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CHARACTER SUMS FOR PRIMITIVE ROOT DENSITIES

H. W. Lenstra, Jr., P. Moree and P. Stevenhagen

Abstract. It follows from the work of Artin and Hooley that, under assumption of the generalized

Riemann hypothesis, the density of the set of primes q for which a given non-zero rational number r

is a primitive root modulo q can be written as an infinite product
∏

p
δp of local factors δp reflecting

the degree of the splitting field of Xp − r at the primes p, multiplied by a somewhat complicated

factor that corrects for the ‘entanglement’ of these splitting fields.

We show how the correction factors arising in Artin’s original primitive root problem and several

of its generalizations can be interpreted as character sums describing the nature of the entanglement.

The resulting description in terms of local contributions is so transparent that it greatly facilitates
explicit computations, and naturally leads to non-vanishing criteria for the correction factors.

1. Introduction

Artin’s conjecture on primitive roots, which dates back to 1927, states that for a non-zero

rational number r 6= ±1, the set of primes q with the property that r is a primitive root modulo

q has natural density

δ(r) = cr ·
∏

p prime

(
1− 1

p(p− 1)

)

inside the set of all primes. Here p ranges over the rational primes, and cr is a rational number

that depends on r. The universal constant
∏

p(1 − 1
p(p−1) )

.
= .3739558 is known as Artin’s

constant. The constant cr vanishes if and only if r is a square. For values of r that are not perfect

powers, it was discovered after computer calculations in 1957 that cr can be different from 1,

leading to a correction of the original conjecture by Artin himself [15]. In 1967, this corrected

conjecture was proved under assumption of the generalized Riemann hypothesis (GRH) by

Hooley [2].

The heuristic argument underlying Artin’s conjecture is simple: for a prime number q that

does not divide the numerator or denominator of r, the number r is a primitive root modulo q

if and only if there is no prime number p dividing q − 1 such that r is a p-th power modulo q.

In terms of number fields, this condition amounts to saying that for no prime p < q, the prime

q splits completely in the splitting field

(1.1) Fp = Q(ζp,
p
√
r) ⊂ Q

of the polynomial Xp − r over Q. Here Q denotes an algebraic closure of Q, and ζp a primitive

p-th root of unity in Q.
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For fixed p, the set of primes q that do not split completely in Fp has density δp = 1− [Fp :

Q]−1. As we have r 6= ±1, there is a largest integer h ∈ Z for which r is an h-th power in Q∗.
We have [Fp : Q] = p− 1 for p dividing h, and [Fp : Q] = p(p− 1) otherwise. If we assume that

the splitting conditions at the various primes p that we impose on q are ‘independent’, it seems

reasonable to conjecture, as Artin did, that δ(r) equals

(1.2) A(r) =
∏

p

δp =
∏

p

(
1− 1

[Fp : Q]

)
=

∏

p|h

(
1− 1

p− 1

)
·
∏

p∤h

(
1− 1

p(p− 1)

)
.

Note that A(r) is a rational multiple of Artin’s constant, and equal to it for h = 1. We have

A(r) = 0 if and only if r is a square; in this case we have δ2 = 0, and r is not a primitive root

modulo any odd prime q.

The assumption on the independence of the splitting conditions in the various fields Fp is

not always correct. If F2 = Q(
√
r) is a quadratic field of discriminant D, then it is contained in

the |D|-th cyclotomic field Q(ζ|D|). Thus, if D is odd , then F2 is contained in the compositum

of the fields Fp with p|D. This is however the only ‘entanglement’ between the fields Fp that

occurs. In order to take it into account, one writes Fn = Q(ζn, n
√
r) for the splitting field of

Xn − r and applies a standard inclusion-exclusion argument to obtain a conjectural value

(1.3) δ(r) =
∞∑

n=1

µ(n)

[Fn : Q]
,

where µ denotes the Möbius function. If F2 = Q(
√
r) is not quadratic of odd discriminant, then

[Fn : Q] is a multiplicative function on squarefree values of n, and (1.3) reduces to (1.2). If

F2 is quadratic of odd discriminant D, then [Fn : Q] is no longer multiplicative, as it equals
1
2

∏
p|n[Fp : Q] for all squarefree n that are divisible by D. In this case, it is not so clear

whether the right hand side of (1.3) is non-zero, or even non-negative. However, a ‘rather

harder’ calculation [2, p. 219] shows that it can be written as δ(r) = E(r) · A(r), with A(r) as
in (1.2) and

(1.4) E(r) = 1−
∏

p|D
p|h

−1

p− 2
·
∏

p|D
p∤h

−1

p2 − p− 1

an ‘entanglement correction factor’. Note that E(r) is well-defined as D is odd. The multiplica-

tive structure of the second term of E(r) immediately shows that E(r) is non-zero.

The explicit form of Artin’s conjecture as we have just stated it, is the version that was

proved by Hooley under the assumption of the generalized Riemann hypothesis. The hypothesis

is used to obtain sufficient control of the error terms occurring in density statements for sets

of primes that split completely in the fields Fn in order to prove (1.3). So far, unconditional

results have remained insufficient to handle conditions at infinitely many primes p.

Artin’s conjecture can be generalized in various ways. For example, one may impose the ad-

ditional condition on the primes q that they lie in a given arithmetic progression. Alternatively,

one can replace the condition that r be a primitive root modulo q by the requirement that r

generate a subgroup of given index in F∗q , or even combine the two conditions. Just as in the
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original conjecture, these conditions amount to imposing restrictions on the splitting behavior

of q in number fields contained in the infinite extension

F∞ =
∞⋃

n=1

Fn =
∞⋃

n=1

Q(ζn,
n
√
r) ⊂ Q

of Q. They may be formulated as conditions on the Frobenius element of q in these number

fields, for which density statements hold by the Chebotarev density theorem. As was shown

by the first author [4], the prime densities for such generalizations can in principle (under

assumption of GRH) be obtained along the lines of Hooley’s proof, and equal the ‘fraction’ of

good Frobenius elements in G. However, the explicit evaluation of the entanglement correction

factor from a formula analogous to (1.3) rapidly becomes very unpleasant.

The present paper, which was already announced in [15], introduces a simple but effective

method to compute entanglement correction factors for primitive root problems over Q. It starts

with the observation that the Galois automorphisms of the field F∞ act as group automorphisms

on the subgroup

R∞ = {x ∈ Q
∗
: xk ∈ 〈r〉 ⊂ Q∗ for some k ∈ Z>0}

of Q
∗
consisting of the radicals that generate the infinite field extension F∞ of Q.

In Section 2, we show that for all r ∈ Q∗ \ {±1}, this action gives rise to an injective ‘Galois

representation’

(1.5) G = Gal(F∞/Q) −→ A = AutR∞∩Q∗(R∞)

that embeds G as an open subgroup of index 2 in the group A of group automorphisms of R∞
that restrict to the identity on R∞ ∩Q∗. Unlike the Galois group G, the automorphism group

A is always a product of local factors Ap at the primes p. In Theorem 2.7, we explicitly describe

the quadratic character χ : A→ {±1} that has G as its kernel: it is a finite product χ =
∏

p χp

of quadratic characters χp, with each χp factoring via the projection A→ Ap.

The profinite group A =
∏

pAp carries a Haar measure ν, which we can take equal to the

product
∏

p νp of the normalized Haar measures νp on Ap. For any subset S ⊂ A of the form∏
p Sp with Sp ⊂ Ap measurable, one can compute the fraction δ(S) = ν(G ∩ S)/ν(G) of

elements in G that lie in S as a character sum in terms of the quadratic character χ. In our

applications, S ∩ G will be a set of ‘good’ Frobenius elements inside G. By Hooley’s method,

the fraction δ(S) is then, under GRH, the density of the set of primes q meeting the Frobenius

conditions imposed by the choice of S.

In Theorem 3.3, we show that for the sets S =
∏

p Sp as above, the fraction δ(S) is the

natural product of a naive ‘Artin constant’

ν(S) =
ν(S)

ν(A)
=

∏

p

νp(Sp)

νp(Ap)
=

∏

p

νp(Sp)

as we gave in (1.2) and an entanglement correction factor of the form

(1.6) E = 1 +
∏

p

Ep.
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Just as in (1.4), where we have E2 = −1, the local factors Ep are different from 1 only for

finitely many ‘critical’ primes p occurring in the finite product χ =
∏

p χp. The factor

Ep =
1

νp(Sp)

∫

Sp

χpdνp

equals the average value of χp on Sp. It is easily evaluated in cases where Sp is a set-theoretic

difference of subgroups of Ap, and can usually be computed explicitly as the average value of a

quadratic character on a finite set.

