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Reqgular homotopy classes of immersed surfaces

1) _Introduction

In this paper we are concerned with the problem of classifying
compact surfaces immersed in r" up to fegular homotopy'r .
This subject started in 1958 when Smale classified the immer-
sionsof the 2-sphere [16]. For n24 the problem was then

completely solved by Hirsch ([7], theorems 8.2 and 8.4): if

Mz is a compact surface then for n25 any two immersions

f,qg: Mz —> R® are regularly homotopic, while the immersions

M2 —_> R4 are completely classified by their normal class.

3

Concerning immersed surfaces in R two results are known:

1) If Mz is a compact surface, h = dim H, (Mz,zz)

then the space I(Mz,]R3) of immersions f: M2 —_> IR3

has 2h connected components (James and Thomas [8],

see also [15]),

2) The cobordism group of compact surfaces immersed in

®r3  is Zg (Wells [17]).

From the viewpoint of geometry the classification 1) is too

fine in some sense, because it often happens that for given

immersions f,qg: M2 —_ ]R3 f is not regularly homotopic to

g , but £ is regularly homotopic to g °¢ where ¢ : M2 —_—> n2

TThroughout the term "surface" stands for "connected smooth 2-

manifold without boundary”". A regular homotopy is a smooth
homotopy that is an immersion at each stage.



is a diffeomorphism. From the geometric viewpoint however g
and goyp are just two different parametrizations of "the

same surface". On the other hand the cobordism classification

2) of immersed surfaces is too coarse in some sense, because

a cobordism between immersed surfaces can change the topological

type. These considerations may motivate the following definitions:

Let M2 be a surface. An immersed surface in R" of type
M2 is defined as an equivalence class of immersions
f : Mz —s> R® » where two immersions f£,g: Mz —> R® are

considered as equivalent if there is a diffeomorphism

Mz _> Mz such that £ = gey . For any immersion

f : M2 —> R®®  we will denote the corresponding immersed sur-

¢

face by [f].

If £,q: M2 —> R" are two immersidns the immersed surfaces
[£] and [g] are said to be regularly homotopicf if £ is
regularly homotopic to goyw for some diffeomorphism

P : M2 — M2 . It is easy to see that regular homotopy defines
an equivalence relation on the set of all immersed surfaces in

R®  of type M2 .

Our aim is to classify compact immersed surfaces in r? up
to regular homotopy. For n2 4 the results of Hirsch cited
above imply that two immersed surfaces [f] , [g] in R® are
regularly homotopic if and only if f and g are regularly

homotopic, so in this case the problem is solved. Therefore

A similar notion (called there "image homotopy”) has been used
in [9] to classify immersions of bounded surfaces into the plane.



from now on we will concentrate on the case n = 3 ,

Let H2 be a compact surface. In section 2 we will associate

2 3

to any immersion £ : M —> R a 24--va1ued quadratic form

(1) q : HyM',my)) —> 2z, .

To say that Qe is a quadratic form means that for all

x,yen1 (HZ,Zz) we have

(2) Qg (x+y) = qe(x) + gely) + 2x-y .

Here x-y€ z, denotes the intersection product of x and

y and 2x-y is the image of x-y under the natural inclusion
Z, —> Z, . In the context of cobordism of immersed surfaces
the usefulness of the above quadratic form was already suggested
by Sullivan, as is reported in [4]. Our key result concerning

3

the classification of immersed surfaces in 1R up to regqular

homotopy is

2 3

Theorem 2: Let M° be a compact surface, f£,g9 : Mz —> R
two immersions. Then

a) £ and g are regularly homotopic if and only

if qe = qg .

b) For every quadratic form q : H, (Mz,zz) —> Z,

there exists an immersion £ : Mz —D m3

such that q = q¢ -



c) The immersed surfaces ([(f] and (gl are
reg}ularly homotopic if and only if there is
a linear automorphism
2
a : Hy (M ,222) —> H, (MZ.ZZ) such that

qe =g ° @

Theorem 2 reduces the problem of classifying immersed surfaces
3

in R up to regular homotopy to the purely algebraic problem
of classifying the Z 4 ~valued quadratic forms on the inner
product space H1 (MZ,ZZ) . This algebraic classification is
carried out in section 3. It turns out that the equivalence
class of a quadratic form q : H1 (Mz,zz) —_— 24 is completely
determined by the value of the Gaussian sum

(3) Z e21r1q(x)/4

1
Q= ——
Y2

: 2
x EH1 (M ,Zz)

Here we have set h = dim H1 (Mz,zz Q 1is called the

2) -
Arf invariant of the quadratic form q .

