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COSIMPLICIAL OBJECTS IN ALGEBRAIC GEOMETRY
Part 1

Zdzistaw Wojtkowiak

In these notes we want to point out the importance of cosimplicial schemes in algebraic
geometry. Using cosimplicial schemes we constructed the analog of the bundle of funda-
mental groups in algebraic geometry and we equipped it with an integrable connection. We
recover in this way constructions given in [HZ] over complex numbers. However our con-

struction applies to smooth schemes defined over any field of characteristic zero.

The cosimplicial schemes can be used to introduce mixed Hodge structures on homotopy
groups as it was done by other methods in [Mo], [H] and [N1]. They seem to be spe-
cially suited to treat motives associated to fundamental groups, higher homotopy groups
and other topological invariants. At least part of this notes can be viewed as an attempt to
obtain results from [D2] about fundamental groupoids in the De Rham setting without
any use of the formalism of Tannakian categories. For examples we can define motivic 2
and also motivic fundamental groupoids for any smooth algebraic variety X, while in
[D2] one needs the restriction that Hl(x,ﬂ) =0 where X is a smooth compactification
of X.

While trying to emphasize the importance of cosimplicial schemes one can draw some
parallels with algebraic topology. Almost at the dawn of algebraic topology simplicial sets
played an essential role. Cosimplicial objects were merely a curiosity which nobody
seriously occupied. The notable exception, after a long time, was the book of Bousfield and

Kan (see [BK]). And then suddenly the cosimplicial objects turned out to be principal



.
tools in solving outstanding problems in algebraic topology.
We do not know what will be the role of cosimplicial objects in future in algebraic geo-

metry. We only want to indicate that they can be useful. More precise description of our

results one finds in the section "Review of results".
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0. Review of results.

We describe here the topological facts which motivate this paper and we present the out-

line of our constructions and results.

Let X be an arc—connected and locally arc—connected topological space and let 1 bea

unit interval. Let p: xI— XxX be given by p(w) = (U(O),w(l)) . This is a fibration.

Applying the connected component functor 7y toeach fibreof p: x! —, xxx , we get a

local system of sets
0.1. p:P— XxX .

The restriction of this local systems to the diagonal is the local system of fundamental

groups on X , while its restriction to Xx{x} is the universal covering X — X .

These constructions do not generalize straightforward to constructions in algebraic geo-
metry. The constructions in algebraic geometry we present in this paper are based on the
following observation.

The standard inclusion #A[1] = A[1] of simplicial sets induces a map

50 xA[1 _, x8A[1]

of cosimpicial spaces, whose geometric realization is the map



Now we present the main constructions and results of this note.

Let V be a smooth separated scheme of finite type over a field k of characteristic zero.

The inclusion dA[1] =— A[1] induces a cosimplicial map
0.2. pt vALL __ yo8ll]

of cosimplicial schemes. Let ﬂ; = ﬂ; A[1] v aA[1] be the De Rham complex of smooth,

relative voa [1] —differentials on va [1] and let Hj(tRp:ﬂ;) be the relative De Rham
cohomology groups ( R is the component—wise derived functor of p: and t is the func-
tor which associates a total complex to a bicomplex). Following the method of Katz and

Oda from [KO] we show the following result.

Theorem A. i) There exists a canonical integrable connection d) on the relative De Rham
cohomology groups Hj(tRp:ﬂ;) .
ii) If V is a scheme over a field of complex numbers, then the connection dd’. ex-

tends to the connection

d(C) := (d,)2" : HtRpen®)2L — nl ® "B(tRpen%)22

yalyyal

(( )®™ denotes the analytic object corresponding to the algebraic one).
iii) The sheaves of Jy;,y,—modules, HJ(tRp:H;) are locally free.
iv) Let C, be the constant sheaf on (Va.n)A[l] equal to C . The horizontal
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sections of Hj(tRp:ﬂE)m with respect to the connection d(C) are canonically identified
with local sections of the locally constant sheaf Hj(tRp:C.) on V3Ixy3dl
v) The connection d, is regular.

It is well known that the category of locally constant sheaves on X is equivalent to the
category of ,(X,x)—sets. Therefore it is important to identify the fibre of Hj(tRp:C.)
and the action of 7,(V*",x)xx,(V¥x).

Let us set 7= rl(Va‘n,x) . Let Z[x] be a group ring of x and let

I = ker(Z[r] — Z) be the augmentation ideal. For any field K of characteristic zero
let

Alg(rK) := %1:_:} Hom(Z[r] /nK) .

( Alg(mK) can be idenitified with the Hopf algebra of regular functions on the Malcev -

rationalization of x.) The representation
@ : #xx — (bijections of =)
given by ¢(a,0)(g) = a-g-F 1 , induces a repr&sgntation
$: axx — Autc_ﬂgebm(Alg(r,dI)) :

Theorem B. The fibre of HO(tRp:C.) over (v,v) is equal to Alg(x,C) and the represen-
tation @ corresponds to the local system HO(tRp:C.) .



.

Observe that the morphism p:P — XxX from 0.1 is a groupoid over X. It has a

partial compdsition law o: P x P — P, which associates to two paths its sum, an in-
X

verse map ¢ : P —— P, which associates to a path a, its inverse a_l and a constant

section over the diagonal AX of XxX.

We have the following statement.
Theorem €. The morphism Spec H0 tRp:II. — VxV is a Poincaré groupoid equipped
Jhld ¢

with a Poincaré connection.

We shall not give here a precise definition. We only point out the following. Let us set
P := Spec H)(tRps0}) . Then P is equipped with a partial composition law, an inverse
map and a constant section over the diagonal. Moreover all these struture maps are com-

patible with an integrable connection on P .

The fibre of the morphism Spec HO(tRp3fly) — VXV over (x;x) € VXV we shall de-
note by rlljR(V,x) and we call it the algebraic De Rham fundamental group of V . Let
rIl)R(V,x)(K) be a group of K—points of r]IDR(V,x) . We shall show that for
V= P‘l}\{o,l,m} the comparison homomorphism

b: 2, (PHON{0,1,0} %) — I?R(Pé\{o,l,m},x)((:)
involves values of (—function.

The group xlljR(V,x) plays an important role in the classification of unipotent differential

equationson V.
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Definition. Let V be a smooth, geometrically connected, separated scheme of finite type
over a field k of characteristic zero. A unipotent differential equation on V is a finite
dimensional vector bundle E on V filtered by vector subbundles {}E}j}rjl=0 such that
E0 = {0} and E = E. The vector bundle E is equipped with the integrable connection

n

V compatible with the filiration {E j} , the associated graded bundle GIE = & Gr jE is
=0

trivial and the connection induced by V on GrE is trivial.

Theorem D. Let V be as above and let x be a k—point of V . There is an equivalence of
categories:

unipotent differential equations on V
and

algebraic representations of rll)R(V,x) in finite dimensional vector spaces

over k.

Let us assume that V3" is simply—connected for any embedding of k into €. The fibre
of Hi(tRp:Q.) at (x,x) is equal to Hi((Van,x).;Q) . This last group is isomorphic to
Hi(ﬂme;Q) , the i—th cohomology group of the loop space ﬂxVa'n at x.

It is well known that

B(n v3%e) ¥ B0 v3%e)-H%(n V3Le)
a+b=i
a, b>0

is equal to the dual vector space of =, +1(Va‘n,x) ®q.

This suggests a definition of the algebraic De Rham homotopy groups of V .



Definition. Let V be a smooth, separated scheme of finite type over a field k of charac-
teristic zero. Let x be a k—point of V. Assume that HO((V,x).) =k.For i21 weset

DR (Vix) = (B (V2)®)/ g CB3R((VX)*)Bpp((v)")’
a+b=i
a,b>0

*
where ( ) is the dual vector space.

If o:k =—— € is an embedding then we denote by Va(d:) the analytic variety corres-
ponding to an algebraic variety V x €. From the standard properties of the groups
x?R(V,x) we get the following resuit which is usually obtained using étale homotopy.

Theorem E. Let V be a smooth, separated scheme of finite type over a field k of charac-
teristic zero. Assume that V _(C) is simply—connected for any embedding s:k < €.

Then we have
rénkq(ri(Val(C))W) = rankQ(ri(Vaz(C))QQ)
for any two embeddings oy :k = C and 0y:k = C.

The theory of cosimplicial schemes can be used to define motives associated to fundamental
groups. In [D2] this is done omly for smooth algebraic varieties X whose smooth
compactifications X satisfy HI(X,O) = 0 . The approach through cosimplicial schemes
allows to do this without the restriction HI(X,U) =0.



-0-

We are very grateful to P. Deligne who pointed out this to us.

In [J] the category of (realizations of) mixed motives is defined in the following way. One
takes systems of realizations of Hi(X) for X smooth and quasi—projective. Then motives
form the smallest tannakien category generated by such systems of realizations. We do not

know if this definition includes mixed motives associated to =, and torsors over x; (see

[D2]).

We propose here a definition which includes such mixed motives. We consider smooth sim-
plicial schemes X, and smooth cosimplicial schemes X® such that for each n, Xn and
X? are smooth, quasi—projective. Then one takes systems of realizations of WnHi(X.)
and WPH'(X®) for such X, and X® which satisfy the following condition:

for every n and i
W_B'(X(or X* i °\
af Xelor X70)yw__ Hi(X j(or X*))
is a pure motive in the sense of Grothendieck (see [M]). One defines the category of mixed
motives as the smallest tannakian category generated by such WnHi(X.) and
WwiE(X®).
Then mixed motives corresponding to L2 and torsors over ) are included in such cate-
gory of motives. Also mixed motives corresponding to higher homotopy groups are in this

category.

