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ON SOME CLASSES OF EXTENSIONS OF LOCAL FIELDS

Ivan B. Fesenko

In this note the theory of the Hasse-Herhrand function developed in section 3 Chap.

1II of [FV] is applied for study of several important c1asses of extensions of loeal fields.

The first section contains discussions of connections bt!twt!en the property of a totally

ramified p-extension of a local field to be abelian and the property of its Galois group to

possess integer jumps with respect to the upper numbering (Hasse-Arf property). It is

shown that such an extension LIFis abelian if and only if for any totally ramified abelian

extension ElF the extension LEIF satisfies the Hasse-Arf property. I formulate also

an additional property to the Hasse-Arf property in terms of principal units which makes

the extension abelian.

The second section deals with deeply ramified extensions introduced recently by J.

(oates and R. Greenberg [CR]. Most of results (properties of deeply ramified extensions

(2)-(5)) are due to them. The reason why they are included in the paper is a hope that

the proofs of them are more elementary than in [CR]. A connection of these extensions

with arithmetically profinite ones (playing a fundamental role in the theory of fields of

norms of J.-M. Fontaine and J.-P. Wintenberger) is discussed as weil.

I would like to thank V. Abrashkin, H.Koch, E.-W. Zink and S.V. Vostokov for their

criticism of the contents of the first section of the paper. I am grateful to J. Coates

and R. Greenberg for their interest to my way of characterization of deeply ramified

extensions, and numerous valuable discussions, to J. Neukirch for his setting of the

problem: to prove the assertion of Remark 3 section 2 in elementary way.

I would like to express my gratitude to Max-Planck-Institut für Mathematik for

important support without which the work would not been performed.

1. Hasse-Arf Property and Abelian Extensions

Let F be a complete (or Henselian) discrete valuation field with a perfect residue

field of characteristic p > O. For a finite Galois extension LIF Jet hL / F denote the

Hasse-Herbrand function (it coincides with the inverse function to the function epL/F

in the ramification theory), see section 3 in Chap. IIlof [FV] or (3.2) of [Fl].

The extension LIF is said to satisfy Hasse-Arf property (HAP), if

where 7rL is a prime element in Land VL is the discrete valuation on L, VL(7rL) = 1.
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Let F be the residue field of Fand K, = dimF
p

F Ip(F) where p(X) is the polynomial

X p -.--Y. Further we will assume that Kl:O and apply loeal p-c1ass field theory developed

in [F2], the case K, = 0 when the field F is algebraically p-c1osed may be treated using

the Serre geometrie dass field theory [Sr].

Let UF be the group of units of the ring of integers of Fand Ui,F be the groups of

higher principal units. The following assertion for totally ramified p-extensions is very

well-known. We show how it easily follows from dass field theory.

Theorem (Hasse-Arf). Let LIF be a totally ramifi~ abelian p-extension. Then LIF

satisfies HAP.

Proof. Let Gal(LIF)'" be the group of Zp-continuous homomorphisms from the Galois

group ef the maximal unramified abelian p-extension FIF to the discrete Zp-module

Gal(LIF). Put as usually

The construction of the reciprocity map

and the inverse isomorphism

in seetion 1 of [F2] shows that WL/F transforms Ui ,LNL / F U1,L - Ui+l,LNL / F U 1,L

onte (Gal(LI F) hL/F(i))'" - (Gal(LIF) hL/F (i)+d'". Thus, any non-trival automorphism

a E Gal(LIF) belongs exactly to Gal(LIF)hL/P(i) for same integer i. 0

One can construct examples of non-abelian extensions (even totally ramified of de­

gree apower of p) which satisfy HAP. Moreover, far any totally ramified non-abelian

p-extensien LIF (of degree apower of p) there exists a tota lIy ra m ified p-extension

ElF li nea r1y d isjoi nt with LIFand such th at LEIE satisfies HAP, see Maus [M, Satz

(3.7)]. Nevertheless, the following t~eorem provides a charaeterization of abelian totally

ramified p-extensions in terms of HAP (the general case of tetally ramified extensions

see below in Remark 1).

