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Abstract

Our aim is to find the irreducibility criteria for the Koopman representa-
tion, when the group acts on some space with a measure (Conjecture 1.5).
Some general necessary conditions of the irreducibility of this representa-
tion are established. In the particular case of the group GL0(2∞,R) =
lim−→n

GL(2n− 1,R), the inductive limit of the general linear groups we prove
that these conditions are also the necessary ones. The corresponding mea-
sure is infinite tensor products of one-dimensional arbitrary Gaussian non-
centered measures. The corresponding G-space Xm is a subspace of the space
Mat(2∞,R) of infinite in both directions real matrices. In fact, Xm is a col-
lection of m infinite in both directions rows. This result was announced in
[20]. We give the proof only for m ≤ 2. The general case will be studied
later.
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1. Introduction

1.1. Description of the dual for locally compact groups

The main problem in the representation theory for a locally compact
group G is to find the set of all unitary irreducible representations of G up to
unitary equivalence and to decompose reducible representations into a direct
sum or direct integral of irreducible. This set is called the unitary dual of
G and is denoted by Ĝ. For many locally compact groups this problem has
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been solved, but for some particular cases it remains open, for example, for
the group SO(p, q). To find the dual for locally compact groups G, one can
use regular, quasiregular or induced representations. In the case of locally
compact groups all these constructions are based on the existence of the
invariant Haar measure on the initial group G or some G-quasi-invariant
measure on the corresponding homogeneous space H \G, where H is a closed
subgroup of G or on some general G-space X.

1.2. Regular, quasiregular and induced representations for infinite-dimensional
groups

It is well known that there is no general method to describe Ĝ for infinite-
dimensional groups G. Our aim is to start the development of the harmonic
analysis on infinite-dimensional groups.

In the previous articles we have generalized the notions of the regular,
quasiregular and induced representations for infinite-dimensional groups by
constructing G-quasi-invariant measures on suitable completions of the cor-
responding objects (groups, homogeneous spaces and G-spaces). In addition,
we study the irreducibility of the constructed representations in the frame-
work of the Ismagilov conjecture (see 1.1).

In this article we consider the case when the infinite-dimensional group
G, the inductive limit of the general linear groups, acts on the space of m
infinite rows equipped with the Gaussian measure. We establish the criteria
of irreducibility of constructed representations (see Theorem 2.1) in terms
of the corresponding measure and express some general conjectures dealing
with the irreducibility. These conjectures are natural generalization of the
Ismagilov conjecture (see Conjecture 1.5).

Recall some previous constructions. Regular representations for infinite-
dimensional groups were defined and studied in [14, 15, 16]. Due to the
result of A.Weil [30], there is no invariant measure on non locally compact
groups. Therefore, to construct an analogue of a regular representation of
an infinite-dimensional group G we can, for example, construct a G-quasi-
invariant measure on a suitable completion G̃ of the initial group G. The
regular representation of an infinite-dimensional group can be irreducible,
which never happens for a locally compact group, except for the trivial one!

To define a quasiregular representation we should construct a G-quasi-
invariant measure on a suitable completion H̃ \ G̃ of the homogeneous space
H \G [17, 18, 19].
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To construct the induced representation for infinite-dimensional groups
we need to extend by continuity the representation of the subgroup H to the
corresponding completion H̃. The general construction of the induced rep-
resentations and the beginning of the orbit methods for infinite-dimensional
group of upper triangular matrices were done in [22].

To construct the regular representation for an infinite-dimensional group
G, first we should find some larger topological group G̃ and a measure µ
on G̃ such that G is a dense subgroup in G̃, and µRt ∼ µ for all t ∈ G,
(or µLt ∼ µ for all t ∈ G), here ∼ means equivalence. The right and left
representations TR,µ, TL,µ : G → U(L2(G̃, µ)) are naturally defined in the
Hilbert space L2(G̃, µ) by the following formulas:

(TR,µt f)(x) = (dµ(xt)/dµ(x))1/2f(xt),

(TL,µs f)(x) = (dµ(s−1x)/dµ(x))1/2f(s−1x).

The right regular representation of infinite-dimensional groups can be irre-
ducible if no left actions are admissible for the measure µ, i.e., when µLt ⊥ µ
for all t ∈ G\{e}. In this case a von Neumann algebra ATL,µ generated by
the left regular representation TL,µ is trivial. More precisely:

Conjecture 1.1 (Ismagilov, 1985). The right regular representation

TR,µ : G→ U(L2(G̃, µ))

is irreducible if and only if
1) µLt ⊥ µ ∀t ∈ G\{e}, (where ⊥ stands for singular),
2) the measure µ is G-ergodic.

This conjecture was verified for a lot of particular cases. In the general case,
it is an open problem. In the case of a finite field Fp we need some additional
conditions for the irreducibility [21].

1.3. Koopman representation

Let α : G → Aut(X) be a measurable action of a group G on a mea-
surable space (X,µ) with G-quasi-invariant measure µ, i.e, µαt ∼ µ for all
t ∈ G. With these date one can associate the representation πα,µ,X : G →
U(L2(X, dµ)), by the following formula:

(πα,µ,Xt f)(x) = (dµ(αt−1(x))/dµ(x))1/2f(αt−1(x)), f ∈ L2(X,µ). (1.1)

In the case of an invariant measure this representation called Koopman’s
representation, see [13]. We would like to solve the following problems:
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Problem 1.2. Find criteria of irreducibility of the representation πα,µ,X de-
fined by (1.1).

Problem 1.3. Find the description of the commutant of the von Neumann
algebra generated by representation πα,µ,X when representation is reducible.

To study properties of the Koopman representation, in particular, the
irreducibility, we need some conjectures to describe the commutant of the von
Neumann algebras generated by this representation. The Schur–Weyl duality
and the Dixmier commutation theorem below give us a very good hint for
such a conjecture, see Conjecture 1.6 in a general context.

1.4. Schur–Weyl duality

Schur–Weyl duality [25, 26, 31] is a typical situation in representation
theory involving two kinds of symmetry that determine each other.

From [32]: “If V is a finite-dimensional complex vector space, then the
symmetric group Sn naturally acts on the tensor power V ⊗n by permuting
the factors. This action of Sn commutes with the action of GL(V ), so all
permutations σ : V ⊗n → V ⊗n are morphisms of GL(V )-representations. This
defines a morphism C[Sn] → EndGL(V )(V

⊗n), and a natural question to ask
is whether this map is surjective.

Part of Schur–Weyl duality asserts that the answer is yes. The double
commutant theorem plays an important role in the proof and also highlights
an important corollary, namely that V ⊗n admits a canonical decomposition

V ⊗n =
⊕
λ

Vλ ⊗ Sλ

where λ runs over partitions, Vλ are some irreducible representations of
GL(V ), and Sλ are the Specht modules, which describe all irreducible repre-
sentations of Sn. This gives a fundamental relationship between the repre-
sentation theories of the general linear and symmetric groups; in particular,
the assignment V 7→ Vλ can be upgraded to a functor called a Schur functor,
generalizing the construction of the exterior and symmetric products.”

Let dimV = m then GL(V ) = GL(m,C). The abstract form of the
Schur–Weyl duality asserts that two algebras of operators on the tensor space
generated by the actions of GL(m,C) and Sn are the full mutual centralizers
in the algebra of the endomorphisms EndC(Cm ⊗ Cm ⊗ · · · ⊗ Cm).
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Denote by α and β the corresponding actions of Sn and GL(m,C) in the
group of all automorphisms Aut(Cm ⊗ Cm ⊗ · · · ⊗ Cm):

α : Sn → Aut(X), β : GL(m,C)→ Aut(X).

Let M ′ be the commutant of the subset M in the von Neumann algebra
B(H) of all bounded operators in a Hilbert space H:

M ′ = {B ∈ B(H) | [B, a] = 0 ∀a ∈M} where [B, a] = Ba− aB. (1.2)

Set M1 = (α(Sn))′′ and M2 = (β(GL(m,C)))′′ then the Schur–Weyl duality
states that M ′

1 = M2 hence, M ′
2 = M1.

In [27] the authors extend the classical Schur–Weyl duality between rep-
resentations of the groups SL(m,C) and Sn to the case of SL(m,C) and the
infinite symmetric group S∞. In [24] the authors extend Weyl results to the
classical infinite-dimensional locally finite algebras gl∞, sl∞, sp∞, so∞.

1.5. The Dixmier commutation theorem, locally compact groups

Let G be a locally compact group and let h be the right invariant Haar
measure on G, i.e., hRt = h for all t ∈ G. Consider the left L and the right
R action of the group G on itself:

Rt(x) = xt−1, Ls(x) = sx, x, t, s ∈ G.

The right and the left regular representations of the group G are defined in
the Hilbert space L2(G, h) by

(ρtf)(x) = f(xt), (λsf)(x) =
(
dh(s−1x)/dh(x)

)−1/2
f(s−1x), f ∈ L2(G, h),

where dh(s−1x)/dh(x) is the Radon-Nikodim derivative.

Theorem 1.4 (Dixmier’s commutation theorem [5]). The commutant
of the von-Neumann algebra generated by the right regular representation is
generated by the left regular representation. More precisely, let ρ, λ : G →
U(L2(G, h)) be the right and the left regular representations of the group G,
and let Aρ = (ρt | t ∈ G)′′ and Aλ = (λs | s ∈ G)′′ be the corresponding von
Neumann algebras. Then

(Aρ)′ = Aλ and (Aλ)′ = Aρ. (1.3)
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1.6. G-action and irreducibility of the Koopman representation

In both examples we have two commuting actions of the group G1 and
G2 on the same space X. Let ZG(H) be a centralizer of the subgroup H in
the group G:

ZG(H) = {g ∈ G | {g, a} = e ∀a ∈ H},
where {g, a} = gag−1a−1. In the first example, we have two commuting
actions α and β of the groups G1 = Sn and G2 = GL(n,C) on the space
X such that ZAut(X)(α(G1)) ⊇ β(G2). In the second example, we have two
commuting actions R and L of the same group G in the space X = G. In this
case we have {R(G), L(G)} = e or ZAut(G)(R(G)) ⊇ L(G). In the general
case, if we have only one group G acting via α on the space X, the second
group should be the centralizer of the group α(G) in the group Aut(X), i.e.,
it is natural to consider G2 = ZAut(X)(α(G)).

Come back to the Koopman representation (1.1). Consider the centralizer
ZAut(X)(α(G)) of the subgroup α(G) = {αt | t ∈ G} in the group Aut(X)
and its subgroup G2 defined as follows:

G2 := Zµ
Aut(X)(α(G)) :=

{
g ∈ ZAut(X)(α(G)) | µg ∼ µ

}
.

Define the representation T of the group G2 as follows:

(Tgf)(x) = (dµ(gx)/dµ(x))1/2f(gx). (1.4)

Consider two von Neumann algebras

Aπ(G) = (πt | t ∈ G)′′, AT (G2) = (Tg | g ∈ G2)′′.

The conditions 1) and 2) below are necessary conditions of the irreducibility
of the representation πα,µ,X . It would be interesting to know when they are
sufficient, i.e., when the following conjecture is true

Conjecture 1.5 (Kosyak, [16, 18]). The representation

πα,µ,X : G→ U(L2(X,µ))

is irreducible if and only if
1) µg ⊥ µ ∀g ∈ ZAut(X)(α(G))\{e},
2) the measure µ is G-ergodic.

Recall that a measure µ is G-ergodic if f(αt(x)) = f(x) µ a.e. for all t ∈ G
implies f(x)=const µ a.e.(almost everywhere) for all functions f ∈L1(X,µ).
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Conjecture 1.6. The commutant of the von Neumann algebra generated by
representation π (1.1) of the group G coincides with the von Neumann algebra
generated by the representation T (1.4) of the subgroup G2 in the centralizer
ZAut(X)(α(G)):

(Aπ(G))′ = AT (G2).

For a lot of particular cases Conjecture 1.6 holds, but in general it fails.
Below we give several example for which Conjecture 1.6 fails.

1.7. Counterexample to Conjecture 1.6

1.7.1. Case X = Sn−1 \ Sn
Example 1.1. Consider the group Sn acting on the homogeneous space X =
Sn−1\Sn. For corresponding right quasiregular representation of Sn in L2(X)
Conjecture 1.6 fails.

Proof. To simplify details set n = 3. For general n the proof is the same.
Let σ1, σ2 be two generators of the group S3:

S3 =
(
σ1, σ2 | σ2

1 = e, σ2
2 = e, σ1σ2σ1 = σ2σ1σ2

)
. (1.5)

Let the group S2 is generated by σ1, then the space X consists of three classes
x0 = {e, σ1}, x1 = {σ2, σ1σ2}, x3 = {σ2σ1, σ1σ2σ1}. The right action of S3

on the space X is as follows:

x0σ1 = x0, x1σ1 = x2, x2σ1 = x1,

x0σ2 = x1, x1σ2 = x0, x2σ2 = x2.

Therefore, in L2(X) the corresponding representations for Tσ1 and Tσ2 are as
follows:

Tσ1 =
(

1 0 0
0 0 1
0 1 0

)
, Tσ2 =

(
0 1 0
1 0 0
0 0 1

)
.

The representation T is reducible, since the vector e0 +e1 +e2 is invariant. It
splits into one-dimensional and two- dimensional irreducible representations.
But the group S3 acts on X by permutations so, its centralizer is trivial. �

1.7.2. Case X = O(3)\O(3)

Example 1.2. Consider the group O(3) acting on the homegeneous space
O(3)\O(3) ' S2. The centralizer of O(3) in the group of all automorphisms
Aut(S2) consists of two elements I and −I by Lemma 1.7 but the representa-
tion of O(3) in L2(X) is an infinite direct sum of irreducible representations
generated by eigenvectors of the Laplace operator on S2, see [8, Chapter
I,§3]. Therefore, Conjecture 1.6 fails.
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1.7.3. Centralizer of SO(2k + 1)

Let n ≥ 0, and SO(n) be the group of all real orthogonal n× n-matrices
with determinant 1. This group effectively and transitively acts n − 1-
dimensional sphere Sn−1, and so it can be regarded as a subgroup of the
group H(Sn−1) of all homeomorphisms of Sn−1.

Let I be the unit matrix. Then −I is an “antipodal” map, that is −I(p) =
−p for all p ∈ Sn−1. Evidently, I and −I commute with all elements from
SO(n), and so {±I} belongs to the centralizer of SO(n) in O(n).

