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hence the lower row of (5.16.1) is exact.

It is clear from the diagram that the composition
1 1
B'(K,G) — @ H'(K,G) — (Mp)yopg

is zero. Now let £, = £_x £ €@ HY(K ,G), where ¢_ € T TH'(K_,G),
®

&€ eyal(xv,c) . Suppose that u(€,) =0.Let h, betheimageof £, in

f
@ Hib(K +G) - Then the image of h, in (M), ors 18 zero, hence h, is the image of
some element h € H:.b(K'G) . Consider the element

hx £ €Hy (K,G)x T TH(K,G).It is clear that hx ¢_ is contained in the fiber
11}
product over T Hy, (K ,G) . By Theorem 5.12 h x {_ comes from H'(K,G) . The |
@

theorem is proved.



The maximum principle and the growth

of volume minimizing hypersurfaces
Dao Trong Thi

Introduction
This paper is devoted to estimating the rate of growth of the volume minimizing hypersur-

faces in R™.

The problem of finding a lower bound on the volume of k—dimensional volume minimizing
surfaces X, contained in a domain and passing through an interior point of this domain,
often arises in various questions of the calculus of variations, algebraic geometry and com- oy
plex analysis (see, for example, [7), [8], [8], [14]). Fomenko [8] has stated the following con-
jecture. Let B be an arbitrary convex domain with piecewise smooth boundary and 0 an
interior point for B. Let X be a k—dimensional volume minimizing surface, passing
through 0. Then

vl (X N B) 2 min vol, (* N B),
where the minimum is taken over all k—dimensional plane sections of B by planes xk,

passing through 0.

Such an estimate had earlier been found for several special cases. Katsnel’son and Ronkin
[11] obtained an analogous inequality for case, when the domain B is a cube in ¢2 with
centre at 0 and X is a complex analytic set of codimension 1. When B is a ball with

centre at 0, the estimate was established by Lelong [13] and Griffiths and King [9] for
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k = n—2, n—1 and by Fomenko [8] for any k. Further, Le Hong Van [12] proved the
conjecture for two—dimensional volume minimizing surfaces X and for a rectangular

parallelepiped B in R™.

In this paper we consider the problem for volume minimizing hypersurfaces X and an
arbitrary convex domain B, symmetric with respect to 0. By using the maximum princip-
le we obtain universal lower bounds on the volumes vol, ,(XN&B) and vol, (XNB) and
present several situations, when the bounds obtained are exact. In particular, Fomenko’s

conjecture, mentioned above, is proved for some new classes of domains B.

The author thanks H. Karcher for useful discussions on the maximum principle.

§1 The maximum principle for volume—minimizing hypersurfaces

Let M be a n—dimensional Riemannian manifold. We recall that a twice differentiable sur-
facein M is said to be minimal if its mean curvature is trivial at each point. By applying
the maximum principle [1] one can prove, in particular, that two different connected mini-
mal hypersurfaces in M can not touch each other from one side. By the way, a boundary
versal of this result is also true (cf. [3]). As well known (see, for example, [2]), the classical
minimal surfaces also can be defined as local minima of the volume functional, i.e. its vo-
lume does not decrease under infinitely small perturbations with infinitely small support.
However, the basic objects of this investigation are globally minimal hypersurfaces, i.e. the

hypersurfaces that are minima of the volume with respect to large variations.
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A compact k—dimensional surface (possibly with singularities) S C M is called volume
minimizing if volKS < volkS’ for any compact k—dimensional surface S’ C M such that
S’ = 85, where volkS denotes the k—dimensional volume of S. A complete noncompact
k—dimensional surface (possibly with singularities) S C M is called volume minimizing if
every its perturbation with compact support does not decrease the k—dimensional volume

in an obvious sense.

Theorem 1.1. Let S1 and S2 be connected volume minimizing hypersurfaces in M.
Assume that either S1 n 82 contains a regular point of both S1 and 52; and 51,82

touch each other from one side, or S1 N 82 bounds a domain of S1 and a domain of Sz.