Theorem 3: a) Q is always an eighth root of unity:

- eZinIB

b) If q,9 are two quadratic forms on
H, (uz,zzz) then there exists an automor-
2 - 1
phism a : H1 (M ,222) —_> H1 (M ,222) such
that § = goa if and only if the corres-

ponding Arf invariants Q and Q are equal.



In section 4 we translate the results of the above classifi-
catipn back into geometric terms. If F and G are regular
homotdpy classes of immersed surfaces then we define the
connected sum F #G . This turns the set of all regular homo-
topy classes of compact immersed surfaces in 233 into an
abelian semigroup H . The zero element of H 1is represented

3

by any immersed sphere in IR~ . A set of generators for H

is shown in figure 1.

Fig. 1

S is of course a standardly embedded torus. T is an immersed

torus obtained by rotating a plane lemniscate around a vertical



axis while rotating it also in its plane. B is the famous
Boy surface [1,3] (we have removed a disk so that one can

see the inside), B is the mirror image of B .

Theorem 4: a) Every compact orientable immersed surface in
]R3 that is not a sphere is regularly homoto-
pic to a connected sum of several copies of

S and T .

b) Every compact nonorientable immersed surface
in :m3 is regularly homotopic to a connected

sum of several copies of B and B .

c) By a) and b) the semigroup H is generated
by S,T,B and B . Defining relations for

H are

S#S =THT
B#B#B#B = BAB#B#B
S#B =B¥B#B
S#B = BABH#B
T#B =BH#B#B

T#B =B#B#¥B .

In section 5 we consider embedded surfaces. In section 6 we
relate our classification of immersed surfaces up to regular
homotopy to the cobordism classification. The key result is the

following theorem:



Theorem 6: ‘a) The Arf invariant Q[f] € Za (z7.8 = multipli-
cative group of eighth roots of unity) of a
compact surface immersed in :m3 depends only

on the cobordism class of [f].

b) The mapping N1(2) _— zs defined by a) is

a group isomorphism.

Since we do not use the results of [17] theorem 6 gives a new

proof of‘the fact that N1(2) is isomorphic to Z . Combi-

8
ning our theorems 2,3 and 6 we obtain

Theorem 7: Two compact immersed surfaces in ]R3 of the
same topological type are regularly homotopic

if and only if they are cobordant.

It is often much easier to find an explicit cobordism between
two given immersed surfaces than to construct a regular homo-
topy (see the example at the end of section 6). Thus theorem 7
gives a convenient tool for determining in concrete situations

the regular homotopy class of a given immersed surface in :R3.

I wduld like to thank U. Abresch and W. Meyer for helpful

discussions.

2) The quadratic form of an immersed surface

2 3

2 be a compact surface, £ : M —> R an immersion.

Let M



Our aim is to define a quadratic form e ¢ H1 (uz,zz) —_—> E4
that depends only on the regular homotopy class of f . As

a first step we define a function g : I —> #Z, where T is
the set of all smooth embeddings vy : S1 — Mz .

Let I‘fcr denote the set of all embeddings vy : s1 —_— Mz

such that foy 1s also an embedding. For each Y€ I‘f there

2

exists a tubular neighborhood NY of Y(S1) in M such

that £|. 1is an embedding. Now we define qg(y) €Z, by
Y

(4) 'Eif(y) = 1k (foy £(3N)) .

Here 11k denotes linking number in R3

3

, which is defined
for any two disjoint 1-cycles in R (see [14]), p. 132 for
several equivalent definitions of 1lk ). 1lk 1is well defined
because we are working throughout with a fixed orientation of
R3 . Also for (4) to make sense we must orient f(auy) . This
is done in accordance with the orientation on 7(81) defined
by Yy (see figure 2).

Lemma 1: let £,9 : Mz —_— 1!3 be two regularly homotopic

immersions, y€ rfn I‘g . Then

(5) detv) = gg(v .

3 for 0sts1 be a regular

Proof: Let ft H M2 —> R
homotopy with £ = £ and f.1 = g . A transversality argument

shows that by perturbing ft slightly and choosing NY narrow



enough we may assume the following behaviour of ft :

(1) fto Y fails to be an embedding only for a finite

set {t1,.,.,tk} of values of t . For 13§15k

the curve ft oY has only one point P, € :R3

i
of self-intersection.

i

(i1) There is an € >0 such that for
t:€[0,1]—!J(tj-s,tj+e) leY is an embedding and
for 1<£3jsk the homotopy ftIN behaves in a
neighborhood of Pj as indicated in figure 2. We

+-

have set I; = [tj-Ze,tj—e] , Ij [tj+e,tj+251 .