Theorem. Let LIF be a finite totally ramified Ga/ois p-extension. Let MI F be the

maximal abelian subextension in LIF. The {ollowing conditions are equiva/ent:

(1) LIF is abelian;

(2) {ar any totally ramified abelian p-extension ElF the extension LEIF satisfies

HAP;

(3) {ar any totally ramified abelian p-extension ElF o{ MI F the extension LEIF

satisfies HAP.



3

Before starting the proof of the theorem we need to establish several auxiliary as·

sertions. Every so often, we apply the description of the norm map on higher principal

units (see (1.3) of [F2] or (3.1) of [F1]) and the properties of the Hasse-Herbra nd

fu nction (see (3.2) of [F1] or section 3 in (hap. 111 of [FV]).

Lemma 1. Let MI F be a totally ramified Galais p-extension. Let 1rM be a prime

element of M. Let an element 0' E M* be such that VM(O' - 1) = r = hM/F(ro),

ro E N and NM/F(O:) E Uro+t,F. Then there is T E Gal(MIF) such that O'1T'MT(1r"ft))
belongs to Ur+I,M.

Proof. This is Theorem (4.2) of section 4 in [FV). For the sake of completeness we

indicate the arguements.

One may proceed hy induction on the degree of MI F.

If MI F is of degree P, then the conditions of the lemma imply first of all that Q' =

,-IU(-,) for same '/ E M* and a generator U of Gal(MIF). Then the commutative

diagrams of section (3.1) of [F1) show that r = vM('1r;/U1T'M -1) and Q'1rMU i (1r;/) E

Ur+I,M for a suitable 0 < i < p.

Let MIIF be a Galois subextension in MI F such that MIMt is of degree p. If

ß = NM/Mt 0' belongs to Urt+I,F for rl = hf)/M
1
(r). then rt = rand 0' can be written

in the req uired form. If ß rt Ur 1+I, F I then ß satisfies the cond itions of the lern rna for the

extension MII F, therefore ß1rM1 TI (1r;/J belongs to Urt+t,Mt for 1rM1 = NM / Mt 1rM
and a suitable TI E Gal(MtlF). According to the Herbrand Theorem there is an

automorphism T E Gal(MIF) such that rl
Mt

= Tt and 1rMT(1r;/) E Ur,M. Then

N MIMl (0'7fMT(1r"i.1)) E Ur1+t,Mt and O'1rMT(7f;../) can be written either as an element

of Ur+I,M or as (1T'"N/a1rM)e with e E Ur+I,M for a suitable U E Gal(MI!l1t} and in

th is case 0'7fMur (7f;i) belongs to Ur+ I,M . 0

Lemma 2. Let LIF be a tatally ramified Galois p-extension, and M = Ln Ffl.b f:. L.

Then there exists 0' E UI,M such that NM/FO' = 1 and 0' rt NL/MUI,L.

Proof. According to p-c1ass field theory NL/FUI,L = NM /FUI,M and N L/MUI,L f:.
UI,M. Let ß E UI,M,ß rt NL/MUI,L. Then NM/Fß = NL/F'I for some 'I E UI,L and
0' = ßNL/M'I-I is the required element. 0 .

Praaf af Theorem. The Hasse-Arf Theorem means that (1) implies (2) and (3). We

will verify that (3) implies (1). Assume that LIF is non-ahelian and (3) holds. Our

aim is to obtain a contradiction.

Put M =Ln F ab
. It is sufficient to verify the required assertion for the case LIM

is of degree p. Indeed I let MI I F be a Ga lais su bextension in LIF such that MI IM
is of degree p. If there is arE Gal(MtEI F) such that VMIE(7fM~ET7fMIE - 1) tf.
hM1 EI F(N), then by the Herbrand Theorem there is auE Gal(MElF) such that

VME(7fÄiE U7fME - 1) rt hME/F(N).
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Thus, we may assurne that LIM is of degree p. Assurne that Uß,M et. N L/MU1,L.