Then S1 and 52 are contained in the same volume minimizing hypersurface in M.

Proof. First we consider the case, when S1 and 82 lie in one side with respect to each
other. Denote by Sci> the set of singularities of S; (i = 1,2). By virtue of a well-known
Federer’s result {4,5] codim S? < 7. In particular, this fact implies that S; = Si\S? are
connected (smooth) minimal hypersurfaces in M. Moreover, Si n Sé ¥ ¢ by force of the
assumption of the theorem. Now, applying the maximum principle to Si and Sé we can
conclude that they are extended to the same volume minimizing hypersurface in M. Conse-

quently, so are S1 and S2 themselves.

Now we consider the case, when S, lies on both sides of S,. According to the assumption
of the theorem there are domains P, CS; and P, CS, such that

6P, = 8P, =S, N So; moreover, P, and Sl\P1 lie on different sides of S, and P,
and SZ\P2 lie on different sides of §,. From the global minimality of S, and §, it
follows that vol P, =vol _,P,. Set §] =(S;\P,)UP,.S] isa volume minimizing
because so is S,. Obviously, SiﬁS2 =P, and Si and S, touch each other from one

side.
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Clearly, P, has regular points. Thus Si and 52 turn out to be in the situation

considered above. The proof is completed.

Remark. The maximum principle was formulated in [1] for twice differentiable minimal
surfaces. In fact, it, and therefore Theorem 1.1, can be generalized to non—smooth
hypersurfaces of a certain type (for details see [3]). Further, the existence of a common
regular point of S1 and S2 can be replaced by a more weak requirement. Assume that
connected volume—minimizing hypersurfaces S1 and 52 touch each other from one side

nearly an isolated common singular point p, satisfying the following condition
(1.1) S; and S, have regular tangent cones at p.

Then according to the theorem on perturbation of isolated singularities [10], there exist
volume—minimizing hypersurfaces Si and Sé, which are regular nearly p and arbitrarily
close to S, and S, respectively. Besides that Si n Sé bounds domain of Si and Sé.

By force of Theorem 1.1 we have S] = 5. In this way one can conclude that S, = S,,.

The following simple corollaries of the maximum principle prove useful for our investiga-

tion.

Proposition 1.2. Suppose M is a Riemannian manifold, ¢: M — M is an isometry with a
fixed point p. Let X be a connected minimal hypersurface in M, passing through p so
that da‘(TpX) = TpX. Then X is invariant under o,ie. o(X)=X.

Proof. Set X’ = o(X). Since o is an isometry and X is a minimal hypersurface, X’ is
also minimal. Now, from TPX’ = do(TpX) = TpX it follows that X’ =X by virtue of

the boundary maximum principle (see, [3]). Thus, the proof is completed.
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Corollary 1.3. Let M be a Riemannian manifold, ¢: M -— M an igometry with a fixed
point p. Suppose that N i an unique o—invariant hypersurface, passing through p ina

given direction. Then N is an unique minimal hypersurface, passing through p in this

irection.

Proof. Suppose X is a minimal hypersurface such that p € X and TpX = TpN. Set

X’ = o(X). We have TpX’ = a{TpX) = a(TpN) =T N= TpX because N is invariant

P
with respect to ¢. Hence, X’ = X by force of Proposition 1.2 and therefore, X =N in

accordance with the assumption of the corollary. The proof is completed.
From Corollary 1.3 it immediately follows the following fact
Corollary 1.4. Suppose M is a hypersurface of revolution in R™. Then all meridians are

minimal hypersurfaces. Moreover, every hypersurface, having at a point p the same tan-
gent plane as the meridian, coincides with this meridian.

