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ON SOME CLASSES OF EXTENSIONS OF LOCAL FIELDS
Ivan B. Fesenko

In this note the theory of the Hasse—Herbrand function developed in section 3 Chap.
Il of [FV] is applied for study of several important classes of extensions of local fields.

The first section contains discussions of connections between the property of a totally
ramified p-extension of a local field to be abelian and the property of its Galois group to
possess integer jumps with respect to the upper numbering (Hasse—Arf property)}. It is
shown that such an extension L/F is abelian if and only if for any totally ramified abelian
extension [/ F the extension LE/F satisfies the Hasse—Arf property. | formulate also
an additional property to the Hasse—Arf property in terms of principal units which makes
the extension abelian. -

The sacond section deals with deeply ramified extensions introduced recently by J.
Coates and R. Greenberg [CR]. Most of results (properties of deeply ramified extensions
(2)-(5)) are due to them. The reason why they are included in the paper is a hope that
the proofs of them are more elementary than in [CR]. A connection of these extensions
with arithmetically profinite ones (playing a fundamental role in the theory of fields of
norms of J.-M. Fontaine and J.-P. Wintenberger) is discussed as well.
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problem: to prove the assertion of Remark 3 section 2 in elementary way.
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1. Hasse—Arf Property and Abelian Extensions

Let F' be a complete (or Henselian) discrete valuation field with a perfect residue
field of characteristic p > 0. For a finite Galois extension L/F let iy, denote the
Hasse-Herbrand function (it coincides with the inverse function to the function ¢y p
in the ramification theory), see section 3 in Chap. Il of [FV] or (3.2) of [F1].

The extension L/F is said to satisfy Hasse-Arf property (HAP), if

{vp(r[tony ~ 1) : 0 € Gal(L/F)} C hy/r(N)
where 7, is a prime element in L and vy, is the discrete valuation on L, vy (7p) = 1.
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Let F be the residue field of F and k = dimg, F/p(F) where p(X) is the polynomial
XP-X. Further we will assume that « # 0 and apply local p-class field theory developed
in [F2], the case kK = 0 when the field F is algebraically p-closed may be treated using
the Serre geometric class field theory [Sr].

Let Ur be the group of units of the ring of integers of F' and U; r be the groups of
higher principal units. The following assertion for totally ramified p-extensions is very
well-known. We show how it easily follows from class field theory.

Theorem (Hasse—Arf). Let L/F be a totally ramified abelian p-extension. Then L/F
satisfies HAP.

Proof. Let Gal{L/F)* be the group of Z ,-continuous homomorphisms from the Galois

group of the maximal unramified abelian p-extension F'/F to the discrete Z -module
Gal(L/F). Put as usually

Gal(L/F); = {o € Gal(L/F) : n;'onr € U; 1}
The construction of the reciprocity map
Vpp:Urrp/NyrpUs,, = Gal(L/F)*
and the inverse isomorphism
Tp p:Gal(L/F)" — Uy p/NypUL

in section 1 of [F2] shows that Y, /F transforms U; LNy pUy L — Uip1, . NLypUs L
onto (Gal(L/F)h“F(;))‘—(Gal(L/F)th(,-Hl)". Thus, any non-trival automorphism
o € Gal(L/F) belongs exactly to Gal(L/F)y, (i for some integer i. O

One can construct examples of non-abelian extensions (even totally ramified of de-
gree a power of p) which satisfy HAP. Moreover, for any totally ramified non-abelian
p-extension L/F (of degree a power of p) there exists a totally ramified p-extension
E/F linearly disjoint with L/F and such that LFE/FE satisfies HAP, see Maus [M, Satz
(3.7)]. Nevertheless, the following theorem provides a characterization of abelian totally
ramified p-extensions in terms of HAP (the general case of totally ramified extensions
see below in Remark 1).