Lemma 1.7. Suppose n = 2k + 1 is odd. Then the group {±I} is the cen-
tralizer of SO(2k + 1) in all the group H(S2k).

Proof. (given by S. Maximenko.) Suppose h ∈ H(Sn−1) commutes with all
matrices A ∈ SO(n), that is h ◦A(x) = A ◦h(x) for all x ∈ Sn−1. We should
prove that then h = ±I.

First we claim that h(x) ∈ {±x} for each x ∈ Sn−1. Indeed, since n is
odd, for each x ∈ Sn−1 there exists A ∈ SO(n) such that {±x} is the set of
all fixed points for A. Hence

h(x) = h ◦ A(x) = A ◦ h(x),

that is h(x) is a fixed point for A, and so h(x) = ±x.
Now, suppose h(x) = εx for some ε = ±1. We claim that then h = εI.

Let F = {x ∈ Sn−1 | h(x) = εx} be the set of points where h coincides with
εI. We will show that F is a non-empty open-closed subset of Sn−1, which
will imply that F coincides with all of Sn−1.

As shown above x ∈ F , so F 6= ∅. Moreover, as h and −I are contin-
uous, F is closed. It remains to show that F is open. Let U be a small
neighbourhood of x such that U ∩ −U = ∅, that is U does not contain
antipodal pairs. Since h is continuous and h(x) = εx ∈ εU , there exists a
neighbourhood V of x such that h(V ) = εU . Then for each y ∈ V we have
that h(y) ∈ {±y} ∩ εU = εy. In other words, h = εI on V , and so V ⊂ F .
This proves that F = Sn−1. �

2. Representations of the inductive limit of the general linear groups
GL0(2∞,R)

2.1. Finite-dimensional case

Consider the space Xm,n =
{
x =

∑
1≤k≤m

∑
−n≤r≤n xkrEkr, xkr ∈ R

}
,

with the measure (see (2.4)) µm,n(b,a)(x) = ⊗mk=1 ⊗−n≤r≤n µ(bkr,akr)(xkr). On the
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space Xm,n acts two groups GL(m,R) from the left and GL(2n+ 1,R) from
the right and these actions commute. Therefore, two von Neumann algebras
A1 and A2,n in the Hilbert space L2(Xm,n, µ

m,n
(b,a)) generated respectively by the

left and the right actions of the corresponding groups have the property that
A′1 ⊆ A2,n. We study what happens when n → ∞. As the limit we obtain
some unitary representation of the group GL0(2∞,R) = lim−→n,is

GL(2n−1,R)

(see below). In generic case, this representation is reducible, namely, if there
exists a non trivial element s ∈ GL(m,R) such the the left action is admissible
for the measure µm(b,a), i.e., (µm(b,a))

Ls ∼ µm(b,a). But when no non-trivial left

actions are admissible, i.e., when (µm(b,a))
Ls ⊥ µm(b,a) for all s ∈ GL(m,R)\{e}

we prove that this representation is irreducible Theorem 2.1. Here, as in the
case of the regular [14, 15] and quasiregular [17, 18] representations of the
group BN

0 we obtain the remarkable fact that the irreducible representations
can be obtained as the inductive limit of reducible representations!

2.2. Infinite-dimensional case

Let us denote by Mat(2∞,R) the space of all real matrices infinite in
both directions:

Mat(2∞,R) =
{
x =

∑
k,n∈Z

xknEkn, xkn ∈ R
}
, (2.1)

where Ekn, k, n ∈ Z are infinite matrix unities.
The group GL0(2∞,R) = lim−→n,is

GL(2n−1,R) is defined as the inductive

limit of the general linear groups Gn = GL(2n − 1,R) with respect to the
symmetric embedding is (2.2):

GL(2n−1,R) 3 x 7→ isn+1(x) = x+E−(n+1),−(n+1)+En+1,n+1 ∈ GL(2n+1,R).
(2.2)

We consider a G-space Xm, m ∈ N as the following subspace of the space
Mat(2∞,R):

Xm =
{
x ∈ Mat(2∞,R) |x =

m∑
k=1

∑
n∈Z

xknEkn

}
. (2.3)

The group GL0(2∞,R) acts from the right on the space Xm. Namely, the
right action of the group G = GL0(2∞,R) is correctly defined on the space
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Xm by the formula Rt(x) = xt−1, t ∈ G, x ∈ Xm. We define a Gaussian
noncentered product measure µm = µm(b,a) on the space Xm :

µm(b,a)(x) = ⊗mk=1 ⊗n∈Z µ(bkn,akn)(xkn), (2.4)

where
dµ(bkn,akn)(xkn) = (bkn/π)1/2 exp(−bkn(xkn − akn)2)dxkn

and b = (bkn)k,n, bkn > 0, a = (akn)k,n, akn ∈ R, 1 ≤ k ≤ m, n ∈ Z. Define
the representation TR,µ,m of the group GL0(2∞,R) in the space L2(Xm, µ

m
(b,a))

by the formula:

(TR,µ,mt f)(x) =
(
dµm(b,a)(xt)/dµ

m
(b,a)(x)

)1/2
f(xt), f ∈ L2(Xm, µ

m
(b,a)).

Obviously, the centralizer ZAut(Xm)(α(G)) ⊂ Aut(Xm) contains the group
L(GL(m,R)), i.e., the image of the group GL(m,R) with respect to the left
action L : GL(m,R) → Aut(Xm), Ls(x) = sx, s ∈ GL(m,R), x ∈ Xm. We
prove the following theorem for m ≤ 2.

Theorem 2.1. The representation TR,µ,m : GL0(2∞,R)→U(L2(Xm, µ
m
(b,a)))

is irreducible if and only if (µm(b,a))
Ls ⊥ µm(b,a) ∀s ∈ GL(m,R)\{e}.

Remark 2.1. Any Gaussian product-measure µm(b,a) on Xm is GL0(2∞,R)-

right-ergodic [28, §3, Corollary 1]. For non-product-measures this is not true
in general.

To study the condition (µm(b,a))
Lt ⊥ µm(b,a) for t ∈ GL(m,R) set

t = (trs)
m
r,s=1 ∈ GL(m,R), Bn = diag(b1n, b2n, ..., bmn), Xn(t) = B1/2

n tB−1/2
n .
(2.5)

Let M i1i2...ir
j1j2...jr

(t) be the minors of the matrix t with i1, i2, ..., ir rows and
j1, j2, ..., jr columns, 1 ≤ r ≤ m. Let δrs be the Kronecker symbols.

Lemma 2.2. For the measures µm(b,a), m ∈ N the relation (µm(b,a))
Lt ⊥ µm(b,a)

∀t ∈ GL(m,R)\{e} holds if and only if

∏
n∈Z

1

2m|det t|
det (I +X∗n(t)Xn(t)) +

∑
n∈Z

m∑
r=1

brn

(
m∑
s=1

(trs − δrs)asn

)2

=∞,

where det (I +X∗n(t)Xn(t)) =

1 +
m∑
r=1

∑
1≤i1<i2<...<ir≤m;1≤j1<j2<...<jr≤m

(
M i1i2...ir

j1j2...jr
(Xn(t))

)2
.
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This lemma will be proved in Section 4.3.

Remark 2.2. The idea of the proof of the irreducibility. Let us denote
by Am the von Neumann algebra generated by the representation TR,µ,m :
Am = (TR,µ,mt | t ∈ G)′′. For α = (αk) ∈ {0, 1}m define the von Neumann
algebra L∞α (Xm, µ

m) as follows:

L∞α (Xm, µ
m)=

(
exp(itBα

kn) | 1 ≤ k ≤ m, t ∈ R, n ∈ Z
)′′
,

where Bα
kn=

{
xkn, if αk = 0
Dkn, if αk = 1

.

The proof of the irreducibility is based on three facts:
1) using the orthogonality condition (µm)Lt ⊥ µm for all t ∈ GL(m,R)\{e}

we can approximate by generators Akn = AR,mkn = d
dt
TR,µ,mI+tEkn

|t=0 the set of op-
erators (Bα

kn)mk=1, n∈Z for some α∈{0, 1}m depending on the measure µm,
2) the subalgebra L∞α (Xm, µ

m) ⊂ Am is a maximal abelian subalgebra in
Am,

3) the measure µm is G-ergodic.
Here the generators AR,mkn are given by the formulas:

AR,mkn =
m∑
r=1

xrkDrn, k, n ∈ Z, where Dkn = ∂/∂xkn − bkn(xkn − akn).

Remark 2.3. The fact that conditions (µm)Lt⊥µm for all t ∈ GL(m,R)\{e}
implies the possibility of the approximation of xkn and Dkn is based on some
completely independent statement about the properties of projections of two
infinite vectors f = (fk)k∈N and g = (gk)k∈N such that f, g, f + sg 6∈ l2
for all s ∈ R (Lemma 4.10). This lemma is a key part of the proof of the
irreducibility of the representation.

Remark 2.4. Similarly, for the “nilpotent group” BN
0 and the infinite prod-

uct of arbitrary Gaussian measures on Rm (see [2]) the proof of the irre-
ducibility is based on another completely independent statement namely,
Hadamard – Fischer’s inequality, see Lemma 2.3.

Lemma 2.3 (Hadamard – Fischer’s inequality [9], [10] ). For any pos-
itive definite matrix C ∈ Mat(m,R), m ∈ N and any two subsets α and β
with ∅ ⊆ α, β ⊆ {1, ...,m} the following inequality holds:∣∣∣∣ M(α) M(α

⋂
β)

M(α
⋃
β) M(β)

∣∣∣∣ =

∣∣∣∣ A(α̂) A(α̂
⋃
β̂)

A(α̂
⋂
β̂) A(β̂)

∣∣∣∣ ≥ 0 (2.6)
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where M(α) = Mα
α (C), A(α) = Aαα(C) and α̂ = {1, ...,m} \ α.

For details see [9, p.573], [10, Chapter 2.5, problem 36].
The conditions of orthogonality µLt ⊥ µ with respect to the left action of

the group B(m,R) on Xm were expressed as the divergence of some series,
SLkn(µ) = ∞, 1 ≤ k < n ≤ m. Conditions of the approximation of the
variables xkn by combinations of generators Apq were expressed in terms of
the divergence of another series Σkn. The proof of the fact that conditions
SLkn(µ) =∞, 1 ≤ k < n ≤ m imply conditions Σkn =∞, 1 ≤ k < n ≤ m is
based on the Hadamard – Fischer’s inequality.

3. The proof of the irreducibility

3.1. The cases m = 1

As before, let us denote by 〈fn | n ∈ N〉 the closure of the linear space
generated by the set of vectors (fn)n∈N in a Hilbert space H. We shall write
µ(b,a) = µ1

(b,a).

In the case m = 1 the generators AR,1kn have the form

AR,1kn = x1kD1n, k, n ∈ Z.

The following lemmas are proved in [1]

Lemma 3.1. The following three conditions are equivalent:
(i) (µ(b,a))

Lt ⊥ µ(b,a) for all t ∈ GL(1,R) \ {e},
(ii) (µ(b,a))

L−E11 ⊥ µ(b,a),
(iii) SL11(µ) = 4

∑
n∈Z b1na

2
1n =∞.

Lemma 3.2. For k,m ∈ Z we have

x1kx1m1 ∈ 〈AR,1kn A
R,1
mn1 = x1kx1mD

2
1n1 | n ∈ Z〉.

Lemma 3.3. For any k ∈ Z we have

x1k1 ∈ 〈x1kx1n1 | n ∈ Z〉 ⇔ SL11(µ) =∞.

So, operators x1k, k ∈ Z are affiliated (see [6]) with the von Neumann algebra
A1 (notation x1k η A1) which completes the proof of the irreducibility for
m = 1.
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4. The proof of the irreducibility in the cases m = 2

In the case m = 2 the generators Akn := AR,2kn := d
dt
TR,µ,2I+tEkn

|t=0 have the
form:

Akn = x1kD1n + x2kD2n, k, n ∈ Z.

Lemma 4.1. Three following conditions (i)–(iii) are equivalent for the mea-
sure µ = µ2

(b,a):

(i) µLt ⊥ µ for all t ∈ GL(2,R) \ {e}, where Lt(x) = tx, x ∈ X2;

(ii)


(a) µLexp(tE12) ⊥ µ, ∀t ∈ R\{0},
(b) µLexp(tE21) ⊥ µ, ∀t ∈ R\{0},
(c) µLexp(tE12)P1 ⊥ µ, ∀t ∈ R,
(d) µLexp(tE21)P2 ⊥ µ, ∀t ∈ R,
(e) µLτ−(φ,s) ⊥ µ, ∀τ−(φ, s) ∈ GL(2,R) \ {e},

(iii)


(a) SL12(µ) =∞,
(b) SL21(µ) =∞,
(c) SL,−12 (µ, t) =∞, ∀t ∈ R,
(d) SL,−21 (µ, t) =∞, ∀t ∈ R,
(e) Σ−12(τ−(φ, s)) =∞, ∀s > 0, φ ∈ [0, 2π),

where

SLkn(µ) =
∑
m∈Z

bkm
2

(
1

2bnm
+ a2

nm

)
, k 6= n, (4.1)

SL,−kn (µ, t) =
t2

4

∑
m∈Z

bkm
bnm

+
∑
m∈Z

bkm
2

(−2akm + tanm)2, (4.2)

Σ−12(τ−(φ, s)) = sin2 φΣ1(s) + Σ−2 (τ−(φ, s)),

Σ1(s) :=
∑
n∈Z

(
s2

√
b1n

b2n

−s−2

√
b2n

b1n

)2

, (4.3)

Σ−2 (τ−(φ, s)) :=
∑
n∈Z

(
4 sin2 φ

2
b1n+4 cos2 φ

2
s−4b2n

)(
sin

φ

2
a1n−s2 cos

φ

2
a2n

)2
,

(4.4)

exp(tE12) = I + tE12 =

(
1 t
0 1

)
, exp(tE21) = I + tE21 =

(
1 0
t 1

)
,
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exp(tE12)P1 =

(
−1 t
0 1

)
, exp(tE21)P2 =

(
1 0
t −1

)
,

τ−(φ, s) =

(
cosφ s2 sinφ

s−2 sinφ − cosφ

)
and P1 =

(
−1 0
0 1

)
, P2 =

(
1 0
0 −1

)
.

Moreover, (ii)(])⇔ (iii)(]) for ] = a, b, c, d, e.