Uß+ I ,M C N L/M U1, L. Let 'TrL be a prime element in L. For arriving at a contrad iction,

it suffices to find a normic subgroup N in UI,L (see section 3 of [F2], for simplicity

one can treat the case of a finite residue field. then the word .. normic" can be replaced

by "open") with the following properties: U1,LIN =:: E9 K G for a finite abelian p-group

G. ker N L/ F C N, Ut,L et. NUt+I,L for seme t < s such that t tI. hL/F(N). Indeed,
let, aceording to the Existenee Theorem in loeal p-c1ass field theory, N = NT/LUI,T,

'TrL E N T / LT- for a totally ramified abelian p-extension TI L. Then the sequence

1 ---t) 1

is exaet, where NL/F is induced by the norm map N L / F . As 0'1"-1 E N for any

Q' E L*, T EGal (L IF), the 53 me theorem shows that TI F is aGalois extension.

Now UI ,FINT / FU1,T ~ ffiK.G' for an abelian p-group G' of order equal to IT : FJp-l.
This means that IT : EI = p for the maximal abelian subextension ElF in TI F. The

conditions on N imply that there exists a T EGal(TI L) such that VT ('TrTl T'TrT - 1) =
hT/L(t) for a prime element 'TrT in T. Then LEIF doesn't satisfy HAP.

Now we construct the desired group N. By Lemma 2 there exists

Sinee 'Tr"ft}T'TrM E l\'L/MU1 ,L for a prime element 'TrM in M and T E Gal{MIF),
Lemma 1 implies t rt hL/ F (N), t < s. If it were Ut,L C Ut+I ,L ker NL/ F. then we would

get Ut ,M C Ut+I ,M NL / M (ker N L / F) th at eontrad iets the choice of t. Therefore, there
pc-l pC

is a natural csueh that Ut,L C Ut+I,LkerNL/FU1,L ' Ut,L et. Ut+I,LkerNL/FUl,L.
Now one can take for the desired N any normie subgroup N in U1,L sueh that

ker NL/FU'(L C Ar, Ut,L et. NUt+I,L. 0

Remark 1. Let LIF be a finite totally ramified Galois extension, and MI F its maximal

tamely ramified subextension. The extension MI F is a cyclic extension of degree prime

to p. One can verify that LIF is abelian ifand only ifLIM is abelian and LIF satisfies

HAP. Indeed, if LIF satisfies HAP and LIM is abelian, then all breaks in the upper

numbering of the ramification subgroups of Gal{LIM) are divisible by IM : FI and

any Q' E UI,M can be written as I1(1 + Bi'Trf) mod N L/MUI,L with 8i E UF and a

prime element 'TrF of F. Hence (}'1"-1 E l\'L/MU1 ,L for aT E Gal{MI F). Furthermore,

the extension LIF is abelian by the second commutative diagram in Proposition (1.8)

of [F2]. Now it follows from the ahove-listed proof of the theorem that its assertions

remain true if the words Ip-extension"are replaced by uextension". Note that in the

general case of a finite Galois extension with non-trivial unramified part there is no any

similar characterization of abelian extensions in terms of HAP.
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Remark 2. Let no ta tions be the same as in the proofof the theorem, and IM: FI = pn.

Elementary calculations demonstrate that hZiF(S) ~ (n+pl(p-1))eF ifchar(F) = 0,

where eF is the absolute ramification index of F. Then in terms of the proof

c~l+n+ max UQ.,(m).
. l~m'p/(p-l)ep'

Thus, in the case of char{F) = 0 for any extension EIM as in (3) of the theorem of

sufficiently large degree the extension LEIF doesn't satisfy HAP.

On the other hand, using the proof of the theorem one can construct examples of

totally ramified non-abelian p-extensions satisfying HAP. Let MI F be a totally ramified

non-cyclic extension of degree p2 such that

S2 = max(vM(1TÄ/U1fM - 1) : U E Gal(MI F), U "# 1) = vM(rr-;,/u1TM - 1),

SI = max(vM(1TÄ/T1TM - 1) < 82 : T E Gal(MIF)) = VAf(1T"ilT1TM - 1).

Let MI be the fixed field ofu. Assurne that 82 < S ~ s2 +P(SI +1), S E hM/F(N). Put

r = 82 +p-l (S - S2), then r - SI -1 ~ 82 and there exists an a/ement € E Ur -"I-l,M1

with the properties: € rf. N M/Mt U1 ,M,e'T-l = NM/M1ß,ß E U,,-p,M. Ifthere are no

non-trivial pth roots of unity in F , there exists a normic subgroup N in V 1,M such

that U"+I,M C N, U6 ,M rt. N,ß f/. N and elements of the form ,O'-leS'T-l belong

to N. Hence there is a totally ramified extension LIM of degree p such that LIF is

a non-abelian Galois extension. One can verifr that t = s - p in terms of the proof

of the theorem. Now, if 8 = hM/F(q) and Uq,F C Uq+1,FUr:F' then there exists an

element, E U",M" rf. N L/MU1,L such that NM/F'Y = NL/FeSPG
for same eS E U1,L.