74

N
N N
N\ NI PN
N
N

b 4

for t€I; for 1:€Ij

Fig. 2

Using definition (3) given in [14] for the linking pairing it

is clear that 1k (f £ _ef(auY)) and

tye °Ye ty
1k(ftj+so'y, ftj'ﬁ(aNY)) differ by 14 . Because obviously the

above linking number does not change at all on the intervalls

[o,t.“e]' [t1+51t2-ellooo'[tk+601] the 1em 1’ prOVQd.
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a consequence of Lemma 1 we are now able to define Ef

the whole of T , because for any Yy €T we can achieve
a slight perturbation of f that foy : s1 —_> IR3 is
embedding. Also by Lemma 1 'Ef t I —> za4 dépends only

the regular homotopy class of £ . Our next aim is to show

that for YE€T Ef(y) depends only on [v]z

(for R=2 or 2z, [y]R€H1(M2,R) is defined as v-,,[S1]R

where [S1]

p 1s the canonical generator of H, (S1,R)) .

Lemma 2: Let M2 be a compact surface, £ : M2 —> IR3 a

Proof: Choose a point p €M

Y1'ooo'Yn H [0'1] —>M

self-transversal immersion. Then there is a two

dimensional submanifold V of M2 with boundary
such that
(i) flv is an embedding

(11) M%-v is a disk.

2 ana smooth curves

2 such that yj(O) = yj(1) = p and

YqreecrY, generate the fundamental group of M2 . Furthermore

one can assume that le (0,1) is an embedding for each j and
[

that for i#+3j we have 71(0,1) nyj(O,H = § . Then we obtain

V with the desired properties by smoothing the corners of a

suitable tubular neighborhood of g'YjIO.ﬂ .
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Let now M2 be a compact surface, £ : M —> JR3 a self-

transversal immersion, V<=M2 as in Lemma 2. Then according
to Gordon and Litherland [6] we can define a symmetric bi-

linear form

as follows: Let 0 be the normal bundle of the embedding
f|v s T2 0 —> V the associated double covering of V .
For every 1-simplex s in V let § denote the 1-chain
8 = §1 + 32 in 0 where 21 and 32 are the two 1-sim-
plices in 6 satisfying s = n°§1 1 =1,2 . It is easy

to see that the correspondence s —> 8 gives rise to a

linear map 1 : H1 (V,Z2) —> H1 (G,Z) (the "transfer map").
A A 3

For 6>0 define f‘s : V—> R by

(7) ?6(\») = £(m(v)) + §°v .

Choose ¢ small enough such that the map

A 3
(8) (O'E] xV"""> R

(§,v) I—> fé(\’)

is an embedding. Then the Goeritz form Gy is defined by

(9) Gy (X,y) = IK(£,%, 2, o T(Y))
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Here }lk: H1 (£(V) ,Z)x H1 (R3 ~-f (V),Z)—> Z again denotes
the linking pairing.

It is proved in [6] that GV is symmetric. We need another

property of Gv : For x,yEH1 (V,Z) let x-Yy€ Zz denote

the mod 2 - intersection number of x and y .

Lemma 3: G(x,y) = x-y mod 2 for all x,y€ H1 v,z) .

Proof: Let f,x and %e . ° T(y) be represented by cycles

in R as indicated in figure 3.

fean® r(Y)

fuy

Fig. 3

Then the value of G(x,y) modulo 2 can be determined by
taking the mod 2 intersection product of f£f,x with any
surface S spanning the link Qe «® t(y) , orientable or not.
The assertion of the Lemma now becomes obvious if we choose

S as indicated in figure 3.
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Thus G(x,y) 1is determined modulo 2 by the images of x and

Yy under the projection
2 2
(10) P :H (M°,ZZ2) —> Hy (M7, 2Z,) .

The value of G(x,x) however is determined by p(x) even

modulo 4, as can be seen from the congruence
(11) G(x+2y,x+2y) = G(x,x) mod 4 .

Thus there is a function EV : H,(V,Z,) —> Z, making the

following diagramm commute:

x —> (x,x)
H, (V,2) ' > 72
(12)
’ g,
H.] (V,Zz) > z4

As a consequence of Lemma 3 we have for all x,y€ H1 (Mz,zzz)

(13) G (x+y) = G (x) + G(y) + 2xy

that means 'é'v is a quadratic form.

lemma 4: a) There is a unique map qg ¢ H1 (M1,zz) -—_> Z

making the following diagramm commute:
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d¢
r %y
P d
q s N
(14) £ .7 g,
//
Vo7
2z *
H, (4%, 2,) < H, (V,Z,)

b) In (14) the map vy —> [lez represented by the
2
vertical arrow on the left is onto.

c) The homomorphism i, induced by the inclusion

i :V—>M is an isomorphism.