Remark 4.1. We observe that

τ−(φ, s)=

(
cosφ s2 sinφ

s−2 sinφ − cosφ

)
=

(
s 0
0 s−1

)(
cosφ − sinφ
sinφ cosφ

)(
s−1 0
0 s

)
P2.

Remark 4.2. We note [12, Chapter V ,§8 Problems, 2, p. 147] that every
element of SL(2,R) is conjugate to at least one matrix of the form(

a 0
0 a−1

)
, a 6= 0,

(
1 t
0 1

)
,

(
−1 t
0 −1

)
,

(
cosφ sinφ
− sinφ cosφ

)
.

Remark 4.3. The three following conditions are equivalent:

(i) µLτ−(φ,s) ⊥ µ, φ ∈ [0, 2π), s > 0,

(ii) Σ−12(τ−(φ,s))=sin2 φΣ1(s)+Σ−2 (τ−(φ, s))=∞, φ ∈ [0, 2π), s > 0,

(iii) Σ1(s) + Σ2(C1, C2) =∞, s>0, (C1, C2)∈R2\{0},

where Σ1(s) is defined by (4.3) and

Σ2(C1, C2) :=
∑
n∈Z

(C2
1b1n + C2

2b2n)(C1a1n + C2a2n)2.

Proof. In Section 4.3 we shall show that (i)⇔ (ii) (see (4.66)), i.e., that

µLτ−(φ,s) ⊥ µ⇔ Σ−12(τ−(φ, s)) = sin2 φΣ1(s) + Σ−2 (τ−(φ, s)) =∞.

To prove (ii)⇔ (iii) set

sin
ψ

2
=sin

φ

2
(sin2 φ

2
+s4 cos2 φ

2
)−1/2, cos

ψ

2
=s2 cos

φ

2
(sin2 φ

2
+s4 cos2 φ

2
)−1/2

then using (4.4) we get

Σ−2 (τ−(φ, s)) := (sin2 ψ

2
+ s4 cos2 ψ

2
)24
∑
n∈Z

(
sin2 ψ

2
b1n+s−8 cos2 ψ

2
b2n

)
×
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(
sin

ψ

2
a1n−cos

ψ

2
a2n

)2 ∼ Σ2(ψ) :=
∑
n∈Z

(
sin2 ψ

2
b1n + cos2 ψ

2
b2n

)
×

(
sin

ψ

2
a1n − cos

ψ

2
a2n

)2
=Σ(C1, C2)=

∑
n∈Z

(C2
1b1n + C2

2b2n)(C1a1n + C2a2n)2.

�

4.1. Some orthogonality problem in measure theory

Our aim now is to find the minimal set of conditions of the orthogonality
µLt ⊥ µ for all t ∈ GL(2,R)\{e}. To be more precise, consider more general
situation.

Let α : G→ Aut(X) be a measurable action of a group G on a measurable
space (X,B, µ) with the following property: µαt ⊥ µ for all t ∈ G \ {e}.
Consider a subset G⊥(µ) in the group G having the following property:

if µαt ⊥ µ ∀t ∈ G⊥(µ) then µαt ⊥ µ ∀t ∈ G \ {e}. (4.5)

Problem. Find a minimal subset G⊥0 (µ) having the property (4.5).

Example 4.1. Consider the nilpotent group B(m,R) of upper triangular
real m×m matrices with units on the diagonal acting on the space Xm with
the Gaussian product measure µ = µm(b,a), where Xm and µ are defined as

follows (see details in [17, 18]):

Xm = {I +
∑

1≤k≤m

∑
k<n

xknEkn}, µm = ⊗1≤k≤m ⊗k<n µ(bkn,akn).

Using results form [17] and [18] we conclude that the three following condi-
tions are equivalent:

(i) µLt ⊥ µ ∀t ∈ B(m,R)\{e},
(ii) µLexp(tEkn) ⊥ µ ∀t ∈ R\{0}, 1 ≤ k < n ≤ m,

(iii) SLkn(µ) =∞ 1 ≤ k < n ≤ m,

where SLkn(µ) is defined by (4.1)

SLkn(µ) =
∞∑

r=n+1

bkr
2

( 1

2bnr
+ a2

nr

)
.
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In fact, it is sufficient to fix a nontrivial point tkn 6= 0 on any subgroup
exp(tEkn) = I + tEkn, t ∈ R, 1 ≤ k < n ≤ m. In this case the subset G⊥0 (µ)
is discrete and consists of m(m− 1)/2 points:

G⊥0 (µ, t)=
(
I + tknEkn | tkn ∈ R\{0}, 1 ≤ k < n ≤ m

)
,

where t= (tkn)kn ∈ (R\{0})m(m−1)/2. For t1 6= t2 ∈ (R\{0})m(m−1)/2 we get
two distinct minimal subsets G⊥0 (µm, t1) and G⊥0 (µm, t2).

Example 4.2. Consider the solvable group Bor(m,R) of upper triangular
real m × m matrices with nonzero elements on the diagonal acting on the
space Xm with the Gaussian product measure µ = µm(b,a), where Xm and µ

are defined as follows (see details in [1])

Xm = {x =
∑

1≤k≤m

∑
k≤n

xknEkn}, µm(b,a) = ⊗1≤k≤m ⊗k≤n µ(bkn,akn).

Using [1, Theorem 5] we conclude that the following three conditions are
equivalent:

(i) µLt ⊥ µ, ∀t ∈ Bor(m,R)\{e},
(ii) µLexp(tEkn) ⊥ µ ∀t ∈ R\{0}, 1 ≤ k < n ≤ m,

µLexp(tEkn)Pk ⊥ µ ∀t ∈ R, 1 ≤ k < n ≤ m,

(iii) SLkn(µ) =∞, SL,−kn (µ, t) =∞, 1 ≤ k < n ≤ m,

where SL,−kn (µ, t) is defined by (4.2). As before, it is sufficient to fix a non-
trivial point tkn 6= 0 on any subgroup exp(tEkn) = I + tEkn, t ∈ R. But on
the curves exp(tEkn)Pk we can not omit any point t ∈ R. Finally, a mini-
mal subset depending on the choice of t = (tkn)kn ∈ (R\{0})m(m−1)/2 can be
chosen as follows:

G⊥0 (µ, t)=
(

exp(tknEkn) = I + tknEkn | tkn ∈ R\{0}, 1 ≤ k < n ≤ m
)⋃

(
exp(tEkn)Pk | ∀t ∈ R, 1 ≤ k < n ≤ m

)
where Pk = I − 2Ekk. For example, for m = 2 we get P1 = diag(−1, 1) and
P2 = diag(1,−1).
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Example 4.3. In the case of the group G = GL(2,R) acting on the space X2

defined by (2.3) with the measure µ2
(b,a) defined by (2.4) using Lemmas 4.1,

we conclude that the description of the set G⊥0 (µ2
(b,a)) is as follows:

G⊥0 (µ2
(b,a), t12, t21) =

(
exp(t12E12), exp(t21E21) | t12, t21 ∈ R\{0}

)⋃
(

exp(tE12)P1, exp(tE21)P2 | ∀t ∈ R
)⋃(

τ−(φ, s) | ∀s > 0, φ ∈ [0, 2π)
)
.

Remark 4.4. We note that except the one-parameter groups Ekn(t) = I +
tEkn, t ∈ R all other element from the set G⊥0 (µ) for G = GL(2,R) are of
order 2, i.e., if g ∈ {exp(tEkn)Pk, τ−(φ, s)} then g2 = e.

4.2. Approximation of xkn and Dkn

We will formulate several lemmas, which will be useful for approximation
of the independent variables xkn and operators Dkn by combinations of the
generators Akn. For short, we shall write Akn instead of AR,2kn .

In what follows we use the following notation for f, g ∈ Rm

∆(f, g) =
Γ(f) + Γ(f, g)

Γ(g) + 1
. (4.6)

Lemma 4.2. For any k, t ∈ Z one has

x1nx1t ∈ 〈AnkAtk1 | k ∈ Z〉 ⇔ lim
m

Σ1,m(x, x) =∞,

where Σ1,m(x, x) = ∆(f 1
m, g

1
m) and

f 1
m =

( b1k√
b2

1k + 2b1kb2k

)m
k=−m

, g1
m =

( b2k√
b2

1k + 2b1kb2k

)m
k=−m

. (4.7)

Lemma 4.3. For any k, t ∈ Z we have

x2kx2t ∈ 〈AknAtn1 | n ∈ Z〉 ⇔ lim
m

Σ2,m(x, x) =∞,

where Σ2,m(x, x) = ∆(f 2
m, g

2
m) and

f 2
m =

( b2k√
b2

2k + 2b1kb2k

)m
k=−m

, g2
m =

( b1k√
b2

2k + 2b1kb2k

)m
k=−m

. (4.8)
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Remark 4.5. We say that two series
∑

n an and
∑

n bn with positive an, bn
are equivalent if they are simultaneously convergent or divergent. In this case
we shall use the notaions

∑
n an ∼

∑
n bn. Using the obvious equivalence of

the following two series with positive an and bn∑
n∈N

an
an + bn

∼
∑
n∈N

an
bn

(4.9)

we have the following estimation (we set Σ12 =
∑

k∈Z
b1k
b2k

and Σ21 =
∑

k∈Z
b2k
b1k

)

‖f 1‖2 =
∑
k∈Z

b2
1k

b2
1k + 2b1kb2k

∼
∑
k∈Z

b1k

2b2k

=
Σ12

2
,

‖f 2‖2 =
∑
k∈Z

b2
2k

b2
2k + 2b1kb2k

∼
∑
k∈Z

b2k

2b1k

=
Σ21

2
,

‖g1‖2 =
∑
k∈Z

b2
2k

b2
1k + 2b1kb2k

<
∑
k∈Z

b2k

2b1k

=
Σ21

2
,

‖g1‖2 =
∑
k∈Z

b2
1k

b2
2k + 2b1kb2k

<
∑
k∈Z

b1k

2b2k

=
Σ12

2
,

we conclude that limm Σ1,m(x, x)=∞ if

lim
m

Σ′1,m(x, x) :=lim
m

( m∑
k=−m

b1k

b2k

)( m∑
k=−m

b2k

b1k

)−1

=Σ12/Σ21 =∞

and limm Σ2,m(x, x)=∞ if

lim
m

Σ′2,m(x, x) :=lim
m

( m∑
k=−m

b2k

b1k

)( m∑
k=−m

b1k

b2k

)−1

=Σ21/Σ12 =∞.

Lemma 4.4. For any n ∈ Z we have

D1n1 ∈ 〈Akn1 | k ∈ Z〉 ⇔ lim
m

Σ1,m(D) =∞,

where Σ1,m(D) = ∆(fm, gm) and

fm=
(
a1k

( 1

2b1k

+
1

2b2k

)−1/2)m
k=−m

, gm=
(
a2k

( 1

2b1k

+
1

2b2k

)−1/2)m
k=−m

. (4.10)
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Lemma 4.5. Set Σ2,m(D) = ∆(gm, fm). For any n ∈ Z we get

D2n1 ∈ 〈Akn1 | k ∈ Z〉 ⇔ lim
m

Σ2,m(D) =∞.

Lemma 4.6. For any k ∈ Z we get

x1k1 ∈ 〈D1nAkn1 | n ∈ Z〉 ⇔
∑
n∈Z

b1n

b2n

=∞.

Lemma 4.7. For any k ∈ Z we have

x2k1 ∈ 〈D2nAkn1 | n ∈ Z〉 ⇔
∑
n∈Z

b2n

b1n

=∞.

Our aim now is to show that some of the expressions Σ1,m(x, x), Σ2,m(x, x)
and Σ1,m(D), Σ2,m(D) tend to infinity if µLt ⊥ µ for all t ∈ GL(2,R) \ {e}.

Let Γ(f1, f2, . . . , fn) be the Gramm determinant and γ(f1, f2, . . . , fn) be
the Gramm matrix of n vectors f1, f2, . . . , fn in a Hilbert space (see [7]). The
following lemma is trivial and well known but we need exact formulas.

Lemma 4.8. Let f1, f2 be two vectors in a Hilbert space. The distance
δ〈f2, f1〉 of the vector f2 from the line 〈f1〉 generated by f1 is given by the
following formula:

δ2〈f2, f1〉 = ‖f2 −
(f2, f1)

(f1, f1)
f1‖2 =

Γ(f1, f2)

Γ(f1)
. (4.11)

Proof. Obviously, δ2〈f2, f1〉=‖f2−f0‖2 where f0 =C1f1 such that
(f2−f0, f1)=0. We have

0 = (f2 − f0, f1) = (f2, f1)− C1(f1, f1) hence, C1 =
(f2, f1)

(f1, f1)
.

Finally,

δ2〈f2, f1〉 = ‖f2 − f0‖2 = ‖f2 − C1f1‖2 = (f2, f2)− 2C1(f2, f1) + C2
1(f1, f1) =

(f2, f2)− 2(f2, f1)(f2, f1)

(f1, f1)
+

(f2, f1)2

(f1, f1)2
(f1, f1) =

(f2, f2)(f1, f1)− (f2, f1)(f1, f2)

(f1, f1)
=

Γ(f1, f2)

Γ(f1)
.

�
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Lemma 4.9. Let f = (fk)k∈N and g = (gk)k∈N be two real vectors such that
‖f‖2 = ∞ where ‖f‖2 =

∑
k f

2
k . Denote by f(n), g(n) ∈ Rn their projections

to the subspace Rn, i.e., f(n) = (fk)
n
k=1, g(n) = (gk)

n
k=1 and set

∆(f(n), g(n)) =
Γ(f(n)) + Γ(f(n), g(n))

Γ(g(n)) + 1
then lim

n→∞
∆(f(n), g(n)) =∞ (4.12)

in the following cases:

(a) ‖g‖2 <∞,
(b) ‖g‖2 =∞, and limn→∞

‖f(n)‖
‖g(n)‖

=∞,

(c) ‖f‖2 = ‖g‖2 = ‖f + sg‖2 =∞, for all s ∈ R \ {0}.

Proof. Obviously limn→∞∆(f(n), g(n)) = ∞ if conditions (a) or (b) hold.
The implication (c)⇒ (4.12) is based on the following lemma. �

Lemma 4.10. Let f = (fk)k∈N and g = (gk)k∈N be two real vectors such that

‖f‖2 = ‖g‖2 = ‖C1f + C2g‖2 =∞, for all (C1, C2) ∈ R2 \ {0}, (4.13)

then lim
n→∞

Γ(f(n), g(n))

Γ(g(n))
=∞ and lim

n→∞

Γ(f(n), g(n))

Γ(f(n))
=∞. (4.14)

Proof. Assume that
‖f(n)‖
‖g(n)‖

≤ C1, ∀n ∈ N. The case
‖f(n)‖
‖g(n)‖

≥ C1 is similar.