The transparent structure of the formula obtained makes it easy to decide when the fraction

δ(S) of good Frobenius elements in G vanishes. Vanishing of the Artin constant ν(S)/ν(A)

means that S =
∏

p Sp is a set of measure 0. In concrete examples, this implies that S is empty,

and that there is a prime p for which Sp is empty because the conditions imposed by S cannot

be met ‘at p’. In the original Artin conjecture, this only happens for p = 2 in the case that r is

a square.

Vanishing of the entanglement correction factor E is a more subtle phenomenon that does

not occur in the original conjecture. In accordance with Theorem 4.1 in [4], it means that there

is an incompatibility ‘at a finite level’ between the conditions at the critical primes. Since all Ep,

being average values of characters, are bounded in absolute value by 1, it is easy (cf. Corollary

3.4) to spot the occurrences of E = 0 in (1.6). We illustrate this by computing the value δ(S)

and its vanishing criteria in the case of Artin’s conjecture (Section 4) and its generalizations to

primes in arithmetic progressions (Section 5) and near-primitive roots (Section 6) mentioned

above. Our final Section 7 discusses some of the many possible extensions of our method to

Artin-like problems of various kinds. It shows that the underlying idea of our method has a

wide range of application.

2. The radical extension F∞

Let r ∈ Q∗ be a non-zero rational number different from ±1. Then for n ∈ Z≥1, the number

field Fn = Q(Rn) = Q(ζn, n
√
r) is obtained by adjoining to Q a group of radicals

Rn = {x ∈ Q
∗
: xn ∈ 〈r〉 ⊂ Q∗} ⊂ Q

∗
.

As Rn is stable under the action of Galois, the action of a field automorphism on Fn is completely

determined by its action as a group automorphism on the group of radicals Rn. This gives rise

to a natural injection of finite groups

Gal(Fn/Q) −→ A(n) = AutRn∩Q∗(Rn).

The union R∞ =
⋃

n≥1Rn of all radical groups generates an infinite algebraic extension F∞ =

Q(R∞) of Q, and we may take projective limits on both sides of the map above to obtain the

injective group homomorphism

(1.5) G = Gal(F∞/Q) −→ A = AutR∞∩Q∗(R∞)

from the Introduction. Note that the profinite groups G and A each come equipped with their

Krull topology, and that the injection (1.5) is an injection of topological groups.
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As R1 = 〈r〉 is free of rank 1, we have

(2.1) R∞ ∩Q∗ = 〈r0〉 × 〈−1〉

for a rational number r0 6= 0,±1 that is uniquely determined up to sign, and up to inversion.

We fix the exponent by writing r = ±re0, with e > 0 the index of the subgroup 〈r〉× 〈−1〉 inside
〈r0〉 × 〈−1〉. If e is odd, or r is positive, it is possible to choose the sign of r0 in such a way

that we have r = re0. In the twisted case however, where −r is a square and Q(
√
r) = Q(i) the

Gaussian number field, r itself is not an e-th power, and we have r = −re0. As we will see in the

Sections 4–6, this twisted case often needs special attention in explicit computations.

The group R∞ contains the group µ∞ =
⋃

n≥1 µn(Q) of roots of unity as a subgroup. As Q
∗

is a divisible group, we can extend the group embedding Z
∼−→ 〈r0〉 ⊂ Q

∗
defined by 1 7→ r0

to an embedding Q −→ Q
∗
. Note that this amounts to giving a section for the natural map

R∞ → R∞/µ∞ ∼= Q. Given r0, we fix such an embedding q 7→ rq0. We can then write rQ0 for its

image in Q
∗
, and r

1/n
0 for the n-th root of r0 in this image. With this notation, we have

(2.2) R∞ = rQ0 × µ∞.

The automorphism group A = AutR∞∩Q∗(R∞) comes with a natural restriction map A →
Aut(µ∞) that is continuous and surjective, and that admits a continuous left inverse: extend

the action to be the identity on rQ0 . As an automorphism σ of R∞ that is the identity on µ∞
is determined by the values σ(r

1/n
0 )/r

1/n
0 ∈ µn(Q) for n ≥ 1, we deduce from (2.1) that the

lower row in the commutative diagram of topological groups below is a split exact sequence

describing A:

1 −→ Gal(F∞/Qab) −→ G −→ Gal(Qab/Q) −→ 1
y

y(1.5)

y≀

1 −→ Hom(rQ0 /r
Z
0 , µ∞) −→ A −→ Aut(µ∞) −→ 1.

The upper row is exact by Galois theory, and the right vertical isomorphism reflects the fact that

the maximal cyclotomic extensionQ(µ∞) ofQ is the maximal abelian extensionQab ofQ, which

has Galois group Gal(Qab/Q) = Aut(µ∞). As all automorphisms of µ∞ are exponentiations,

Aut(µ∞) is isomorphic to the unit group Ẑ∗ of the profinite completion Ẑ = lim
←n

(Z/nZ) of Z.

We see that, in order to understand G as a subgroup of A, we need to identify the image of

the Kummer map

Gal(F∞/Qab) −→ Hom(rQ0 /r
Z
0 , µ∞)

σ 7−→ [rx0 7→ (rx0 )
σ−1].

By Kummer theory, this image is the abelian group dual to rQ0 /(r
Q
0 ∩Q∗ab).

2.3. Lemma. We have rQ0 ∩Q∗ab = r
1
2Z

0 , and G is an open subgroup of A of index 2.

Proof. The equality for rQ0 ∩ Q∗ab amounts to saying that the largest integer k for which the

splitting field of Xk − r0 is abelian over Q equals 2. As neither r0 nor −r0 is a perfect power in

Q∗, this is an immediate corollary of Schinzel’s theorem on abelian binomials [12, Theorem 2;
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13], which implies that this splitting field is abelian if and only if r
#µk(Q)
0 = r20 is a k-th power

in Q∗.

The group rQ0 /r
1
2Z

0 is the quotient of rQ0 /r
Z
0 obtained by dividing out its unique subgroup of

order 2, which is generated by r
1/2
0 mod rZ0 . Its µ∞-dual is the open subgroup Hom(rQ0 /r

(1/2)Z
0 , µ∞)

of index 2 in Hom(rQ0 /r
Z
0 , µ∞), and we conclude that G is open and of index 2 in A. �

Lemma 2.3 actually yields an explicit description of the subgroup G ⊂ A that arises as the

Galois group of F∞ over Q. The group Hom(rQ0 /r
Z
0 , µ∞) ∼= Hom(Q/Z, µ∞) can be viewed as

the Tate module

(2.4) µ̂ = lim
←n

µn = Hom(lim
→n

( 1nZ/Z), µ∞) = Hom(Q/Z, µ∞)

of the multiplicative group. It is a free module of rank 1 over Ẑ, and the natural action of

Aut(µ∞) = Ẑ∗ on Hom(Q/Z, µ∞) via the second argument is simply the Ẑ∗-multiplication we

have on the Ẑ-module µ̂.

From the split exact sequence for A, we see that A is the semidirect product

(2.5) A = Hom(rQ0 /r
Z
0 , µ∞)⋊Aut(µ∞) = µ̂⋊ Ẑ∗,

which is isomorphic to the affine group Ẑ⋊ Ẑ∗ over Ẑ.
The subgroup G ⊂ A is an extension of Ẑ∗ by µ̂2 ∼= µ̂, but this extension is non-split: if

it were, the closure of the commutator subgroup of G = Gal(F∞/Q) would be of index 2 in

Gal(F∞/Qab), contradicting the fact that Qab is the maximal abelian extension of Q.

By (2.2), the field F∞ = Q(R∞) is the compositum of Q(rQ0 ) and Q(µ∞) = Qab, and the

embedding G ⊂ A, with A in the explicit form (2.5), amounts to a description of the field

automorphisms of F∞ in terms of their action on these constituents. The index 2 of G in A

reflects the fact that by Lemma 2.3, the intersection of Q(rQ0 ) and Qab is not Q(r0) = Q,

but the quadratic field K = Q(
√
r0). This implies that an element (φ, σ) ∈ A is in G if and

only if φ ∈ Hom(rQ0 /r
Z
0 , µ∞) and σ ∈ Aut(µ∞) = Gal(Qab/Q) act in a compatible way on√

r0 = r
1/2
0 ∈ Qab:

φ(r
1/2
0 ) = (r

1/2
0 )σ−1 ∈ µ2.