Provided the residue field of F is of order p this implies that Uj,L C Uj+ 1,L ker N L/ F

for j (j. hL/F(N),j < 8,j "# t and Ut,L C Ut+1,L ker NL/FUi,~. Therefore, in this

case for any totally ramified abelian p-extension ElF with M C E, IE : MI ~ pa, the

extension LEIF satisfies HAP.

Now let LIF be a finite totally ramified Galois p-utension. Put L = LI' and let

V(LjF) be the subgroup in U1 ,1 generated by eu
-

1 where e E V1 ,1' U E Gal(LI I').
There is a homomorphism i: Gal(LIF) --+ U1,l/V(LIF) defined by the formula i(u) =
1T- 1 U:rr mod V(L]F) where rr is a fixed prime element in L (i doesn't depend on the

ehoice of rr). T he kernel of i eoineides with the eommutator su bgrou p of Gal (LI F), see,

for instance, (1.4) of [F2]. A connection of the Hasse-Arf property and the extension

to be abelian is eontained in the following assertion.

Proposition. The following two conditions are equiva/ent:

(1) LIF is abelian;

(2) LIF satisfies HAp, and if c E V(LIF), then vr;(e - 1) rf. hL/F(N).

Proof. If HAP holds, then for u f:. 1 we get i(a-) E (Ur,1 - Ur+1,I)V(LIF) for some

r E hL/F(N) and the seeond condition of (2) means LIF is abelian.
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In order to show that the first condition implies the second one, we may proceed by

induction on the degree of LIF. If LIF is of degree p, then this follows immediately.

In the general case let MI F be a subextension in LIF such that LIM is of degree

p. Let an integer s be determined by the conditions U6 ,M rt. NL/MU1,L, U~+l,M C

NL/MUl,L. Let 0' be an element of V(LIF) and vl(O' - 1) = r = hL/F(q), for

seme q E N. Then by the induction assumption NL(jJO' E UhM/P(q)+l,M' since

NZ/MV(LIF) = V(MIF). In this case Lemma 1 implies r = sand Q' = trI-lc for a

prime element trL in L, a generator r of Gal(LIML and seme C E U~+l,M' We will

show that this is impossible and thus complete the proof.

Let 0'1 E V(LIF), Cl E U"+l,l be such that 0' = ar-I, C = ci- l for an extension

cp of an automorphism 1/1 -=I 1 in Gal(FI F) (0'1 and Cl exist by Lemma in (1.4) of

[F2]). Then NL/ F(0'1 € 11
) E Uq+ 1,F. 0 ne may assu me without loss of genera Iity that

s ~ maX{VL (1rL"1 r1rL -1): 1-=1 TE Gal(LIF)}. Then it follows from the description

of the norm map in (3.1) of [F2] that Uq+1 ,F C NL/FUl,L and ß = N L/F(a lcl l ) E

NL/ FUI ,L· Now the construction of the reciprocity map 'I! L/F in section 1 of [F2]

implies that r- 1 = 'l1 L/F(ß)(CP) = 1, a contradiction. 0

Remark 3. One can verify proceeding by induction on the degree of the extension LIF

that V(LIF)Ur+l,l n Ur,L =Ur,l for any r rt hL/F(N). In addition, V(LIF)Ur+1 ,l n
Ur,l = Ur+1 ,L for all r E hL/F(N) if the extension LIF is abelian.

Examples of non-abelian extensions satisfying HAP show that there exist totally

ramified non-abelian p-extensions with V(LIF)Ur+1 ,L n Ur,L f Ur,L for r E hL/F(N).