In this case
Γ(f(n),g(n))

Γ(g(n))
≤ C2

1
Γ(f(n),g(n))

Γ(f(n))
therefore, to prove (4.14) it is sufficient

to prove that limn→∞
Γ(f(n),g(n))

Γ(g(n))
=∞. Let us suppose the opposite, i.e., that

for all n ∈ N holds
Γ(f(n), g(n))

Γ(g(n))
≤ C. (4.15)

Set tn =
‖f(n)‖
‖g(n)‖

then by the inequality
‖f(n)‖
‖g(n)‖

≤ C1 there exists a subsequence

tnk such that the limit exists

lim
k→∞

tnk = t0 ∈ [0, C1].

Let αn be an angle between two vectors f(n), g(n) ∈ Rn. Since Γ(f,g)
Γ(g)

is
the square of the distance of the vector f from the line generated by g by
Lemma 4.8, we have

Γ(f(n), g(n))

Γ(g(n))
= ‖f(n)‖2 sin2 αn ≤ C, therefore αn ∼ ‖fn‖−1 → 0. (4.16)
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For k, n ∈ N set M(k, n) =

∣∣∣∣ fk fn
gk gn

∣∣∣∣, then by the Lagrange identity for

f(m) = (fk)
m
k=1, g(m) = (gk)

m
k=1 ∈ Rm ([3, Ch.11, §6, formulae (7)]) we have

Γ(f(m), g(m)) =
∑

k<n≤m

M2(k, n),

therefore, the inequality (4.15) will have the following form

Γ(f(m), g(m))

Γ(g(m))
=

∑
k<n≤mM

2(k, n)∑m
k=1 g

2
k

≤ C, m ∈ N. (4.17)

For t ∈ R and f(n), g(n) ∈ Rn introduce the function

Fn(t) = ‖f(n) − tg(n)‖2 = (f(n), f(n))− 2t(f(n), g(n)) + t2(g(n), g(n)).

The minimum of the function Fn(t) is reached at t
(n)
0 =

(f(n),g(n))

(g(n),g(n))
therefore,

we have

Fn(t) = (g(n), g(n))(t− t(n)
0 )2 +

Γ(f(n), g(n))

Γ(g(n))
, Fn(t

(n)
0 ) =

Γ(f(n), g(n))

Γ(g(n))
,

hence,
Fn(t0)− Fn(t

(n)
0 ) = (g(n), g(n))(t0 − t(n)

0 )2. (4.18)

Since Fn(t
(n)
0 ) =

Γ(f(n),g(n))

Γ(g(n))
is bounded by assumption and

lim
n→∞

Fn(t) = lim
n→∞

‖f(n) − tg(n)‖2 =∞ for all t ∈ R,

by the condition (4.13), we conclude that limn→∞
(
Fn(t0)− Fn(tn0 )

)
=∞.

We show that condition (4.15) implies that Fn(t0)− Fn(t
(n)
0 ) is bounded.

This contradiction will prove the lemma. Indeed, we have

t
(n+1)
0 − t(n)

0 =
(f(n+1), g(n+1))

(g(n+1), g(n+1))
−

(f(n), g(n))

(g(n), g(n))
= −

∑n
k=1M(k, n+ 1)gkgn+1

(g(n), g(n))(g(n+1), g(n+1))

and

t
(n+m)
0 − t(n)

0 =
(f(n+m), g(n+m))

(g(n+m), g(n+m))
−

(f(n), g(n))

(g(n), g(n))
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= −
∑n

k=1

∑n+m
r=n+1M(k, r)gkgr

(g(n), g(n))(g(n+m), g(n+m))
= −

(Mn,mg
n,m, g(n))

(g(n), g(n))(g(n+m), g(n+m))
(4.19)

where the vector gn,m ∈ Rm and the rectangular matrix Mn,m ∈ Mat(R, n×
m) are defined as follows:

gn,m = (gk)
n+m
k=n+1 and Mn,m = (M(k, r))k,r 1 ≤ k ≤ n, n+1 ≤ r ≤ n+m.

We observe that limn t
(n)
0 = limn tn = t0. Indeed, if n→∞ by (4.16) we have

t
(n)
0 =

(f(n), g(n))

(g(n), g(n))
=
‖f(n)‖‖g(n)‖ cosαn

‖g(n)‖2
= tn cosαn → t0.

Finally, for all n,m ∈ N we get by (4.18), (4.19) and the Schwartz inequality

Fn(t
(n+m)
0 )− Fn(t

(n)
0 ) = (g(n), g(n))(t

(n+m)
0 − t(n)

0 )2 =

(g(n), g(n))

[
(Mn,mg

n,m, g(n))

(g(n), g(n))(g(n+m), g(n+m))

]2

≤

‖g(n)‖2‖Mn,mg
n,m‖2‖g(n)‖2

‖gn(n)‖4‖g(n+m)‖4
≤
‖Mn,m‖2

σ2
‖gn,m‖2

‖g(n+m)‖4
≤
‖Mn+m‖2

σ2

‖g(n+m)‖2
≤ C,

where Mm := (M(k, r))k<r≤m and

‖Mn,m‖2
σ2

=
n∑
k=1

n+m∑
r=n+1

M2(k, r), ‖Mm‖2
σ2

=
∑

k<r≤m

M2(k, r) = Γ(f(m), g(m)).

Fix ε > 0. Since limm t
(m)
0 = t0 and the functions Fn(t) are continuous we

conclude that there exists mn ≥ n such that Fn(t
(m)
0 ) > Fn(t0)−ε,∀m ≥ mn,

in particular, Fn(t
(mn)
0 ) > Fn(t0) − ε. Since limn Fn(t0) = ∞ we conclude

that
lim
n
Fn(t

(mn)
0 ) ≥ lim

n
(Fn(t0)− ε) =∞

that contradicts the condition Fn(t
(n+m)
0 )− Fn(t

(n)
0 ) ≤ C for all m,n ∈ N. �

Lemma 4.11. If µLt ⊥ µ for all t ∈ GL(2,R) \ {e}, we can approximate
one of the following pair of operators: (x1n, x2n), (x1n, D2n), (D1n, x2n), or
(D1n, D2n).
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Proof. For the convenience of the readers we collect the important formulas
below:

Σ1,m(x, x) =
Γ(f1

m) + Γ(f1
m, g

1
m)

Γ(g1
m) + 1

=

∑m
k=−m

b21k
b21k+2b1kb2k

+ Γ(f1
m, g

1
m)∑m

k=−m
b22k

b21k+2b1kb2k
+ 1

, (4.20)

Σ2,m(x, x) =
Γ(f2

m) + Γ(f2
m, g

2
m)

Γ(g2
m) + 1

=

∑m
k=−m

b22k
b22k+2b1kb2k

+ Γ(f2
m, g

2
m)∑m

k=−m
b21k

b22k+2b1kb2k
+ 1

, (4.21)

Σ1,m(D) =
Γ(fm) + Γ(fm, gm)

Γ(gm) + 1
=

∑m
k=−m

a21k
1

2b1k
+ 1

2b2k

+ Γ(fm, gm)∑m
k=−m

a22k
1

2b1k
+ 1

2b2k

+ 1
, (4.22)

Σ2,m(D) =
Γ(gm) + Γ(gm, fm)

Γ(fm) + 1
=

∑m
k=−m

a22k
1

2b1k
+ 1

2b2k

+ Γ(gm, fm)∑m
k=−m

a21k
1

2b1k
+ 1

2b2k

+ 1
, (4.23)

f1
m =

( b1k√
b21k + 2b1kb2k

)m
k=−m

, g1
m =

( b2k√
b21k + 2b1kb2k

)m
k=−m

, (4.24)

f2
m =

( b2k√
b22k + 2b1kb2k

)m
k=−m

, g2
m =

( b1k√
b22k + 2b1kb2k

)m
k=−m

, (4.25)

fm =
(
a1k

( 1

2b1k
+

1

2b2k

)−1/2)m
k=−m

, gm =
(
a2k

( 1

2b1k
+

1

2b2k

)−1/2)m
k=−m

.

(4.26)

To estimate Σ1,m(x, x) and Σ2,m(x, x) consider three possibilities:

(1) Σ12 :=
∑
k∈Z

b1k

b2k

<∞, (2) Σ21 :=
∑
k∈Z

b2k

b1k

<∞, (3)
∑
k∈Z

b1k

b2k

=
∑
k∈Z

b2k

b1k

=∞.

(4.27)
We present the results in the table I.
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table I (1) (2) (3a) (3b) (3c)
Σ12 <∞ ∞ ∞ ∞
Σ21 <∞ ∞ ∞ ∞
‖g1‖ <∞
‖g2‖ <∞
Lemma 4.3, 4.4, 4.2, 4.4, 4.2, 4.3, 4.2, 4.3,

4.5, 4.10 4.5 4.10 4.10, 4.13
x2n, D1n, D2n x1n, D1n, D2n x1n, x2n x1n, x2n x1n, x2n

Case (1). If Σ12 < ∞ then Σ21 = ∞ and we have limm→∞Σ2,m(x, x) =
∞ by Remark 4.5. Hence, x2nx2t η A, by Lemma 4.3 and x2n η A, by
Lemma 3.3. We can approximate D1n and D2n by Lemmas 4.4, 4.5 and
Lemma 4.10:

D1n η A if
Γ(fm) + Γ(fm, gm)

Γ(gm) + 1
→∞, D2n η A if

Γ(gm) + Γ(gm, fm)

Γ(fm) + 1
→∞,

where fm and gm are defined by (4.26). Set

f =
(
a1k

( 1

2b1k

+
1

2b2k

)−1/2)
k∈Z

, g =
(
a2k

( 1

2b1k

+
1

2b2k

)−1/2)
k∈Z

. (4.28)

Since
∑

k∈Z
b1k
b2k

<∞, we conclude that

‖f‖2 = ‖g‖2 = ‖f − sg‖2 =∞. (4.29)

Indeed, we have

‖f‖2 =
∑
k∈Z

a2
1k

1
2b1k

+ 1
2b2k

=
∑
k∈Z

b1ka
2
1k

1
2

+ b1k
2b2k

∼ 2
∑
k∈Z

b1ka
2
1k = SL11(µ) =∞,

‖g‖2 =
∑
k∈Z

b1ka
2
2k

1
2

+ b1k
2b2k

∼
∑
k∈Z

b1ka
2
2k ∼

∑
k∈Z

b1k

2

( 1

2b2k

+ a2
2k

)
= SL12(µ) =∞,

‖f−sg‖2 =
∑
k∈Z

b1k(a1k − sa2k)
2

1
2

+ b1k
2b2k

∼
∑
k∈Z

b1k(a1k−sa2k)
2 =

1

4

∑
k∈Z

b1k(−2a1k+2sa2k)
2

∼ 1

2

((2s)2

4

∑
k∈Z

b1k

b2k

+
∑
k∈Z

b1k

2
(−2a1k + 2sa2k)

2
)

=
1

2
SL,−12 (µ, t) =∞,
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for t = 2s (see (4.2)). Therefore, by Lemma 4.10 we conclude (see(4.14)) that

limn→∞
Γ(f(n),g(n))

Γ(g(n))
= ∞ and limn→∞

Γ(f(n),g(n))

Γ(f(n))
= ∞, so D1n, D2n η A by

Lemmas 4.4 and 4.5. Finally, x2n D1n D2n η A. Now we get Akn−x2kD2n =
x1kD1n, k, n ∈ Z and the proof is complete since we are in the case m = 1.

Case (2). If Σ21 < ∞ then Σ12 = ∞ and we have limm→∞Σ1,m(x, x) =
∞, by Remark 4.5. Hence, x1nx1t ηA, by Lemma 4.2 and x1n ηA, by Lemma 3.3.
As in the previous case, the condition

∑
k∈Z

b2k
b1k

<∞ implies

‖f‖2 ∼ SL21(µ) =∞, ‖g‖2 ∼ SL22(µ) =∞, ‖f − sg‖2 ∼ SL,−21 (µ, t) =∞,

for t = 2
s
. Exactly, as in the case (1), we can approximate D1n and D2n.

Finally, x1n D1n D2n η A. Further, Akn − x1kD1n = x2kD2n, k, n ∈ Z and
the proof is complete.

Case (3). Let
∑

k∈Z
b1k
b2k

=
∑

k∈Z
b2k
b1k

=∞. Set cn = b2n
b1n
, n ∈ Z. The

vectors f 1
m, g

1
m, f

2
m, g

2
m are defined as follows (see (4.24) and (4.25)):

f 1
m =

( 1√
1 + 2cn

)m
−m
, g1

m =
(

cn√
1+2cn

)m
−m
, (4.30)

f 2
m =

(√ cn
cn + 2

)m
−m
, g2

m =
(

1√
c2n+2cn

)m
−m
. (4.31)

We show that
‖f 1‖2 = ‖f 2‖2 = ‖g1‖2 + ‖g2‖2 =∞. (4.32)

Indeed, we have

‖f 1‖2 =
∑
n∈Z

(1 + 2cn)−1 ∼
∑
n∈Z

c−1
n = Σ12 =∞,

‖f 2‖2 =
∑
n∈Z

cn(cn + 2)−1 ∼
∑
n∈Z

cn = Σ21 =∞.

Let us suppose that ‖g1‖2 + ‖g2‖2 <∞ then

∞ > ‖g1‖2 + ‖g2‖2 =
∑
n∈Z

( c2
n

1 + 2cn
+

1

c2
n + 2cn

)
>
∑
n∈Z

1 + c2
n

(1 + cn)2
,

hence,
∑

n∈Z
1

(1+cn)2
<∞ and

∑
n∈Z

c2n
(1+cn)2

<∞ therefore,

∞ >
∑
n∈Z

(1 + cn)2

(1 + cn)2
=
∑
n∈Z

1 =∞.

26



This contradiction proves that ‖g1‖2+‖g2‖2 =∞. We shall come back to the
case I(3) later. We show that in the case A (see (4.38)) we can approximate
x1n and x2n.