In words: an automorphism of the multiplicative group of radicals R∞ induces an automorphism

of the field F∞ = Q(R∞) if and only if it respects the additive identity expressing
√
r0 = r

1/2
0 as

a Q-linear combination of roots of unity with rational coefficients. We can phrase this slightly

more formally by saying that G ⊂ A is the difference kernel of two distinct quadratic characters

ψK , χK : A→ µ2 related to the entanglement field K = Q(
√
r0).

The first quadratic character ψK : A → {±1} describes the action on the generator r
1/2
0 of

K in terms of the φ-component of a = (φ, σ) ∈ A:

(2.6) ψK(a) = φ(r
1/2
0 ) ∈ µ2.

Note that ψK is indeed a character on A, as Aut(µ∞) acts trivially on µ2 = {±1}. It is a

non-cyclotomic character on A, i.e., it does not factor via the natural map A→ Aut(µ∞). The

second character

χK =

(
r0
·

)
: A→ Aut(µ∞) = Ẑ∗ → µ2
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is a cyclotomic character on A, of conductor d = disc(K), associated to the entanglement field

K = Q(
√
r0). It factors via the quotient (Z/dZ)∗ of the cyclotomic component Aut(µ∞) = Ẑ∗

of A, on which it can be viewed as a Dirichlet character. Its value in a ∈ (Z/dZ)∗ is given by

the Kronecker symbol
(
r0
a

)
corresponding to K.

2.7. Theorem. Let K = Q(
√
r0) and ψK , χK : A→ µ2 be defined as above. Then the natural

map (1.5) identifies G = Gal(F∞/Q) with the subgroup of A of index 2 that arises as the kernel

of the quadratic character

ψK · χK : A→ µ2. �

From the description in (2.5) or, more canonically, from the fact that automorphisms of R∞
over R∞ ∩Q∗ can be given in terms of their action on prime power radicals, it is clear that A

admits a natural decomposition

(2.8) A =
∏

p prime

Ap,

with Ap the group of automorphisms of the group Rp∞ =
⋃

k≥1Rpk of p-power radicals that

restrict to the identity on Rp∞ ∩Q∗.
The character ψK in Theorem 2.7 factors via the component A2 of A. The other character

χK can be decomposed in the standard way for Dirichlet characters as a product

χK =
∏

p

χK,p

of quadratic characters

(2.9) χK,p : A→ Aut(µ∞) = Ẑ∗ → Z∗p → µ2

of p-power conductor that are non-trivial exactly for primes p dividing d = disc(K). For odd

primes p|d, the character χK,p is a lift to A of the Legendre symbol at p. For d even, the

character χK,2 is a lift to A of one of the three non-trivial Dirichlet characters of conductor

dividing 8. Note that χK,p factors via Ap for all p.

2.10. Remarks. 1. As the rational number r0 in (2.1) is only determined up to sign, the

entanglement field K = Q(
√
r0) in Theorem 2.7 is only unique up to twisting by the cyclotomic

character χ−4 : A → Aut(µ∞) = Ẑ∗ → {±1} giving the action on i =
√
−1. In other words, G

is also the subgroup of A on which the quadratic characters ψK′ = ψK ·χ−4 and χK′ = χK ·χ−4
related to K ′ = Q(

√−r0) coincide. Indeed, as χ−4 is quadratic, the two products ψK′ ·χK′ and

ψK · χK defining G are equal.

2. For odd p, one may identify the p-component Ap of A with the Galois group of Fp∞ =

Q(Rp∞) over Q. For p = 2, this is only true if we are not in the special case where the

entanglement field K = Q(
√
r0) equals Q(

√
±2), and ψK · χK factors via A2. In non-special

cases, there is a true ‘entanglement’ of the extensions Fp∞ in the sense that the character ψK ·χK

in Theorem 2.7 that determines G as a subgroup of A is non-trivial on more than one prime

component Ap. In the special case K = Q(
√
±2), we have d = ±8 and there is no entanglement

at the level of Galois groups; we do however have G = G2 ×
∏

p>2Ap for a subgroup G2 ⊂ A2

of index 2.
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3. As we saw in (2.5), the semidirect product A = µ̂ ⋊ Ẑ∗ is a split extension of Ẑ∗ by the

multiplicative Tate module µ̂ from (2.4). The subgroup G ⊂ A ‘cut out’ by r0 in the sense of

Theorem 2.7 is not. It is a non-split extension of Ẑ∗ by the subgroup µ̂2 ⊂ µ̂ of index 2, which is

again isomorphic to µ̂. Even though this is not directly relevant for us, one may wonder which

non-split extensions

εr0 : 1 → µ̂ −→ G −→ Ẑ∗ → 1

of profinite groups are provided by the Galois groups G = Gal(F∞/Q) for various choices of

r0 ∈ Q∗/{±1}. The answer is that every non-split extension of Ẑ∗ by µ̂ arises in this way, for

a quadratic field Q(
√
r0) that is unique up to twisting by χ−4 in the sense of Remark 2.10.1.

A more formal way to phrase this consists in the construction of an isomorphism

Q∗/({±1} · (Q∗)2) ∼−→ H2(Ẑ∗, µ̂)

under which ±r0Q∗2 corresponds to the class of the extension εr0 in a continuous cochain coho-

mology group H2(Ẑ∗, µ̂) that describes profinite group extensions in the spirit of [11, Theorem

6.8.4]. Such a construction can be given by standard arguments considering the Ẑ∗-cohomology

of the sequence 1 → µ̂
�−→ µ̂ −→ µ2 → 1 describing multiplication by 2 on µ̂, but one first has

to establish the necessary formal properties of continuous cochain cohomology groups Hq(G,A)

for profinite rather than simply discrete G-modules A. This is achieved in the Leiden master

thesis [3] of Abtien Javanpeykar.

3. Entanglement correction using character sums

The automorphism group A and each of its components Ap in (2.8) are infinite profinite groups

that naturally come with a topology and a Haar measure. The quadratic character ψK · χK in

Theorem 2.7 is continuous on A with respect to this topology, and G is an open subgroup of A

of index 2. We normalize the Haar measure νp on the compact groups Ap by putting νp(Ap) = 1;

this makes the product measure ν =
∏

p νp into a normalized Haar measure on A.

Densities for Artin-like primitive root problems (in one generator over Q) arise as fractions

δ(S) = ν(G ∩ S)/ν(G) of ‘good’ Frobenius elements inside the Galois group G = Gal(F∞/Q)

of Theorem 2.7. Here

S =
∏

p

Sp ⊂
∏

p

Ap = A

is some measurable subset of A that is defined componentwise at each prime p. Usually Sp is the

inverse image of some finite set Sp ⊂ Ap under a continuous map Ap → Ap to a finite discrete

group Ap. A frequently encountered example is, for P a power of p, the restriction map

(3.1) ϕP : Ap −→ A(P ) = AutRP∩Q∗(RP ).

Note that unlike R∞, the group RP of all P -th roots of 〈r〉 depends on r, not just on r0. For
Artin’s original conjecture, the condition at p on the Frobenius element is that it is non-trivial

on the field Fp = Q(Rp) = Q(ζp, p
√
r) from (1.1), so we take

ϕp : Ap −→ A(p) = AutRp∩Q∗(Rp)

with Sp = A(p) \ {1}, and put

(3.2) Sp = Ap \ kerϕp = ϕ−1[Sp].
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As ϕp is surjective and A(p) ∼= Gal(Fp/Q) has order [Fp : Q], the subset Sp ⊂ Ap has measure

νp(Sp) = 1− [Fp : Q]−1. Thus, in this case S =
∏

p Sp has measure

ν(S) =
∏

p

νp(Sp) =
∏

p

(
1− 1

[Fp : Q]

)

equal to the constant A(r) occurring in (1.2). The entanglement correction factor E(r) in (1.4) is

the factor by which δ(S) = ν(G∩S)/ν(G) is different from ν(S) = ν(S)/ν(A) for the subgroup

G ⊂ A of index 2 described by Theorem 2.7. Such entanglement correction factors can be

computed in great generality from the following theorem.