It could be interesting to compare the category of mixed motives defined in [J] and the
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category proposed here. Are they really different?

Finally we point out three applications of cosimplicial spaces which are not not discussed in

this paper.

For V = Pé\{o,l,m} the horizontal sections of the connection dQ from Theorem 4.1 are
given, among others functions, by classical polylogarithms Li (z) (see [L]). Using this

fact one can show the following result.

Theorem. Let fl(z),...,fN(z) be regular functions from Y=P1(C)\{a1,...,an} to
X = PY(O\{0,1,0} andlet n,..ny be integers. Let S be aloop around 0 and T a

loop around 1 in X . There is a functional equation

N
2 ni( .&'n(fi(Z)) - 'Z‘.n(fi(x))) =0

i=1

if and only if there is an equality

N
) nf)s=0
i=1
in the group Hom(I'x,(Y,y) T (X x)/ ), where L isa
1 {n+1 7, (Y.y) 1 ro+! 7 (X,x)+L

subgroup of rnxl(x,x) generated by commutators which contain T at least twice and

% (z) are suitable normalized polylogarithms.
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dz dz
28, ""’z—ai
3 1

ig € {1,...,n} . One constructs a morphism of cosimplicial spaces p. Y — X®* such

where

Let us consider functions of the form F, j(al,...,an) =

that the horizontal sections of the canonical Gauss—Manin connection on sheaves
; *
H'(tRpent

Y X.

) are given by functions Fij .

The third aﬁplication is somehow different. Let us consider all systems of differential equa-
tions which are obtained by succesive extensions of differential equations which are factors
of the Gauss—Manin equations associated to smooth morphisms f: X —— S . It is conjec-
tured that solutions of such equations for S = Spec Q(x) coincide with G—functions (see
[A] page 2). For example classical polylogarithms are solutions of a system of differential
equations which is a successive extension of a trivial differential equation by itself. The
trivial differential equation f’ = 0 corresponds to the Guass—Manin equation associated

to the projection p : Xx§— S

If we allow morphisms between cosimplicial schemes then to get all G-functions (conjec-
turely) it is enough to consider all Gauss—Manin equations associated to smooth morphisms
between schemes or cosimplicial schemes. One does not need to worry about extensions.

They appear automatically if one allows cosimplicial schemes.

We would like to express our gratitude to P. Deligne who told us about problems consi-

dered in these notes and who discussed them with us.

We would like to thank very much the referee of one of the first versions of this paper who

proposed some problems considered here.
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Finally we would like to thank very much F. Grunewald for useful discussions and R. Hain

for his comments on our manuscript when we met in Marseille,

The first version of this notes was written in December 1985. In summer 1986 we gave

lectures on this subject in Bellaterra (Barcelona) and then in 1989 in Bonn and Marseille.
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1. Cosimplicial spaces.

1.1. We define a category A as follows. The objects 4 of A are sequences of integers,
A 0= (0,1,...,n) . The morphisms of A are monotonic maps u: An — A o - Morphisms
§&:8,_ — 4, 0<i<n givenby &(j)=jif j<i and &(j)=j+1 if j2i are
called coface operators. Morphisms & : A p— 8,3, 0$j<n—1 given by BJ(k) =k if
' k<j and sj(k) = k-1 if k 2 j+1 are called codegeneracy operators.

A simplicial object in a category C is a contravariant functor X :4 — €. For each
n2 0, a simplicial set A[n] is given by the contravariant functor A[n] : A — sets,

where

A[n](8,) = A[n] _ = Hom,(a_A_)

and

A[n](u)(A) = Aop

whenever Aoy is defined in the category A . We denote by &A[n] the simplicial subset
of A[n] generated by {A[n](8)(id, )|120}.
n

A cosimplicial object in a category € is a covariant functor X®:4A—C. The maps

A(Ji) are called cofaces and A(sj) are called codegeneracies.

Examples. Let X. be a simplicial set and let¢ M be an object of a category C. If the

X X
category € has products then M * (where in degree n, M %= Il' M )} is a cosim-
X Xn

plicial object in C.
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The cosimplicial space A® is defined in the following way. In degree n, A" is the
n

standard n—simplex {(t,....t;)| z t;=1, t,20} . The cofaces and codegeneracies are the
i=0

standard maps.
In the sequel Xx® isa cosimplicial space or a cosimplicial scheme.

A sheaf on X® consists of sheaves F L o8 X® together with maps F —— asF  (or
a*Fm —F ) for any a:A — A satisfying obvious compatibility conditions. If Fg
is a sheaf on X* with values in an abelian category € then the global section functor on
x*, I‘.(F.;X') ‘D — I‘(Fn;xn.) is a simplicial object in € . The obvious functor (sim-
plicial objects in € ) — (complexes in € ) associates to I‘.(F.;X') and hence also to
F, , a complex, which we shall also denote by T'g(F4;X").

If I: is a complex of sheaves of A—modules on a cosimplicial space or a scheme X® then

r .(I:,X.) is a complex of differential, graded A—modules.

*

Let K, be a bicomplex with commuting differentials 0, K;— Ki*! and
: : *
‘sij : Kj—-»K}.l . We define the total complex of K in the following way
(TotK.) = ® K
*m i jem )’

* * i i
dp : (Tot Kg) o — (Tot Kg) 0y and d | Kj = aij + (-1) Jij .

Example. Let X® bea cosimplicial space with cofaces operators 61 . After applying the
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singular cochains functor to each X" we get a bicomplex C*(X.) with commuting diffe-
rentials  3: CI(XI) — XY and 62 - 8k + .. + (-1)16) : Ci(xd) — iy
The total cochain complex of X®, Tot C*(X.) is then defined. We define singular coho-
mology of X® in the following way HI(X®) := Hi(Tot C (X®)).

*
The total complex Tot K, is equipped with an increasing filiration R, which we call
standard given by

x *
R(TotK.):= ® K, .
(ot Ko) s

The first term of the spectral associated with the filtration R is equal to

]

EP9 = Hq(Kp) :

If K: =0 for j<0 and K} =0 for i < 0 then this spectral sequence converges strong-
* *
ly to Hp+q{T0t K,) because R (Tot Kg) =0 for a<o and
* *
U Rb(Tot K,)=TotK, .
b

Let X° bea cosimplicial space or a scheme. A category of sheaves of abelian groups on
X® is an abelian category which we denote by Ab(X.) . If Fq is a sheaf of abelian
groups on X° , one shows that F, has a right resolution K: in Ab(X.) such that
Hr(xq,Kg) =0 for r> 0. The resolution K: , after applying the functor of global
sections leads to a bicomplex T ,(K,,X®) . One defines

HY(X®,F,) := H(Tot T (K, X")) .
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*x
One verifies that Hn(X.,F.) does not depend on the choice of K .

Let D+(X.) be the derived category of complexes of sheaves of abelian groups on x*
bounded below. Let D(S) be the derived category of complexes of sheaves on abelian
groups on S.

*
fu®:X*—7Y® isa morphism of cosimplicial spaces and Ky is a complex of sheaves
*
of abelian groups on X°® then one computes R u:(K.) € D+(Y.) in the following way.
* * *
One takes a complex Ly quasi—isomorphic to K, such that the components Lg of L,

satisfy (RiuS)(Lg) =0 for i > 0. One gets then
(Rud)(K,) = ud(L,) and (Ru$)(K]) = Hi(ud(L])) .

Let S® be a constant cosimplicial scheme equal to S in each degree. The functor Tot
defines trivially the functor t:= R Tot:D¥(S®)—D(S) by the formula
t(K) = Tot(K) .

Let u®:X® — 5S¢ bea morphism from X® into a constant cosimplicial space ¢ . Let
* *

Ko be a complex of sheaves of abelian groups on X® . The complex tR u:K. equipped

with the standard filtration gives a spectral sequence such that

E ® *
BRI = (RTuP)(K ) = BEPT9(tRu} K,) .

Example. Let X® bea smooth, cosimplicial scheme over a field of characteristic zero.
' *
Then the De Rham compiex of smooth, differential forms on x* , ﬂx is a complex of

*
sheaves on X° . In the degree n , it is equal to the De Rham complex 0 L on X%
X
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Example. Let X° be a cosimplicial space and let R be a ring. A constant sheaf R, on
X® is defined in the following way. In a degree n, on X™® it is equal to a constant sheaf,
whose fiber is R . The sheaf cohomology Hi(x.;R.) are equal to the singular cohomology
of X® with coefficients R .

1.2. We present here without proofs some facts we shall need later.

Let = be a discrete group. Let I=ker(Z[#x] — ) be an augmentation ideal. Let K
be a field of characteristic zero.

We set
Alg(rK) := _;E} Hom(Z [~} / In;K) -

Alg(mK) is a Hopf algebra. Let Alg (xK) be a subalgebra of Alg(xK) generated by
Hom(Z[x]/ oK) . Then Alg (mK) is also a Hopf algebra. We have
I

* Alg(x/ | K) = Alg (xK) .

I''r

We set
T = Spec Alg(rK)

and
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rl({n) := Spec Alg (rK) .