Theorem. Let L/F be a finite totally ramified Galois p-extension. Let M/F be the
maximal abelian subextension in L/F. The following conditions are equivalent:
(1) L/F is abelian;
(2) for any totally ramified abelian p-extension E/F the extension LE/F satisfies
HAP;
(3) for any totally ramified abelian p-extension E/F of M/F the extension LE/F
satisfies HAP.
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Before starting the proof of the theorem we need to establish several auxiliary as-
sertions. Every so often, we apply the description of the norm map on higher principal
units (see (1.3) of [F2] or (3.1) of [F1]) and the properties of the Hasse-Herbrand
function (see (3.2) of [F1] or section 3 in Chap. Ill of [FV]).

Lemma 1. Let M/F be a totally ramified Galois p-extension. Let mp; be a prime
element of M. Let an element & € M™ be such that vp(a — 1) = r = hpryp(ro),
ro € Nand Npyg/p(a) € Urgt1,r. Then there is T € Gal(M/F) such that amp7(n;})
belongs to Ury1 M.

Proof. This is Theorem (4.2) of section 4 in [FV]. For the sake of completeness we
indicate the arguements.

One may proceed by induction on the degree of M/F.

If M/F is of degree p, then the conditions of the lemma imply first of all that o =
¥~ 1o(y) for some vy € M* and a generator o of Gal{(M/F). Then the commutative
diagrams of section (3.1) of [F1] show that r = vps(m5/ omar — 1) and amproi(ny)) €
Urq1,a for a suitable 0 < 7 < p.

Let M,/F be a Galois subextension in M/F such that M /M, is of degree p. If

-1
M/M,
in the required form. If 8 ¢ U, 41 r, then [ satisfies the conditions of the lemma for the

B = Nagjar, e belongs to Uy 4y pforry = h (r), then ry = r and a can be written
extension My/F, therefore Bmas 7 (71';,’1) belongs to Uy, +1,a1, for mar, = Nagam, mar
and a suitable 7, € Gal(M,/F). According to the Herbrand Theorem there is an
automorphism 7 € Gal(M/F) such that 7'|M1 =11 and mp7(my,) € Uppr. Then
Ngma, (0mp7(x3)) € Ur 41,01, and ampy7(my,') can be written either as an element
of Ury1,m or as (my/ omar)e with € € Upyqa for a suitable o € Gal(M/M,;) and in
this case aercr‘r(fr;ll) belongs to U410, O

Lemma 2. Let L/F be a totally ramified Galois p-extension, and M = L N I* # L.
Then there exists « € Uy ar such that Npyyyjpae =1 and o € NpjaUy L.

Proof. According to p-class field theory Np,;pU) 1 = NaypUpar and NpjpUp L #
UI,M- Let ﬂ S UI.MHG ¢ NL/MUI,L- Then NM/pﬂ = NL/F’7 for some Y € Ul,L and

@ = ﬂNL/M'y'] is the required element. [

Proof of Theorem. The Hasse-Arf Theorem means that (1) implies (2) and (3). We
will verify that (3) implies (1). Assume that L/F is non-abelian and (3) holds. Our
aim is to obtain a contradiction.

Put M = LN F?". It is sufficient to verify the required assertion for the case L/M
is of degree p. Indeed, let M, /F be a Galois subextension in L/F such that M, /M
is of degree p. If there is a v € Gal(M, E/F) such that vM,E('rr;}lErvrM]E -1) ¢
har, g/r(N), then by the Herbrand Theorem there is a 0 € Gal{ME/F) such that
vME(TiponmE — 1) € hpeyr(N).