,
2. Deeply Ramified Extensions

Let F be a complete (or Henselian) discrete valuation field with a residue field

of characteristic p > O. We will assurne in this section that extensions of fields are

separable with separable residue field extensions. Let:FI F be an extension (possibly

infinite). Let Dn.r denote the maximal ideal of :F with respect to the extension of the

discrete valuation from F to F. For a finite extension ElF we denote by e(EIF)
the ramification index of ElF and by hE / F the Ha~Herbrand function of ElF, see

section 3 Chap. 111 of [FV]. Finally, for a cyclic ramified extension LIF of a prime

degree put s (L IF) = v L ( 1rLI CT1r L - 1) for a prime element 1rL of Land a generator

CT of Gal(LIP), then s is weil defined and s = 0, > 0 for tamely totally ramified and

wildly ramified extensions resp. (see for instance section 1 Chap. 111 of [FVJ).

Theorem. The following properties of an extension F IF are equiva/ent:

(1) forany m ~ -1 and any€ > 0 there exists a finite subextensian ElF in FIF

such that hE/F(m)le(EIF) < c;

(2) e(FIF) = +00 and far any cyclic ramified extension :F'I:F of prime degree and

any € > 0 there exists a finite subextension ElF in :FI F such that :F'I:F is
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defined over E (i.e. F' =FE' for a cyclic extension E' / E of the same degree)

and s(E'IE)/e(EIF) < e;

(3) e(FIF) =+00 and H 1(Gal(F'/ .1'), 9J1.:F') =0 for any cyclic extension F' / F
of prime degree;

(4) H 1(Gal(F'/F), 9J1.p ) = 0 for any finite extension F'/F;

(5) Tr:F'/:F 9J1:F' = 9J1:F for any finite extension F' / F.

Remark 1. It follows immediately from the properties of the Hasse-Herbrand function

(h L / F = hL / E 0 hE / F , hL/F(X) ~ e(LIF)x) that hL/F ~ e{LIE)hE/ F for a finite
extension L/E. This implies that ifhE/F{m}/e(E1F) < c, then hL/F(m)/e(LIF) < e
for a finite extension L/E. Note also that for a finite extension M/Fand m' =
hM/F{m)

hME/M(m')/e(MEIM) = e(MIF)hME/F{m}/e(MElF).

We conclude that if the assertion (1) holds for F / F, then it holds for .1"/Fand

F /M for any extension F' /Fand finite subextension M/ F in F / F. In addition, if
(1) holds for F / Fand F / Fo is finite, then (1) holds for Fo/ F.

Remark 2. Let s(E'IE)/e(EIF) < € and E'L #- L, then s{E' LIL)/e(L[F) < € for a
finite extension L/E. This fo110ws from

s(E'LIL) = hE' L/E' (s(E'[E)) = hL/E(S(E'IE)) ~ e{LIE)s(E'IE).

Thus if the assertion (2) holds for E / Fand LIE is a finite extension, then (2) holds
for L/F (even with the same e).

Proof of Theorem.

(1)=>(2): (1) implies e(F[F) = +00. Let .1"'/F be defined aver Eo and let for

m = s(EöIEo) the extension E/Eo according ta Remark 1 be such that the inequality

hE/Eo{m)/e(E1Eo) < e holds. Then for E' = EEÖ

s(E'IE)/e(E[F) = hE / Eo (s(EöIEo))/e(EJF) < e/e(EoIF).

(2)=*(3): For a tamely ramified extension F' / F (3) holds trivially. Assurne that

.1" / F is wildly ramified.

Let Tr:FI/:FC'i = 0 for 0' E 9J1.p. Take E/F far € = vF(a) as in (2). Then

vE,(a) > s{E'IE), TrE'/EO' = 0, therefare a E (11-1)9J1EI for a generator 11 of

Gal( E' / E) according to standart properties af s(E'IE), see for instance (1.4) Chap.

111 of {FV]. Thence 0' E (D" - 1) 9J1.:F' .