Then =g and xlgn) are affine group schemes over K. The equality
Alg(rK) =lim Algn(ar;K) implies that - = lim xlgn) . The isomorphism *1 implies
n n

that (x/ )k = r&n) . Moreover we have "'K/rn = r]&n) .
T

rt %

Therefore 7 is an affine, pro—unipotent group scheme over K. If r is finitely gene-
rated then . is also pro—algebraic.

If L: K is an extension of fields then g % SpecL=rmy.
Spec K

For a group scheme G,let G(K) be a group of K—points of G . Let L be a K—algebra.
We shall define a homomorphism

KT 1 (L)

in the following way. Let g € 7, then ry /K(g) : Alg(m;K) — L is the evaluation at g
homomorphism given by rp /K(g)({) = {(g) - To simplify notations we set ry :=ry /K-

For any n the map

Iy r/rnr——» (x/rnx)

@

is the Malcev rational completion of the nilpotent group «/ _ . The map
r
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QT xQ(Q)
is the Malcev rational completion of .

1.3. Let X® and Y® be two cosimplicial spaces. The space hom(X.,Y.) is a subspace

® P

of the product T | (Yp)X consisting of all sequences (fp)c;";0 which commute with
p=0 ‘

cofaces and codegeneracies. We set Tot(X®) := hom(A',X') (see [BK], [BS]). We shall

define a map

®
oX : Tot ¢ (X®*) — ' (Tot X°) .

®
Let f€C"TM(X™) then o (f) is defined in the following way. Let & € C,(Tot x*)

be an n—simplex i.e. &:A™ — Tot X® . Let {é'i : ATxAl Xi}ci“___0 be an adjoint

map. The map 6m : AxA™ —— X™ we consider as an (n+m)—chain on X™ . We set

x® x®
a®™ (f)(6) :=1(6,,) . One checks that a™ is a chain map.

Let X* be a smooth cosimplicial manifold or a cosimplicial simplicial complex. Let
ﬂ*(X.) be the De Rham complex of smooth, complex or real valued differential forms on
X® (if X°® is a cosimplicdal manifold) or the Sullivan complex of §—polynomial
differential forms on X° (if Xx® isa cosimplicial simplicial complex). Let K be equal to

€, R or Q respectively. Then the chain map
° * 0 * o0
J(x ) : Tot 0 (X®) — Tot C (X® K)

given by integration i8 a quasi—isomorphism. (Of course in the first two cases one

integrates only over smooth chains and in the last case over simplicial chains but this is
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°
sufficient to have a quasi—isomorphism.) The composition of a®  with J(X') gives a

chain map

* .\ * Y
J . Tot('(X®)) — € (Tot(X®*);K) .
.
X
Now let X be a smooth manifold or a simplicial complex and let x € X . We shall
investigate the cosimplicial space (X,x). . It follows from [C2] that

HO(Tot 0'((X,)%) = Alg(r, (Xx)iK)
and

BY(CT(X,x)* K) = Alg(, (Xx)K) .
The map

[( o e ToH(A((6)") — € (Tot((X,x)*)iK)

has the following interpretation in terms of iterated integrals. Let 6 € C,.(Tot((x,x).) be

a zero simplex, which we view as a map (6i Al Xi)?=0 . We use the following model
for A% A" = {(t ) 10€ 4 £1,0889 S 4,.,088 St 1} Let us observe that
6, (bp-oty) = (ot n(8g)s-s7(t,)) where 7:4A[1] — X is a loop at x . The form
v=w;®.00u € Ql(}{)On =—— 0%(X™) one evaluates on § where § is a smooth,

singular n—simplex or an n-simplexin X . One gets

*
«8) =J"na (0,®..80 ) = J;nfl(»,(tl))dtla...Afn(»,(tn))dtn = [ gy = the value of
7

the iterated integral J'wl,...,wn on 7.
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2. Multiplicative structure.
A (p,q)-shuffle is a permutation x of {0,1,2,...,p+q—1} which satisfies =(i) < x(j) if
0<i<j<p1 or p<Li<j<pt+g-1l. There is a bijection between (p,q)—shuffles and
(q,p)—shuffles. If x is a (p,q)—shuffle then the corresponding (q,p)—shuffle #’ is given by

the formula x/(i)=#x(p+1) for i=0,1,.,9-1 and ='(i)=x(i—q) for

i = q,...,p+q~1 . We have that sign v’ = sign 7.

Let A={n— An’.} be a simplicial object in the category of differential, graded,
commutative algebras with face operators 6 a and degeneracy operators 8g - We shall

define a product in Tot A ( (Tot A)®= @& A%P) by the following formula.
q—p=n

q,,P Qy,P
fx€A ! and yEA2 2 then we set

X¥y =

Py°Py |
(pyoP )Zshufﬂes(_l) 1 2'mgn(W)(S"’(l’zﬂ’rl)q"°"ﬂr(p1)("))'(“=r(pl—1)°"'°sm{o)(y))-
1'+2

The shuffle product is commutative i.e.

chy = (_1)(q1-pl)(q2-p2)y*x

and it commutes with the boundary operator d : Tot A — Tot A i.e.

d(xky) = d(x)ky + (-1)9%6 % x % d(y)
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where deg x =n if x € (Tot A)®.

For the standard filtration R of the total complex Tot(A) we have R*Ry CR, .\
Therefore the spectral sequence associated with the filtration R is multiplicative.

Main Example. Let X® be a cosimplicial, smooth variety and let 01 (X®) be the algebra
of global sections of the De Rham complex of C®—complex valued, differencial forms or let
X® bea cosimplicial, smooth, affine scheme over a field of characteristic zero and let
Q*(X.) be the algebra of global sections of the algebraic De Rham complex. It follows
from the previous discussion that the group

*

Hpp(X®) = H (Tot(a (")

.

is equipped with the commutative product.

If X is affine then the complex 0*(X) of global sections of the algebraic De Rham
complex ﬂ;[ is suitable to calculate cohoinology. Moreover Q*(X) is equipped with a
commutative product. This was essential in the example given above. However one can’t
use ﬂ*(X) if X is an arbitrary quasi—projective scheme. We shall use then the

construction of V. Navarro.

Following V. Navarro (see [N] § 4) for any smooth, quasi—projective scheme X over a
field k of characteristic zero, there is a sheaf of graded, differential k—algeras on X such
that

. * ] . . . *

i) Ax is quasi—isomorphic to ﬂ.x,

ii) the quasi—isomorphism is a homomorphism of algebras;
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*
iii) after forgeting the multiplicative structure Ax is the canonical cosimplicial
resolution of Godement;

*
(iv) the construction of Ay i functorial.

Let A'(X) be the complex of global sections of Ay . Then A'(X) is the differential,
* * *
graded, commutative algebra and Hpp(X) = H (A (X)).

*
Hence if X°* isa smooth, cosimplicial scheme over k then HDR(X.) is equipped with

the commutative product. We have
* Py * *
HDR(X )=H (Tot A (X))

and H*(Tot A*(X.)) is equipped with the shuffle product.
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3. Hopf algebra structures.

Let A = {AP} o bea differential, graded k—algebra with a differential o of degree 1

p20
*
and two augmentations €,,€,: A —k such that ei(Ap) =0 for p>0. Let

(T(AT),T(3)) = { e A% 1) be a tensor algebra on {A",8} . (T(A'),T(9)) is a

simplicial object in the category of differential, graded, commutative algebras. The face
and degeneracy operators are given by the following formulas

6(w,®..8w ) = €,(%;)w, 2. 8w ,
6,(w®..8w ) = w8 8w -w 8.8 for 0<i<n,

6,(7,®..8w ) = e5(w )w,®..8w _,

and
8,(#,9..8w ) = w,®._8w._ ®18w.8 8w
for 0<i<n.
n _ .
Weset &= 6(epe) =Y (<1)'6,: A*® 5 A**+L (A7) is a bicomplex with
i=0

commuting differentials T(d) and &§. We set
* *
B(A ) :=Tot(T(A ))

with a differential d= d(el, 62) given by
d(w,8..8w ) := 8*(w 8. 8w )+(-1)| V| 5w 8. 8w ), where

is the degree of w.. The complex

1

Wi = lwy [+ Wyl et Wy | and |
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(B(A*),d(fl,fz)) equipped with the shuffle product * is a k—algebra. This algebra is

*
called a bar constructionon A .

*
Let €5:A —k be also an augmentation such that ea(Ap) =0 for p>0. Let us
define a comultiplication V(e ,€q,¢€4)

V(e e e3):(BIA )d(e;65)) — (B(A ).d(€1165))B(B(A ) d(egréy))
by the following formula

( 1)1;(|wk_i_1|+|wk+2|+...+|wn|)

n
V(wlﬂ...ﬁwn) = 2 (w,®..8w, )&(w, . 18..8w )

k=0

Let us define a product *’ in B(A*)GB(A*) by the following formula

deg(b)deg(a, )

(a'eb)*/(alebl) = (-1) (a.*al)@(b*bl) :

Lemma 3.1. The map V(el,ez, 63) is a chain homomorphism of algebras.

We omit the verification.

*
Lemmg 3.2. The involution i = i(el,52):(B(A*),d(el,ez)) ~— (B(A ),d(ey€,)) defined
by the formula

(n+1)n Z_Iwi“wjl
—1¥<]
(-1) w 8w ®. 8y

i(w,@%,8..8w ) = (~1) .
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is a chain homomorphism of algebras.
We omit the verification.

