nez nez
s (50 S eSS (2000 = S5 t)
t —1 —~ bln —~ 2n in 2n so91 (K1),

For the last two cases in (4.61) and (4.62) we get respectively
(-1t _ (-1 0 L=t (1)1 0
N 0o -1/ 0 -1 0o 1 )’ -\ 01 0 -1
-1 —t -1 . -2 —t Q1np _ 2a1n + tagn
(o a) o= (3 5) ()= ()
(-1 0N _ (-1 0 10 (1 0) (-1 0
N t -1 ) 0 -1 —t 1) Lt 1 0 -1
. -1 0 -1 _ o —2 0 A1p _ 2a1n
(25 wne= (T 5 ) (o) = (M, )



=)= e
() eenee () (2

Set

v ) (s %) -
)-( )

LA Y)-
)= ().

SlLl(lu) = SlLé_(:u7 0) = 42 blna%na SQLQOL) = SQLf_(Na 0) = 4Zana%n

ne”L

neL

(4.64)

With this notation we see that the second two cases in (4.61) and (4.62) are

dependent:

2+(
_ SE (4, —0)+S5 (1), note that (—01
-1 0

(0

— SE(u, —0)+SE (1), note that <—tl
_ 1 ¢t
(0 1)
_ —1 0
s(7Y)

-1 t
0 -1

bin
an

)-rg

neL nez

in

nel nez

2n

neZ neL ne”l

nez in

nez neL

+ Z [bln(_Qaln - taQn)Q + an(_2a2n)2}

t\ (1 0
-1)"\o -1

- t2 Z 22_” + Z [bln(_zaln)Q + bgn(—taln — 2a2n)2}

%)=

bin
=Y Y buad, +4) baaa3, = PS5 (0) + Sh(w),

)0 1)

()G

ban,
=Y AN biad, Y baaad, = 5 (1) + ST ().

To compare (u%bva))LTi(W’ and fi, ) we calculate 7;'(¢,s) and 721(g, 5).

Since

o) = (

—s%sin¢
cos ¢

cos ¢
57 2sing
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cosp  s’sing

)



_1 B cos ¢ 52 sin ¢ _1 B cos¢  s’sing
Ty (5) = ( —s5728in¢g cos¢ ) T (d9) = s72sing —cos¢
=1_(¢,s). Since 7, (¢,8) — [ =
cosp—1  s*sing \ —2sin® 2 s22singcos & \
—s?sing cos¢—1 )\ —s22sinfcos? -2 Sin2 0" )=

—2sin % 0 sin % —s%cos %
0 —2sin % s2cos & sin ¢

and 721 (¢,8) — [ =

cosp—1  s’sin¢g B —2sin® 2 s?2sin £ cos &
s72sing —cosp—1 ) \ s

—2sin % 0 sin % —s%cos %
0 -2 cos% —s2sin?  cos? '

we have (see (4.60))

Yo(7_(¢, 5)) = 4sin® % Z bin ( sin %aln—SQ cos ?a2n> %l—

2
nez
2
4 cos? g Z bgn(— s 2sin galn + cos gaQn)
ne”z
2
~ Z 4sm ?bln +4 COS2 ¢ ngn) (sin ?aln—s2 cos ?a2n> ,
2 2 2
nez
2
Yo(m- (9, 5))= ; (4 sin %b1n+4 C082 ¢ 2b2n) (sin %aln—SQ COoS §a2n> )
(4.65)
Finally, for t = 7_(¢, s) we get
pr=09 L e sin® 64 (s) + Sa(1-(, 5)) = o0, (4.66)

where
Z /bl_n . / b2n
nEZ b2n bln
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We have for t = 7, (¢, s) (see (4.60))
Pl L sin® X4 (s) + Sa (74 (¢, 5)) = o0, (4.67)

where Yo(74 (0, 5)) =

2 2
4 sin? g Z [bm < sin galn — 52 cos §a2n> + by, (5_2 CoS galn + sin §a2n> } )
nez

(4.68)
We show that the condition p"+@* L 1 depends on the previous conditions
of the orthogonality. Indeed, for t = 7_(¢, s) we have

pr=@o 1 e (a) $i(s) =00 or (b) Bi(s) < oo, but Xa(r_(¢,s)) = cc.
For t = 7, (¢, s) we get respectively
pFr+@9 1 e (¢) Bi(s) =00 or (d) £1(s) < oo, but Ny(14(e,s)) = co.

We see that (¢) < (a). To investigate the condition (d) we observe that if
Y1(s) < 0o, then lim,, . %, /b;—" = 1 therefore, we have by, ~ s*by,, hence,

the following equivalence holds: ¥5(74 (¢, s)) =

2
4 sin? Z [b1n<sm Zaln — 52 cos §a2n> + b2n< aln + sin §a2n> }
nEZ

2
~ 4 sin? %S Z [bln<sin %aln—SQ COoSs — a2n> +b1, ( cos —aln—i-s sin ga%) } =

neZ

4sin® = g bin a1n+s aQn N4Sl

nGZ

% ZZ blna’%n + b2na§n) =

w2 [Sh(n) + Sh(w)] .