Proof: The proof of c) is left to the reader. b) follows from
known results concerning the representation of Z -homology
classes by simple closed curves [11]. Once we know by b) that
i, 1is an isomorphism we can use the lower right triangle in
(14) to define e - In order to see that with this definition
the upper left triangle becomes commutative note that for
every YE€T there exists a diffeotopy W, ¢ M2 —_ M2 ’
0sts1, ¢, = id such that ®, (y(s1))cv . Then by Lemma 1
we have Ef(w1oy) = ?;'f(y) . Also qlearly lo, °lez = [Ylﬂz .
Thus we have to show q.[¢, ° Y] = gq.(9, oY) , but this

£ 1 zz £
is clear from the definitions of af and Gv .

Lemma 5: a) 9 is independent of the choice of V and
depends only on the regular homotopy class of £ .
b) PFor all x,y€ H1 (Mz,zz) we have

(15) Qf(XIY) = Qf(x) + qf(Y) + 2x-y .
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Proof: By Lemma 4 b) the map vy I—> I’.y-lzz is onto, that
means every z2 ~homology class of Mz can be represented by

a simple closed curve. Thus qe is completely determined by
?if . But we know by Lemma 1 that Ef depends only on the
regular homotopy class of f , hence the same is true for 9¢ -

b) follows from (13).

A
Let I(M2,2R3) denote the set of all regular homotopy classes

of immersions f : M2 _— R3 ' QF(MZ) the set of all quadra-

tic forms gq : H1 (nz,zz) ~—> Z, . By Lemma 5 the correspon-

4
A A2 3 2
dence £ }—> d¢ induces amap q : I{M",R”) > QF(M) .
A2 3 2
Theorem 1: Both I(M",R") and QF (M) are in a natural

way affine spaces over the zz -vektor space

1,,2
H (M ,Zz) .

(16) §:?,®% — orvd)
is an affine isomorphism.

Proof, Step 1: We first describe the affine structure of

gmz,l@) . By Hirsch [7] there is a natural one-to~one corres-
A

pondence between the elements of I(Hz.lt3) and the homotopy

classes of sections of .the bundle 1Inj ('1‘!42,1!3) . Here

Inj (M2, R3) denotes the bundle over M2 whose fibre at pEM
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2 3

consists of all linear injections of TpM~ into R" . The

mentioned correspondence takes the regular homotopy class of

an immersion £ : Mz - l!3 to the homotopy class of its

differential df (considered as a section of 1Inj (M2,113 )).

2

Now we fix a riemannian metric on M and denote by

Tnj (TM?,R%) the subbundle of Inj(TM?®,R>) whose fibre at

p€M2 consists of all orthogonal injections of '1‘pM2 into

]R3 . We assert that the inclusion of 'i'nj (TM2,JR3) into

Inj (TM2,1l3) is a fibre homotopy equivalence: Any injection
A TpM2 _> R3 can be decomposed uniquely as

A = Iso (A) o Sym (A) where 1Iso (A) : TPMZ —> 1R3 is an
orthogonal injection and Sym (Aa) : TpMz —> T M2 is self-
adjoint (set Sym (a) = (a*a) V2 , Iso (a) = a(a*a)”V2) .
Then the fibre homotopy by ¢ Inj (Tﬁz,m3) —> Inj TM2,1R3)
(17) wt(A) = Iso (A) o [(1-t) Sym (A) + t id]

2 R3) —> Tnj(t?,®3) is a fibre

shows that Iso : Inj(TM
homotopy inverse for the inclusion of Inj (tv?,®3)  into
Inj(TM2,2R3) . Thus the homotopy classes of sections of

Tnj (TM2,R3) are in one~to-one correspondence with those of

. 2 3 A2 3
Inj(TM",R") , hence also with the elements of I(M ,R”) .

nj (t%,®3) 1s in a natural way a principal fibre bundle

with group 50(3) : Por A€ Inj(TMZ,R%) , g€50(3) define

g(A) as goA . It is easy to check that with this 80(3)-action
Tn3 (TM%,R3) becomes a principal bundle.
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The set [MZ,SO(3)] of homotopy classes of maps

h : Mz -——> $0(3) inherits a group structure from S0(3) .
Furthermore the group [MZ,SO(3)] acts in a natural way on
the set of homotopy classes of sections of Tnj(TMzﬁR3) and
therefore (by the above correspondence)also on Q(Mzﬁm3) .
It is not difficult to check thét this group action is free
and transitive.

Up to homotopy the maps h : M2 —> 80(3) ére completely

classified by the induced homomorphism
2
(18) h, : H,(M",Z,) —> H,(50(3),2,) «Z, .