Thus, we may assume that L/M is of degree p. Assume that U, s ¢ NpmUi L,
Usti,m C NypUy oo Let mp be a prime element in L. For arriving at a contradiction,
it suffices to find a normic subgroup A in U 1, (see section 3 of [F2], for simplicity
one can treat the case of a finite residue field, then the word " normic” can be replaced
by "open") with the following properties: Uy /N ~ @&,G for a finite abelian p-group
G, kerNyp CN, Uy € NUpyy,L for some t < s such that ¢ & by, r(N). Indeed,
let, according to the Existence Theorem in local p-class field theory, N = N/ Uy T,
7y, € Npy T for a totally ramified abelian p-extension T'/L. Then the sequence

N
1 —— Uy p/NppnUir —25 U, p/NrpUrr —— Uy /Ny Ui —— 1

is exact, where Nip is induced by the norm map Ny r. As o™ ! € N for any
a € L*, 1 € Gal(L/F), the same theorem shows that T/F is a Galois extension.
Now Uy, r /Ny rUsr =~ @G’ for an abelian p-group G’ of order equal to [T : F|p~!.
This means that |T' : E| = p for the maximal abelian subextension E/F in T/F. The
conditions on A/ imply that there exists a r € Gal(T/L) such that vy (a5 rrr — 1) =
hr/p(t) for a prime element w1 in T. Then LE/F doesn’t satisfy HAP.

Now we construct the desired group A/. By Lemma 2 there exists
t = max(var(a— 1) : Naygypa = 1, € NyjagUy ).

Since TT;!]T‘H'M € NpjmUy,L for a prime element mpr in M and 7 € Gal(M/F),
Lemma 1impliest ¢ hz/p(N),t < s. If it were Uy, ;, C Upyr, ker Ny jp, then we would
get Ui pr C Urgr,mNpjnr(ker Npyp) that contradicts the choice of t. Therefore, there
is a natural ¢ such that U; 1 C UL kerNL/FUlle. Ui € Uis1,L kerNL/pr'cL.
Now one can take for the desired A" any normic subgroup A in Uy such that
ker NL/FU{),CL CM UL g NUi - O

Remark 1. Let L/F be a finite totally ramified Galois extension, and M/ F its maximal
tamely ramified subextension. The extension M/ F is a cyclic extension of degree prime
to p. One can verify that L/ F is abelian if and only if L/M is abelian and L/ I satisfies
HAP. Indeed, if L/ F satisfies HAP and L/M is abelian, then all breaks in the upper
numbering of the ramification subgroups of Gal(L/M) are divisible by |M : F| and
any o € Uy p can be written as [[(1 + 6;m) mod NppUy f with 6; € Up and a
prime element np of F. Hence a”~' € Ny pUy  forat € Gal(M/F). Furthermore,
the extension L/F is abelian by the second commutative diagram in Proposition (1.8)
of [F2]. Now it follows from the above-listed proof of the theorem that its assertions
remain true if the words “p-extension”are replaced by “extension”. Note that in the
general case of a finite Galois extension with non-trivial unramified part there is no any
similar characterization of abelian extensions in terms of HAP.
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Remark 2. Let notations be the same as in the proof of the theorem, and |M : F| = p".
Elementary calculations demonstrate that hE}F(s) <€ (n+p/(p-1))eF ifchar(F) =0,
where ep is the absolute ramification index of F. Then in terms of the proof

c<1l+n+ vg, {m).

max
tgmgp/{p—1l)er
Thus, in the case of char(F) = 0 for any extension E/M as in (3) of the theorem of
sufficiently large degree the extension LE/F doesn’t satisfy HAP.
On the other hand, using the proof of the theorem one can construct examples of
totally ramified non-abelian p-extensions satisfying HAP. Let M/F be a totally ramified
non-cyclic extension of degree p* such that

sy = max(vp(myfompy — 1) 0 € Gal(M/F), 0 # 1) = up(mpfomar — 1),

s1 = max(uar(myf Trar — 1) < 521 7 € Gal(M/F)) = vag(myfmmas — 1).