We see that condition (d) follows from the conditions S& (1)=S13 (11, 0)=
0o and Sk (i) = S5 (1,0) = co. This completes the proof of Lemma 4.1.
0
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4.4. The explicit expression for (D™ (X)p, p)

The following lemma will be systematically used in what follows.

Lemma 4.23. For the matriz D(Ai, Ae, ..., \p,) defined below

T+h 1 . 1
DO Agoih) = | L TP (4.69)
1 R

and 1 = ()i, € R™ we have

2 2
mp ()

14+ &

PROOF. Let us set dp, (A1, A, ..., A\p) = det (D(Aq, A, ..., A)) - Tt s easy to

see that
m m 1
A (A1, A2y iy A) = M| 1 — . 4.71
(A1, Az )Hk(Jr;)\k) (4.71)

k=1

<D71<)\1, )\2, ceey /\m),u, /1,)

(4.70)

For arbitrary m we have

1+ XN 1 1
_ 1 1+ X .. 1 _1\m
D 1(/\17A27"‘7)\m) = ? - (Dk”fi)k,nZI’
1 1 1+ A\
where
-1
1t (A A ) N 1 |
Dn; o ) ’ I — 1 + . . 1 + _ ,
dm(>\17>\27 7)\m> ; )\k )\n k:;;én >\k

~ L
D—l dm—l(/\] )\n /\m)‘)\ -0 1 m 1
! ’ ? k :S

o dm(AlaAQa'--a/\m) )\k)\n ( ) ’ K "

since using (4.71) we have

) . m WA | 1
dm_1<)\1,...,/\n,...)\m)|>\k:0:)\lir_l>lo H /\p <1+ Z )\—):)\k)\ H)\p

p=1,p#n
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Finally, we have for p = (u1, pto, ..., b)) € R™

(D7, Ay ooy At i) = D Dyt =

k,n=1
-1
<”;x> [ZN_ (1+k; r) Ly “:’;n]
= n= =1,k#n 1<k<n<m
—1
1 Y (1 = pin)?
(5) BEez ]
= n= <k<n<m

Remark 4.7. Some useful observations. If we set fi,) = (fi)ie; and gm)
= (gr), where f = \7—/’\“7 and g, = ﬁ we can recognize that

- Mz 2
> = Mfemll” =T(fom)
n=1""
and ) )
1<k<n<m kA 1<k<n<m n
since )
fi fa s (e = pin)*

| ‘

Set A(f,g) = % for two vectors f and g. Finally, we get

stop
ol Ead
5
3

gk Gn /\k)\n

Van

F m F m) m
(D7 0N At )= Ay o)) = — L) o),y

where I'(f1, fa, ..., fn) is the Gram determinant and v(f1, f2, ..., fn) is the
Gram matrix of n vectors fi, fa, ..., fn in a Hilbert space (see [7]).
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4.5. The proof of Lemmas 4.2 — 4.7

ProOF. The proof of Lemma 4.4 is based on Lemma 4.23. We find out when
the inclusion

Di,1 € <A]m1 = (l'llen + ZEQkDgn)l | ke Z>

holds. Fix m € N, since Mz, = ay, we put » - tray, = (¢,0) = 1,
where t = ()72 _,, and b = (ayx)7_,,. We have

m

I Z ti(z1xDin + T2 Dan) — D1, ] 1> =

k=—m

I Z te[(x1r — a1g) Din + 2o Dan)1|)* = Z (fr, fr)titr =: (Aomsat, t),

k=—m —m<k,r<m

where Agiq = ((fkafr))%?r:_m, and f = [(9€1k - Cl1k)D1n + lsz2n]1- We
have

1 by 1 bay,
(s 1) = | (s = @20) D+ 2 Don] 1P = o5 o (5 -0 ) 5 ~

S R
—+—+a
2y, 2by. 2V

(fis fr) = ([(x1x — a1k) D1, + @2 Do) 1, [(x1, — a1y) D1y + @9, Doy 1) =
bar,
(33%, xzr)(Dznl, D2n1> = szGQr% = Aok Qar.
Finally, we have

1

1
(frr fo) ~ 5— + 5— + a3, (o, i) ~ aopaz,, k#r. (4.73)
201, 2byy

For Ay = ((fi, fr))iy=1, and b = (a11, asz, ..., a1m) € R™ we have

(fl)fl) (f17f2) <f1>fm)
A(m) — ’7(f17f2) 7fm) — (f27f1) (f25f2) <f2>fm) _

(fmafl) (fm7f2> (fm7fm>
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1
2b11 +

1 9
2y T 021

Q22021

Q21022

1 1 2
2b12 + 2ba2 + a3

A2102m
A2202m

A2m a21 A2m (22 Qbim + 2bim + a3,
921 0 0 1 + )\1 1 1 921 0 0
0 929 0 1 1+ )\2 1 0 a99 ... 0
0 O 2m 1 1 14+ Ay 0 O Q2m

1

1

where \;, = leaﬂ, 1 <k <m. Using (4.69) we conclude that
2k

. ,CLQm)D(/\l, /\2, e

A(m) - diag(a21; 22, . . , )\m)diag(a21, ag9, ..., a2m).