Now we study the possibility of the approximation of D1n and D2n by
Lemmas 4.4, 4.5 and 4.10. Recall the notations:

‖fm‖2 =
m∑

k=−m

a2
1k

( 1

2b1k

+
1

2b2k

)−1

, ‖gm‖2 =
m∑

k=−m

a2
2k

( 1

2b1k

+
1

2b2k

)−1

. (4.33)

All the different cases are presented in the following tables:

table II (1) (2) (3a) (3b) (3c) (4)
‖f‖2 ∞ <∞ ∞ ∞ ∞ <∞
‖g‖2 <∞ ∞ ∞ ∞ ∞ <∞
‖fm‖2
‖gm‖2 →∞ → 0 C1≤ ‖fm‖

2

‖gm‖2≤
C2

Lemma 4.4 4.5 4.4 4.5 4.4 , 4.5
4.6 4.7 4.6 4.7 4.14, 4.10
D1n, x1n D2n, x2n D1n, x1n D2n, x2n D1n, D2n

Remark 4.6. We show that if ‖g‖2 <∞ and SL12(µ) =∞ then
∑

n
b1n
b2n

=∞.

Indeed, let us suppose that
∑

n
b1n
b2n

<∞, then

‖g‖2 =
∑
n∈Z

a2
2n

1
2b1n

+ 1
2b2n

∼
∑
n∈Z

b1na
2
2n ∼

∑
n∈Z

b1n

2

( 1

2b2n

+ a2
2n

)
= SL12(µ) =∞.

(4.34)

We explain the tables II in details. The first two case (1) and (2) are inde-
pendent of the case I(3).

(1) If ‖g‖2 <∞ and ‖f‖2 =∞, we haveD1k η A by Lemma 4.4. The con-
dition ‖g‖2 < ∞ implies

∑
k∈Z

b1k
b2k

= ∞, by Remark 4.6 therefore, x1k η A,
by Lemma 4.6. Further, Akn − x1kD1n = x2kD2n, k, n ∈ Z and the proof is
complete since we are reduced to the case m = 1.

(2) If ‖g‖2 = ∞ and ‖f‖2 < ∞, we have D2k η A by Lemma 4.5. By
remark similar to the Remark 4.6, we conclude that

∑
k∈Z

b2k
b1k

=∞ therefore,
x2k η A by Lemma 4.7 and Akn − x2kD2n = x1kD1n, k, n ∈ Z, case m = 1.

(3) Consider now the case I(3). Let both series be divergent: ‖g‖2 =∞
and ‖f‖2 =∞. We show that in the case (B) (see (4.38)) holds ‖f+sg‖2 =∞
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for all s ∈ R, by Lemma 4.13 therefore, by Lemma 4.10, we can approximate
D1n and D2n. To be more precise consider three possibilities:

(3a) let ‖fm‖
2

‖gm‖2 →∞, then D1k η A. Since
∑

n
b1n
b2n

=∞, we have x1n η A
by Lemma 4.6 and finally, x1n, D1n η A, n ∈ Z. We are reduced to the case
m = 1.

(3b) Let ‖fm‖
2

‖gm‖2 → 0, then D2k η A. Since
∑

n
b2n
b1n

= ∞, we get x2n η A,
by Lemma 4.7 and finally, x2n, D2n η A, n ∈ Z. We are reduced to the case
m = 1.

(3c) The case when ‖f‖2 = ‖g‖2 =∞ and C1≤‖fm‖
2

‖gm‖2≤C2 .

(4) The case when ‖f‖2 + ‖g‖2 <∞.
To complete the proof of the lemma it remains to consider I(3), i.e., the

last case (3) in the table I and the last two cases in the table II, i.e., II(3c)
and II(4), where:

I(3)
∑
k∈Z

b1k

b2k

=
∑
k∈Z

b2k

b1k

=∞, (4.35)

II(c3)
∑
k∈Z

a2
1k

( 1

2b1k

+
1

2b2k

)−1

=
∑
k∈Z

a2
2k

( 1

2b1k

+
1

2b2k

)−1

=∞, (4.36)

II(4)
∑
k∈Z

(
a2

1k + a2
2k

)( 1

2b1k

+
1

2b2k

)−1

<∞. (4.37)

Come back to the condition µLt ⊥ µ. By Remark 4.3 we have

µLτ−(φ,s) ⊥ µ, φ ∈ [0, 2π), s > 0⇔ Σ1(s) + Σ2(C1, C2)=∞, s > 0,

for (C1, C2) ∈ R2 \ {0}. Recall that (see (4.4))

Σ1(s) =
∑
n∈Z

(
s2

√
b1n

b2n

− s−2

√
b2n

b1n

)2

,

Σ2(C1, C2) =
∑
n∈Z

(C2
1b1n + C2

2b2n)(C1a1n + C2a2n)2.

The condition Σ1(s) + Σ2(C1, C2)=∞ splits into two cases:

(A) Σ1(s) =∞,
(B) Σ1(s) <∞ but Σ2(C1, C2) =∞. (4.38)

(A)&I(3). In this case independently of the conditions II(3c) and II(4) we
can approximate x1n and x2n by Lemma 4.2 and 4.3.
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(B)&II(3c) In this case we can approximate D1n and D2n by Lemmas 4.4 and
4.5 respectively. More precisely, to use Lemma 4.10 we show that conditions
(4.13) are satisfied for two vectors f and g defined by (4.26) (see Lemma 4.14).
(B)&II(4) This case (see (4.37)) can not be realized if Σ2(C1, C2) =∞.

Case (A)&I(3). Using Lemma 4.10 we conclude that

Γ(f 1
m, g

1
m)(Γ(g1

m))−1 →∞ and Γ(f 2
m, g

2
m)(Γ(g2

m))−1 →∞. (4.39)

To use Lemma 4.10, it is sufficient to show that in the case (A) relations (4.13)
hold for f 1, g1 and f 2, g2, i.e., for all s ∈ R \ {0} we have (see Lemma 4.13)

‖f 1‖2 =‖g1‖2 =‖f 1 + sg1‖2 =∞, ‖f 2‖2 =‖g2‖2 =‖f 2 + sg2‖2 =∞. (4.40)

Consider three possibilities in the case I(3):

(3a) If ‖g1‖ <∞ then ‖g2‖ =∞ therefore, we have ‖f 1
m‖/‖g1

m‖ → ∞ so,
x1n η A by Lemma 4.9 (a). In the case (A) by Lemma 4.13 holds ‖f 2‖2 =
‖g2‖2 = ‖f 2 + sg2‖2 =∞ therefore, x2n η A by Lemma4.10.

(3a) If ‖g2‖ < ∞ then ‖g1‖ = ∞ therefore, we have ‖f 2
m‖/‖g2

m‖ → ∞
so, x2n η A by Lemma4.9 (a). In the case (A) by Lemma 4.13 holds ‖f 1‖ =
‖g1‖ = ‖f 1 + sg1‖ =∞ therefore, x1n η A by Lemma 4.10.

(3c) If ‖g1‖ = ‖g2‖ =∞ then by Lemma 4.13 all relations (4.40) hold in
the case (A) therefore, x1n, x2n η A.

To prove (4.40) we need the following auxiliary lemma.

Lemma 4.12. The following two conditions are equivalent:

(i) Σ1(s) =
∑
n∈Z

(
s2

√
b1n

b2n

− s−2

√
b2n

b1n

)2

=∞, (4.41)

(ii) Σ2(s) =
∑
n∈Z

(
s4 b1n

b2n

− 1
)2

+
(
s−4 b2n

b1n

− 1
)2

=∞. (4.42)

Proof. We show that (i)⇒ (ii). Indeed, we have

(a2 − 1)2 + (a−2 − 1)2 = (a2 − 1)2(1 + a−4) = (a− a−1)2(a2 + a−2).

Set a = s2(b1n/b2n)1/2, then

Σ2(s) =
∑
n∈Z

(
s2

√
b1n

b2n

− s−2

√
b2n

b1n

)2(
s4 b1n

b2n

+ s−4 b2n

b1n

)
≥ 2Σ1(s).
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We prove that (ii)⇒ (i). Denote by s4 b1n
b2n

= 1 + an, then we have

Σ1(s) =
∑
n∈Z

(√
1 + an −

1√
1 + an

)2

=
∑
n∈Z

( an√
1 + an

)2

=
∑
n∈Z

a2
n

1 + an
,

Σ2(s)=
∑
n∈Z

(
a2
n+
( 1

1 + an
−1
)2)

=
∑
n∈Z

(
a2+

a2
n

(1 + an)2

)
(4.9)∼
∑
n∈Z

a2
n+
∑
n∈Z

a2
n

1 + an
.

Let Σ2(s) = ∞. If
∑

n∈Z
a2n

1+an
= ∞, the proof is complete. Suppose that∑

n∈Z a
2
n =∞. We show that in this case Σ1(s) =∞. It is sufficient to prove

that ∑
n∈N

a2
n =∞ implies

∑
n∈N

a2
n(1 + an)−1 =∞.

Consider three cases:
(a) If 0 < ε ≤ 1 + an ≤ C <∞ for all n ∈ N, then

C−1
∑
n∈N

a2
n ≤

∑
n∈N

a2
n(1 + an)−1 ≤ ε−1

∑
n∈N

a2
n.

(b) If limk→∞(1 + ank) = 0, then

lim
k→∞

a2
nk

(1 + ank)
−1 =∞ and

∑
n∈N

a2
n(1 + an)−1 =∞.

(c) If limk→∞(1 + ank) = +∞, then∑
n∈N

a2
n(1 + an)−1 >

∑
k∈N

ank(a
−1
nk

+ 1)−1 ∼
∑
k∈N

ank =∞.

�

Lemma 4.13. If Σ1(s) =∞ for any s > 0, then

‖f 1 − Cg1‖2 =∞ and ‖f 2 − Cg2‖2 =∞, for any C > 0.

Proof. Set as before cn = b2n
b1n
, n ∈ Z. Suppose that Σ1(s) =∞, then

∞ = Σ1(s) =
∑
n∈Z

( s2

√
cn
−
√
cn
s2

)2

=
∑
n∈Z

a2
n

1 + an
,
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where s4c−1
n = 1 + an or cn = s4

1+an
. We show that

‖s4f 1 − g1‖2 =∞ and ‖s−4f 2 − Cg2‖2 =∞.

Indeed, using (4.30) and (4.31) we get

‖s4f 1 − g1‖2 =
∑
k∈Z

(s4 − ck)2

1 + 2ck
=
∑
k∈Z

(s4

ck
− 1
)( 1

c2
k

+
2

ck

)−1

=

∑
k∈Z

a2
k(

1+ak
s4

)2
+ 21+ak

s4

∼
∑
k∈Z

a2
k

(1 + ak)2 + 2(1 + ak)
=

∑
k∈Z

a2
k

3 + 4ak + a2
k

∼
∑
k∈Z

a2
k

1 + ak
=∞

and

‖s−4f 2 − g2‖2 =
∑
k∈Z

(s−4c2
k − 1)2

c2
k + 2ck

=

∑
k∈Z

( 1

1 + ak
− 1
)2(( s4

1 + ak

)2

+ 2
s4

1 + ak

)−1

=

∑
k∈Z

a2
k

s8 + 2s4(1 + ak)
∼
∑
k∈Z

a2
k

1 + ak
=∞.

�

So, in the case (A)&I(3) we can approximate x1n and x2n.
Case (B)&II(3c).

Lemma 4.14. When Σ1(s) <∞ and Σ2(C1, C2) =∞, we get

σ(C1, C2) := ‖C1f+C2g‖2 =
∑
n∈Z

(C1a1n + C2a2n)2

1
2b1n

+ 1
2b2n

=∞, (C1, C2) ∈ R2\{0},

(4.43)
where f and g are defined by (4.28)

f =
(
a1k

( 1

2b1k

+
1

2b2k

)−1/2)
k∈Z

, g =
(
a2k

( 1

2b1k

+
1

2b2k

)−1/2)
k∈Z

.

31



Proof. Let Σ1(s) =
∑

n∈Z
a2n

1+an
< ∞, where s4 b1n

b2n
= 1 + an or s4b1n =

(1 + an)b2n. We see that limn
a2n

1+an
= 0 hence, limn an = limn

(
s4 b1n

b2n
− 1
)

= 0.
We have

σ(C1, C2) =
∑
n∈Z

b1n(C1a1n + C2a2n)2

1
2

+ b1n
2b2n

=
∑
n∈Z

b1n(C1a1n + C2a2n)2

1
2

+ 1
2

1+an
s4

∼
∑
n∈Z

C2
1b1n(C1a1n + C2a2n)2,

σ(C1, C2) =
∑
n∈Z

b2n(C1a1n + C2a2n)2

b2n
2b1n

+ 1
2

=
∑
n∈Z

b2n(C1a1n + C2a2n)2

1
2

s4

1+an
+ 1

2

∼
∑
n∈Z

C2
2b2n(C1a1n + C2a2n)2,

hence, σ(C1, C2) ∼
∑

n∈Z(C2
1b1n + C2

2b2n)(C1a1n + C2a2n)2 = Σ2(C1, C2). �

Finally, we can approximate D1n and D2n in the case (B)&II(3c).
Case (B)&II(4). The last case (B)&II(4) (see (4.37)) can not be real-

ized if Σ2(C1, C2) = ∞. Indeed, in this case by Lemma 4.14 σ(C1, C2) ∼
Σ2(C1, C2) =∞. This contradicts (4.37):∑

k∈Z

(
a2

1k + a2
2k

)( 1

2b1k

+
1

2b2k

)−1

<∞.

This completes the proof of Lemma 4.11 for m = 2. �

The proof of the irreducibility for m = 2 follows from Remark 2.2. Depending
on the measure, we can approximate four different families of commuting
operators Bα = (Bα

1n, B
α
2n)n∈Z for α ∈ {0, 1}2:

B(0,0)=(x1n, x2n)n, B
(0,1)=(x1n, D2n)n, B

(1,0)=(D1n, x2n)n, B
(0,0)=(D1n, D2n)n.