Let M, be the fixed field of a. Assume that sy < s < s3+p(s1+1),s € haryp(N). Put
r=s+p 1 (s—s2), then r— s, —1 < 53 and there exists an alemente € U,_,,_1 M,
with the properties: € & Nagaz, Upa,e™ !t = Npian, 8,8 € Us_p ar. If there are no
non-trivial pth roots of unity in F, there exists a normic subgroup N in Uy pr such
that Usppyv C N, Usps € N, B € N and elements of the form v°~'6"~! belong
to N'. Hence there is a totally ramified extension L/M of degree p such that L/F is
a non-abelian Galois extension. One can verify that t = s — p in terms of the proof
of the theorem. Now, if s = hpryr(q) and Uy r C Uq+1,pr'.F, then there exists an
element v € U, ar,Y € NpymUi,L such that Ny py = NL/F6P° for some 6 € U, L.
Provided the residue field of F' is of order p this implies that U; 1, C Ujy,L ker Np/p
for j & hyp(N),7 < 5,7 #tand Uy C Uy ker NL/FU{’;. Therefore, in this
case for any totally ramified abelian p-extension E/F with M C E,|E : M| < p®, the
extension LE[F satisfies HAP.

Now let L/F be a finite totally ramified Galois p-extension. Put L = LF and let
V(L|F) be the subgroup in U, ; generated by €~ ! where ¢ € U o€ Gal(L/F).
There is a homomorphism i: Gal(L/F) — U, /V (L|F) defined by the formula i(c) =
7 lor mod V(L|F) where 7 is a fixed prime element in L (i doesn’t depend on the
choice of 7). The kernel of i coincides with the commutator subgroup of Gal(L/F), see,
for instance, (1.4) of {F2]. A connection of the Hasse—Arf property and the extension
to be abelian is contained in the following assertion.

Proposition. The following two conditions are equivalent:
(1) L/F is abelian;
(2) L/F satisfies HAP, and ife € V(L|F), then vi(e — 1) € hy,;r(N).

Proof. If HAP holds, then for o 3 1 we get i(0) € (U, ; — U, ;)V(L|F) for some

r € hyyp(N) and the second condition of (2) means L/F is abelian.



In order to show that the first condition implies the second one, we may proceed by
induction on the degree of L/F. If L/F is of degree p, then this follows immediately.
In the general case let M/F be a subextension in L/F such that L/M is of degree
p- Let an integer s be determined by the conditions U, pr & NpmUs,L, Uspr,m C
NpmUnL. Let o be an element of V(L|F) and vi(a = 1) = r = hpp(g), for

some ¢ € N. Then by the induction assumption NE/E?“ € U, since

M/F(9)+l,h7’
NE/MV(MF) = V(M|F). In this case Lemma 1 implies r = s and @ = 7] ‘¢ for a
prime element 7, in L, a generator 7 of Gal(L/M), and some ¢ € U, | 7. We will
show that this is impossible and thus complete the proof.

Let ay € V(L|F), &1 € U, 1 be such that a = a?™!, e = 97! for an extension
@ of an automorphism 9 # 1 in Gal(F/F) (a; and €, exist by Lemma in (1.4) of
[F2]). Then Nz,ﬁ(oqei'l) € Ugy1,r. One may assume without loss of generality that
s > max{vy(rp tmy = 1) : 1 # 7 € Gal(L/F)}. Then it follows from the description
of the norm map in (3.1) of [F2] that Uyyy p C NyypUi L and § = NE/F‘(QIEI_I) €
NpsrpUy,L. Now the construction of the reciprocity map Wy, r in section 1 of [F2]

implies that 7=! = W, (8)(p) = 1, a contradiction. [

Remark 3. One can verify proceeding by induction on the degree of the extension L/F
that V(L|F)U, ., ;NU, ;= U, forany r ¢ hy;p(N). In addition, V(L|F)U | N
U.g=U,, g forallr € hy;r(N) if the extension L/F is abelian.

Examples of non-abelian extensions satisfying HAP show that there exist totally
ramified non-abelian p-extensions with V(L|F)U _,, 1 NU_ ¢ # U_ 7 forr € hy;p(N).