Let e(e): (B(A ),d(e,e)) — (B(k),0) be induced by the augmentation e: A — k.
The map e(¢) is a homomorphism of differential graded algebras.

. .
Let a(ey,e,) : (B(k),0) — (B(A ),d(€y,€,)) be a map induced by the map k— A .
The map a.(el;ez) i also a homomorphism of differential graded algebras.

We shall investigate maps induced by V(el,ez,es) , i(51'62) , €€) and a(e;,€,) onm
the 0—th cohomology. We shall denote the induced maps by the same letters. Let us no-
tice that V(el,ez,ea) induces a map

Ve, eqeq) : HO(B(A)) — BO(B(A"))8BO(B(A™)) .

Lemma 3.3. The maps induced on the 0—-th cohomology satisfy:

1) (V(61,62,€3)®id)0V(61,E2,€3) = (1d@v( 62,63,64))OV(€1,62,64) )
ii) _*o(idﬂi(ez,el))oV(61,62,61) = a(€,€,)0e(€,)
and

*O(i(61,62)®id)OV(£1,£2,el) = a‘(fg’el)oe(el) )

iii) ((3(61,62)08(61))@id)OV(€1,61,62) =id
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and

(id®(a( €, €,)oe( 62)))OV(61,E2,€2) =id .
We omit the verification.

* *

The complex B(A ) is equipped with the standard filtration {R;B(A )}c;’=0 , which in
*

the case of B(A ) coincides with the filtration given by length of temsors. On

B(A*) ® B(A*) we consider the tensor product of standard filtrations.

Lemma 3.4. The structure map V(e ,en,€5), i(€),€,), €{€) and a(ey,e,) are compa-
tible with standard filtrations.

This is clear from the definitions of these maps.

The filtration {RiB(A*)}m induces a filtration
i=0

{RE(B(A")) = im(B(R;B(A ) — H”(B(A*)))}‘;’=O
of HO(B(A*)). Let .ﬂiHO(B(A*)) .be a subalgebra of HO(B(A*)) generated by
RE(B(A")).

To simplify notation we set Alg(e) := EO(B(A*),d(e,e)) ,
Alg (€)= 3i(H°(B(A*),d(e,e))) , Torsor( € ,€,) = HO(B(A*),d(el,e2) and
Torsor (€;,€q) := .%i(HO(B(A*),d(el,ez))) . We have Algo(e) =k,



- 98 —

o ®
Torsoro(el,ez) =k, igoAlgi(e) = Alg(e) and i—_l{OTomori(.sl,.sz) = Torsor(ey,¢,) .

Hence we get
Spec Alg(e) = }.;E Spec Algi( €)
and
Spec(Torsor(el,ez)) = ‘l_.:_;n;_ Spec(Torsori(el,ez)) .
Theorem 3.5. Spec(Alg(e)) is an affine, pro-nilpotent group scheme over k.

Spec(Alg_(€)) is an affine, nilpotent group scheme over k. Spec((Torsor(el,ez)) (resp.
Spec(Torsor_(€;,€,)) is an affine torsor over Spec Alg(e;) (resp. Spec Alg (e.)) for
i=1 (resp. i =2 ) on the left side (resp. right side).

Let us assume that HI(A') is a finitely gemerated k—module for each i. Then
Spec Algn(e) is an algebraic group scheme.

Proof. It follows immediately from Lemma 3.3 that Spec Alg(e¢) is an affine group scheme
and that Spec Torsor(e;,€,) is an affine torsor over Spec Alg(e,) on the left hand side
and over Spec Alg(ey) on the right hand side. Lemma 3.4.a.nd the discussion below
Lemma 3.4 imply the corresponding statement for Spec Alg (¢) and

Spec Torsor (€;,€,) -

Let I _; beanidealin Alg ,(€) generated by ker(Alg _,(e) — k). Let
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7: Alg (€)® (Algn(f)/In_l) — (Alsn(e)/In_l) ® Alg (¢)
be given by 7{x®y) = y®x . Then the structure maps induced by V,

v/ Algn(e) — Algn(f) ® (Alsn(f)/ln_l)

and

V" Alg () — (Alsn(f)hn_l) ® Alg (¢)

satisfy roV’ = V" . This implies that Spec Alg (€) is a nilpotent group scheme. The
isomorphism  Spec Alg(e) = lim Spec Alg (¢) implies that Spec Alg(e) is a
- "

pro—nilpotent group scheme.

- : *
If B'(A") is a finitely generated k—module for each i then FH(B(A)) is a finitely
generated k—module. Hence Algi(c) is a finitely generated k—algebra, consequently
Spec Alg,(¢€) is an algebraic group scheme and Spec Alg(e) is a pro—algebraic group

scheme.

Example 3.6. Let X be. an affine, smooth algebraic variety defined over a field k. Let
*
2(X) be the algebra of global sections of the algebraic De Rham complex fly . If x,y,2
*
x€p€y 1 (X) — k. Hence the
0 . . . .
algebra (B(N (X))d(ex,ez)) is equipped with structure maps V(ex,e € ) i(ep€,),

are three k—points then they define augmentations ¢
a.(ex,ez) and e(e ) if x=1z.

Let us assume now that X is a smooth scheme of finite type over k. Any point x € X

* x
defines an augmentation ¢, : A (X) — k. Hence the algebra (B(A (X)), d(e,,€,)) is
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equipped with structure maps V(ex,ey,ez) , i(e€,), a(e €,) and e(e ) if x=1z.
3.7. Let X be a space or a scheme over a field k. Let x,y € X be two points of the space

X orlet x,y be two k—points of the scheme X . Let (X;x,y)‘ be the following cosim-

plicial space or scheme:

d d
d, 90, 9,
I '
— N
x 4 Xx—Lx2: o x3.... > Sl
— g
— 4 d
=1, _n,

where dg(*) =x, d;(¥)=y;

dO(xl,...,xn) = (x,xl,...,xn) ;
di(xl,...,xn) = (xl,...,xi,xi,...,xn) :

dn(xl""'xn) = (xl,...,xn,y) .

The codegeneracy operators of (X;x,y). are projections. If x=y then we set
° °
(Xx)" = (Xx,y) " -

Let us assume that we have one of the following situations:

i) X is a smooth manifold, n*(x) and Q*((X;x,y).) are the De Rham complexes of
smooth, differential forms on X and (X;x,y). .

ii) X is a simplicial complex, .ﬂ*(X) and Q*((X;x,y).) are the complexes of
Sullivan polynomial, differential forms on X and (X;x,y)* .

iii) X 1is a smooth algebraic variety over k, ﬂ*(X) and ﬂ*((X;x,y).) are the De
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Rham complexes of smooth, algebraic differential forms on X and (X;x,y). :
iv) X is a smooth, separated scheme of finite type over k, ﬂ*(X) is A*(X) and
* < ¥ °
0 (Xx,y)®) i A ((Xixy)°).

Then

*

B(R(X),d(e,€,)) — Tot 1 (X;x3)*)

is a quasi—isomorphism. Therefore H(Tot 01 ((Xix;y)®)) » BO(B(R'(X),d(e,, &)
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4. Poincaré groupoids.
We repeat the constructions from section 3 in the relative situation.

Let M be a smooth scheme 6f finite type over a field k of characteristic zero. The inclu-

sion of simplicial sets dA[1] =—— A[1] induces a map of cosimplicial schemes

p. : MA (1] —-»M‘,A (1] .

Let S!:=a[1]/ oa[1) 2adlet A[0] «—s S be the image of A[1] in S'. Then

the surjections of simplicial sets

A[1] ——+ 51

I |

8A[1] ——— A[0]

induce inclusions of cosimplicial schemes

1
MS MA[l]
° °
lpl p
MA[O] MaA[l] .
Let 0° :=ﬂ* A[1] be the De Rham complex of smooth, relative
M7

108 [1]
M 1] _gifferentials on M3 [1]

Let us assume that M is affine. Let 7: M5 — M2 be given by x(a,m,b) = (a,b) . Let
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*x *
1 = x,0 3 . Two maps over M2 y gy M2 — M3 given by io(x,y) = (x,x,¥) ,
/2

* *
i(x,y} = (x,y,y) define two augmentations ¢ :fl — myi 00 %

9 = The
k M /M2 M

9-
*
complex fl is an aMz—a.lgebra, hence the bar construction on it, (B(ﬂ*),d( €y:€1)) 8

alsoan ¢ 2—algebra..
M

Lemma 4.1. There are quasi~isomorphisms of algebras

e ¥ 0. * *

Let j: M> — M?xM? be given by j(m;,m,m,) = ((m,m),(m,m,)) .

* * N
Weset B(1 )® B(n*) = j*(B(ﬂ ) ® B(Q*)) . We shall construct a homomorphism of
M
0 2—a.lgebra.s
M
x * *
4.1.1. V:B()— 7(B()® B()) .
‘M
Let U be a Zariski open subset of M2. Then the group
* Qn * @n .
@ 2 L,)U)=0(M)"®0 ,(U), while
M o o M
x * p q *
(i’ (@ 0 e @ 7 2N0) = 0’ e oy e’ (P18 0 (V). We set
M

M
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VU(W]_@...QWn@f) = .

p(deg W, | +..+deg w )
=Y (-1) pt (w8, 8w JO18(w 8. 8w O .