One can verify that the bijection of [MZ,SO(3)] with

H1 (Mz,zz) obtained in this way is actually a group isomor-
phism. Using this isomorphism we finally obtain a transitive
free action of H1(M2,E2) on ?(M25m3), With this action
f(nzgm3) becomes an affine space over H1(M2,Zz) . For
F,GE€ i\(Mz,R:;) we will denote by FG the unique element of
H1 (Mz,zzz) taking F to G .

Step 2: The structure of QF(MZ) as an affine space over

H1 (MZ,ZZ) is obvious: The defining property (15) implies that

the difference

2
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of any two quadratic forms 9,9, € QF (Mz‘) is linear. There-

fore it takes values in 2Z 4 uﬂ-z and thus gives rise to a
linear map

> 2
(20) 9,9, : H, (M ,zzz) —> z, .

Step 3: To complete the proof of theorem 1 we only have to
A
show that for any two regular homotopy classes F,GE€ I(Mz,m3)

we have

AR -
(21) 99z = FG .

(Every map a satisfying (21) is necessarily bijective).

let P,GE€ %(MZ,I{E)) be arbitrary and choose immersions
£f,9 : M2 -—> ]R3 representing F and G respectively. Let
x € H, (Mz,zz) be any homology class, Y€ET an embedding of

s in M2 with [vy] z. = X . By applying regular homotopies
2

to f and to g we can assume that both foy and gey

are given by

(22) fOY(ei'p) = go}y(eiw) = (cos¢, siney ,0) .

To prove the last statement one can proceed in two steps:

1 3

1) Any two immersions of S in R are regularly

homotopic, hence in particular the immersions £o vy

and goy are reqularly homotopic to the one given
by (22).
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2) An obvious modification of the proof of Lemma 3.4

in [7] shows that the homotopies s'x1 — w3

referred to in 1) can be written as ft oy and gy °Y

where ft' g, M2 —_> ZR3 , t€[0,1] are regular
homotopies.
2

Let h : M —> S0(3) be defined by the property

(23) Iso (dgp) = h(p) o Iso(dfp) .

——

Then according to our definitions &FaG (x) depends on the
1

homotopy class of hey : S —> S0(3)
A A 0 if hoy 1is homotopic to zero
(24) 9pdg (x) = {1 otherwise.

In order to describe hoy more explicitly we assume that for
each pe€ y(S1) we have dfp = Iso (dfp) . (This can be achieved

by an application of [7] theorem 5.9). Then with the definition

1

t(eiw) = (-sin¢ ,cos¢ ,0) for all ue€s we have

(Eoy)'|. = (gey)'], = t(u)
(25) ly "
hoy (u)t(u) = t(u)

and therefore for all g€ ]R3

t26) ho y(u)y = cos y(u)y + sin Y(u)t(u)xy .
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Here ¢ : S1 —> R 1is a (possibly discontineous) map such

1 1

that u }—> ei'p (u) is a smooth map S —> S  of degree n ,

say. Now it is not difficult to see that we have

—_—
0 if n=0 mod 2
(27) QFQG (x) = {1 otherwise.

On the other hand it follows from the definition (4) of d¢

and qg that we also have

> {0 if n=0 mod 2

(28) 9 (%) = 1, otherwise.

g

Combining (24) and (28) we now obtain (21).

As an immediate consequence of theorem 1 we recover the result
of James and Thomas [8] that ’I\(MZ,R:;) has exactly 2P ele-
ments, where h = dim H1 (nz,zzz) . Also the parts a) and b)

of theorem 2 (stated in the introduction) follow easily from

theorem 1.

Proof of theorem 2 ¢): If £ : M2 - :R3 is an immersion,

9 : M2 — u% a diffeomorphism then clearly gq., P PR

Conversely let f£f,qg : Mz —_> ]R3

be two immersions,
a s H1 (Mz,zzz) — H1 (Mz,zz) a linear map such that

Qe = qg° 0 . Then (15) implies that o preserves the inter-
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section form "-" on H.I(MZ,ZZ) . By Lemma 6 below there

is a diffeomorphism ¢ : M2 —_— M2 such that ¢4 = a . Then

q = Qg and by part a) of theorem 2 f and g are

gogw
regularly homotopic.

Lemma 6: Let M2 be a compact surface,

a 3 H1 (MZ,Ez) —> H, (MZ,ZZ) a linear map preser-
ving the intersection form. Then a is induced by

a diffeomorphism ¢ : M2 —_> M2 .

The proof is omitted here because it is similar to the proof of
theorem 2 in [10]. For orientable Mz Lemma 6 is actually

a consequence of that theorem.

3) 2Z,-valued quadratic forms

Let V be a finite dimensional Zz -vectorspace equipped with
a nondegenerate symmetric bilinear form ":" : VxV —> Zz .
It is known that V decomposes as an orthogonal direct sum in

one of the following ways:

(29) V=H® ... &8 H

or
V=P® ... P .