The von Neumann algebra L∞α (X2, µ
2) consists of all essentially bounded

functions f(Bα) in the commuting family of operators Bα (see, e.g., [4]) as,
in particular, L∞(0,0)(X2, µ

2) = L∞(X2, µ
2). Since the von Neumann alge-

bras L∞α (X2, µ
2) are maximal abelian, the commutant

(
A2
)′

of the von Neu-
mann algebra A2 generated by the representation is contained in L∞α (X2, µ

2).
Hence, the bounded operator A ∈

(
A2
)′

will be some function A = a(Bα) ∈
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L∞α (X2, µ
2). The commutation relation [A, TR,µ,2t ] = 0 gives us the fol-

lowing relations: a((Bα)Rt) = a(Bα) for all t ∈ GL0(2∞,R). Set Bα
r =

(Bα
rn)n, xr = (xrn)n, Dr = (xrn)n, r = 1, 2, n ∈ Z and set as before,

Ekn(t) := I + tEkn, t ∈ R, k, n ∈ Z, k 6= n. Then the action (Bα)Rs is
defined as follows:

(Bα
1 , B

α
2 )Rt = ((Bα

1 )Rt , (Bα
2 )Rt), (xr)

Rt = xrt, (Dr)
Rt = Drt

∗,

a(. . . , xrk, . . . , xrn, . . . )
REkn(t) = a(. . . , xrk, . . . , xrn + txrk, . . . ),

a(. . . , Drk, . . . , Drn, . . . )
REkn(t) = a(. . . , Drk + tDrn, . . . , Drn, . . . ), t ∈ R.

In all the cases, by ergodicity of the measure µ2, we conclude that a is
constant.

4.3. The proof of Lemmas 2.2, 4.1

Lemma 2.2 follows from Lemmas 4.15- 4.18.

Lemma 4.15. For t ∈ GL(m,R)\{e} we have (µm(b,a))
Lt ⊥ µm(b,a)if and only

if
(µm(b,0))

Lt ⊥ µm(b,0) or µm(b,Lta) ⊥ µm(b,a). (4.44)

Let us define the following measures on the spaces Rm and Xm:

µ(Bn,0)
m = ⊗mk=1µ(bkn,0), µ(Bn,an)

m = ⊗mk=1µ(bkn,akn),

where an = (a1n, ..., amn) ∈ Rm and Bn = diag(b1n, ..., bmn) ∈ Mat(m,R).
Since

µm(b,a) = ⊗n∈Zµ(Bn,an)
m , µm(b,0) = ⊗n∈Zµ(Bn,0)

m ,(
µm(b,a)

)Lt
= ⊗n∈Z

(
µ(Bn,an)
m

)Lt
,
(
µm(b,0)

)Lt
= ⊗n∈Z

(
µ(Bn,0)
m

)Lt
,

and
µm(b,Lta) = ⊗n∈Zµ(Bn,Ltan)

m ,

by Kakutani criterion [11], we have two lemmas:

Lemma 4.16. For measures µm(b,0), m ∈ N and t ∈ GL(m,R)\{e} we obtain

(µm(b,0))
Lt ⊥ µm(b,0) ⇔

∏
n∈Z

H
((
µ(Bn,0)
m

)Lt
, µ(Bn,0)

m

)
= 0.
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Lemma 4.17. For measures µm(b,0), m ∈ N and t ∈ GL(m,R)\{e} we get

µm(b,Lta) ⊥ µm(b,a) ⇔
∏
n∈Z

H
(
µ(Bn,Ltan)
m , µ(Bn,an)

m

)
= 0.

To prove Lemma 2.2 it is sufficient to show, due to Lemma 4.15, that

H
((
µ(Bn,0)
m

)Lt
, µ(Bn,0)

m

)
=

(
1

2m|det t|
det (I +X∗n(t)Xn(t))

)−1/2

, (4.45)

to prove the equivalence

∏
n∈Z

H
(
µ(Bn,Ltan)
m , µ(Bn,an)

m

)
= 0⇔

∑
n∈Z

m∑
r=1

brn

( m∑
s=1

(trs − δrs)asn
)2

=∞,

(4.46)
and to use the following lemma:

Lemma 4.18. For X ∈ Mat(m,R) we have

det (I +X∗X) = 1 +
m∑
r=1

∑
1≤i1<i2<...<ir≤m;1≤j1<j2<...<jr≤m

(
M i1i2...ir

j1j2...jr
(X)

)2
.

(4.47)

The proof of equality (4.45) is based on the exact formula of the Hellinger

integral (see [23] for definition) for two Gaussian measures µ = µ
(Bn,0)
m and

ν = µ
(Cn,0)
m in the space Rm (see [23])

H(µ, ν) =

∫
X

√
dµ

dρ

dν

dρ
dρ =

(
detBndetCn

det2 Bn+Cn
2

)1/4

. (4.48)

The latter formula is based on the following formula for a positive definite
operator C in the space Rm:

1√
πm

∫
Rm

exp(−(Cx, x))dx =
1√

detC
. (4.49)

Let, as before, t = (trs)
m
r,s=1 ∈ GL(m,R), Bn = diag(b1n, b2n, ..., bmn), Xn(t)=

B
1/2
n tB

−1/2
n ∈ Mat(m,R). Let M i1i2...ir

j1j2...jr
(t) be the minors of the matrix t with

i1, i2, ..., ir rows and j1, j2, ..., jr columns.
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Let us denote by µ(B,a) = µ(C,a) the Gaussian measure with the covariance

operator C = (2B)−1 on the space Rm defined by the formula: dµB(x)
dx

=√
detB

πm
exp

(
−
(
Bx, x

))
=

1√
(2π)mdetC

exp
(
− 1

2

(
C−1x, x)

))
=
dµC(x)

dx
.

(4.50)
Recall that by definition µf (∆) = µ(f−1(∆)). Since Ltx = tx, we get

µL
−1
t (x) = µ(tx) therefore,(

µ(Bn,a)
m

)L−1
t (x) = µ(Bn(t),t−1a)

m where Bn(t) = t∗Bnt. (4.51)

Indeed,

d
(
µ(Bn,a)
m

)L−1
t (x) =

√
detBn

πm
exp

(
−
(
Bnt(x− t−1a), t(x− t−1a)

))
dtx =√

|det t|2detBn

πm
exp

(
−
(
t∗Bnt(x− t−1a), (x− t−1a)

))
dx = dµ(Bn(t),t−1a)

m (x),

whereBn(t) = t∗Bnt, Bn = diag(b1n, b2n, ..., bmn), detBn(t) = |det t|2detBn.
Using (4.48), (4.50) and (4.51) we obtain

H
((
µ(Bn,0)
m

)Lt
, µ(Bn,0)

m

)
= H

(
µ(Bn(t),0)
m , µ(Bn,0)

m

)
=

(
detBn(t)detBn

πmπm

)1/4

×

∫
Rm

exp
(
−
(Bn(t)+Bn

2
x, x
))
dx=

(
detBn(t)detBn

det2 Bn(t)+Bn
2

)1/4

=

(
detCn(t)

|det t|detBn

)−1/2

,

where Cn(t) = Bn(t)+Bn
2

= t∗Bnt+Bn
2

. Now we show that

detCn(t)

|det t|detBn

=
1

2m|det t|
det (I +X∗n(t)Xn(t)) , (4.52)

where Xn(t) = B
1/2
n tB

−1/2
n . The latter equation is equivalent to

det (t∗Bnt+Bn)

detBn

= det (I +X∗n(t)Xn(t)) .

To complete the proof of (4.45) it is sufficient to see that

I +X∗n(t)Xn(t) = I +B−1/2
n t∗B1/2

n B1/2
n tB−1/2

n = B−1/2
n (Bn + t∗Bnt)B

−1/2
n .

The proof of relation (4.46) is based on the following theorem that one can
find, e.g., in [29, Ch. III, §16, Theorem 2].
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Theorem 4.19. Two Gaussian measures µB,a and µB,b are equivalent if and
only of B−1/2(a− b) ∈ H.

Indeed, we have

‖C−1/2(ta− a)‖2H =
∑
n∈Z
‖C−1/2

n (t− I)an‖2Hn =2
∑
n∈Z

m∑
r=1

bkn
dkn

( m∑
s=1

(trs− δrs)asn
)2
dkn.

To explain the latter equality let us describe H and C. To find an operator C
we present the measure µm(b,a) in the canonical form µC,a defined by its Fourier
transform:∫

H
exp i(y, x)dµC,a(x) = exp

(
i(a, y)− 1

2
(Cy, y)

)
, y ∈ H, (4.53)

where C is a positive nuclear operator (called the covariance operator) on
the Hilbert space H, and a ∈ H is the mathematical expectation or mean.

Recall the Kolmogorov zero-one law. Let us consider in the space R∞ =
R × R × · · · the infinite tensor product µb = ⊗n∈Nµbk of one-dimensional
Gaussian measures µbk on R defined as follows:

dµb(x) =
√
b/π exp(−bx2)dx. (4.54)

Consider a Hilbert space l2(a) defined by

l2(a) =
{
x ∈ R∞ : ‖x‖2

l2(a) =
∑
k∈N

x2
kak <∞

}
,

where a = (ak)k∈N is an infinite sequence of positive numbers.

Theorem 4.20 (Kolmogorov’s zero-one law, [28]). We have

µb(l2(a)) =

{
0, if

∑
k∈N

ak
bk

=∞,
1, if

∑
k∈N

ak
bk
<∞.

Define the Hilbert space H ⊂ Xm as follows:

H = l2(Rm, d) =
{
x = (xkn)k,n ∈ Xm | ‖x‖2

H :=
∑

1≤k≤m,n∈N

x2
kndkn <∞

}
,

where a sequence d = (dkn)1≤k≤m,n∈Z of positive numbers is chosen such that∑
1≤k≤m,n∈N

dkn
bkn

<∞. Then by the Kolmogorov zero-one law, µm(b,a)(H) = 1.

We show that C = diag(ckn), where ckn = dkn
2bkn

. Indeed, we get∑
1≤k≤m,n∈N

bknx
2
kn =

1

2

∑
1≤k≤m,n∈N

2bkn
dkn

x2
kndkn =

1

2
(C−1x, x)H .
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Proof of Lemma 4.18. Let as recall the definition of the Gram determinant
and the Gram matrix (see [7], Chap IX, §5). For vectors x1, x2, ..., xm in some
Hilbert space H the Gram matrix γ(x1, x2, ..., xm) is defined by the formula

γ(x1, x2, ..., xm) = ((xk, xn)mk,n=1).

The determinant of this matrix is called the Gram determinant for the
vectors x1, x2, ..., xm and is denoted by Γ(x1, x2, ..., xm). Thus,

Γ(x1, x2, ..., xm) := det γ(x1, x2, ..., xm).

Let

X =


x11 x12 ... x1m

x21 x22 ... x2m

... ... ... ...
xm1 xm2 ... xmm

 .

Set xk = (x1k, x2k, ..., xmk) ∈ Rm, 1 ≤ k ≤ m, then, obviously, we get

X∗X =


(x1, x1) (x1, x2) ... (x1, xm)
(x2, x1) (x2, x2) ... (x2, xm)
... ... ... ...

(xm, x1) (xm, x2) ... (xm, xm)

 = γ(x1, x2, ..., xm).

We would like to find an exact expression for det (I + γ(x1, x2, ..., xm)) . It is
convenient to consider the following function:

F λ
m,X = F λ1,λ2,...,λm

m;x1,x2,...,xm
= det

( m∑
k=1

λkEkk + γ(x1, x2, ..., xm)
)
, λ ∈ Cm.

It is easy to see that for m = 2 we have

F λ1,λ2
2;x1,x2

= det

(
λ1 + (x1, x1) (x1, x2)

(x2, x1) λ2 + (x2, x2)

)
=

λ1λ2 + λ1Γ(x2) + λ2Γ(x1) + Γ(x1, x2) =

λ1λ2

(
1 + λ−1

1 Γ(x1) + λ−1
2 Γ(x2) + (λ1λ2)−1Γ(x1, x2)

)
. (4.55)

The general formula is

F λ1,λ2,...,λm
m;x1,x2,...,xm

= det
( m∑
k=1

λkEkk + γ(x1, x2, ..., xm)
)

= (4.56)
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m∏
k=1

λk

(
1 +

m∑
r=1

∑
1≤i1<i2<...<ir≤m

(
λi1λi2 ...λir

)−1

Γ(xi1 , xi2 , ..., xir)
)

=

m∏
k=1

λk

(
1+

m∑
r=1

∑
1≤i1<i2<...<ir≤m;1≤j1<j2<...<jr≤m

(
λi1λi2 ...λir

)−1(
M i1i2...ir

j1j2...jr
(X)

)2)
.

We have used the following formula (see [7], Chap IX, §5 formula (25)):

Γ(xi1 , xi2 , ..., xir) =
∑

1≤j1<j2<...<jr≤m

(
M i1i2...ir

j1j2...jr
(X)

)2
. (4.57)

Finally, using (4.56) for (λ1, λ2, ..., λm) = (1, 1, ..., 1) we get (4.47).
We study the case m = 2 more carefully.

Lemma 4.21. For t ∈ GL(2,R) we have, if det t > 0,

(µ2
(b,0))

Lt ⊥ µ2
(b,0) ⇔

∑
n∈Z

[
(1− | det t |)2 + (t11 − t22)2 +

(
t12

√
b1n

b2n

+ t21

√
b2n

b1n

)2]
=∞. (4.58)

If det t < 0 we have
(µ2

(b,0))
Lt ⊥ µ2

(b,0) ⇔∑
n∈Z

[
(1− | det t |)2 + (t11 + t22)2 +

(
t12

√
b1n

b2n

− t21

√
b2n

b1n

)2]
=∞. (4.59)

Proof. Using (4.45) set

Hm,n(t) = H

((
µ(Bn,0)
m

)L−1
t , µ(Bn,0)

m

)
=

(
1

2m|det t|
det (I +X∗n(t)Xn(t))

)−1/2

.

For m = 2 using (2.5) we get X(t) = B1/2tB−1/2 hence,

X(t) =

(
b1n 0
0 b2n

)1/2(
t11 t12

t21 t22

)(
b1n 0
0 b2n

)−1/2

=

 t11

√
b1n
b2n
t12√

b2n
b1n
t21 t22

 .

Therefore, using (4.55) we get

H−2
2,n(t) =

1

22 | det t |

(
1+ | det t |2 +t211 + t222 +

b1n

b2n

t212 +
b2n

b1n

t221

)
.
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Using Lemma 4.16 it is sufficient to calculate H−2
2,n(t)−1. Indeed, for det t > 0

we have

H−2
2,n(t)− 1 =

1

22 | det t |
×(

1− 2det t+ | det t |2 +t211 + t222 +
b1n

b2n

t212 +
b2n

b1n

t221 − 2(t11t22 − t12t21)

)
=

1

22 | det t |

[
(1− | det t |)2 + (t11 − t22)2 +

(
t12

√
b1n

b2n

+ t21

√
b2n

b1n

)2]
.