The restriction of V to fibers, from the fiber over (x,y) to the fiber over (x,z,y) is the

map V(ex,ez,ey) .

We shall define an involution
. % x
i:(B(R), d(ege)) — (BN, d(egoe))

where T: M2 — M2 (x,y) = (y,x) . Let U be a Zariski open subset of MxM . We
set

iy: 0 (> e o(u) — o' M e o+ (V)) |

if(w,8w,9..8w_8f) =

n(n+1) Z_Iwil'lel

= (— 1<) T
= (-1) (-1) w ew @ 8w ®'f
where "f=for.

The restriction of i to the fiber over (x,y) coincides with the map i(e_, ey) :

The map of simplicial sets Sl—-rA[O] induces a map of cosimplicial schemes
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1
e®: MA (0] —_ MS . Hence we get a map
. Py nt 1 * ¥
where A : M — MxM is the diagonal.

' x *
Finally let a:B(Zyp, ) — B(0) be the map induced by Jpg pr— 0 . The re-
striction of e (resp. a ) to a fiber over x (resp. (x,y)) is equal to e(e,) (resp.

(epes))
*
The product structure in B(1 ) we shall denote as usual by * .

The maps induced by V,i,e and a on the 0—th cohomology we denote by the same

letter.

o *
4.2. Let us'set H:= HO(B(Q ) = HO(tRp:ﬂ.). Then we have the following maps of
O\xp—2lgebras:

V:H— r(H® H),
‘M
i:H— 1,H

e: H— 0M
a:ﬁMxM—-;H

where H® H=j (H®H), H=A (H) and A: M — MxM, m — (m,m).
7
M
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Proposition 4.3. Let V,i, e and a be as above. Then the following diagram commutes:

) (d gx ) orH= (rxid 2)*ox*HL(r x id ,) (H® H)
M2 M M M M M 0
. Ve ig M
v id @V l >
(id ,x ) (H@ H) VEH® H ® H
M2 M . 0y Oum
id® i
0
i) E—' .HewW M JHe H
1 Oy for i%id) 2
M
e E
a Ji

7 M

(H® ¥ is the restrictionof H® H to M — M® m — (m,mm).)
oM ‘M

iii) The composition

IV .ge m—_id®e .y
(or e ®id)

is equal to the identity.

The proposition follows from Lemma 3.3.

Definition—Proposition 4.4. Let M be a smooth scheme of finite type over a field k of
characteristic zero. The quasi—coherent sheaf H of &), ,(—algebras on MxM is called a
Poincaré sheaf on M if it is equipped with structure maps V,i,e and a asin 4.2 and if

it satisfies conditions i), ii) and iii) of 4.3.
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Let us set P :=Spec H. Then P is equipped with the following structure maps derived

from V,i,e and a:

0:=SpecV:P x P— P over 7,
M

( )-1:=Speci:P-—-¢P over 7 ,
g:=Spece: M — P :=SpecH over M .

These maps have the following property:

a) oo (id x 0) = 0 o (0 x id)
b) ' oo(idxe)=id, oo (exid) =id
¢) oo(idx( Y y=8, 0oo(( )t xid)=¢ .

The morphism P —— MxM equipped with structure maps o, ( )"1 , e 1is called a

Poincaré groupoid over M.

If P—— MxM is a Poincaré groupoid over M then P — M is a group scheme over
M and P|Mx{m} (resp.: Pl{m}xM)——rM is a principal right (resp. left)

—~bundle over M where H ) is a fiber of H over (m,m).

(m,m) (m,m

4.5. Once more the restriction that M is affine is not essential. It follows from [N1] § 4
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that for any smooth morphism of constant rank X —— § between smooth quasi—projec-
tive schemes there is a sheaf AX /s of gra.ded differential Os-a.lgebras such that

i) Ax /S is quasi—isomorphic to ﬂx /S

ii) the quam—lsomorphmm is a homomorphism of algebras,

iii) the complex AX /S is functorial,
iv) ;4 (""AX/S) ~H (Rnﬁx/s)

* E
Using the complex of sheaves Ax /S instead of nx /S we repeat the construction from
this section for any M smooth and quasi—projective over a field k of characteristic zero.
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5. Gauss—Manin connection on the bundle of fundamental groups.

Let V be a smooth scheme of finite type over a field k of characteristic zero. VA [1] is a
cosimplicial scheme augmented by VxV and V'BA [1] is a constant cosimplicial scheme
equal to VxV in each degree. The inclusion of simplicial sets JA[1] = A[1] in-

duces a cosimplicial map

o0 vAl __ yaa1]

*
between cosimplicial schemes. Let ﬂ; = nVA [1] v 88 [1] be the De Rham complex of

A[1],

smooth, relative VaA [1] —differentials on VA [1] i.e.in degree n on V we have

x
the complex DVA [1] 3y A [l]n . We repeat these constructions and definitions if X is

smooth, holomorphic and we get Q; ol *

Theorem 5.1. Let V be a smooth scheme of finite type over a field k of characteristic
zero.

i) There exists a canonical, integrable connection d, on the relative De Rham coho-
mology groups Hi(tRp:n;) - The connection d, is compatible with the product structure

i.e.
dy(exe”) = dy(e)*e” + (—-l)qe*dk(e’)

/
if e€ Hq(tRp:ﬂ;) and e’ € H (tRp:ﬂ;).

ii) f K:k is a field extension and VK=V;K then
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H'(1Rp30y) = E'(tRpah}) oK
and

dpe =dy g idg .

iii) Let X be a smooth, holomorphic variety. Then there exists a canonical, inte-
grable, compatible with the product structure connection dhol on the relative De Rham
cohomology groups Hi(tRp:Q;d) .

iv) Let V be a smooth scheme of finite type over complex numbers €. Then the
connection d¢ extends to the connection

(do)™ : E(tRp20Q)™ — (A )*® @ _(E'(tRpyng))*™

(
(yxy)™

which coincides with the connection d}101 for V3%, (Va‘l1 is a holomorphic variety
corresponding to V , in general ( )" is an analytic object: sheaf, variety, morphism ...
corresponding to an algebraic object ( ).)

v) The sheaves Hi(tRp:Q;) of Jv,y—modules are locally free.

vi) Let X be a smooth, holomorphic variety. Let €, be a constant sheaf on XA (1]
whose fibers are equal to € . Then the sheaf of horizontal sections of the connection dhol
on Hi(‘RP:";ol) is equal to Hi(tRp:C.) :

Proof. We shall introduce a connection following the method of Katz and Oda (see [KO]).
*

The algebraic De Rham complex A[1] is a complex of sheaves on va (1] . For each
A%

n we have a map
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2 A,

dA[1
Y v (1],

—_— = VxV .

*
Each complex 1 A[1] admits a canonical filtration
n

o’ Jrin’ JF” >
n VA [1],""n VA [1],7"'n VA [, -
where

Fin'yrq =image(@*3h, @ (0N (@) —0 7)) -
! A, vA-[l]“”VA[un Oyxy Al

These filtrations for n = 0,1,2,... are compatible with coface operators and codegeneracy

operators of vh [1] and therefore they induce a decreasing filtration {E‘i}i=0 19, of
A ,1,2,...

N A[1] One calculates that the first term of the hypercohomology spectral sequence
A%

3 *
associated with the filtration F' of 0 A[1] with respect to the functor tp: is equal to
\%

Dn* ~ P A ®0®
BP0y 1)) 2 Wy © HUGRRIG) .
VxV

i *
The filtration F' of A[1] is compatible with the shuffle product * i.e. we have
A%

Fi * Fj C FH'j . This implies that the spectral sequence is multiplicative. The differential
d, has bidegree (1,0) therefore for every q we get a complex
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0,q
d ?
o0, "1 1 °.0
VxV VxV
d%sq 9 oo d%vq
——— 0y v 8 HYtRpN) ——— ... .
Iyxv
We have a diagram of cosimplicial schemes
° i
vA [1] JU - VaA [1]

lp. le
v [1] id L yaoa 1]

which induces a map of ;. ,—algebras
O0/ipia 0F _ - 0 (P

We can repeat our comstruction of the spectral sequence for a cosimplicdal map
4 *
VaA [1] d VaA [1] . We get a complex anV which is a subcomplex of the complex
("’0) . From the multiplicative properties of the differentials we get
d9'Y(fxg) = d(f)*s + £+d%9(s)
1 - 1

forany f€ dy,yC HO(tRp:ﬂ;) and s € Hq(tRp:ﬂ;) . Hence the map

0, o, 0 1 e, 0
dyd: HYtRpa0)) — Ny @ HI(tRpen))
vy
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is a connectiom. The differentials dllj’q satisfy
0,
dll)’q(w*s) = d(w)*s + (-—1)pw=|=d1 %)

for any w € ﬂ{}xv and s € Hq(tRp:n:) . Hence the formuia di’qodg’q =0 implies
that the connection dg’q is integrable. We set d, := cl(ll'q .

The part ii) follows trivially from the fact that the functor ® K is exact.
k

Using holomorphic forms we construct a connection dhol in the same way as we have

constructed d . Then points iii) and iv) are instantaneous.

To show v) let us notice that the sheaves Hi(tRp:ﬂ;) are quasi—coherent sheaves
equipped with the connection. This implies that Hi(tRp:ﬂ;) are locally free in Zariski
topology. (See [Ma] Remark 1.2).