(3)=>(2): Assurne that (2) daesn't hold. Then there exists € > 0 such that for

any fi nite extension E / F, E C F with F' /:F bei ng defi ned aver E the ineq uaIity
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s(E'IE)/e(E1F) ~ C holds. Let Eo/ F be a finite subextension in F / F such that

ce(EoIF) > 2 and F'/F is defined over Eo.
Let (1 be a generator of Gal(Eb/Eo), s = s(EbIEo) > 1 and 7r a prime element of

Eb. Then a = ((1- 1)7r i - 1I E VJlE6 for i - s prime to p. 1 ~ i ~ 2 and TrE6/Eo a = 0,

VE~ (a) = i. We claim that a f/. (a - l)VJl:F" Indeed, otherwise there would exist

a finite extension E / Ea in F / F such that a E (a - l)VJlE'. This is equivalent to

VE' (a) = ie(EIEo) > s(E'IE). Then s(E'IE)/e(E1F) < c, contradiction.

(2)=>(1): Assume that (1) doesn't hold. Then there exist m and c > 0 such that

hE/F(m)/e(EIF) ~ E for any finite subextension E/F in F I F. Let M/F be a finite

extension in F / F such that h~/M(x) = e(E]M) for x ~ hM/F(m) and any E/M,
BeF.

Let Ln - Ln- 1 - ••• - Lo = M, n ;;;:: 1, be an extension for which Li/Li-l
is cyclic ramified of degree p with s(LnILn-d > hL.._I/F(m). Such an extension

exists: in characteristic p one can take LI / Lo as a suitable Artin-Schreier exten­

sion, in characteristic 0 one can take Li!L i - 1 as a suitable Artin-Schreier extension

with s(LiILi-d ::::: pe(Li-tlQp)/(p - 1) (see section 2 Chap. 111 of [FV]). Now, if

hL;_I/F(m) ;;;:: s(LiILi-d. then hL;/F(m)/e(LdF) ::::: hM/F(m)/e(MIF) - i, and

pe(Ln-tlF)/(p - 1) > s(LnILn-d > hL.. _I/F(m) for sufficiently large 1L

For any finite extension E/M in F / F with ELn :f. ELn - 1 we get

and

;;;:: hE / F(1n) ;;;:: cle(ELn_IIF)

with el = C/ e(ELn_tI E) . If EI / E is a cycl ic ra mified extension of degree p with

EI C Fand EI rt. EL n - I , then the choice of M/ F implies s(E1 IE) < hE/F(m).

Therefore. s(EILn-dELn-d = hELp._I/E(S(EtlE)) < hEL.. _tlF(m), and hence

E ILn- 1 i= ELn and E 1 Ln- 1 f= EILn·
Thus, L' = F Ln is a ramified extension of L = F Ln- 1 and assertion (2) doesn't

hold for LIF by Remark 2. The same remark shows that (2) doesn't hold for F / F.

(1)+(2)+(3)=>(5)+(4); (5)=>(2); (4)=>(3): Assertion (5) for a cyclic ramified
extension F'/ F of prime degree is equivalent to (2) as it follows from the well-known
description of the trace TrE' /E 9J1k. = VJl~E'IE)+I+[{i-l-lI(E'IE))/p] for IE' : EI = p,

see for instance Proposition (1.4) Chap. 111 of [FV]. By Remark 1 we deduce now that

property (5) holds for arbit rary fi nite extension. Then (5) and (3) im ply (4).

It remains to show that assertion (4) implies e(FIF) = +00. Indeed, if e(F) > 1

then one can find a cyclic totally ramified extension ;:'1F of degree p such that 1 <
s(.1"I.1') < pe(F)/(p - 1). Then in the same way as in the proof of (3)=>(2) one

obtains that (4) doesn't hold for .1"/F. If e(F) = 1 then (4) doesn't hold for F(()/F
where ( is a primitive p2 th root of unity. 0
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An extension F I F satisfying one of the equivalent assertion of the theorem is called

deeply ramified (in particular e(FIF) = +00). According to Remark I, if F I F is a

deeply ramified extension, then F' IF. F IM, FolF are deeply ramifi~ for an extension

F'IFand fi nite extensions MI F, F IFo. In the case of characteristic 0 and perfect

residue field the field F is called deeply ramified if it is a deeply ramified extension of

its absolute inertia subfield (isomorphie to the quotient field of the Wiu ring of the

residue field).

Denote by 6E j F the different of a fi nite extension ElF. An extension F I F is sa id

to have infinite conductor if for any m ~ 0 there exists a finite subextension ElF in

F IF such that h~jF(m) =I h~jF(1n + 1) (an equivalent condition is that GF aets

nontivially on F for any m ~ 0 where GF is the rnth ramification subgroup of the

absolute group GF of F with respect to upper numbering).