For det t < 0 we get

H−2
2,n(t)− 1 =

1

22 | det t |
×(

1 + 2det t+ | det t |2 +t211 + t222 +
b1n

b2n

t212 +
b2n

b1n

t221 + 2(t11t22 − t12t21)
)

=

1

22 | det t |

[
(1− | det t |)2 + (t11 + t22)2 +

(
t12

√
b1n

b2n

− t21

√
b2n

b1n

)2]
.

�

Using Lemma 4.17, Lemma 4.21 and (4.46) we get

Lemma 4.22. For t ∈ GL(2,R) we have

(µ2
(b,a))

Lt ⊥ µ2
(b,a) if | det t |6= 1.

If det t = 1, we have

(µ2
(b,a))

Lt ⊥ µ2
(b,a) ⇔ Σ+(t) = Σ+

1 (t) + Σ2(t) =∞.

If det t = −1, we have

(µ2
(b,a))

Lt ⊥ µ2
(b,a) ⇔ Σ−(t) = Σ−1 (t) + Σ2(t) =∞,

where

Σ+
1 (t) =

∑
n∈Z

[
(t11 − t22)2 +

(
t12

√
b1n

b2n

+ t21

√
b2n

b1n

)2]
,

Σ−1 (t) =
∑
n∈Z

[
(t11 + t22)2 +

(
t12

√
b1n

b2n

− t21

√
b2n

b1n

)2]
,

Σ2(t−1) =
∑
n∈Z

[
b1n

[
(t11−1)a1n+t12a2n

]2
+b2n

[
t21a1n+(t22−1)a2n

]2]
. (4.60)
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Proof. of Lemma 4.1. We show that it is sufficient to consider only five
particular cases:

exp(tE12) = I + tE12 =

(
1 t
0 1

)
, exp(tE21) = I + tE21 =

(
1 0
t 1

)
,

exp(tE12)P1 =

(
−1 t
0 1

)
, exp(tE21)P2 =

(
1 0
t −1

)
,

and

τ−(φ, s) =

(
cosφ s2 sinφ

s−2 sinφ − cosφ

)
,

where

P1 =

(
−1 0
0 1

)
, P2 =

(
1 0
0 −1

)
.

We note that τ−(φ, s) =(
cosφ s2 sinφ

s−2 sinφ − cosφ

)
=

(
s 0
0 s−1

)(
cosφ − sinφ
sinφ cosφ

)(
s−1 0
0 s

)
P2.

Using Lemma 4.21 we see that we have to consider only two special cases:

t ∈ GL(2,R), det t = 1, t11 = t22,

and
t ∈ GL(2,R), det t = −1, t11 = −t22.

In the first case we have

t =

(
α t12

t21 α

)
, det t = α2 − t12t21 = 1.

In the second case we have

t =

(
α t12

t21 −α

)
, det t = −α2 − t12t21 = −1.

We can see that in the first (respectively second) case, when t12t21 > 0 (re-
spectively t12t21 < 0), we have Σ+

1 (t) =∞ (respectively Σ−1 (t) =∞).
Indeed, if det t = 1 and t12t21 ≥ 1, then |t21| ≥ |t12|−1 and we have∣∣∣∣∣t12

√
b1n

b2n

+ t21

√
b2n

b1n

∣∣∣∣∣ = |t12|
√
b1n

b2n

+|t21|
√
b2n

b1n

≥ |t12|
√
b1n

b2n

+|t12|−1

√
b2n

b1n

≥ 2.
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When det t = 1 and t12t21 ∈ (0, 1), then |t12|−1 > |t21| and we get∣∣∣∣∣t12

√
b1n

b2n

+ t21

√
b2n

b1n

∣∣∣∣∣ = t12t21

(
|t21|−1

√
b1n

b2n

+ |t12|−1

√
b2n

b1n

)
≥ 2|t12t21|.

The same is true for the second case, i.e., when det t = −1 and t12t21 < 0.
When

det t = α2 − t12t21 = 1, and t12t21 = 0,

we have four cases(
1 t
0 1

)
,

(
1 0
t 1

)
,

(
−1 t
0 −1

)
,

(
−1 0
t −1

)
, t ∈ R. (4.61)

When
det t = −α2 − t12t21 = −1, and t12t21 = 0,

we also have four cases:(
−1 t
0 1

)
,

(
1 0
t −1

)
,

(
1 t
0 −1

)
,

(
−1 0
t 1

)
, t ∈ R. (4.62)

Thus, it remains to consider two cases:

det t = α2 − t12t21 = 1, and t12t21 ∈ [−1, 0),

det t = −α2 − t12t21 = −1, and t12t21 ∈ (0, 1].

Finally, we can set in the first case α = cosφ since α2 = 1 + t12t21 ∈ [0, 1).
Then −t12t21 = sin2 φ so, t12 = −s2 sinφ and t21 = s−2 sinφ, with s > 0.

In the second case we can set α = cosφ since α2 = 1 − t12t21 ∈ [0, 1).
Then t12t21 = sin2 φ so t12 = s2 sinφ and t21 = s−2 sinφ, with s > 0. Finally,
in the first (the second) case we have to consider

t=τ+(φ, s)=

(
cosφ −s2 sinφ

s−2 sinφ cosφ

)
, t=τ−(φ, s) =

(
cosφ s2 sinφ

s−2 sinφ − cosφ

)
.

(4.63)
We show that only the first two cases in (4.61) and (4.62) and the sec-

ond case in (4.63) are independent. Indeed, we have for a =

(
a1n

a2n

)
(see

Lemma 4.22)

t =

(
1 t
0 1

)
, (t−1 − I)a =

((
1 −t
0 1

)
− I
)(

a1n

a2n

)
=

(
−ta2n

0

)
,
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t =

(
1 0
t 1

)
, (t−1 − I)a =

((
1 0
−t 1

)
− I
)(

a1n

a2n

)
=

(
0
−ta1n

)
,

t =

(
−1 t
0 1

)
=

(
1 t
0 1

)(
−1 0
0 1

)
, t−1 =

(
−1 0
0 1

)(
1 −t
0 1

)
=(

−1 t
0 1

)
, (t−1 − I)a =

(
−2 t
0 0

)(
a1n

a2n

)
=

(
−2a1n + ta2n

0

)
,

t =

(
1 0
t −1

)
=

(
1 0
t 1

)(
1 0
0 −1

)
, t−1 =

(
1 0
0 −1

)(
1 0
−t 1

)
=(

1 0
t −1

)
, (t−1 − I)a =

(
0 0
t −2

)(
a1n

a2n

)
=

(
0

ta1n − 2a2n

)
.

Therefore, we get

Σ+

(
1 t
0 1

)
= t2

∑
n∈Z

b1n

(
1

b2n

+ a2
2n

)
' SL12(µ) =

∑
n∈Z

b1n

2

(
1

2b2n

+ a2
2n

)
, t 6= 0,

Σ+

(
1 0
t 1

)
= t2

∑
n∈Z

b2n

(
1

b1n

+ a2
1n

)
' SL21(µ) =

∑
n∈Z

b2n

2

(
1

2b1n

+ a2
1n

)
, t 6= 0,

Σ−
(
−1 t
0 1

)
= t2

∑
n∈Z

b1n

b2n

+
∑
n∈Z

b1n(−2a1n + ta2n)2 =: SL,−12 (µ, t),

Σ−
(

1 0
t −1

)
= t2

∑
n∈Z

b2n

b1n

+
∑
n∈Z

b2n(ta1n − 2a2n)2 =: SL,−21 (µ, t).

For the last two cases in (4.61) and (4.62) we get respectively

t =

(
−1 t
0 −1

)
=

(
−1 0
0 −1

)(
1 −t
0 1

)
, t−1 =

(
1 t
0 1

)(
−1 0
0 −1

)
=

(
−1 −t
0 −1

)
, (t−1 − I)a =

(
−2 −t
0 −2

)(
a1n

a2n

)
= −

(
2a1n + ta2n

2a2n

)
,

t =

(
−1 0
t −1

)
=

(
−1 0
0 −1

)(
1 0
−t 1

)
, t−1 =

(
1 0
t 1

)(
−1 0
0 −1

)
=

(
−1 0
−t −1

)
, (t−1−I)a =

(
−2 0
−t −2

)(
a1n

a2n

)
= −

(
2a1n

ta1n + 2a2n

)
.
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t =

(
1 t
0 −1

)
=

(
1 0
0 −1

)(
1 t
0 1

)
, t−1 =

(
1 −t
0 1

)(
1 0
0 −1

)
=(

1 t
0 −1

)
, (t−1 − I)a =

(
0 t
0 −2

)(
a1n

a2n

)
=

(
ta2n

−2a2n

)
,

t =

(
−1 0
t 1

)
=

(
−1 0
0 1

)(
1 0
t 1

)
, t−1 =

(
1 0
−t 1

)(
−1 0
0 1

)
=(

−1 0
t 1

)
, (t−1 − I)a =

(
−2 0
t 0

)(
a1n

a2n

)
=

(
−2a1n

ta1n

)
.

Set

SL11(µ) := SL,−12 (µ, 0) = 4
∑
n∈Z

b1na
2
1n, SL22(µ) := SL,−21 (µ, 0) = 4

∑
n∈Z

b2na
2
2n.

(4.64)
With this notation we see that the second two cases in (4.61) and (4.62) are
dependent:

Σ+

(
−1 t
0 −1

)
= t2

∑
n∈Z

b1n

b2n

+
∑
n∈Z

[
b1n(−2a1n − ta2n)2 + b2n(−2a2n)2

]
= SL,−12 (µ,−t)+SL22(µ), note that

(
−1 t
0 −1

)
=

(
1 0
0 −1

)(
−1 t
0 1

)
.

Σ+

(
−1 0
t −1

)
= t2

∑
n∈Z

b2n

b1n

+
∑
n∈Z

[
b1n(−2a1n)2 + b2n(−ta1n − 2a2n)2

]
= SL,−21 (µ,−t)+SL11(µ), note that

(
−1 0
t −1

)
=

(
−1 0
0 1

)(
1 0
t −1

)
.

Σ−
(

1 t
0 −1

)
= t2

∑
n∈Z

b1n

b2n

+ t2
∑
n∈Z

b1na
2
2n+ 4

∑
n∈Z

b2na
2
2n ' t2SL12(µ) +SL22(µ),

Σ−
(
−1 0
t 1

)
= t2

∑
n∈Z

b2n

b1n

+ 4
∑
n∈Z

b1na
2
1n+ t2

∑
n∈Z

b2na
2
1n ' t2SL21(µ) +SL11(µ).

To compare (µ2
(b,a))

Lτ±(φ,s) and µ2
(b,a) we calculate τ−1

+ (φ, s) and τ−1
− (φ, s).

Since

τ+(φ, s) =

(
cosφ −s2 sinφ

s−2 sinφ cosφ

)
, τ−(φ, s) =

(
cosφ s2 sinφ

s−2 sinφ − cosφ

)
,
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we get

τ−1
+ (φ, s) =

(
cosφ s2 sinφ

−s−2 sinφ cosφ

)
, τ−1

− (φ, s) =

(
cosφ s2 sinφ

s−2 sinφ − cosφ

)
= τ−(φ, s). Since τ−1

+ (φ, s)− I =(
cosφ− 1 s2 sinφ
−s−2 sinφ cosφ− 1

)
=

(
−2 sin2 φ

2
s22 sin φ

2
cos φ

2

−s−22 sin φ
2

cos φ
2

−2 sin2 φ
2

)
=

(
−2 sin φ

2
0

0 −2 sin φ
2

)(
sin φ

2
−s2 cos φ

2

s−2 cos φ
2

sin φ
2

)
and τ−1

− (φ, s)− I =(
cosφ− 1 s2 sinφ
s−2 sinφ − cosφ− 1

)
=

(
−2 sin2 φ

2
s22 sin φ

2
cos φ

2

s−22 sin φ
2

cos φ
2

−2 cos2 φ
2

)
=

(
−2 sin φ

2
0

0 −2 cos φ
2

)(
sin φ

2
−s2 cos φ

2

−s−2 sin φ
2

cos φ
2

)
,

we have (see (4.60))

Σ2(τ−(φ, s)) = 4 sin2 φ

2

∑
n∈Z

b1n

(
sin

φ

2
a1n−s2 cos

φ

2
a2n

)2

+

4 cos2 φ

2

∑
n∈Z

b2n

(
− s−2 sin

φ

2
a1n + cos

φ

2
a2n

)2

∼
∑
n∈Z

(
4 sin2 φ

2
b1n + 4 cos2 φ

2
s−2b2n

)(
sin

φ

2
a1n−s2 cos

φ

2
a2n

)2

,

Σ2(τ−(φ, s))=
∑
n∈Z

(
4 sin2 φ

2
b1n+4 cos2 φ

2
s−2b2n

)(
sin

φ

2
a1n−s2 cos

φ

2
a2n

)2

.

(4.65)
Finally, for t = τ−(φ, s) we get

µLτ−(φ,s) ⊥ µ⇔ sin2 φΣ1(s) + Σ2(τ−(φ, s)) =∞, (4.66)

where

Σ1(s) =
∑
n∈Z

(
s2

√
b1n

b2n

− s−2

√
b2n

b1n

)2

.
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We have for t = τ+(φ, s) (see (4.60))

µLτ+(φ,s) ⊥ µ⇔ sin2 φΣ1(s) + Σ2(τ+(φ, s)) =∞, (4.67)

where Σ2(τ+(φ, s)) =

4 sin2 φ

2

∑
n∈Z

[
b1n

(
sin

φ

2
a1n − s2 cos

φ

2
a2n

)2

+ b2n

(
s−2 cos

φ

2
a1n + sin

φ

2
a2n

)2]
.

(4.68)
We show that the condition µLτ+(φ,s) ⊥ µ depends on the previous conditions
of the orthogonality. Indeed, for t = τ−(φ, s) we have

µLτ−(φ,s) ⊥ µ⇔ (a) Σ1(s) =∞ or (b) Σ1(s) <∞, but Σ2(τ−(φ, s)) =∞.

For t = τ+(φ, s) we get respectively

µLτ+(φ,s) ⊥ µ⇔ (c) Σ1(s) =∞ or (d) Σ1(s) <∞, but Σ2(τ+(φ, s)) =∞.