Here P is one dimensional with generating vector e , e.e = 1

whereas H 1is two dimensiongl with basis e1,e2 and

0 1
(30) (ei-ej) -(1 0) .

A quadratic formon V is amap q : V —> 24 satisfying
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(31) gix+y) = g(x) + gqly) + 2x-y

for all x,y€V . Setting x = 0 we see that (31) implies
q(0) = 0 .

Two quadratic form spaces (V,q) and (V,g) are said to be
isomorphic if there is a vectorspace isomorphism a : V —> v
such that q@ = Qo a . Note that by (31) a necessarily is an
isometry with respect to the inner products on V and V. 1t
(V1,q1) and (V,,q,) are quadratic form spaces then there is
a unique quadratic form q : V1 ®v, —> Z, such that for
i= 1,2 we have qlvi = q, , where V,cV, &V, are the
canonical embeddings.

Lemma 7: a) There are two isomorphism classes of quadratic
forms on H , represented by dg and dp re-

spectively as follows:

e, >0

(32) SS : e, —> 0}
e, +e, b—> 2

e1 f—> 2

(33) 9p * e, > 2
e, +e, —_> 2

b) There are two isomorphism classes of quadratic
forms on P , represented by dp and qg res-

pectively, where qB(e) = 1 and qg(e) = -1,
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¢c) Writing (H,qs) = HS etc. we have the following

isomorphisms:
HS o HS o HT ® HT

PB ® PB @ PB @ PB e PE o P§ ® PB ] PB

(34) HS -] PB o PB ® PB ® Pﬁ
HS @ PB o PB ® PB ® PB
HT ® PB o PB ® PB ] PB
HT ® P§ o .PB ® PB ® PB .
Proof: The proof of a) and b) is left to the reader. To prove

the first equation (34) 1let e, e, be a basis as in (32) for
the first copy of HS ’ 31,32 similarly a basis for the second

copy. Then evaluating g and "+" on the basis

(35)

we see that Hg ® Hg 1is isomorphic to HT o HT .

Concerning the second equation (34) let €qrs.08, be generating

elements of the four copies of Py . Then the new basis

(36) A
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A A
satisfies e, -ej = aij and q(ei) = -1 for all i . This
establishes the asserted isomorphism. The other equations are

proved similarly.

Now for any quadratic form space (V,q) with dim V = h define

the Arf invariant Q(V by

:q)

1 2niqg(x) /4
Q = e
v " 75 2

The parts a), b), c¢) of the following lemma are also proved in
[4].

lemma 8: a) Qy.q)e (7.9) - Uv.g - V.Y

is always an eighth root of unity.
dim Vv

P) Qy,q

4 .
d) Two quadratic forms 44/9, ©on the same inner
product space (V,":") are isomorphic if and

only if the corresponding Arf invariants are equal.

Proof: a) is a straightforward calculation. To prove b) it is
sufficient to congider the cases (V,q) = HS'BT' Py or PB .
This is because an arbitrary quadratic form space (V,q) is
an orthogonal direct sum of several copies of these spaces and

by a) Q behaves multiplicatively under orthogonal direct sum.
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In the mentioned special cases we obtain

0
Ll
-t
0
oo}
"
!
b

(38) s

Part ¢) of the Lemma is also a consequence of (38). We now
prove d). Using (29) and Lemma 6 c) we see that every quadratic

form space (V,q) can be represented in one of the following

ways:

H,® H, & ... @ H
(39) S S S

H H e H

T ] S o ® s

Pr 6...06 P_ & P 6...0 P
(40) B B N2>

p times q times

where ps3 , p+ g =d4imV . But in the first case Q(V,q)=1 p
in the second Q(V,q)= -1 . Hence in the case of an inner
product space V=H® ... & H Q(V'q) is a complete invariant
for the quadratic forms on V . Similarly if V=P @& ... @ P
and (V,q) is given by (40) it follows from (38) and a) that

here we have

=

(41) ezﬂi(Q'P)/B

Qv,q)

Thus also in this case the invariant Q(V q) is sufficient
(A" ¢ 8
to distinguish the four cases p = 0,1,2,3 in (40).
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Theorem 3 (stated in the introduction) follows immediately

from Lemma 8.

If V happens to be a direct sum of copies of H (i.e. the
inner product on V is symplectic) then (31) implies that

q takes values in 224 uzz and thus can be considered also
as a quadratic form in the usual sense. The usual definition of
the Arf invariant of q then amounts to assigning 0 to Hg
and 1 ¢to HT ¢+ in contrast to (38). The only difference
betweep the usual notation and ours is of course that we use
in this case a multiplicative notation (instead of an additive

one) for the cyclic group of two elements.