3.3. Theorem. Let A =
∏

pAp be as in (2.8), with Haar measure ν =
∏

p νp, and χ =
∏

p χp :

A → {±1} a non-trivial character obtained from a family of continuous quadratic characters

χp : Ap → {±1}, with χp trivial for almost all primes p. Then for G = kerχ and S =
∏

p Sp a

product of νp-measurable subsets Sp ⊂ Ap with νp(Sp) > 0, we have

δ(S) =
ν(G ∩ S)
ν(G)

=
(
1 +

∏

p

Ep

)
· ν(S)
ν(A)

,

with Ep = Ep(S) =
1

νp(Sp)

∫
Sp
χpdνp the average value of χp on Sp.

Proof.We assume that ν(S) =
∏

p νp(Sp) is positive, as the theorem trivially holds for ν(S) = 0.

We compute ν(G∩ S) by integrating the characteristic function (1 + χ)/2 of G over the subset

S ⊂ A with respect to ν. As we have ν(G) = 1
2ν(A) by the non-triviality of χ, we obtain

ν(G ∩ S)
ν(G)

=
1

ν(A)

∫

S

(1 + χ)dν =
ν(S)

ν(A)
·
(
1 +

1

ν(S)

∫

S

χdν

)
.

Now ν(S) equals
∏

p νp(Sp), and the integral of χ =
∏

p χp over S =
∏

p Sp is the product of

the values
∫
Sp
χpdνp for all p. �

3.4. Corollary. For a set S of positive measure, the density δ(S) in 3.3 vanishes if and only

if there exists a sequence {εp}p of signs εp ∈ {±1}, almost all equal to 1, such that we have∏
p εp = −1, and χp = εp almost everywhere on Sp.

Proof. Suppose we have δ(S) = 0 and ν(S) > 0. This amounts to saying that the product∏
pEp, which is finite as we have Ep = 1 for all p at which χp is trivial, equals −1. As every

Ep is the average value of a quadratic character on Sp, it is a real number in [−1, 1]. It equals 1

(or −1) if and only if χp is νp-almost everywhere equal to 1 (or −1) on Sp. Thus,
∏

pEp = −1

occurs if and only if the conditions listed are satisfied. �

For the Galois group G = Gal(F∞/Q) ⊂ A from Theorem 2.7, we are in the situation of

Theorem 3.3 in view of (2.9): take χ =
∏

p χp = ψK · χK with

(3.5) χp =

{
ψK · χK,2 for p = 2;

χK,p for p > 2.

The characters χK,2 and ψK cannot coincide on A, as χK,2 factors via the cyclotomic component

Ẑ∗ of A in (2.5), whereas ψK does not. It follows that χ2 is always non-trivial. Note also
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that, just as in Remark 2.10.1, the character χ2 is unchanged if we replace K = Q(
√
r0) by

K ′ = Q(
√−r0).

3.6. Remark. As we noticed in Remark 2.10.2, it can happen in the situation of Theorem 3.3

that all χp’s but one character χq are trivial. In this case we have G = Gq ×
∏

p6=q Ap for some

subgroup Gq ⊂ Aq of index 2, and G ∩ S will be the same for all subsets Sq ⊂ Aq having the

same intersection S′q = Sq ∩Gq. The correction factor 1+
∏

pEp = 1+Eq does however depend

on Sq, not only on S′q. This is not a contradiction, since we can write Sq = S′q ∪S′′q as a disjoint

union with S′′q = Sq ∩ (Aq \Gq), and observe that the right hand side in Theorem 3.3 equals

(
1 +

∏

p

Ep

) ν(S)
ν(A)

=
1

ν(A)

(
νq(Sq) +

∫

Sq

χqdνq

)∏

p6=q

νp(Sp)

=
1

ν(A)

(
νq(Sq) + νq(S

′
q)− νq(S

′′
q )
)∏

p6=q

νp(Sp)

=
1

ν(G)
νq(S

′
q)

∏

p6=q

νp(Sp),

in accordance with the fact that we have G ∩ S = S′q ×
∏

p6=q Sp.

4. Artin’s conjecture

Theorems 2.7 and 3.3 reduce the computation of the correction factors occurring in many Artin-

like problems to fairly mechanical computations. For Artin’s original problem, which only takes

a rational number r ∈ Q∗ \ {±1} as its input, we already noticed in (3.2) that each subset

Sp ⊂ Ap of ‘good’ Frobenius elements at p equals Sp = Ap \ kerϕp for the natural map

ϕp : Ap → A(p) = AutRp∩Q∗(Rp) ∼= Gal(Fp/Q).

This gives rise to the Artin set S = S(r) =
∏

p Sp, which has (normalized) measure ν(S) = A(r)

inside A given by (1.2). We have ν(S) = 0 if and only if r is a square in Q∗; in this case, S is

empty as we have S2 = ∅.
To recover the correction factor E(r) from (1.4) for non-square r, we need to compute the

entanglement correction factor 1 +
∏

pEp established in Theorem 3.3. As Sp = Ap \ kerϕp is

the set-theoretic difference of a group and a subgroup, the average value

Ep =
1

ν(Sp)

[∫

Ap

χp dνp −
∫

kerϕp

χp dνp

]

of χp on Sp can only have three possible values, depending on the nature of χp. If χp is trivial,

we obviously have Ep = 1. If χp is non-trivial on kerϕp, and therefore on Sp, we get Ep = 0 as

both integrals, being integrals of a non-trivial character over a group, vanish. The interesting

case is where χp is trivial on kerϕp but not on Ap, and Ep assumes the value

(4.1) Ep =
−νp(kerϕp)

νp(Sp)
=

−[Fp : Q]−1

1− [Fp : Q]−1
=

−1

[Fp : Q]− 1
.

As we have [Fp : Q] = p−1 if r is a p-th power in Q∗, and [Fp : Q] = p2−p otherwise, these Ep

are exactly the factors that occur in the correction factor E(r) in (1.4). Putting things together,

we obtain the density correction for Artin’s primitive root conjecture, as follows.
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4.2. Theorem. Let r 6= −1 be a non-square rational number, G ⊂ A as in Theorem 2.7, and

S = S(r) ⊂ A the Artin set defined above. Then S has measure A(r) given by (1.2), and we

have

δ(S) =
ν(G ∩ S)
ν(G)

= E(r) ·A(r)

for an entanglement correction factor E(r) that has the value 1 if D = disc(Q(
√
r)) is even,

and the value

E(r) = 1−
∏

p|D

−1

[Fp : Q]− 1

from (1.4) if D is odd.

Proof. We apply Theorem 3.3, with χ = ψK ·χK the character from Theorem 2.7. Here we have

K = Q(
√
r0), with r = ±re0 defined as in (2.1). As we know already that S has measure A(r),

we only have to compute the factors Ep occurring in the correction factor E(r) = 1 +
∏

p Ep.

In our case, Ep is the average value of the character χp from (3.5) on the set Sp = Ap \ kerϕp

from (3.2).

Suppose first that we are not in the twisted case where−r is a square. Then we can take r = re0
with e odd, and the fields F2 = Q(

√
r) and K = Q(

√
r0) coincide. The character χ =

∏
p χp

has non-trivial p-components only at p = 2 and at the odd primes p dividing D = disc(K). At

odd primes p|D, the Legendre symbol χp is trivial on kerϕp but not on Ap, so Ep is given by

(4.1). At p = 2, the non-trivial character χ2 = ψK ·χK,2 on A2 equals χK,2 on kerϕ2 = kerψK .

If D is odd, it is trivial on kerϕ2 and we find E2 = −1 from (4.1), yielding E(r) as stated. If

D is even, χK,2 and therefore χ2 are non-trivial on kerϕ2, since ϕ2 is non-cyclotomic; we find

E2 = 0 and E(r) = 1.

In the twisted case D = −4 the field F2 = Q(
√
r) = Q(i) is different from K = Q(

√
r0),

and the character ϕ2 = χ−4 is cyclotomic but χ2 = ψK · χK,2 is not. This implies that χ2 is

non-trivial on kerϕ2, so we have E2 = 0 and E(r) = 1. �

The preceding proof is remarkably simple in comparison with the original derivation of (1.4)

from (1.3) in [2]. The next two sections show that this character sum analysis generalizes well

to more complicated settings.

5. Primes in arithmetic progressions with prescribed primitive root

For a non-square rational number r as in Theorem 4.2, which is (under GRH) a primitive root

modulo the primes q in a set of positive density, we now ask what this density becomes if we

restrict to primes q that lie in a prescribed arithmetic progression. Thus, on input of r, a positive

integer f and an integer a coprime to f , we want to prove the analogue of Theorem 4.2 for the

set S = S(r, a mod f) ⊂ A corresponding to collection of primes

(5.1) {q prime : q ≡ a mod f and r is a primitive root modulo q}.