2. Deeply'Ramiﬁed Extensions

Let ' be a complete (or Henselian) discrete valuation field with a residue field
of characteristic p > 0. We will assume in this section that extensions of fields are
separable with separable residue field extensions. Let F/F be an extension (possibly
infinite). Let 9Mlx denote the maximal ideal of F with respect to the extension of the
discrete valuation from F to F. For a finite extension E/F we denote by e(E|F)
the ramification index of E//F and by hg,r the Hasse—Herbrand function of E/F, see
section 3 Chap. Il of [FV]. Finally, for a cyclic ramified extension L/F of a prime
degree put s(L|F) = vp(ny'ory — 1) for a prime element 71, of L and a generator
o of Gal{L/F), then s is well defined and s = 0,> 0 for tamely totally ramified and
wildly ramified extensions resp. (see for instance section 1 Chap. Il of {FV]).

Theorem. The following properties of an extension F[F are equivalent:
(1) forany m 2 —1 and any € > 0 there exists a finite subextension E/F in F[F
such that hg p(m}/e(E|F) < ¢,
(2) e(F|F) = 400 and for any cyclic ramified extension F'[F of prime degree and
any € > 0 there exists a finite subextension E/F in F/F such that F'/F is
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defined over E (i.e. F' = FE' for a cyclic extension E'[E of the same degree)
and s(E'|E)/e(E|F) < €;

(3) e(F|F) = 400 and H' (Gal(F'/F),Mxz) = 0 for any cyclic extension F'|F
of prime degree;

(4) HYGal(F'/F),Mz) = 0 for any finite extension F'|F;

(6) Trz xr Mz = My for any finite extension F'/F.

Remark 1. /t follows immediately from the properties of the Hasse~Herbrand function
(hL/F = hL/E o hE/F: hL/F(I) < e(L|F):c) that hL/F < e(L|E)hE/F for a finite
extension L/E. This implies that if hg r(m)/e(E|F) < €, then hyp(m}/e(L|F) < €
for a finite extension L/E. Note also that for a finite extension M/F and m' =
hayr(m)

haem(m')/e(ME\M) = e(M|F)hpg r(m)/e(ME|F).

We conclude that if the assertion (1) holds for F /F, then it holds for F'/F and
F /M for any extension F'/F and finite subextension M/F in F/F. In addition, if
(1) holds for F [ F and F [ Fy is finite, then (1) holds for Fo/F.

Remark 2. Let s(E'|E)/e(E|F) <€ and E'L # L, then s(E'L|L)/e(L|F) < ¢ for a
finite extension L/E. This follows from

S(E'LlL) = hrE!L/El (S(E’IE)) = hL/E(S(E'IE)) g C(LlE)S(EtlE)

Thus if the assertion (2) holds for E/F and L/FE is a finite extension, then (2) holds
for L/ F (even with the same €).

Proof of Theorem.

(1)=(2): (1) implies e(F|F) = +co. Let F'/F be defined over Ey and let for
m = s(E{|Ep) the extension E/FE; according to Remark 1 be such that the inequality
kg g,(m)/e(E|Ep) < € holds. Then for E' = EEj

s(E'|E)/e(E|F) = kg, (s(Eg| Eo))/e(E|F) < &/e(Eo|F).

(2)=(3): For a tamely ramified extension F'/F (3) holds trivially. Assume that
F'/F is wildly ramified.

Let Trryra = 0 for a € My, Take E/F for € = vp(a) as in (2). Then
vpr(a) > s(E'|E), Trgpa = 0, therefore o € (0 — 1)Mg for a generator o of
Gal(E'/E) according to standart properties of s(E'|E), see for instance (1.4) Chap.
Il of [FV]. Thence o € (o0 — 1)M 5.

(3)=(2): Assume that (2) doesn't hold. Then there exists ¢ > 0 such that for
any finite extension E/F, E C F with F'/F being defined over E the inequality
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s(E'|E)/e(E\F) > € holds. Let Eo/F be a finite subextension in F/F such that
ee(Eg|F) > 2 and F'/F is defined over Ej.