4) Immersed surfaces in :IR3

We now use theorem 2 and the results of the last section to

classify compact immersed surfaces in ]R3

following terminology: Let f : Mz —_—> m3 be an immersion,

Y s s1 —> nz an embedding. Then a tubular neighborhood of

. We adopt the

Y 1is called a left-handed M8bius band , an untwisted annulus,
a right handed M8bius band or a twisted annulus depending on
the value of '&'f(y) being -1,0,1 or 2 respectively. Two
such annuli or M¥bius bands are said to be homologically

independent, homologically trivial etc. if the corresponding

homology classes [vy] have the respective properties.

z,
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Lemma 9: Iet M be an immersed torus in ]R3 . Then

a) M is regularly homotopic either to the standard-
ly embedded torus S or to the torus T depicted

in figure 1.

b) If there is a homologically nontrivial untwisted
annulus on an immersed torus M then M 1is

regularly homotopic to S .

c) If there are two homologically independent twisted
annuli on an immersed torus M then M |is

regularly homotopic to T .

Proof: All assertions follow almost immediately from theorem
2 c) and Lemma 6 a). One only has to find a homologically non-
trivial untwisted annulus on S (easy) and two homologically
independent twisted annuli on T . One such annulus on T |is
provided by a neighborhood of some embedded curve close to the
lemniscate that servesas a "meridian” of T . Another twisted
annulus, which is homologically independent from the first one,
is given by a tubular neighborhood of one of the two preimages

of the line of self-intersection.

As an example we apply Lemma 9 to a torus of revolution with
a lemniscate as meridian (figure 4 a). Because clearly there

is a homologically nontrivial untwisted annulus on this torus
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a) b)k

Fig. 4

by Lemma 9 b) it must be regularly homotopic to the standard
torus. An explicit description of such a homotopy is given

in [12]. A similar argument as in Lemma 9 yields

Lemma 10: Every immersed projective plane P in IR3

is
regularly homotopic either to the "left-handed Boy
surface" B or to the "right-handed Boy surface"

B depicted in figure 1. If there is a right-handed
M8bius band on P then P is regularly homotopic

to B .

Let Mz and N2

g : N2 —_ 1R3

be compact surfaces, £ : M2 —> R and

immersions, ¢ : (~e,1+e) —> :IR3

an embedding
such that c(-e,1+e) cuts f(Mz) transversally at c¢(0) and
cuts g(N2) transversally at c¢(1) . Then it is clear how to
use a tubular neighborhood of c(Qe,1+e) and a suitable

smoothing process to define the connected sum f#g : MZ#NZ-—>]R3
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Lemma 11: a) The regular homotopy class of f#g depends
only on the regular homotopy classes of £

and g (in particular not on the choice of ¢ ).

b) The canonical isomorphism

2,.2 2 2
H1(M #N ,222) ~ H, (M ,zzz) ® H, (N ,2zz)

induces an isomorphism of quadratic form spaces

2,02
(B, (°#8%), qgy )

2 : 2
e (H, (M ' Zy) ,qf) o (H1 (N, 2z,) ,qg) .

Proof: The proof of b) is left to the reader. a) follows

from b) by theorem 2 a).

Lemma 11 implies that the set of regular homotopy classes of

compact immersed surfaces in :R3

is an abelian semigroup H
with respect to connected sum. Also by theorem 2 c) and lLemma
11 H is canonically isomorphic to the semigroup H of iso-
morph'ism classes of quadratic form spaces over zz.z . In Lemma

9 and Lemma 10 we made this correspondence explicit for a set
of generators of H . Also by Lemma 8 the relations (34) are
defining relations for H . Putting these pieces of information

together we arrive at theorem 4 (stated in the introduction).

The two types of orientable surfaces of a given genus >0
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are visualized best by the "normal forms"

S#SH#...#S
(42)

T # s # . o @ # S L ]
For nonorientable surfaces one has the representation

(43)

E#...#B # BF...#B

P times

with p 3 , but it is often useful to have a less complicated
picture: It follows from theorem 4 that every nonorientable
surface is regularly homotopic to a connected sum of several

copies of S and one of the following eight surfaces:

(44) Kor B, K., K #B, K, #T, K_#B, K_, B .

Under a reflection of R3

B is mapped onto B , hence the
usual picture of a Klein bottle (having a plane of symmetry)

must represent the class K, = B#B . On the other hand it is

not difficult to locate on the immersed Klein bottle shown in
figure 4 b) two homologically independent right-handed M3bius
bands. Hence this surface is of type K = B#B . The mirror
image of figure 4 b) then represents the class K_ = B#B .