§2 Universal estimation for boundary of volume minimizing hypersurfaces

Let B be a domain in the Euclidean space R™ with piecewise smooth boundary dB",
homeomorphic to Sn—l, and 0 an interior point for B™. We suppose that the domain B
is symmetric with respect to the point 0. Let X be a volume minimiiing hypersurface,
passing through 0. In this section we study the problem of finding a lower bound on

vol _,(XN&B), which depends only on B.
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Theorem 2.1. Let X be a (n—2)—connected volume minimizing hypersurface in B with
boundary X = XNJB. Suppose that X containg 0O as an isolated singularity, satisfying
the condition (1.1). Then XNéB containg a (n—3)—dimensional symmetric homeomorphic
sphere (i.e. a surface, symmetric with respect to 0 and homeomorphic to- Sn—3).

Proof. Denote by o : B — B the symmetry through the point 0, i.e. the map, sending
each point of B into its opposite point. Obviously, the hypersurface X’ = o(X) is also
minimizing, has boundary X’ = X’NdB and contains 0 as an isolated singularity of
type (1.1). First we prove that #XNJX’#0. Really, suppose not. Then XNX’ is con-
tained in the interior of X and X’. Hence, either X’ lies on one side of X or XNX’ is
a closed (n—2)—dimensional surface, serving as the common boundary of two domains in X
and X’ and containing 0 as an isolated singularity of type (1.1) of both X and X’.
Consequently, X=X’ by force Theorem 1.1 and therefore dX=8X’. The contradiction
means that dXNIX’ # ¢. Now we show that if X # X/, then they intersect each other
transversally. Really, if X and X’ have the common tangent plane at some common
point, then X=X’ by force of the boundary versal of the maximum principle (cf. [3]).
From the facts proved above it follows that either X=X’ or XNX’ consists of symmetric
(with respect to 0) surfaces, passing through 0 and homeomorphic to the disk p—2
with boundary on éB. It is easy to see that in both cases there exists a (n—3)—dimensional
symmetric sphere on #XNFX’. The proof is completed.

Let H be a symmetric (with respect to 0) integrand over hypersurfaces in 4B, i.e.
H(Y) = H(o(Y)) for any hypersurface Y in 8B.

Theorem 2.2. Let X be a (n—2)—connected yolume minimizing hypersurface in B with
boundary 4X = XN&B. Suppose that X containg 0 as an isolated singularity, satisfying
the condition (1.1). Then
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(2.1) H(XN4B) > ii}f H(Y),

where the infimum is taken over all (n—2)—dimensional symmetric (with respect to 0)
homeomorphic spheres Y on éB.

Proof. Since X is (n—2)—connected and B is homeomorphic to Sn_l, XN&B is homeo-
morphic to o2, According to Theorem 2.1 there is a (n—3)—dimensional symmetric
sphere 33_3 on XNJB. 516—3 divides XNJB into two homeomorphic (n—2)—dimen-
sional disks Y, and Y, such that ay 1= HY2 = 53_3. Since Sg_a is symmetric, i.e.

0(83*3) = Sg-—-3, the sets

=Y, Usn—s"(Yl) and Z, =Y, Usn—a"(Yfz)
0 0

are (n—2)—dimensional symmetric homeomorphic spheres on #B. Moreover, we have
Hence,

H(XN8B) = H(Y,) + B(Y,) = 5H(2,) + 38(Z,) > infH(Y),

where the infimum is taken over all (n—2)}—dimensional symmetric homeomorphic spheres

on &B. The proof is completed.

Consider now the projective space P(&B), obtained from the sphere B by identifying
opposite points. In this doing each (n—2)—dimensional symmetric homeomorphic sphere Y

on JB corresponds to a (n—2)—dimensional projective homeomorphic subspace Y in
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P(8B). By virtue of the symmetry of B the symmetric integrand H induces an inte-
grand B over hypersurfaces in P(JB) such that

(2.2) H(Y) = 2/(9).