Let o be a generator of Gal(E}/Ep), s = s(Eg|Ee) > 1 and 7 a prime element of
Ej. Then o= (o —1)m'~* € Mg for i — s prime to p, 1 < i < 2 and Trey B, @ =0,
vp: (o) = i. We claim that & ¢ (0 — 1)Dx. Indeed, otherwise there would exist
a finite extension E/Ey in F/F such that o € (¢ — 1)Mg:. This is equivalent to
ve (@) = ie(E|Ey) > s(E'|E). Then s(E'|E)/e(E|F) < €, contradiction.

(2)=>(1): Assume that (1) doesn't hold. Then there exist m and ¢ > 0 such that
hg p(m)/e(E|F) 2 € for any finite subextension E/F in F/F. Let M/F be a finite
extension in F/F such that hip , (z) = e(E|M) for > hpyp(m) and any E/M,
ECF.

Let L, — Lpn.y —+--— Ly = M, n 2 1, be an extension for which L;/L;_;
is cyclic ramified of degree p with s(L,|L,_1) > hy,_,/r(m). Such an extension
exists: in characteristic p one can take L,/Lo as a suitable Artin—Schreier exten-
sion, in characteristic 0 one can take L;/L;_; as a suitable Artin-Schreier extension
with s(L;|Li—1) = pe(Li—1|Qp}/(p — 1) (see section 2 Chap. Ill of [FV]}. Now, if
hp,_,/r(m) 2 s(Li|Li_1), then hp,p(m)/e(Li|F) = hpyp(m)/e(M|F) — 4, and
pe(Lac1|F)/(p=1) > s(Ln|Ln-1) > by _, r(m) for sufficiently large n.

For any finite extension F'/M in F/F with EL, # EL,_; we get

S(ELp|ELn_1) > hgp, _jLa_y(hLo_,yp(m)) = hgy,_ s r(m),

and
2 hgyr(m) 2 €1e(ELn_y|F)

with £y = g/e(EL,_1|E). If E\/E is a cyclic ramified extension of degree p with
E, C ¥ and E; ¢ EL,_y, then the choice of M/F implies s(E1|E) < hg rp(m).
Therefore, s(EyLn-1|ELn-1) = hgr,_,/e(s(E1|E)) < hgr,_,/r(m), and hence
EyLny #ELpand E\Lyy # E\L,.

Thus, £' = FL, is a ramified extension of L = FL,_; and assertion (2) doesn’t
hold for L/ F by Remark 2. The same remark shows that (2) doesn't hold for F/F.

(1)+(2)+(3)=(5)+(4); (5)=(2); (4)=(3):  Assertion (5) for a cyclic ramified
extension F'/F of prime degree is equivalent to (2) as it follows from the well-known
description of the trace Trg: g My = UJT;;E'IE)+1+[(i_1_’(E‘IE)}M for |[E': E| = p,
see for instance Proposition (1.4) Chap. Ili of [FV]. By Remark 1 we deduce now that
property (5) holds for arbitrary finite extension. Then (5) and (3) imply (4).

It remains to show that assertion (4) implies e(F|F) = +oo. Indeed, if e(F) > 1
then one can find a cyclic totally ramified extension F'/F of degree p such that 1 <
s(F'|F) < pe(F)/(p—1). Then in the same way as in the proof of (3)=>(2) one
obtains that (4) doesn’t hold for F'/F. If ¢(F) = 1 then (4) doesn’t hold for F(()/F
where ( is a primitive p’th root of unity. O
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An extension F/F satisfying one of the equivalent assertion of the theorem is called
deeply ramified (in particular e(F|F) = +00). According to Remark 1, if ¥/F is a
deeply ramified extension, then F'/F, F /M, F,/F are deeply ramified for an extension
F'/F and finite extensions M/F, F/Fy. In the case of characteristic 0 and perfect
residue field the field F is called deeply ramified if it is a deeply ramified extension of
its absolute inertia subfield (isomorphic to the quotient field of the Witt ring of the
residue field).