We see that (c) ⇔ (a). To investigate the condition (d) we observe that if

Σ1(s) < ∞, then limn→∞ s
2
√

b1n
b2n

= 1 therefore, we have b2n ∼ s4b1n hence,

the following equivalence holds: Σ2(τ+(φ, s)) =

4 sin2 φ

2

∑
n∈Z

[
b1n

(
sin

φ

2
a1n − s2 cos

φ

2
a2n

)2

+ b2n

(
s−2 cos

φ

2
a1n + sin

φ

2
a2n

)2]

∼ 4 sin2 φ

2

∑
n∈Z

[
b1n

(
sin

φ

2
a1n−s2 cos

φ

2
a2n

)2

+b1n

(
cos

φ

2
a1n+s2 sin

φ

2
a2n

)2]
=

4 sin2 φ

2

∑
n∈Z

b1n

[
a2

1n + s4a2
2n

]
∼ 4 sin2 φ

2

∑
n∈Z

(
b1na

2
1n + b2na

2
2n

)
=

sin2 φ

2

[
SL11(µ) + SL22(µ)

]
.

We see that condition (d) follows from the conditions SL11(µ)=SL,−12 (µ, 0)=
∞ and SL22(µ) = SL,−21 (µ, 0) =∞. This completes the proof of Lemma 4.1.
�
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4.4. The explicit expression for (D−1(λ)µ, µ)

The following lemma will be systematically used in what follows.

Lemma 4.23. For the matrix D(λ1, λ2, ..., λm) defined below

D(λ1, λ2, ..., λm) =


1 + λ1 1 ... 1

1 1 + λ2 ... 1
...

1 1 ... 1 + λm

 (4.69)

and µ = (µk)
m
k=1 ∈ Rm we have

(D−1(λ1, λ2, ..., λm)µ, µ)=

∑m
k=1

µ2k
λk

+
∑

1≤k<n≤m
(µk−µn)2

λkλn

1 +
∑m

k=1
1
λk

. (4.70)

Proof. Let us set dm(λ1, λ2, ..., λm) = det (D(λ1, λ2, ..., λm)) . It is easy to
see that

dm(λ1, λ2, ..., λm) =
m∏
k=1

λk

(
1 +

m∑
k=1

1

λk

)
. (4.71)

For arbitrary m we have

D−1(λ1, λ2, ..., λm) =


1 + λ1 1 ... 1

1 1 + λ2 ... 1
...

1 1 ... 1 + λm


−1

=
(
D−1
kn

)m
k,n=1

,

where

D−1
nn =

dm−1(λ1, ..., λ̂n, ...λm)

dm(λ1, λ2, ..., λm)
=

(
1 +

m∑
k=1

1

λk

)−1
1

λn

(
1 +

m∑
k=1,k 6=n

1

λk

)
,

D−1
kn =

−dm−1(λ1, ..., λ̂n, ...λm)|λk=0

dm(λ1, λ2, ..., λm)
= − 1

λkλn

(
1 +

m∑
k=1

1

λk

)−1

, k 6= n,

since using (4.71) we have

dm−1(λ1, ..., λ̂n, ...λm)|λk=0 = lim
λk→0

m∏
p=1,p 6=n

λp

(
1 +

m∑
p=1,p 6=n

1

λp

)
=

1

λkλn

m∏
p=1

λp.
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Finally, we have for µ = (µ1, µ2, ..., µm) ∈ Rm

(D−1(λ1, λ2, ..., λm)µ, µ) =
m∑

k,n=1

D−1
knµkµn =

(
1 +

m∑
k=1

1

λk

)−1 [ m∑
n=1

µ2
n

λn

(
1 +

m∑
k=1,k 6=n

1

λk

)
− 2

∑
1≤k<n≤m

µkµn
λkλn

]
=

(
1 +

m∑
k=1

1

λk

)−1 [ m∑
n=1

µ2
n

λn
+

∑
1≤k<n≤m

(µk − µn)2

λkλn

]
.

�

Remark 4.7. Some useful observations. If we set f(m) = (fk)
m
k=1 and g(m)

= (gk)
m
k=1 where fk = µk√

λk
and gk = 1√

λk
we can recognize that

m∑
n=1

µ2
n

λn
= ‖f(m)‖2 = Γ(f(m))

and ∑
1≤k<n≤m

(µk − µn)2

λkλn
=

∑
1≤k<n≤m

∣∣∣∣ fk fn
gk gn

∣∣∣∣2 = Γ(f(m), g(m))

since ∣∣∣∣ fk fn
gk gn

∣∣∣∣2 =

∣∣∣∣∣ µk√
λk

µn√
λn

1√
λk

1√
λn

∣∣∣∣∣
2

=
(µk − µn)2

λkλn
.

Set ∆(f, g) = Γ(f)+Γ(f,g)
Γ(g)+1

for two vectors f and g. Finally, we get

(D−1(λ1, λ2, ..., λm)µ, µ) = ∆(f(m), g(m))) =
Γ(f(m)) + Γ(f(m), g(m))

Γ(g(m)) + 1
. (4.72)

where Γ(f1, f2, . . . , fn) is the Gram determinant and γ(f1, f2, . . . , fn) is the
Gram matrix of n vectors f1, f2, . . . , fn in a Hilbert space (see [7]).
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4.5. The proof of Lemmas 4.2 – 4.7

Proof. The proof of Lemma 4.4 is based on Lemma 4.23. We find out when
the inclusion

D1n1 ∈ 〈Akn1 = (x1kD1n + x2kD2n)1 | k ∈ Z〉

holds. Fix m ∈ N, since Mx1k = a1k, we put
∑m

k=−m tka1k = (t, b) = 1,
where t = (tk)

m
k=−m and b = (a1k)

m
k=−m. We have

‖
[ m∑
k=−m

tk(x1kD1n + x2kD2n)−D1n

]
1‖2 =

‖
m∑

k=−m

tk[(x1k − a1k)D1n + x2kD2n]1‖2 =
∑

−m≤k,r≤m

(fk, fr)tktr =: (A2m+1t, t),

where A2m+1 = ((fk, fr))
m
k,r=−m, and fk = [(x1k − a1k)D1n + x2kD2n]1. We

have

(fk, fk) = ‖ [(x1k − a1k)D1n + x2kD2n]1‖2 =
1

2b1k

b1n

2
+
( 1

2b2k

+ a2
2k

)b2n

2
∼

1

2b1k

+
1

2b2k

+ a2
2k,

(fk, fr) = ([(x1k − a1k)D1n + x2kD2n]1, [(x1r − a1r)D1n + x2rD2n]1) =

(x2k, x2r)(D2n1, D2n1) = a2ka2r
b2n

2
' a2ka2r.

Finally, we have

(fk, fk) ∼
1

2b1k

+
1

2b2k

+ a2
2k, (fk, fr) ∼ a2ka2r, k 6= r. (4.73)

For A(m) = ((fk, fr))
m
k,r=1, and b = (a11, a12, ..., a1m) ∈ Rm we have

A(m) = γ(f1, f2, ..., fm) =


(f1, f1) (f1, f2) ... (f1, fm)
(f2, f1) (f2, f2) ... (f2, fm)

...
(fm, f1) (fm, f2) ... (fm, fm)

 =
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
1

2b11
+ 1

2b21
+ a2

21 a21a22 ... a21a2m

a22a21
1

2b12
+ 1

2b22
+ a2

22 ... a22a2m

...
a2ma21 a2ma22 ... 1

2b1m
+ 1

2b2m
+ a2

2m

 =


a21 0 ... 0
0 a22 ... 0

...
0 0 ... a2m




1 + λ1 1 ... 1
1 1 + λ2 ... 1

...
1 1 ... 1 + λm



a21 0 ... 0
0 a22 ... 0

...
0 0 ... a2m

 ,

where λk =
1

2b1k
+ 1

2b2k

a22k
, 1 ≤ k ≤ m. Using (4.69) we conclude that

A(m) = diag(a21, a22, . . . , a2m)D(λ1, λ2, . . . , λm)diag(a21, a22, ..., a2m).

Recall that µ = diag(a21, a22, , ..., a2m)−1b = (a11
a21
, a12
a22
, ..., a1m

a2m
), where b =

(a11, a12, ..., a1m) ∈ Rm, then

(A−1
(m)b, b)=(D−1(λ1, λ2, ..., λm)µ, µ), λk =

( 1

2b1k

+
1

2b2k

)
a−2

2k , µk = a1ka
−1
2k .

(4.74)
Using Lemma 4.23 for the operator A2m+1, and the vector b ∈ R2m+1 we
obtain

(A−1
2m+1b, b) =

∑m
k=−m

a21k
1

2b1k
+ 1

2b2k

+
∑
−m≤k<n≤m

(a1ka2n−a1na2k)2(
1

2b1k
+ 1

2b2k

)(
1

2b1n
+ 1

2b2n

)∑m
k=−m

a22k
1

2b1k
+ 1

2b2k

+ 1

= ∆(f(m), g(m)), where

fm=
(
a1k

( 1

2b1k

+
1

2b2k

)−1/2)m
k=−m

, gm=
(
a2k

( 1

2b1k

+
1

2b2k

)−1/2)m
k=−m

(4.75)
This proves Lemma 4.4 �

The proof of Lemma 4.5 is exactly the same.
The proof of Lemma 4.2 is also based on Lemma 4.23.

Proof. We study when x1nx1t ∈ 〈AnkAtk1 | k ∈ Z〉. Since

AnkAtk = (x1nD1k + x2nD2k)(x1tD1k + x2tD2k) =
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x1nx1tD
2
1k + (x1nx2t + x2nx1t)D1kD2k + x2nx2tD

2
2k

and MD2
1k1 = − b1k

2
, set −

∑m
k=−m tk

b1k
2

= (t, b′) = 1, where t = (tk)
m
k=−m

and b′ = −( b1k
2

)k ∼ b = (b1k)
m
k=−m. We have

‖
[ m∑
k=−m

tkAnkAtk − x1nx1t

]
1‖2 =

‖
m∑

k=−m

tk
[
x1nx1t

(
D2

1k +
b1k

2

)
+ (x1nx2t + x2nx1t)D1kD2k + x2nx2tD

2
2k

]
1‖2

=
∑

−m≤k,r≤m

(fk, fr)tktr =: (A2m+1t, t),

where A2m+1 = ((fk, fr))
m
k,r=−m and

fk =
[
x1nx1t

(
D2

1k +
b1k

2

)
+ (x1nx2t + x2nx1t)D1kD2k + x2nx2tD

2
2k

]
1.

If we denote by ckn = ‖xkn‖2 = 1
2bkn

+ a2
kn, we get

(fk, fk) = ‖
[
x1nx1t

(
D2

1k +
b1k

2

)
+ (x1nx2t +x2nx1t)D1kD2k +x2nx2tD

2
2k

]
1‖2 =

c1nc1t2
(b1k

2

)2

+
(
c1nc2t + c1tc2n + 2a1na2ta1ta2n

)b1k

2

b2k

2
+ c2nc2t3

(b2k

2

)2

∼ (b1k + b2k)
2, (fk, fr) =((

x1nx1t

(
D2

1k +
b1k

2

)
+ (x1nx2t + x2nx1t)D1kD2k + x2nx2tD

2
2k

)
1,(

x1nx1t

(
D2

1r +
b1r

2

)
+ (x1nx2t + x2nx1t)D1rD2r + x2nx2tD

2
2r

)
1
)

=

c2nc2t
b2k

2

b2r

2
∼ b2kb2r.

Finally, we have

(fk, fk) ∼ (b1k + b2k)
2, (fk, fr) ∼ b2kb2r, k 6= r. (4.76)
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For A(m) = ((fk, fr))
m
k,r=1, and b = (a11, a12, ..., a1m) ∈ Rm we have

A(m) = γ(f1, f2, ..., fm) =


(f1, f1) (f1, f2) ... (f1, fm)
(f2, f1) (f2, f2) ... (f2, fm)

...
(fm, f1) (fm, f2) ... (fm, fm)

 = (4.77)


(b11 + b21)2 b21b22 ... b21b2m

b22b21 (b12 + b22)2 ... b22b2m

...
b2mb21 b2mb22 ... (b1m + b2m)2

 =


b21 0 ... 0
0 b22 ... 0

...
0 0 ... b2m




1 + λ1 1 ... 1
1 1 + λ2 ... 1

...
1 1 ... 1 + λm



b21 0 ... 0
0 b22 ... 0

...
0 0 ... b2m

 .

At last, we have for µ = diag(b21, b22, ..., b2m)−1b = ( b11
b21
, b12
b22
, .., b1m

b2m
)

(A−1
(m)b, b) = (D−1(λ1, λ2, ..., λm)µ, µ), λk =

(
1 +

b1k

b2k

)2

− 1, µk =
b1k

b2k

.

Using Lemma 4.23 for the operator A2m+1, and the vector b ∈ R2m+1 we
obtain

(A−1
2m+1b, b) =

∑m
k=−m

(
b1k
b2k

)2

(
b1k
b2k

+1
)2
−1

+
∑
−m≤k<n≤m

(
b1k
b2k
− b1n
b2n

)2[(
b1k
b2k

+1
)2
−1

][(
b1n
b2n

+1
)2
−1

]
∑m

k=−m
1(

b1k
b2k

+1
)2
−1

+ 1
=

∆(f 1
m, g

1
m) where

f 1
m =

( b1k√
b2

1k + 2b1kb2k

)m
k=−m

, g1
m =

( b2k√
b2

1k + 2b1kb2k

)m
k=−m

, (4.78)

�

The proof of Lemma 4.3 is similar. We get (A−1b, b) = ∆(f 2
m, g

2
m) where

f 2
m =

( b2k√
b2

2k + 2b1kb2k

)m
k=−m

, g2
m =

( b1k√
b2

2k + 2b1kb2k

)m
k=−m

. (4.79)

51



Acknowledgements. The author expresses his deep gratitude to the Max
Planck Institute for Mathematics for the financial grant and the hospitality
in 2016-2017.

[1] S. Albeverio and A. Kosyak, Quasiregular representations of the infinite-
dimensional Borel group, J. Funct. Anal. 218/2 (2005) 445–474.

[2] S. Albeverio and A. Kosyak, Quasiregular representations of the infinite-
dimensional nilpotent group, J. Funct. Anal. 236 (2006) 634–681.

[3] E.F. Beckenbach and R. Bellmann, Inequalities, Springer, Berlin,
Göttingen, Heidelberg, 1961.

[4] Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of in-
finitely many variables. Translated from the Russian by H. H. McFaden.
Translations of Mathematical Monographs, 63. AMS, Providence, RI,
1986.
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