Now we shall show the point vi). The sheaf Hi(tRp:ﬂ; 01) is a sheaf of Oy, y—modules
equipped with the integrable connection. From the holomorphic Poincaré Lemma it follows

that the complex of sheaves

0,9
d )
0 o, 0 1 1 °.0
0 — ker dl’cl — Hq(tRp*Qhol) —— iy x 09 Hq(tRp*Qhol)
XxX
dl,q d2,q

1 2 e, 0 1
——0g.x ® HYtRpn, ) — ..

XxX
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is exact. Therefore the spectral sequence which we used to construct the connection dhol

degenerates at E,—term. This implies that we have an isomorphism

Uipp®n” 0,q

The complex ﬂ; A1] is the resolution of the constant sheaf C, - Hence there is an iso-

morphism
*

Therefore we have
0, L
ker d1 9y Hq(tRp,.C.) .

The important property of connections is regularity. We shall show that the connections
constructed by us are regular. However the connections we considered are on locally free
0xXx—modules of infinite dimensions. Therefore first we shall give the following defini-

tion.

Definition 5.2. Let & be a sheaf of locally free ox—modules possibly infinite dimensional
on a smooth, holomorphic variety X equipped with the integrable connection V. We say
that the connection V is regular if the sheaf ¥ is a direct limit of locally free, finite
dimensional Jy-modules equipped with integrable, regular connections Vi compatible

with themselves and V .

Theorem 5.3. The connection dhol from Theorem 5.2 is regular.
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Proof. For any cosimplicial object X°* let (X.)Il be a part of Xx* up to degree n i.e.

x*), :={x°:x15x2 —-.x“} .

For any cosimplicial map p. X% — 8% let p; : (X') 2 (S.) , be the restriction of

p° to (X.)n.For any sheaf .9'. on X° let (5), be the restriction of F to (X.)n.

Let X be a smooth, holomorphic variety. Then on XxX we have

Lim BHR(p,)e(),) = BUtRRIAY ) -

*x
Let us set Q: =1 A [l]n 9A[1] . There is an exact sequence of complexes
X /X

® i L] ® i n+4+1y ~¥
0— tR(P;)*(nhol)n - tR(pp 1 )+(Opo)ngn L r(p"t )l — 0

which induces a finite, long exact sequence of cohomology Oy xx—modules

() o BE RO, — BRGS0 ), )

j* ¥ ®
= BX R0 2o B REDL(R] ) ) — - -

Let us set X°© := XA [1] . The complexes !’21t o ﬂ* o and ﬂ* are en-
| (X )]1 (X 1n+1 }n+1
dowed with canonical filtrations. The obvious maps 1i,: 1l x* — 0 x® and
1 ), = 0y,
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* *
iy N x® — 1 1 are compatible with these filtrations. These filtrations lead to
( )n+1 Xt

spectral sequences. The maps induced by i; and j; on E,—terms are i, and js, hence
iy and j, commute with connections which are the differentials dg’q. The complex

*®

an+1*n ne1 8 filtered quasi—isomorphic to the mapping cone C(il) of
X

. L P . * . I

i, :tRp 0 (xt)n —"'*R(Pn+1)*“(x')n+1- The map C(xl)—-»tR(pn)n(Xo)n pre-

serves canonical filtrations, hence &, the induced map on E,—terms commutes with
*

connections. The connections on Hq(tRp2+lﬂn +1) are regular (see [D1] Théoréme 7.9).

By the inductive assumption the connections on Hq(tR(p;)*(n;ol)n) are regular. Hence

it follows from [D1] Proposition 4.6 and the long exact sequence (*) that the connections

on Hq(tR(p; 4_1),.:(ﬂ;01)]1 +1) are regular. It is clear that these connections are compa-

tible with the connection dy , on Hq(tRp:ﬂ; ol) :

Theorem _ 54. Let us set H:= HO(tRp:nk) . The structure maps

V:H—— 7, (H 00 H), i:H—rH, e:H-—0y and a:0y,,—H ae
A%

compatible with the connection dk , connections induced by dk in tensor products and

the trivial connections on dv and av,‘v.

Proof. The products A[1] x A[1] and JA[1] x 8A[1] we consider as bisimplicial sets.
The inclusion JA[1] x dA[1] — A[1] x A[1]  induces a bicosimplicial map

p“ : VA [1]xa[1] —_ VHA [1]x0A[1] between bicosimplicial schemes,

VaA (1]x88[1] i8 a constant bicosimplicial scheme equal to VxV xV xV in each

A[1] x dA[1]
bidegree. Let V A[0] be a constant bicosimplicial scheme equal to

AA[1] x aA[1]
VxVxV ineach bidegree. Let i*® v A [0] o vOA[]x0A[1] g ap

inclusion equal to (ml,m,m2)—4(m1,m,m,m2) in each bidegree. Let

°°. VA [I]A,EO]A 1] —_— VaA [IJA’EO] i be a pull back of p*® by i*®.
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* B
Let us assume that V is affine. Let & :=1l A[1] % A[1] be the De Rham complex

\' A[o]
A[1] x A[1] .
on V Afo] andlet F:=0 , [1] - We shall define

V:tp:&'-—+r*tp:.o‘5’

in a complete analogy with the map V from 4.1.1. Then the map V is compatible with

canonical filtrations and on El—terms coincides with the map V.

To show that maps i, e and a are compatible with connections one constructs maps of

* * * *
De Rham 1 s tpen tpen e :tRpT 1
e complexes 7 :tpy VA[l] — T«tpx VA [1] ° ‘e t plﬂvS __'mVA [0
~ * * . . . . c oy
and a: tﬂv dA[1] —— tp:ﬂv A[1] compatible with canonical filtrations which induce

i, e and a on El-terms.

If V is an arbitrary smooth, separated scheme of finite type over k we use complexes

x *
AX and AX /S from section 2 and 4.5.

Let R bearingandlet R, be a constant sheaf on (Van)A [1] whose fiber is R . The
sheaf Hi(tRp:C.) , being a sheaf of horizontal sections of an integrable connection on
V38 x V3 s a local system on V3 x V3 | 1t is well known that the category of local
systems on an arc—connected and locally arc—connected topological space X and the cate-
gory of =,(X,x)-sets are equivalent. We shall identify the fiber of HO(tRp:C.) and the

corresponding representation of 7r1(VEul x V3 (v v)).

Let x:= rl(Va‘n,v) . Let K be a field of characteristic zero. The representation
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¢ : x x x —— (bijections of =)
given by ¢(a,0)(x) = a-x-[ 1 induces representations
:xxx— AutK_a_lgebm(Alg(x;k)) ,
and
8’ : # x x —— Aut(Hom(Z [ ] K)) .
Theorem 5.5. The fiber of the sheaf HO(tRpyK,) over (v,v) € V3% x V20 ig canonically
isomorphic to Alg(~,K) . The representation of x x x on the fiber of HO(tRp:K.) over

(v,v) isequal to ¢.

“Proof. Let X be a connected and arc—connected topological space. After applying the

functor Tot( ) to a cosimplicial map
p? xA[1] __, x0dA[1]
we get a path fibration
p: XI —i X xX .

For any open subset U C X x X, which we consider also as a constant cosimplicial space

we have Tot(p._l(U)) = p"'l(U) :



. Let us set X =V and r= 7,(X,v) . Let us observe that p.—l(v,y) = (X,v). LIt
follows from the discussion in section 1.3 that H.(p.-l(v,v)) = Alg(m;k) . This shows the
first part of the theorem.

We shall define two sheaves on X xX. Let UCXxX be an open set. We set
- F(U):=H%pY(U)K) and G(U):=HO(p® }(U);K). There is the map of sheaves

a:G— F given by a(U):=a : Ho(p._l(U);K) — Ho(p_l(U);K) . The

P
sheaf F corresponds to the local system obtained by applying the functor HO( ;K) to

each fiber of p:X!

— XxX , while the sheaf G corresponds to the local system
Ho(tRp:K.) on X x X . The group = x x acts on HO(p_l(v,v);K) , the fiber over v of
the sheaf ¥, through the representation &’ . Hence it acts on Ho(p._l(v,v);K) , the

fiber over v of the sheaf G, through the representation ¢ .
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6. Connections.
We shall use the language of A. Grothendieck (see [G] and [BO]).
Let us assume that all schemes and morphisms are over S.
Let p:E— X and Py El—-»x be morphisms of schemes. For any f: Y — X we
denote by fi(p): flE—— Y the pullbackof p: E— X over Y.If B: E;—E isa

morphism such that pol = P, then we denote by £8: f!E1 —— fIE the pullback of O
by { and we have fi(p)oflB = I(p,) .

For each positive integer n, let Xl(n) be the n—th infinitesimal neighbourhood of the
diagonal in X x X and Xz(n) the n—th infinitesimal neighbourhood of the diagonal in
S ,

XxXxX,

There is the diagram of canonical projections

6.1. An n—connection on p: E — X is an isomorphism
C(n) : p;(n)!E —=— p,(n)!E

satisfying the cocycle condition
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P31 ()!/(C(n)) = pgq(n)/(C(n)) © pg; (n)(C(n)) .
6.2. A connectionon p: E—— X i8 a 1—connectionon p: E— X

6.3. Let us suppose that S is a scheme over a field of cha.rax:téristic zero. An integrable

connection on p : E— X i3 a compatible system of n—connections for all n € N .