In this way the minimization problem for the integrand H in the class of all (n—2)—dimen-
gional symmetric homeomorphic spheres in #B is reduced to the problem of minimizing

B in the class of all closed hypersurfaces in P(&B), realizing the non—trivial element

1 € H _o(P(dB);L,). For an elliptic integrand H the existence of H-minimizing solutions
¥ to the later problem was proved in [4], where ¥ are regarded as integral currents of
least mass. Consider the special case H = vol _,. In this case ¥ can be also regarded as
globally minimal compacta in the sense of [6]. As we proved above, there exists a
(n—2)—dimensional symmetric homeomorphic sphere (possibly with singularities) Y on
B with (n—2)—dimensional volume 2c, where c¢ is the least volume of an arbitrary
(n—2)—dimensional disk, spanning an arbitrary (n—3)—dimensional symmetric homeomor-
phic sphere 8B. In particular, Y minimizes the volume of (n—2)—dimensional disks, span-
ning an arbitrary (n—3)—dimensional symmetric homeomorphic sphere on Y. Hence,

Y\Y0 is & minimal surface and codim YO < 7, where YO denotes the set of singularities
of Y. Suppose now that X is a (n—2)—connected volume minimizing hypersurface in B,
having boundary X = XNJB and passing through 0 as an isolated singularity of type
(1.1). Then from (2.1) we obtain

(2.3) vol._,(XN4B) > 2c.
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§3 Universal lower bound on the volume of volume minimizing hypersurfaces

Given n—dimensional compact domaing Br, depending on a real parameter r and expand-
ing with growth of r: B ) B_, for r>r",B1=B,0(-ZB0 and dim B < n. Set

Cr e 8Br. Suppose p € Cr and let TpCr be the tangent plane to Cr at p. Denote by
H(p) the unit inward normal to Cr at p, directed into the domain B - Consider a fixed
(n—2)—connected volume minimizing hypersurface X in B, passing through 0 as an isola-
ted singularity of type (1.1). Since X is volume minimizing with boundary 4X on 4B, it
is not difficult to see that X intersects C_ transversally for almost all r € [0,1]. Fix such
a number r. Clearly, vol _(XNC ) < . Let p € XNC_. Excluding a set of (n—2)~dimen-
sional volume 0, we may suppose that X and Cr are locally regular about p and inter-
sect transversally. Let a(p) be the angle between hyperplanes TpX and T C. We de-
note by h(p;s) the length of the straightline segment, passing through p along the direc-
tion T(p) and bounded by C_ and C, (s < r). Assume that the limit

hip:s

h(p) = lim =&z

8=r

exists. Clearly, the (n—1)—dimensional volume of X is given by the following formula

1 h(p)dS
(3.1) voln__l(X)=J [ ‘[ af.—a(ﬁ-] dr + Y vol__,(XNC),
0 XNC r

r
where dSr denotes the volume element on XNC - Set

h(p)dS,
G (XNC) = r[ g
xnc

T
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H(XNC,) = '[ h(p)dS, -
xnc

r

Theorem 3.1. Suppose the domains B_ are gymmetric (0<r<1) andlet X bea
(n—2)—connected volume minimizing hypergurface in B with boundary on C1 = #B and
contain 0 as an isolated singularity, satisfying the condition (1.1). Then

1
(3.2) vol__,(X) 2 Iin{ H(Y,)dr,
0 Yr

where Y . [uns all (n—2)—dimensional gymmetric homeomorphic gpheres on Cr' Moreover,
if besides that X is orthogonal to G, at almost all points of X and for almost every

r €[0,1] xncr minimizes H_ in the class of all (n—2)—dimensional symmetric homeomor--
phic spheres on C_, then the equality in (3.2) holds.