Thus we have shown that all three types of immersed Klein bottles

can be realized without triple points. Summarizing we obtain
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Theorem 5: ~a) Every immersed surface in R3 with even
Euler characteristic is regularly homotopic

to one without triple points.

3 with odd

b) Every immersed surface in R
Euler characteristic is regularly homotopic

to one with only a single triple point.

It is known {2] that the number of triple points of a self-
transverse immersed surface in IR3 is always congruent modulo
2 to the Euler characteristic of the surface. Rather complete
information about the double point set of an immersed surface

can be gained from § 7 of [5] combined with our section 6.

5) Embedded surfaces

If f : M2 —4->:R3 is an embedding then the immersed surface

[£f] 4is called an embedded surface.

Theorem 6: Any two compact embedded surfaces of the same

topological type M2 are regularly homotopic.

Proof: Clearly Mz

has to be orientable. But for any compact
orientable immersed surface the surface V constructed in
Lemma 2 is a Seifert surface for the knot 9V , and the Arf
invariant of G, is known to be an invariant of this knot [13].

If the compact immersed surface in question is embedded then



of course 9V is unknotted and therefore the Arf invariant
(in our notation) is +1 . But by theorem 2 b) and theorem 3 b)
any two immersed surfaces with the same topological type and

the same Arf invariant are regularly homotopic.

Note that theorem 6 becomes false if one replaces "compact
embedded surfaces of the same topological type" by "embeddings

of a compact surface”.

6) Cobordism of immersed surfaces

We now want to relate our classification of immersed surfaces

in ']R3 to the cobordism classification of immersions [17].

If Mz,Nz are compact surfaces, £ : M2 — :R3 r 9 N2 — R3
two immersions then £ is said to be cobordant to g if there

are

(1) a 3-Manifold X having as boundary the disjoint

union 23X = Mz.u.n2 .

3

(11) an immersion h : X —> R™ x [0)1] such that h

is transversal to R° x{0,1} and
£x{0} = thZ . gx{1} = h|NZ .

It is clear that the cobordism class of an immersion
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2 3

f: M — R depends only on the immersed surface [f] and

that reqularly homotopic immersions are cobordant. Thus cobor-
dism can also be considered as an equivalence relation on the
set of regular homotopy classes of immersed surfaces. Theorem
7 (stated in the introduction) is equivalent to saying that
the cobordism class of an immersed surface [f] is fully des-

cribed by its Arf invariant Q[f] .

Proof of theorem 7: We first prove a). let £ : Mz'——>ZR3 ’

g : N2 —_ ]R3 be two cobordant immersions and let X and

h be given as above. Let ¢t : ]R3 x [0,1]» R denote the

coordinate function corresponding to the factor [0,1] . Then

we may assume without loss of generality that teh is a Morse
function on X . Watching then the behaviour of the slices
]R3'x{t}nh(X) as t runs from 0 to 1 we see a regular
homotopy for all but a finite number {t ,...,tk} of parameter-

values, where one of the following modifications occurs:

a) a small sphere appears in the picture or vanishes

{(lokal minimum or maximum of toh )

b) the modification indicated in figure 5 or the reverse

of it (critical point of toh of index 1 or 2).
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O Q — <0 ~ =0

Even if M2 and Nz are connected the intermediate stages

of the above deformation may have several components. It is
useful in this context to define the Arf invariant of a dis-
connected immersed surface as the product of the Arf invariants

of its components.

It is clear that the modifications of type a) do not change

the Arf invariant. Concerning the modification indicated in
figure 5 we distinguish two cases: 1) The two sheets on the

left of fiqure 5 belong to different components of the surface.
Then figure 5 amounts to replacing these two components by their
connected sum. By Lemma 10 this does not change the Arf invari-
ant. 2) The two sheets on the left of figure 5 belong to the
same component of the surface. Then one can show that the effect
of the modification in figure 5 is to attach to this component
either a torus S or a Klein bottle B#B . Again this does

not change the Arf invariant. This proves a).

To prove b) we have to show that any two compact immersed sur-
faces with the same Arf invariant are cobordant. We do this
by showing that every compact immersed surface in :R3 is co-

bordant to one of the eight surfaces (45). The latter cobordism
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is constructed in two steps: 1) Use the remark preceeding (45)to
construct a regular homotopy ending in a connected sum of
several copies of S with T or one of the surfaces (44).

3) Eliminate the tori of type S using modifications obtained

from the one in figure 5 by reversing the arrows.

It is clear from the proof of theorem 7 that a cobordism bet-
ween two immersed surfaces can be visualized as a deformation
which fails to be a regular homotopy only for a finite number
of critical stages, whefe modifications of type a) or b) occur.
For example figure 6 indicates a cobordism between two tori

of revolution by giving a sequence of meridian curves.

O

I\

Fig. ©
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