6.4.If p: E— X is a vector bundle then an n—connection on p: E— X is a linear

n—connection if C(n) is an isomorphism of vector bundles.

6.5. If p: E— X is a principal G—bundle then an n—onnection on p: E— X is an
n—connection on a principal G-bundle (G-n—connection) if the following diagram

commutes

C(n) ;idG
(p;(n)!E) gG - (py(n)!E) gG
- -
C(n)

py(n)!E — po(n)!E

i.e.if C(n) is a G-morphism (the actions a, and a, areinduced by the action of G on

E).

The definition of a linear connection, a G—connection, an integrable linear connection and

an integrable G—connection we leave to the reader.
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In the analogous way we have a notion of an n—connection, a connection and an integrable

connection on any sheaf on X . We shall formulate it only for a sheaf of Jx—modules.
Let J be a sheaf of dx—modules.

6.6. A liner n—connection on & is an isomorphism of ¢

*
C(n): py(n) & —=—spy(n) &
satisfying the cocycle condition

Py (1) (C(n)) = pgy(n) (C(a)) o pyy () (C(a)) -

The definitions of a linear connection and an integrable liner connection on F we leave to

the reader.

If & is a sheaf of locally free ¢y —modules of finite typeie. 5 is a sheaf of sections of a
vector bundle p: E —= X then the notions of a linear n—connection, a linear connection

and an integrable linear connectionon F and or p: E —— X coincide.

Let & Dbe a sheaf of dx—modules. By the classical definition, a connection on an
dx—module J is an additive map

V:F F e nal
—F 2 s

such that V(af) = aVf + f@da if f is a sectionof F and a is a section of Oy .
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The classical definition of a connection (resp. integrable connection) on an Jy—module
and the definition of a linear connection (resp. integrable linear connection) on an

0x—module given in 6.6 coincides (see [BO] Proposition 2.9 and Theorem 2.15).

Definition 6.7. Let ¥ be a sheaf of Jy—algebras equipped with a connection V. Wesay
that the connection V is multiplicative if

V(a-b) =V(a):b+ a-V(b)
where a and b are sections of 5.

— n_
Let .S’X = .0X 00 0x and let .?x = 9}( /In +1 whege
S

I=ker(0y ® Oy — 0x). Let us notice that ¢ =Py. Py has two

0g x(n)
*
Ox—module structure. For an Jy—module & we have pl(n) F= .?;E ® ¥ and
- 0
X
p2(n):ll F=F @ .9’)% where for i=1 (resp. 2) we use left (resp. right) Cy—module
7
S

n
structure on .F’X .

Lemma 6.8. Let F be a sheaf of ¢y—algebras. The connection V on & is multipli-

cative if and only if the isomorphism
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Proof. Let 8: F—— 5 ® .9)1( be given by 8(x) = V(x) + x®(1®1) . Then we have
7
X

B(x-y) = V(x-y) + xy&(181) = V(x)-y + x- V(5) + x-y&(181) .
On the other side

B(x)-8(y) = (V(x) + x®(181)) - (V(y) + y&(181)) =
= V(x)-V(y) + V(x) - (y&(181)) + (x&(181))- V(y) + x-y&(181) .

The fact that V(x)-V(y) € § ® I? implies that B(x-y) = B(x)-B(y) . Therefore the
- ?x
extension of B toa .?;[—linear map

ca:2l e s3— 50 2l
X, 57X
X X

is also an isomorphism of algebras.

Reversing the order of our arguments we show that V is multiplicative.

Lemma 6.9. Let 5 be a sheaf of (7x—a.1gebra.s equipped with the multiplicative
connection V. Then V induces a connection on p : Spec(F) — X . If the connection V

is integrable then the induced connection is integrable.

Proof. By Lemma 6.8 we have an isomorphism of 9i—a.lgebra.s
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C(1) : py(1) (F) — (1) ()
satisfying the cocycle condition.

Applying the functor Spec( ) to the isomorphism C(1) (resp. to all C(n) ) and to the
cocycle condition (resp. to the cocycle conditions for all n» ) we get a connection (resp. an

integrable connection) on p : Spec(F) — X..

Definition 6.10. Let H be a Poincaré sheaf on M . A Poincaré connection on H is a
multiplicative integrable connection D on H such that the structure morphisms V,i,e

and a are compatible with the connections D on H, D ® D on H ® H and the
0 0
X X
trivial connection d on Ox -

Proposition 6.11. Let H be a Poincaré sheaf on M . A Poincaré connection D on H
induces an integrable connection & on the bundle P := Spec H — MxM comi)a.tible

with morphisms o, ( )"1 and e.Let G=SpecH The connection J restricted

(m,m) -
to the principal G—bundle P | Xx{m} — Mx{m} is a G—connection. The connection &

we also call the Poincaré connection.

Proof. It follows from Lemma 6.9 that the bundle P — MxM is equipped with the inte-
grable connection & . The functoriality of Spec( ) implies that the connection 4 is com-
patible with structure morphisms o, ( )_1 and e. The compatibility of & with struc-
ture morphisms implies that the connection restricted to PIX! {m} Mx{m} is a

G—connection.

We shall apply the developed formalism to the sheaf Ho(tRp:ﬂ;) and the connection dk

“ e rm— o — B L L L T LT o P L T T T T TN i -, e . -
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from Theorem 5.1.
Theorem 6.12. Let V be a smooth scheme of finite type over a field k of characteristic

zero. Then the sheaf HO(tRp:ﬂ;) is a Poincaré sheaf on V and the connection dy isa

Poincaré connection on it.

Proof. It follows from Propositions 4.3, 4.2 and 4.5 that HO(tRpsfy) is a Poincaré sheaf.

Theorem 5.4 implies that the connection d, is a Poincaré connection on HO(tRp:n;) :
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7. The algebraic De Rham fundamental group.
Let V be a smooth, separated scheme of a finite type over a field k of characteristic zero

and let x be a k-point of V .-We know from section 3 that Hpp((V,x)®) is a Hopf
algebra over k. Therefore Spec HgR((V,x)') is an affine group scheme over k.

Definition 7.1. We set
DR 0 °
"1 (V,x) := Spec HDR((V”’) )
and we call 7= Y(V,x) the algebraic De Rham fundamental group of V .
Let us assume that V is defined over the field of complex numbers € . Let V() be the

set of {—points of V equipped with the complex topology. Then V(C) is a smooth,

complex manifold.

Definition 7.2. We set
78 (V(©)x) = Spec B, (V(©2)°)

where ﬂ;m((V(C),x).) is the De Rham complex of smooth, complex valued differential

forms. The space V(C), being a smooth, complex manifold is also a simplicial complex.
*

Let S ((V(C),x).) be the Sullivan complex. of Q—polynomial, differential forms on

(V(©).x)°.

Definition 7.3. We set
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*
7(V(€)x) := Spec BY(S"((V(€)0)®) -
Now we shall compare the groups T defined above.

Let K:k be an extension of fields and let V be defined over k. We set

VK=V x SpecK.
Speck

Theorem 7.4. Let V be a smooth, separated scheme of finite type over k andlet x bea
k~point of V.
i) If K:k is an extension of fields then

D DR
* le(V,x) ; K=7]"(Vgx) .
ii) Let us assume that V is defined over €. Then we have natural isomorphisms
@D

* R(V,x) = 15 (V(O%)

2 1 1
and
. BV(©0) x €= 1S V(0

3 1 S ! X

iii) xDR(V x) (res xcm(V(C) x) , res rB(V(t) x)) is an affine, pro—unipotent
1 y p' 1 ¥y ' p' 1 ] H p po b

pro—algebraic group scheme over k (resp. €, resp. Q).
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%
Proof. The point i) follows from the obvious fact that (@ )®K=0 . The
T (Vi)

first isomorphism from the point ii) is a consequence of the quasi—isomorphism

fl:‘l e — ﬂ*m o : Where Q*m "
(V.x) ", (v8Q),x) ¢ (V(0).x)

of smooth, complex valued differential forms on (V(C),x).. The second isomorphism
follows from the fact that complexes S*((V(C),x).)et and ﬂzw((V(C),x).) are

is the De Rham complex of sheaves

quasi—isomorphic.

It follows from Section 3, Theorem 3.5 that the considered ,’s are affine pro—algebraic,

pro—unipotent group schemes over k (resp. €, resp. Q).

For any group scheme r over k, we denote by x(K) the group of K—points of x, where
K is a k—algebra.

Let K:k be an extension of fields. The isomorphism *1 induces a homomorphism

ag = oV /i PRV x)(k) — 7L (Vi x)(K)

and an isomorphism

oy = a(V)g : O (V,x)(K) ® 70 (Ve x)(K) .

*

The isomorphism 9 induces an isomorphism

a=a(V): S (V(€)x)(€) — DRV2(C) -
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The isomorphism *3 induces a homomorphism
= . B c®
B=AV(() : = (V(€)x)(Q) — =] (V(€)x)(CT) .
Proposition 7.5. Let us assume that V is defined over k. Let us fix an embedding
6:k «—C.Let Vg and V(€) be constructed using the embedding &§. We shall

denote them also V , and V5(C).

In the group r?R(Vc,x)(C) we have two lattices, a k-lattice ag /k(r?R(V,x)(k)) and a
Q-lattice a(A(ro(V(0)x)(Q)))

gy I?R(V,x)(k) — T?R(VC,X)(C) — r]IB(V(C),x) :Boa .
We shall define two maps
bg = B(V(©)g : 7 (V(€),x) — 72 (V(0)x)(Q)

and

bg = b(V(©))¢ : 7,(V(€),x) — x‘fm(V(a:),x)(c) .