Proof. From (3.1) and sin a(p) <1 it follows that

1 1
(3.3) vol__1(X) 2 JGI(XﬂCr)dr > IHI(XOCI)dr.
0 0

On the other hand, since B_ are symmetric, C_ and h(p) are symmetric too. Therefore
H_ are symmetric integrands and we may apply Theorem 2.2 to ]EIr and B - In this way

we obtain

(3.4) H(XNC,) 2 inf B(Y,),

T
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where the infimum in the right part is taken over all (n—2)—dimensional symmetric homeo-
morphic spheres Y on C_. Clearly, (3.2) follows from (3.3) and (3.4). Further, since X
is orthogonal to C_ at almost all points of X we have sin a(p) = 1 almost everywhere
on X, which implies

(3.5) G (XNC,) = B (XNC)),
(3.6) vol__,(XNC,) = 0

for almost all r, 0 <r < 1. Combining (3.1), (3.5) and (3.6) we obtain

1
(3.7) vol__,(X) = IHI(XnCr)dr.
0

Now, using (3.7) and the last assumption of the theorem H (XNC ) =inf H (Y )

completes the proof.

Consider some special situations. Given a piecewise smooth function { on R™ such that
theset B = {x € R™ : f(x) < r} is homeomorphic to n—dimensional ball for any 1 € (0,1).
Obviously, C = B = {x € R" : f(x) = r} is a piecewise smooth homeomorphic sphere.
Taking into account that grad f(x) is orthogonal to C_ at x, one can calculate easily
that h(x) = |grad f(x) |"'1 for any x € B,. Therefore

ds,
(3.8) H (XNC,) = r[ R
xNc

I
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Theorem 3.2. Assume that the function f is symmetric and positively homogeneous of de-
gree k (k <n). Let X be as in Theorem 3.1. Then
AY

1 .
(3.9) vol _,(X) Znu{(f H/(Y,),
1

where Y, runs all (n—2)—dimensional symmetric homeomorphic gpheres on Cl' More-
over, the equality holds if grad f is tangent to X almogt everywhere on X and for al-
most every r € [0,1] the gphere X; = (XNC )/r = {x/r:x € XNC_} minimizes H, in
the clags of all (n—2)—dimensional symmetric homeomorphic spheres on Cl'

Proof. Note that the domains B = {x: f(x) {r} are symmetric because { is a symme-

tric function. Since f is positively homogeneous, i.e. f(Ax) = Akf(x) (A>0), we have

(3.10) grad f(Ax) = L grad f(x)
and

=2 .ay
(3.11) ds =r""ds_,

where dSr and dSi denote the volume elements on XﬂCr and X; respectively.

Therefore,

ds

_ T
H,(XNC,) = '[ h(p)dS, = Y[ T
xne, xne,
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" 2ds! P lgs
L- rk_1|gradf(x)| - l/ [grad T(x]T
I r

Hence, we obtain
dS’
. —k—l
vol _o(X) 2 inf ( i J n

1 ;
1

where Yr rung all (n—2)—dimensional symmetric homeomorphic spheres. The second state-
ment follows immediately from Theorem 3.1 and the fact that grad f is orthogonal to level:

surfaces C r Thus, the proof is complete.

Suppose now that h(x) =h_ is constant on each level surface C_. Then

H (XNC.) = h_ vol _,(XNC)). Therefore, the following result is an immediate corollary of
Theorem 3.1.

Corollary 3.3. Assume that Br and X are as in Theorem 3.1. Then

1
(3.12) vol _,(X)2 J 1nf vol (Y )dr,
0 r

where the infimum is taken over all (n—2)—dimensional symmetric homeomorphic spheres
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on C.. If begides that X ig orthogonal to C_ at almost all points of X and for almost
every r € [0,1] the surface XN Cr is volume minimizing among all the (n—2)—dimensio-
nal symmetric spheres on Cr’ then the equality in (3.12) holds.

§4 Concrete examples

In this section we show several examples, where Theorem 3.2 and Corollary 3.3 enable us
to prove Fomenko’s conjecture mentioned in the introduction. We shall start by remarking

some intuitively obvious facts.

Suppose N CR" is half of hyperplane with boundary, a (n—2)—dimensional plane ).
Through each point p € R™ we draw the two—dimensional plane T that is the ortho-
gonal complement to 2 5 intersects N at an unique point 8(p). Denote by

B:R" — N the map, sending each point p into B(p).