Corollary. The following assertions oF an extension F I F are equivalent to (1) - (5):

(6) the extension F I F has an infinite conductor

(7) For any finite extension F' IFand any e > 0 there exists a finite subextension

EIF in F IF such that F' IF is defin~ over E and VF(OE' JE} < e

(8) for any e > 0 there exists a finite subextension ElF in F I F such that

VF(OEjF} > E:

Proof. Gne can easily verify that (1) is equivalent to (6) (see also Remark 4 below).

Using connections between the different and the s for a cyclic extension of prime degree

and multiplicativity of the different one can easily show applying Remark 2 that (2) is

equivalent to (7). Finally, similar observations imply equivalence of (6) and (8). 0

Remark 3. Remark 1 and Proposition imply that iF Hl (Gal(pep IFL 9J't:F'''p) 1

then [lI (Gal(.csep I.cL 9J1.c"p) = 1 For an extension .clF or a finite extension F l.c.

Remark 4. Assume that the residue field of F is perfect. Any infinite arithmetically

profinite extension (APF) (see [FWL [W2], section 5 Chap. 111 oF [FVJ) is deeply

ramified: For an infinite extension F IF one can find an increasing sequence of real

numbers (an) such that the property GF+~GF =I G}G:F For any E: > 0 holds only For

a E (an) where G~ is the i-th ramification group (with respect to upper numbering) of

the absolute Galois group of F. Then F I F is deeply ramified if and only iF an ---+ +00,
and F I F is APF if and only if an -+ +00 and IFG~· : FI < +00. If there exists a

constant c such that IFG~"+l : FG~A I < c For all n then F I F is called strictly APF (see

section 1 oF (W2]). From Sen's and Wintenberger's theorems ([Sn], [W1]) it Follows

that any Galois extension of a loeal field with Galois group being a p-adic Lie group

and with finite separable residue field extension is strictly APF.

We note that there exist deeply ramified extensions in which any infinite subex­

tension isn 't A PF (and in particular the Galais group of any infinite Galois subex­

tension isn't a p-adic Lie group). Here is an example: let F be the union oF fields



10

Fn where Fo = Qp, FZn+11Fzn be a Galois extension such that FZn+1 is the com·

positum of all conjugates of L Zn over Fo where LznlFZn is a Galois totally ramifjed

extension of degree p with s(L2n IF2n ) = 1 (one can take suitable Artin-Schreier ex­

tensions for this purpose). Let FznlFZn - 1 be a Galois totally ramified extension of

degree p with s(F2n IFzn-d = hF2._tlFo(n + 1). More concretely, let N be a sub.­

group of N F2.. _tlFoF2·n-t such that N F'J .. _tlFoF2·:-1 C N and (N n Ui,Fo)Ui+l,Fo =

(NF 2f1 - 1 /FoF2·n-l nUi,Fo)Ui+1,Fo for i ~ n, (NF2f1_t/FoF2·n-1 nUn+1,Fo )Un+2,Fo/{Nn

Un+l,Fo)Un+2,Fo is of order p and generated by the element O'n+l = O'~ (pick an

arbitrary 0'1 E U1,Fo \ U2,Fo)' The extension F2n / F2n - 1 can be chosen in such a

way that N F2 .. / F2f1 -I F2•n = N F':1~ _tI F
o
(N). Then any nontrivial automorphism of

Gal(F2n+11F2n ) be/ongs exactly to Gal(~ep1Fo)1. From class fjeld theory it follows

that Un+1,Fo C N F2.. - 1 / FoF2*n-l' Un,Fo rt. N F2 ,._1 / Fo F2•n- t , and the extension F2n l Fo
is Galois. Thus, the extension F 1Fo is Galois d~ply ramified, and any its infinite subex·

tension isn 't arithmetically profinite, since it contains infinite/y many automorphisms

belonging exactly to Gal(~ep1Fo)l. The same is true for FF1F Fo where FIQp is a

finite extension.

[CR]

[F1]

[F2]

[FV]

[FW]

[M]

[Sn]
[Sr]

(W1]

[W2]
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