Denote by 0, the different of a finite extension E/F. An extension F/F is said
to have infinite conductor if for any m > 0 there exists a finite subextension E/F in
F/F such that hip,p(m) # h’E/F(m-i— 1} (an equivalent condition is that G acts
nontivially on F for any m > 0 where G} is the mth ramification subgroup of the
absolute group G'r of F with respect to upper numbering).

Corollary. The following assertions of an extension F /F are equivalent to (1) — (5):

(6) the extension F [F has an infinite conductor

(7) for any finite extension F'/F and any € > O there exists a finite subextension
E/F in F[F such that F'/F is defined over E and vr(ép /g) < €

(8) for any € > 0 there exists a finite subextension E/F in F/F such that
vr(Sg/r) > €

Proof. One can easily verify that (1) is equivalent to (6) (see also Remark 4 below).
Using connections between the different and the s for a cyclic extension of prime degree
and multiplicativity of the different one can easily show applying Remark 2 that (2) is
equivalent to (7). Finally, similar observations imply equivalence of (6) and (8). O

Remark 3. Remark 1 and Proposition imply that if H'(Gal(F**?/F), Mrer) = 1
then H'(Gal(L*®P /L), Mcaen ) = 1 for an extension L/F or a finite extension F /L.

Remark 4. Assume that the residue field of F is perfect. Any infinite arithmetically
profinite extension (APF) (see [FW], [W2], section 5 Chap. Ill of [FV]) is deeply
ramified: for an infinite extension F/F one can find an increasing sequence of real
numbers (a,) such that the property G%°Gx # G%Gx for any € > 0 holds only for
a € (a,) where G is the i-th ramification group (with respect to upper numbering) of
the absolute Galois group of F. Then F /F is deeply ramified if and only if a, — +oo,
and F/F is APF if and only if a, — +co and |FOF" : F| < +oo. If there exists a
constant c such that |fG:’"+l : FG¥"| < ¢ for all n then F | F is called strictly APF (see
section 1 of [W2]). From Sen's and Wintenberger’s theorems ([Sn], [W1]) it follows
that any Galois extension of a local field with Galois group being a p-adic Lie group
and with finite separable residue field extension is strictly APF.

We note that there exist deeply ramified extensions in which any infinite subex-
tension isn't APF (and in particular the Galois group of any infinite Galois subex-
tension isn't a p-adic Lie group). Here is an example: let F be the union of fields
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F, where Fy = Q,, Fyny1/Fy, be a Galois extension such that Fy,4, is the com-
positum of all conjugates of L,, over Fy where Ly, /Fy, is a Galois totally ramified
extension of degree p with s(Lan|F2n) = 1 (one can take suitable Artin—-Schreier ex-
tensions for this purpose). Let Fy,/F;,_, be a Galois totally ramified extension of
degree p with s(Fan|Fon_1) = hp, _ /5 (n + 1). More concretely, let N be a sub-
group of Np, 1k Fru_y such that Np, g Fy?_| CN and (N NUip,)Vis1,F, =
(Nqu-l/FDFZ‘n—anvao)U"+1yFo fori < n, (NFQn-lfFDF;n—l nUﬂ+1.Fo)Uﬂ+2yFo/(Nﬂ
Unt1,F,)Uns2,F, s of order p and generated by the element anyy = of (pick an
arbitrary oy € Uy p, \ Us,r,). The extension Fy,/Fyn_; can be chosen in such a
way that Np, /g, F5, = 1'\:’,,::“_1“;‘J (N). Then any nontrivial automorphism of
Gal(Fypq1/Fan) belongs exactly to Gal(Fy°P /Fy)!. From class field theory it follows
that Unyr,k, C NFQn—l/FOFZ‘n—] cUnpy € NFZ&—I/FOF;H—I' and the extension Fpp, [ Fy
is Galois. Thus, the extension F | Fy is Galois deeply ramified, and any its infinite subex-
tension isn't arithmetically profinite, since it contains infinitely many automorphisms
belonging exactly to Gal(FyP /Fy). The same is true for FF [FFy where F/Q, is a
finite extension.
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