Proposition 4.1. a) The mapping B : R — N is a contracting map, i.e.

dist(8(p),B(q)) < dist(p,q) for any p,q € R".

b) Let C be a hypersurface of revolution with axis z in R". Then the restriction of 8 to
C is a contracting map of C into CNN.

c) The yolume of gvery figurein C does not increase under 8.

« , n » « e
Proof. Choose orthonormal coordinates Xy Koy Xy X 10X in R™ with origin .0 € 2
such that X Koy X _o BI€ orthonormal coordinates of 2 Consider arbitrary points

P = (py:Py,--P,) and @ =(qy,99,--q,) in R™. Clearly,
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B(p) = (pl’pzr")pn_z: ¢pn_l + pnlo)

2, 2
B(q) = (q;,99,-9,_9, ¥ay_; +95,0) -

We have
n n—2
. 2 2 2 2
dis(p,a)’ =Y (p—a)’= Y ()% + (o, y-a, )+ (p,—q,)°
i=1 i=1
n—2
. 2 2 2
dist(8(p),8(a))2 = ¥ (pay)® + (¥b7_,+0% ~ vai_,+a2)%.
i=1
Therefore,

dist(p,a)” - dist(8(p).8(a))% = (p,_; —a,_;)° + (o, — ) -

) 7 T 3.2 2 2 2, 2
(‘/pn—l + Py~ 1‘/qn—l'l'qn) =Pp1t91~ 21)n-—lqn—l'*' Pptqy—

2 2 2 2 2 2y 2 2
—2p,ay= (Py g + Pp) — (9 y + ap) + 2¥(pp_y+pp)ay 1 +4y)

R Ny R
= 2[¥(py_;+pp Na;_;+a,)P, 19, ;P a,)])

On the other hand,
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2 2., 2 2 2 2 2
(Pp_y Pyt )Py _19,_;+P 4 ) =P, a3+

2 2, .22 22 2 2 2 2 _
pn—lqn'H)nqn—l"’pnqn_pn—lqn—l_pnq11"2pn—lqn—lpnqn

2 2,22 : 2
_pn—lqn+pnqn—1-2pn—1qn—1pnqn - (pn—lqn—pnqn—l) 20.

Consequently, dist(p,q) 2 dist(8(p),B(q)), proving the statement a) of the proposition.
Consider now an arbitrary curve 7 in C. Since C is a hypersurface of revolution, it is
clear that the image B(7) of 7 under O is contained in CNN. Combining the statement
a) with the fact that 4 and 6(7) can be approximated by broken lines with length, arbi-

trarily close to the length of 7 and B(7) respectively, we can prove the statement b).

Finally, the statement c) follows from b). Thus, the proof is completed.

From Proposition 4.1 it immediately follows

Corollary 4.2. Every meridian on a hypersurface of reyolution is volume minimizing.

Let B is a convex domain in R™. Consider the "concave map" 7 : IRn\B —+ 8B, carrying
each point p € IRn\B into the base of the perpendicular, drawn from the point p onto

OB. It is easy to see that the map o is defined uniquely, even for case when, B is just

piecewise smooth.
Proposition 4.3 a) For any points p,q € R™\B the following inequality holds

dist(p,q) 2 dist(e(p),o(q))
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b) The yolume of every figurein R™\B does not increase under o.

Proof. First of all we note a simple property of the "concave map" ¢, namely,
(4.1) distmn(p,Q) 2 distmn(«f(p),o(Q))

for any points p,q € [Rn\B. Consider now the image o{[p,q]) of the line segment [p,q],
joining p and q, and an arbitrary broken line %, approximating o{[p,q]). The curve 7
consists of line segments [z:v-(pi),av(pi +1)], 0 <i< m-1, where Pg:Pys-Ppy € [p,q), py=9,
P, =4 According to (4.1) we have

m—1 m—1

length(7) = ) dist(o(p;),0(p;,;)) S ) dist(p;p;, ;) = dist(p,q).
i=0 i=0

Hence, we obtain: length (o{[p,q])) < dist(p,q). Consequently,

dist gp(o(p),o(q)) < length(o([p,q])) < dist(p,q).