The additional congruence condition q ≡ a mod f is a condition on the Frobenius of q in the

cyclotomic field Q(ζf ) ⊂ F∞ = Q(R∞). In order to formulate it ‘primewise’ at primes dividing

f , we use the natural maps

ρp : Ap = AutRp∞∩Q∗(Rp∞) → Aut(µp∞) = Z∗p → (Zp/fZp)
∗
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and take the congruence condition into account by replacing the primitive root set Ap \ kerϕp

at p from (3.2) by its intersection

(5.2) Sp = (Ap \ kerϕp) ∩ ρ−1p (a mod fZp)

with the congruence set ρ−1p (a) = ρ−1p (a mod fZp). In other words, we map Ap to a finite group

by the homomorphism

(5.3) ϕp × ρp : Ap → AutRp∩Q∗(Rp)× (Zp/fZp)
∗,

and let Sp be the inverse image

Sp = (ϕp × ρp)
−1 [(AutRp∩Q∗(Rp) \ {1}) × {a mod fZp}

]
.

Note that we have Sp = Ap\kerϕp at primes p ∤ f . With Sp defined as in (5.2), a prime q > f that

is coprime to the numerator and denominator of r and for which Frobq ∈ Gal(Q(Rp∞)/Q) ⊂ Ap

lies in Sp for all primes p < q will have r as a primitive root and lie in the residue class a mod f .

For the rest of this section, we suppose that we are given coprime integers a, f ∈ Z≥1 and a

non-square rational number r, and that Sp is as defined in (5.2). In this way, S =
∏

p Sp ⊂ A

corresponds to the set of primes q in (5.1).

5.4. Lemma. Let S be as defined above, and put

A(r, a mod f) =
1

φ(f)

∏

p| gcd(a−1,f)
(1− 1

p
) ·

∏

p∤f

(1− 1

[Fp : Q]
),

with Fp = Q(ζp, p
√
r) as in (1.1), and φ the Euler φ-function.

1. Suppose −r is not a square. Then S is non-empty if and only if r is not a p-th power

for any prime p dividing gcd(a − 1, f). In the non-empty case, its measure equals ν(S) =

A(r, a mod f).

2. Suppose −r is a square. Then S is non-empty if and only if the two conditions

(i) r is not a p-th power for any prime p dividing gcd(a− 1, f);

(ii) a ≡ 3 mod 4 in case 4 divides f ;

are satisfied. In the non-empty case, its measure equals ν(S) = 2A(r, a mod f) if 4 divides

f , and ν(S) = A(r, a mod f) otherwise.

Proof. We have ν(S) =
∏

p νp(Sp), and at primes p ∤ f the set Sp has positive measure

νp(Sp) = 1− [Fp : Q]−1.
Suppose p is an odd prime dividing f . Then the map ϕp × ρp in (5.3) is not surjective, as it

maps Ap onto the fibred product of AutRp∩Q∗(Rp) and (Zp/fZp)
∗ over their common quotient

Aut(µp) = (Zp/pZp)
∗. For the measure of Sp, we have to distinguish two cases.

For a 6≡ 1 mod p, the subset ρ−1p (a) of Ap is disjoint from kerϕp, so the congruence condition

at p implies the primitive root condition at p, and Sp = ρ−1p (a) has measure

(5.5) νp(Sp) = νp(ρ
−1
p (a)) = (#(Zp/fZp)

∗)−1 = φ(fp)
−1.

Here fp = pordp(f) denotes the p-part of f .
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For a ≡ 1 mod p, all elements in ρ−1p (a) are the identity on µp, and we have two subcases. If

r ∈ Q∗ is a p-th power, then ρ−1p (a) is contained in kerϕp as we have AutRp∩Q∗(Rp) = Aut(µp).

In this case, Sp and therefore S are empty. In the other case, in which r is not a p-th power in

Q∗, the natural map AutRp∩Q∗(Rp) → Aut(µp) is p to 1, and we find

(5.6) νp(Sp) = (1− 1

p
)νp(ρ

−1
p (a)) = (1− 1

p
) · φ(fp)−1.

For p = 2 dividing f , the map ϕ2 × ρ2 is surjective in the case where −r is not a square.

This is because Aut(µp) = (Zp/pZp)
∗ is trivial for p = 2, and the action of elements of A2 on√

r ∈ R2 is in this case independent of their action on roots of unity of 2-power order. As a is

now odd, we have 2| gcd(a − 1, f), and ν2(S2) is given by (5.6) for p = 2 as r is not a square.

This yields the non-twisted case 5.4.1, with ν(S) =
∏

p νp(Sp) equal to A(r, a mod f).

In the twisted case 5.4.2 where −r is a square, the action of α ∈ A2 on
√
r ∈ i ·Q∗ and on

ζ4 = i is ‘the same’, in the sense that we have α(
√
r)/

√
r = α(ζ4)/ζ4. As all α ∈ S2 ⊂ A2 \kerϕ2

satisfy α(
√
r)/

√
r = −1 = α(ζ4)/ζ4, we find that, apart from the necessary condition in (i) for

S to be non-empty, there is the second condition (ii) in case 4 divides f . In the case where we

have 4|f and a ≡ 3 mod 4, the congruence condition at 2 implies the primitive root condition

at 2, and ν2(S2) is given by (5.5) instead of (5.6) for p = 2. Only in this special case, we obtain

ν(S) = 2A(r, a mod f) instead of the ‘ordinary’ value ν(S) = A(r, a mod f). �

With the computation of the ‘naive’ density ν(S) taken care of by Lemma 5.4, we can apply

Theorem 3.3 to find the actual density δ(S) = ν(G ∩ S)/ν(G) for the Galois group G ⊂ A

from Theorem 2.7. The resulting computation is of striking simplicity when compared to its

original derivation by the second author [7, 8] from a formula analogous to (1.3). Under GRH,

the fraction δ(S) obtained equals the density, inside the set of all primes, of the set of primes

q ≡ a mod f for which r is a primitive root.

5.7. Theorem. Let a, f ∈ Z≥1 be coprime integers, r 6= −1 a non-square rational number that

is not a p-th power for any prime p| gcd(a− 1, f). Define the subset S =
∏

p Sp ⊂ A associated

to the set of primes in the residue class a mod f for which r is a primitive root as in (5.2).

Then we have

δ(S) =
ν(G ∩ S)
ν(G)

= E · A(r, a mod f)

for the Galois group G ⊂ A from (1.5), with A(r, a mod f) the Artin constant from Lemma 5.4,

and the correction factor E equal to

E = 1 + E2 ·
∏

p| gcd(D,f) odd

(
a

p

)
·

∏

p|D, p∤2f

−1

[Fp : Q]− 1
.

Here D denotes the discriminant of F2 = Q(
√
r), and E2 is given by

E2 =

{ −χF2,2(a) if ord2(D) ≤ ord2(f);

0 otherwise.

Proof. Suppose first that we are not in the twisted case D = −4. Take r = re0 with e odd, so

the fields K = Q(
√
r0) from Theorem 2.7 and F2 = Q(

√
r) coincide. By the assumption on r,
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the naive density ν(S)/ν(A) equals the constant A(r, a mod f) from Lemma 5.4, and we can

apply Theorem 3.3 for our set S and the characters χp from (3.5) to obtain the correction factor

E = 1+
∏

pEp. This amounts to a local computation of Ep at each of the critical primes p|2D.

At primes p ∤ 2f dividing D, the factors Ep = −1/([Fp : Q]− 1) coming from the Legendre

symbol χp at p are the same as for Artin’s conjecture in Theorem 4.2.

For the odd primes p| gcd(D, f), the Legendre symbol χp has constant value χp(a) =
(
a
p

)
on

the congruence set ρ−1p (a), and therefore on Sp. This yields Ep =
(
a
p

)
.

Finally, for p = 2, the character χ2 = ψK · χK,2 = ϕ2 · χF2,2 equals −χF2,2 on S2 ⊂
A2 \kerϕ2. In the case ord2(D) ≤ ord2(f) it has constant value −χF2,2(a) on S2 ⊂ ρ−12 (a), and

we obtain E2 = −χF2,2(a). In the case ord2(D) > ord2(f) the character χF2,2 is non-trivial on

the subgroup kerϕ2 ∩ ker ρ2 ⊂ A2. As S2 is a finite union of cosets of this subgroup, we have∫
S2
(−χF2,2)dν2 = 0, and E2 = 0. This finishes the proof in the non-twisted case.