Recall that p = diag(asr, ags, , ..., Gy ) 1o = (4L, 412

oy B where b =
a217 a227 J )
(a11, @12, ..., aym) € R™, then

a2m

1 1

AL b b)=(D! = (—+—
( (m)bv b) ( <)‘15>\25 7)\m)ILL7/'1/)7 )\k <2blk + 2b2k

)ag;f, [, = Q13aay -
(4.74)
Using Lemma 4.23 for the operator As,,.1, and the vector b € R*"*! we
obtain
(alka2n_a1na2k)2

2
Zrkn:—mﬂ +Z—m§k<n§m ( 1 1 )( 1 1 )

201 20op 26y ) \ 261, ' 26y,

2b17
>k
k=—m

(A;T}L-f—lb’ b) = o2
2k T + 1

TR
= A(fum)> 9im)), where

o= (s ) i (ol ) )L
m =\ 9k 2blk 2b2k k=—m m = G2 lek 2b2k k=—m

(4.75)
This proves Lemma 4.4 0

The proof of Lemma 4.5 is exactly the same.
The proof of Lemma 4.2 is also based on Lemma 4.23.

PrROOF. We study when z1,21; € (ApAul | k € Z). Since
A Ave = (210 D1k, + 22, Doy ) (21 D1 + 224 Day) =
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xlnwltD%k + (1022t + Tan1t) D1 Doy + x?nIZtD;k
and MD}1 = =Yt st — 57" 42 = (£ V) = 1, where t = (t)]"_,,

and b = —(%), ~ b= (by)7_,,. We have

[t A — wa] 1) =

k=—m
S b
H Z Tk [l‘lnIBlt (D%k + %k) + (:Ulnxgt + xanlt)leDzk + l‘2n5172thk 1”2
k=—m
- Z (fk’f"'>tkt7" = (A2m+1t7t)7
—m<k,r<m

where A2m+1 = ((fk7 f?"))Z,LT:—m and

b
fe = [fflnxlt (ka + %) + (1022 + Tanx1e) D1 Do + x2nx2thk;:| 1.

If we denote by cpp, = ||T1a]|* = + a3, , we get

Qbkn

b1k

(Fis £) = fannre (D +

> + (21002 + T2nT1¢) D1 Dog + x2n372tD§k] 1)* =

by

bii b b
5 ) + (ClnCQt + CiCop + 2a1na'2ta'1ta'2n) S 02n02t3< Qk)

2 2 2
~ (blk + b2k)27 (fk7 fr‘) =

b
((a:lnxu (le + ;k) + (1022t + Ton®1t) D1g Doy + xznxztD§k> 1,

Clnclt2 (

bir
($1n$1t (Di, + L) + (T1nTot + Tanw1t) D1y Doy + $2n$2tD§T) 1) =

2
bog by
ConCot ;k ; ~ bapbayr.
Finally, we have
(fk? fk) ~ (blk + b?k)Za (fka fr) ~ b2kb27‘7 k 7£ r. (476)
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For Ay = ((fx, fr))it=1, and b = (a1, axa, ..., 1) € R™ we have

(flafl) (flaf?) (flafm)

Ay =AU foro f) = | I U B2l ) )
(fmufl) (fm7f2) (fmufm)
(b1 + 521)2 ba1092 ba1 b2,
ba2b91 (b12 + 522)2 baabom, _
b2 b1 b2 bao e (bim + b2m>2
bsy 0O ... 0 1+ X 1 1 bsy O ... 0
0 by ... O 1 14+ X ... 1 0 by ... O
0 0 .. by, 1 1 o 1+20 /N0 0 . by
At last, we have for p = diag(ba1, boa, ..., boy) 710 = (%, Z;—;, . b;—:)

bi\ b
(A(;,ll)bv b) - (D—1<)\17 )\27 7/\m):u7/1’)7 )‘k = (1 + Lk) - 17 M = bﬁ
2k

Using Lemma 4.23 for the operator As,,.;, and the vector b € R*™*! we
obtain

b1y )2 b1 b1n)?
m (E)Q + Z <b2k @)
k=—m (11;;7:+1) _1 —m<k<n<m {(1;17k+1)271} {<217n+1)271}
-1 2k 2n
(A2m+1b7 b) - Zm 1 1 =
A(fp» 9) Where
b m b m
1 1k 1 2k
m = y 'm p— 9 478
f <1 / b%k + 2b1kb2k>k—m g <1 /b%k + 2b1kb2k>k—m ( )
O
The proof of Lemma 4.3 is similar. We get (A7'0,0) = A(f2,g2) where
b m b m
= (e = () . )
b2k + 2b1kb2k k=—m b2k: + 2b1kb2k k=—m
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