To define both homomorphisms it is enough to evaluate elements of
H:= B*(S ((V(€),x)*)) and B’ :H.(ﬂ;m((V(C),x).)) on any loop in 7,(V(€),x) . Let

us observe that H = H*(B(S (V(C))) and H' = H’(B(n;m(xr(c))) .
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n

Let 7€ r(V(€)x) andlet w= 2 w; 0...0wik be a representative of an element in H

k=1 1

or H’ . We can assume that all w, are one—forms. We set
a

n

*5 X 7) :=kz1 i wil,...,wik .

The formula "‘5 defines two homomorphisms
bg = b(V(©)g : my(V(€):x) — 7} (V(0),x)(Q)

and

. | .
b = b(V(O)¢ : m(V(©x) — 77 (V(O)x)(©)
which satisfy ﬂobQ = bd‘. .
Proposition 7.6. The homomorphism
bg : T (V(€)x) — 7 (V(€),x)(Q)
is the Malcev rational completion of x,(V(C),x) .

Proof. This follows from the discussion in 1.3.

Corollary 7.7. The homomorphism
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®
be : 7 (V(0,0) — 75 (V(€)x)(0)
is the Malcev C—completion of ,(V(C)x).

Let us observe the following analogy. For a smooth algebraic variety V over a number
field k ( §:k = C is an embedding) the fundamental group of V6(€) , xI(VJ(C),x)
cannot be defined in algebraic way. However its finite completion ,(V S(C),x)" is
constructed in purely algebraic way. It follows from Theorem 7.4 and Corollary 7.7 that
the Malcev C—completion of xl(V 5(C),x) can be constructed in purely algebraic way.
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8. The Betti lattice in 70 (Pg\{0,1,0})(€) -

Let V be a smooth algebraic variety over a field k and let x € V be a k—point. Let
o : k — € be an embedding. In the group Jr[l)R(Vc,x)(C) we have two lattices

ag DRV, 2)(k) — 72V x)(€) —— 1, (V(€)x) : bgoa .

The aim of this section is to calculate both lattices in 75 (V¢ x)(€)/T2 22 R(V¢,x)(©)
for V= Pé\{o,l,m} .

+1=m.The

De Rham algebra Q*(V) is quasi-isomorphic to the differential, graded aigebra

Let us set V= Pi\{al,...,an_!_l} . For simplicity we shall assume that 5

x
A (V): 0-——pk-£—-+A1(V) =kew +..+kw ——0

where w, = -z%;— i=1,..,n. The obvious inclusion
1

* *
A(V)—0 (V)
is the required quasi—isomorphism. Hence it follows that HBR((V,x).) s HO(B(A*(V)) .

Let T(AY(X)) be a temsor algebra on Al(X). T(A(X)) has a natural filtration
{L n(T(‘Al(X))}z=O by length of tensors. Observe that

T(A}(X)) = 30 Ly, (TAMX)/ (T(al(x)) 3ad therefore T(A}(X)) is a graded abe-

lian group.
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Lemma 8.1. The abelian group HgR((V,x).) is equal to T(AI(V)) . The isomorphism
B R((V:x)®) = T(AX(V)) is compatible with filtrations of HJR((V.x)") and T(AX(V)).

Proof. The chain complex B(A*(V)) in the degree zero is equal to T(AI(V)) . Notice that
all differentials in B(A*(V)) are equal to zero. Hence it follows that
HO(B(A*(V)) ~ T(AI(V)) . The isomorphism is of course compatible with filtrations, hence
it is an isomorphism of filtered abelian groups.

*
Notice that the Hopf algebra structure on HO(B(A (V)) induces the Hopf algebra struc-
ture on T(AI(V)) .

Let L= L(xl,...,xn) be a free Lie algebra over k on n—elements x,,...x . Foreach n
we form the quotient Lie algebra L /I‘nL . The Lie algebra L/I‘nL we equipped with a
multiplication given by the Baker—Hausdorff formula. The group L/I‘nL is the group of
k—points in an affine, unipotent, algebraic group G =~ defined over k. Let us set

G:=‘l_i_EGn.
n

Let us choose a base {ei}iEI of L given by basic Lie elements. The first n elements of
* *
this base are x;,....x . Let {ei}iEI be the dual baseof L .

Let S((L/riL)*) be a symmetric algebra on (L/I\iL)* , the dual space of L/I‘iL . Let
S(L*) =lim (S((L/rnL)*)) . The product in L/pn; induces a Hopf algebra structure on
n

*
S(L") . The algebra S(L ) is a Hopf algebra of regular functions on G . We shall define a
gradation {S(L’n)k}i'=0 of S(L*) in the following recursive way.
S(L"I)0 consists of constant functions,

x
S(L )p is a k—vector space generated by functionals dual to elements of the base
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{e;};¢; which have length p and by products f;-..-f, where fiES(Lt)ni and
L * @ x
Y n,=p.Itisclearthat S(L')= & S(L),.

i=0

1=

i=1

Lemma 8 2. There is a unique homomorphism of Hopf algebras
* *
¢ :S(L)— T(AY(V))
such that

x
i) p preserves gradations,

e * * -
i) ¢ (xi) =—w;; i=1,.n .

*
Proof. Let e, belong to the base of L given by basic Lie elements and let e, be the dual
functional. Assume that e, has length p . Assume also that cp*(e:) is already defined for
all e such that the lemgth of e  is strictly smaller than p. We set

* ¥ *
v (e) = 2 a,w, @.8w, . The condition that ¢ i8 a morphism of Hopf algebras deter-
1 o
t

mines coefficients va.t unigely.
Let us set r:= x?R(V,x) .

*
Corollary 8.3. The morphism ¢ induces isomorphisms ¢:r—— G and
¢y : 7/pn,— G/pag -

,,, .
Proof. The morphism of Hopf algebras 3 induces a homomorphism of affine groups

¢ : *— G . The homomorphism % :r/rzr — G /I‘2G is an isomorphism, hence for
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any n, @, :x/pn, — G/pns is an isomorphism. We have = '11i1m x/pn, and

G=1 Iil m G/I‘nG . This implies that ¢ is an isomorphism.
Let V= P‘l}\{o,l,m} . We want to calculate the image of a homomorphism

£r (V022 (V(Q 202 DRV 1) O Ga DRV, 0 (OG5 G)E) -

Let =%, & =Y, 83= (xy], €= [x[xJ] ) €y = [Y[X:Y]] )
eg= [x{x[xy]]], e;=I[x[y[xy]]] and eg=[y[y[xy]]] be the base of
L/p5y, - Let qo*(ez) = _;Q and cp*(e;) = i—% Let us set ¢ = boaoag .

The image of 7€ r(V(€),x) on (G/p5g)(C) is described completely by values
x

& (x(7) = & (pgoR(M) = ¢ (€ )(H1) = ¢ (,)(7) for i=12,..8. The value of

* % . * %
v (e;) on 7 is the value of the iterated integral corresponding to ¢ (e;) on 7. We give

N * %
here the first few elements ¢ (e;) . Let us set w, = ;E and w, = gz—_i- . Then we have

* X 1
¢ (eg) = 5(w, 8wy —wyBw,) ,
fe) =Lw 8w.8w, — 1w 0w 8w —Lw Bw Ow
¢ (&) = 5 7 8w 8W) —z WoBw, 8w, — 7w 8w 8w, ,
* ok 1 1
After the calculations we get the following resuit.

Theorem 8.4. Let S € :rl(V(C),x) be a loop around 0 andlet T € rl(V(C),x) be a loop

around 1. Then we have
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x(8) = (-2, 0, -2 log(1—x), —27i Lo(z) + i log 5 log(1-=) ,
s 2 .rl . 1 .. .2 '
7i log“(1-2), 27i Ly(s) + #i log 2 Ly(z) — i =i log”s log(1-=) ,
27 2 2 . 2 . 1 _.,.3
7i Ly(z) — 3 #i log z log"(1-2) + =i log(1—)Ly(z), — 3 i log"(1-2))
and
x(T) = (0, —2x, 2xi log z, —mi logzz, —27i Lo(z)—i log z log(1-2)+27i¢(2) ,
L rilog®z,2 wiL1(z)+ rilog 2 Li,(z)+2xilog(1—z)log?
JmI0g z,471Lg g z Liglz)+ymiog 8z
—27i log z £(2)-2i £(3), 27 La(2) +

riL(2)log(1~2) + § i log z log*(1—z) — 2i log(1-2)£(2)-27i£(3))

where the functions Lo(z) , Lé(z) and Lg(z) are given by the following formulas:

z

Ly(z) = I_%[I?Ezz + Iog(l—z):l dz |

Z

L;(z) = J { [%—2 log z log(1-z) + % L2(z)]% + ’}2' log2z 1—1_;} dz ,
0

z

Lg(z) = J { [— % Lo(z) + %—2- log z log(l—-z)] 1%5 + %-2- 1052(1—-2) %} dz .
0
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Let us observe that the image of y can be interpreted as a position of ,(V((),x) in
rII)R(V,x)(C)/PS in the coordinates given by ¢y .



BK.

BO.

BS.

Cl.

C2.

D1.

D2.
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