In the twisted case D = −4, the field K = Q(
√
r0) from Theorem 2.7 is different from

F2 = Q(i), and the correction factor in our theorem simply reads E = 1 + E2.

If f is not divisible by 4, then ρ2 is the trivial map, and we have S2 = A2 \kerϕ2 and E2 = 0

as in Theorem 4.2. In this case we find δ(S) = A(r, a mod f).

If 4 divides f , we have 1 + E2 = 1 − χF2,2(a) = 1 − χ−4(a). For a ≡ 1 mod 4 this factor

vanishes, and we find δ(S) = 0, in accordance with the fact that S is empty by 5.4.2. For

a ≡ 3 mod 4, there is no entanglement correction as χ2 = ψK · χK,2 is non-trivial on the

subgroup kerϕ2 ∩ ker ρ2 ⊂ A2. We therefore have δ(S) = ν(S) = 2A(r, a mod f) by 5.4.2, and

the factor 2 is exactly what E = 1 + E2 = 2 gives us. Note however that in this case, E is a

correction for obtaining the right value of ν(S), not an entanglement correction factor. �

As the Artin constant A(r, a mod f) is non-zero, vanishing of the density δ(S) in Theorem 5.7

occurs if and only if the correction factor E vanishes, and G∩S is empty. It is easy to see when

this happens.

5.8. Theorem. The correction factor E in Theorem 5.7 vanishes if and only if we are in one

of the two following cases:

(a) the discriminant of F2 = Q(
√
r) divides f , and we have χF2

(a) = 1;

(b) r is a cube in Q∗, the discriminant of Q(
√
r) divides 3f but not f , and for L = Q(

√
−3r)

we have χL(a) = −1.

Proof. The factor E in Theorem 5.7 does not vanish if there is a prime p > 3 that divides the

discriminant D of F2 = Q(
√
r) but not f , since then we have [Fp : Q] − 1 ≥ p − 2 > 1. This

leaves us with two cases in which it can vanish.

The first case arises when all odd primes in D divide f , and we have an equality E =

1 + E2

∏
p|D odd

(
a
p

)
= 0. In this case E2 equals −χF2,2(a), so actually D divides f , and we

have E = 1 − χF2
(a) = 0. This is case (a), in which all primes congruent to a mod f are split

in Q(
√
r), making r a quadratic residue modulo all but finitely many of these primes.

The second case arises if all odd primes in D divide f except the prime p = 3, which divides

D but not f , and we have

E = 1 + E2 ·
∏

p|D/3 odd

(
a

p

)
· −1

[F3 : Q]− 1
= 0.

In this situation E2 equals −χF2,2(a), so D divides 3f but not f , and [F3 : Q] equals 2, showing

that r is a cube. The resulting equality is E = 1+χL(a) = 0, so we are in case (b). To understand
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this case, we note that a cube can only be a primitive root modulo a prime q ≡ 2 mod 3, and

no prime q can be inert in all three quadratic subfields of Q(
√
r,
√
−3r). �

The vanishing result 5.8 already occurs in [4, Theorem 8.3], where it is said to follow from a

‘straightforward analysis’ in terms of Galois groups that is not further specified.

6. Near-primitive roots

In addition to r ∈ Q∗\{±1}, we now let t =
∏

p tp ∈ Z≥1 be a positive integer, with tp = pordp(t)

the p-component of p. We are interested in the density of the set of primes q for which r is a

‘near-primitive root’ in the sense that r mod q generates a subgroup of F∗q of exact index t. For

odd primes q coprime to numerator and denominator of r, the condition amounts to requiring

that q split completely in the splitting field Ft = Q(Rt) of X
t − r, but not in any of the fields

Fpt with p prime. Note that such primes q will be necessarily be congruent to 1 mod t.

In order to define the subset S =
∏

p Sp ⊂ A for near-primitive roots of index t, we use the

surjective restriction maps

(3.1) ϕP : Ap −→ A(P ) = AutRP∩Q∗(RP )

for p-powers P as defined in Section 3, and put

(6.1) Sp = kerϕtp \ kerϕptp .

Note that (6.1) reduces to (3.2) for p ∤ t, when we have tp = 1. Just as in Section 4, Sp is the

set-theoretic difference of a group and a subgroup.

6.2. Lemma. Let P be a prime power, and write r = ±re0 as in (2.1). Then A(P ) has order

φ(P ) · P/(P, e), unless we are in the twisted case r = −re0 with P > 1 a 2-power dividing e,

when the order is 2 · φ(P ).
Proof. We can describe the finite quotient A(P ) of Ap just as we described its infinite coun-

terpart A = AutR∞∩Q∗(R∞) in Section 2. Let r1/P ∈ Q be any root of the polynomial XP − r.

Then RP = 〈r1/P 〉 × µP is the product of an infinite cyclic group and the finite group µP of

P -th roots of unity, and its quotient

CP =
RP

µP · (RP ∩Q∗)

is a finite cyclic group of order dividing P , generated by r1/P mod µP · (RP ∩Q∗). If P is not a

2-power, or we are not in the twisted case in which −r is a square, then r is a (P, e)-th power in

Q∗, and CP is of order P/(P, e). If however −r = re0 is a rational square and P > 1 a 2-power,

r1/P is equal to a primitive 2P -th root of unity times r
e/P
0 , and CP has order P/(P, e) only

when P does not divide e. If it does divide e, the order is 2 and not P/(P, e) = 1.

Just as for A and Ap, we have an exact sequence

1 → Hom(CP , µP ) → A(P ) → Aut(µP ) → 1

showing that A(P ) has order φ(P ) ·#CP . The result follows. �

Using Lemma 6.2, it is straightforward to find the measure of Sp in (6.1), and the naive density

for near-primitive roots.
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6.3. Lemma. Write r = ±re0 as in (2.1). Then the measure of the set S =
∏

p Sp defined by

(6.1) is equal to

A(r, t) = α2 ·
(t, e)

t2
·

∏

p|t
ordp(e)≤ordp(t)

(1 +
1

p
) ·

∏

p∤t

(1− 1

[Fp : Q]
),

where α2 is defined by

α2 =





1/2 if −r is a square and 0 < ord2(t) ≤ ord2(e)− 1;

1/3 if −r is a square and 0 < ord2(t) = ord2(e);

1 otherwise.

Proof. For primes p that do not divide t, we have the familiar Artin factors νp(Sp). For primes

p dividing t, the factors when we are not in the twisted case with p = 2 become

νp(Sp) =
(tp, e)

φ(tp) · tp
− (ptp, e)

φ(ptp) · ptp
=

(tp, e)

t2p
·
{

(1 + 1
p ) if ordp(e) ≤ ordp(t);

1 otherwise.

If 2 divides t and we are in the twisted case where −r is a square, we need to correct the value

for ν2(S2) given by the formula above in view of Lemma 6.2. A short computation shows that

this leads to an extra factor 1/2 if 2t2 divides e, and to a factor 1/3 if t2 but not 2t2 divides

e. This is the factor α2. Taking the product of νp(Sp) over all p, we obtain the Artin constant

A(r, t). �

6.4. Theorem. For r ∈ Q∗ and t =
∏

p tp ∈ Z≥1, define S =
∏

p Sp ⊂ A associated to the set

of primes for which r is a near-primitive root of index t as in (6.1). Then we have

δ(S) =
ν(G ∩ S)
ν(G)

= E ·A(r, t)

for the Galois group G ⊂ A from (1.5), with A(r, t) as in Lemma 6.3 and E equal to

E = 1 + E2 ·
∏

p| disc(K),p∤2t

−1

[Fp : Q]− 1
.

Here we take K = Q(
√
r0) with r = ±re0 as in (2.1), and choose r = re0 if e is odd. In terms of

e2 = 2ord2(e) and d2 = 2ord2(disc(K)), we have a quantity

s2 =





lcm(2e2, d2) if r = re0;

4 if −r is a square and (e2, d2) = (2, 8);

4e2 if −r is a square and (e2, d2) 6= (2, 8)

that determines the value E2 by

E2 =





1 if s2|t2;
0 if s2 ∤ 2t2;

−1 if s2 = 2t2 = 2;

−1 if s2 = 2t2 = 4, −r is a square and (e2, d2) = (2, 8);

−1/3 otherwise.
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Proof. We already computed ν(S) = A(r, t) in Lemma 6.3, so by Theorem 3.3 we only need to

check that E = 1+
∏

p|2d Ep has the indicated form, with d = disc(K). Note that, even though

the field K = Q(
√
r0) is only defined up to twisting (as in 2.10.1) by the cyclotomic character

χ−4, divisibility of d by odd primes p or by 8 are well-defined notions. Also, if e is odd, the

equality r = re0 does uniquely determine r0 and K.

At primes p|d that do not divide 2t, the factors Ep = −1/([Fp : Q]− 1) are the same as in

4.1. At odd primes p|disc(K) that do divide t, the Legendre symbol χp equals 1 on kerϕtp , and

therefore on Sp. This yields Ep = 1 for these p, and we obtain the desired expression

E = 1 + E2 ·
∏

p| disc(K), p∤2t

−1

[Fp : Q]− 1
,

with E2 the average value of the character χ2 = ψK · χK,2 : A2 → µ2 on the ‘difference of

subgroups’ S2 = kerϕt2 \ kerϕ2t2 ⊂ A2. In order to explicitly find E2, we first compute the

smallest 2-power s2 for which χ2 is trivial on kerϕs2 .

By the definitions (2.6) and (3.1) of ψK and ϕ2k , their kernels are the subgroups of A2 that

pointwise stabilize 〈r1/20 〉 and R2k , respectively. It follows that ψK is trivial on kerϕ2k if and

only if the group R2k ⊂ Q
∗
of 2k-th roots of 〈r〉 contains an odd power of r

1/2
0 . If we are in the

untwisted case r = re0, we have

(6.5) R2k = 〈re/2
k

0 〉 × µ2k

and the smallest 2-power for which this happens is 2k = 2e2. In the twisted case in which −r is
a square, we have

(6.6) R2k = 〈ζ2k+1r
e/2k

0 〉 × µ2k

for a primitive 2k+1-th root of unity ζ2k+1 , and this smallest 2-power is 2k = 4e2.

For a cyclotomic character of 2-power conductor on A2 such as χK,2, it is clear that it is

trivial on kerϕ2k if and only if its conductor divides 2k.

For α ∈ A2, the values ψK(α) and χK,2(α) depend on the action of α on r
1/2
0 and on the

d2-th roots of unity. Thus, ψK and χK,2 respectively factor via the ‘Tate-module’ Z2 and the

cyclotomic component Z∗2 of A2
∼= Z2 ⋊ Z∗2 (cf. (2.5)). If we are in the untwisted case (6.5),

then χ2 = ψK · χK,2 is trivial on the pointwise stabilizer kerϕ2k of R2k if and only if each of

ψK and χK,2 is, and we find s2 = lcm(2e2, d2).

Now suppose we are in the twisted case (6.6). Then ψK is trivial on kerϕ4e2 , and so is χK,2

as d2, a divisor of 8, necessarily divides 4e2. The ‘non-cyclotomic’ character ψK is non-trivial

on kerϕ2e2 , but as every σ ∈ kerϕ2e2 fixes ζ4e2r
1/2
0 , it can be described ‘in cyclotomic terms’

on kerϕ2e2 by the identity ψK(σ) = ζσ−14e2
. Thus, in the case e2 = 2 and d2 = 8, the quadratic

characters ψK and χK,2 are non-trivial but identical on kerϕ2e2 = kerϕ4, so their product χ2

is trivial on it. Apart from this rather special twisted case in which we have s2 = 2e2 = 4, the

character χ2 is trivial on kerϕ2k if and only if ψK is, i.e., if and only if s2 = 4e2 divides 2k.

Having computed s2, we can easily find E2. If s2 divides t2, then χ2 is trivial on kerϕt2 ,

hence on S2, and we find E2 = 1. If s2 does not divide 2t2, then χ2 is non-trivial on both

kerϕ2t2 and kerϕt2 , and we find E2 = 0. In the remaining case s2 = 2t2 we find, just as for 4.1,

E2 =
−ν2(kerϕ2t)

ν2(kerϕt2)− ν2(kerϕ2t2)
=

−1

[A(t2) : A(2t2)]− 1
.
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In the untwisted case s2 = 2t2 = 2, where both e and d are odd, the index [A2 : A(2)] equals

2, and we find E2 = −1. (This is actually a case that already occurred in the proof of 4.2.) We

also find E2 = −1 if we have s2 = 2t2 in the special twisted case above, for s2 = 2t2 = 2e2 = 4

and d2 = 8; indeed, we then have [A(2) : A(4)] = 2 from the order formulas #A(2) = 2 and

#A(4) = 4 provided by Lemma 6.2. In the other cases with s2 = 2t2 ≥ 4 we have e2|t2, and
in the twisted cases with s2 = 4e2 even 2e2|t2. The order formulas from Lemma 6.2 then yield

#A(2t2) = 4 ·#A(t2) and [A(t2) : A(2t2)] = 4, hence E2 = −1/3. �

If we compare Theorem 6.4 to the result for near-primitive root densities in [16], we see that,

despite the careful administration we needed for the twisted case, both the derivation and

the resulting expression for the density given here are considerably simpler. In fact, it takes

some work to see that the formulas in [16], which express the density as a sum of up to 4

different inclusion-exclusion-sums, can be reduced to our single formula. Whereas it is extremely

cumbersome to derive the vanishing criteria from the formulas in [16], it is straightforward to

obtain them from Theorem 6.4. In the criteria below, which occur without proof as [4, (8.9)–

(8.13)], we write d(x) for x ∈ Z to denote the discriminant of the number field Q(
√
x). In

particular, d(x) equals 1 if x is a square.

6.7. Theorem. Let r = ±re1 and t ∈ Z≥1 be as in Theorem 6.4. Then the near-primitive root

density E ·A(r, t) in 6.4 vanishes if and only if we are in one of the following five cases:

(a) t is odd, and d(r)|t;
(b) t ≡ 2 mod 4, and r = −u2 with d(2u)|2t;
(c) r is a cube, 3 ∤ t, −r is not a square, d(−3r0)|t, and ord2(t) > ord2(e);

(d) r is a cube, 3 ∤ t, −r is a square, d(−3r0)|t and ord2(t) > ord2(e) + 1;

(e) r is a cube, 3 ∤ t, −r = u2, 8|d(−3u)|2t.

Proof. The naive density A(r, t) from Lemma 6.3 vanishes if and only if t is odd and r is a

square. This is case (a) with d(r) = 1.

As any local factor Ep = −1/([Fp : Q] − 1) satisfies |Ep| ≤ 1/(p − 2) < 1 for p ≥ 5, we see

that E = 1 +
∏

p Ep can only vanish if we have Ep = 1 for all primes p ≥ 5, i.e., if all primes

p ≥ 5 dividing d also divide t. Assume that this is the case. Then E vanishes if and only if we

either have E2 = −1 = −E3 or E2 = 1 = −E3.

Suppose first that we have E = 0 with E2 = −1 = −E3. For s2 = 2 this means that t

and e and d = d(r0) = d(r) are odd, and that d divides t. This is case (a) with d(r) 6= 1. For

s2 = 4 we have t2 = 2 and r = −u2, with u = r
e/2
0 a non-square rational number for which

d(u) = d(r0) = d satisfies 8|d|4t. As 8|d(u) can be written as ord2(d(2u)) ≤ 2 = ord2(2t), we

are in case (b).

Suppose next that we have E = 0 with E2 = 1 = −E3. The condition E3 = −1 means that r

is a cube, and that 3 divides d but not t. To have E2 = 1 as well, t2 needs to be divisible by s2,

and this leads to three cases reflecting the three cases in the definition of s2. In the non-twisted

case, t2 has to be divisible by 2e2 and d2, leading to ord2(t) > ord2(e) and d(−3r0) = −d(r0)/3|t.
This is case (c). The twisted case with s2 = 4e2 is case (d), with ord2(t) > ord2(e)+1 reflecting

the condition s2 = 4e2|t2. Finally, we have the twisted case with s2 = 4. Here −r = u2 is a

square and e2 = 2, so we have d = d(u) and d(−3u) = −d(u)/3. The conditions 4|t and d2 = 8

may now be combined with the conditions at the odd primes to yield 8|d(−u/3)|2t, and we are

in case (e).
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The reader may check that E indeed vanishes in each of the cases (a)–(e), or refer to remark

6.8.2 below instead. �

6.8. Remarks. 1. One may restrict case (e) to values t ≡ 4 mod 8, as t ≡ 0 mod 8 in case (e)

is already covered by case (d). In doing so, the five cases become mutually exclusive.

2. The computation of the vanishing criteria in Theorem 6.7 is so automatic that one barely

realizes why these are vanishing criteria. In case (a) the number r is a square modulo almost all

primes q ≡ 1 mod t, so it cannot generate a subgroup of odd index t modulo such q for q > 2. In

case (b), if r = −u2 generates a subgroup of even index modulo q, then
(
r
q

)
=

(−1
q

)
= 1 implies

that we have q ≡ 1 mod 4, and r = (iu)2 mod q for a primitive 4-th root of unity i modulo q.

For q ≡ 1 mod t we easily see that q splits in Q(
√
u) if and only if we have q ≡ 1 mod 8, so i u

is a square modulo q and r generates a subgroup modulo q of index divisible by 4.

In the cases (c)–(e), the divisibility of the index of r modulo q by t implies that −3 is a square

modulo q, so we have q ≡ 1 mod 3, and the cube r generates a subgroup of index divisible by 3.

7. Further directions

The examples in the two preceding sections show that the character sum approach to the com-

putation of various primitive root densities gives rise to formulas with a simple basic structure.

Unsurprisingly, more case distinctions become necessary as the complexity of the input data

grows. In more complicated settings, where a single closed formula running over a page of case

distinctions may not be the most desirable result, the method can also be seen as an algorithm

to find the density in each specific case.

Near-primitive roots for primes in arithmetic progressions. As a rather straightforward gener-

alization, one may combine Sections 5 and 6 into a single density computation for the set of

primes q ≡ a mod f for which a given rational number r = ±re0 generates a subgroup of exact

index t in F∗q . As such primes q are necessarily congruent to 1 mod t, it is natural to assume

t|f and a ≡ 1 mod t. For primes p|f , the original Artin sets 3.2 are then replaced in the spirit

of 5.1 and 6.1 by

Sp =
(
kerϕtp \ kerϕptp

)
∩ ρ−1p (a mod fZp).

One can now compute the values νp(Sp) and their somewhat complicated product A(r, t, a mod

f) over all p as before. Application of Theorem 3.3 yields the fraction δ(S) = ν(G ∩ S)/ν(G)
as a product of A(r, t, a mod f) and a correction factor E = 1 +

∏
pEp, where the value of E2

requires a large number of case distinctions. We leave the details to the reader fond of general

closed formulas, and note that when viewed as an algorithm, the method easily yields δ(S) for

any set of (factored) input values t, f, r from Z and Q∗.

Higher rank Artin densities. There are generalizations of Theorem 3.3 to variants of Artin’s

conjecture over Q for which not the theorem itself, but the general strategy of the proof applies.

One might for instance want to compute, upon input of a, b ∈ Q∗, the density of primes q for

which F∗q is generated by a and b, or for which b is in the subgroup of F∗q generated by a.

We assume here that we are in the true 2-variable case where a and b are multiplicatively

independent, i.e., when they generate a subgroup of rank 2 in Q∗/{±1}.
In this case, we are led to study the Galois group G of the extension Q ⊂ Q(R∞) obtained

by adjoining to Q all radicals of a and all radicals of b. Analogous to (1.5), one then has

an injective Galois representation G → A = AutR∞∩Q∗(R∞). The group A is an extension of
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Aut(µ∞) = Ẑ∗ by a free Ẑ-module of rank 2 that naturally decomposes as a product A =
∏

pAp

of automorphism groups of p-power radicals. The direct analogue of Theorem 2.7 is that G ⊂ A

is a subgroup of index 4 that arises as the intersection of the kernels of two quadratic characters

κ = ψK ·χK and κ̃ = ψK̃ ·χK̃ on A related to distinct quadratic entanglement fields K and K̃.

For subsets S =
∏

p Sp ⊂ ∏
pAp = A, the analogue of Theorem 3.3 is that the quotient

ν(G ∩ S)/ν(G) differs from ν(S)/ν(A) by an entanglement correction factor of the form

1 +
∏

p

Eκ,p +
∏

p

Eκ̃,p +
∏

p

Eκκ̃,p,

with Eα,p denoting, for a character α =
∏

p αp on A =
∏

pAp, the average value of αp on Sp.

It reflects the fact that in this case, 1
4 (1 + κ+ κ̃+ κκ̃) is the characteristic function of G in A.

This leads to much easier proofs of results such as [9, Theorem 3].

Continuing in the direction of arbitrary rank subgroups, nothing prevents us from considering

properties of subgroups of F∗q that are generated by n elements a1, a2, . . . , an ∈ Q∗ for any n ∈
Z>0. One may for instance look at those q for which all ai are primitive roots modulo q, or those

q for which the subgroup Γ = 〈a1, a2, . . . , an〉 ⊂ Q∗ maps surjectively to F∗q . Our methods do

generalize to this situation, and lead to (short) proofs and generalizations of theorems obtained

previously by Matthews [6] and Cangelmi and Pappalardi [1]. We refer to [10] for further details.

Maximal radical extension. The ultimate structural result on the Galois group G over Q of the

field obtained by adjoining to Q the group R = ∞
√
Q∗ of all radicals of all rational numbers is

that G is the subgroup of A = AutR∩Q∗(R) that is ‘cut out’ by an explicit family of quadratic

characters. It consists, for each prime p, of a character as in Theorem 2.7 that expresses the fact

that
√
p equals a ‘Gauss sum’, a sum of roots of unity, and that elements of G should preserve

this additive relation. It implies that over Q, the groups of radical Galois extensions Q ⊂ Q(W )

for subgroupsW ⊂ R can be described as subgroups of the automorphism group AutQ∗∩W (W )

that arise as the intersections of kernels of certain quadratic characters.

A beautiful generalization of this result to arbitrary fields K of characteristic zero was an-

nounced in the 2006 lecture notes [5, Section 13] of the first author. It describes the Galois

group over K of the maximal radical extension K( ∞
√
K) of K explicitly as a subgroup G of

A = AutK∗∩ ∞√
K( ∞

√
K). In all cases, G is normal in A, and A/G is a profinite abelian group.

It opens up the possibility of generalizing all results that have been proved or mentioned over

Q in this paper to similar results over arbitrary number fields. Such extensions, and also gen-

eralizations that replace the multiplicative group by one-dimensional tori, are the subject of

ongoing work of De Smit and Palenstijn [14].

References

1. L. Cangelmi, F. Pappalardi, On the r-rank Artin conjecture, II, J. Number Theory 75 (1999), 120–132.

2. C. Hooley, On Artin’s conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209–220.

3. A. Javanpeykar,Radical Galois groups and cohomology, www.math.leidenuniv.nl/en/theses (master thesis,

Universiteit Leiden), 2013.

4. H. W. Lenstra, Jr, On Artin’s conjecture and Euclid’s algorithm in global fields, Invent. Math. 42 (1977),
201–224.

5. H. W. Lenstra, Jr, Entangled radicals, www.math.leidenuniv.nl/ h̃wl/papers/rad.pdf (AMS Colloquium

Lectures, San Antonio), 2006.

6. K. R. Matthews, A generalisation of Artin’s conjecture for primitive roots, Acta Arith. 29 (1976), 113–146.



CHARACTER SUMS FOR PRIMITIVE ROOT DENSITIES 21

7. P. Moree, On primes in arithmetic progression having a prescribed primitive root, J. Number Theory 78

(1999), 85–98..
8. P. Moree, On primes in arithmetic progression having a prescribed primitive root II, Funct. Approx. Com-

ment. Math. 39 (2008), 133–144.

9. P. Moree, P. Stevenhagen, A two-variable Artin conjecture, J. Number Theory 85 (2000), 291–304.

10. P. Moree, P. Stevenhagen, Computing higher rank primitive root densities, arXiv:1203.4313 (2012).

11. L. Ribes, P. Zalesskii, Profinite groups, Ergebnisse der Mathematik, vol. 40, Springer, 2000.

12. A. Schinzel, Abelian binomials, power residues and exponential congruences, Acta Arith. 32 (1977), 245-274.

13. A. Schinzel, Selecta, vol. II, European Mathematical Society, 2007, pp. 901–902.

14. W. J. Palenstijn, thesis, Universiteit Leiden (in preparation).

15. P. Stevenhagen, The correction factor in Artin’s primitive root conjecture, J. Théor. Nombres Bordeaux 15
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