In this way the statement a} has been proved. The statement b) immediately follows from

a). The proof is completed.

Corollary 4.4. Suppose B ig a convex domain in an, r half a hyperplane with boundary
Y . Let the map B be defined as in Proposition 4.1 and assume that 8(4B) C #\B. Then
x16B is volume minimizing in 4B.
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Proof. Assume that X is an arbitrary hypersurface in B with boundary 4X C xN14B.
Denote by 7 the hyperplane, containing . Since B is convex, the intersection B is
also convex. Let X’ denote the image (with multiplicity) of X under B. Clearly,

dX’ = B(X) = X. Hence, vol | _,(X’) < vol _,(X) by force of Proposition 4.1. Con-
sider "concave map" o:7\B — 719B and denote by #’ the part of x(8B, bounded by
dX, and by X" the image (with multiplicity) of X’ under ¢. Clearly, X" covers the

whole Lop Now, applying Proposition 4.3 we have
vol,_o(7") Svol _o(X") Svol _o(X”).
Therefore, vol | _o(7;) < vol _5(X), completing the proof.

Example 1. Consider a n—dimensional rectangular parallelepiped B with centre 0 and
edges a; <3, <..<a . Denoteby F and F’ the faces of B that are perpendicular to
the longest edge a . Let M be the central hyperplane, parallel to the faces F and F’.
Set 8= MNJB. Obviously, B is the boundary of a (n—1)—dimensional rectangular parall-
elepiped with centre 0 and edges a, < 2, <. a,_;- Suppose 7 isa (n—2)—dimensional
symmetric homeomorphic sphere in 8B. Since 7y and S8 are both symmetric spheres,
their intersection 9NA contains a (n—3)—dimensional symmetric sphere A, dividing each
of 7 and £ into two symmetric parts: y = M U To 8= By U 52,

07y = 879 = 0B, = 88y = A, vol_o(7{) = Vol _5(75), vol,_o(8;) = vol _o(B,).
Clearly, B, and B, are volume minimizing with respect to the boundary A. Hence,
vol._o(79) 2 vol__o(B), vol _5(75) 2 vol, _o(Bs,). Consequently, vol,_,(7) 2 vol _»(B).

Thus, we have
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(4.2) vol_o(8) = if;f vol _o(7),

where the infimum is taken over all (n—2)—dimensional symmetric homeomorphic spheres

on Cl= dB.

At a vertex P of the parallelepiped we consider the n—dimensional cube with edge 1 /2a.1,

having a vertex at P and faces, parallel to the faces of B. Denote by PQ its main diago-

a 8a

nal, passing through P. We have |PQ| = nt i Let S € PQ, QS| = = +&

(0 €8 £ 1). Denote by B, the rectangular parallelepiped with centre 0, that has a vertex
at S and faces, parallel to the faces of B.

Clearly, the domains B_ (0 <5< 1) satisfy the condition of Corollary 3.3. Moreover,
B1 =B, B0 is a (n—1)—dimensional rectangular parallelepiped, that has centre 0 and
edges P S N and lies on the central hyperplane, perpendicular to the shortest
edge a,. Set B = MNIB, (0 <s<1). Similarly to (4.2) one can get the equality

(4.3) vol,_o(B,) = il’;f vol,_o(7),

where 7 runs all (n—2)—dimensional symmetric homeomorphic spheres on C g = B g On
the other hand, by a simple calculation we have h(x) = 31 /9 for any x € B. Now from
(3.12) and (4.3) it follows that

(4.4) vol _,(XNB) 2 ;l vol _,(B,)ds

O Sy

=vol _,(MNB),
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where X is an arbitrary (n—2)—connected volume minimizing hypersurface in B with
boundary on §B, which contains 0 as an isolated singularity, satisfying the condition
(1.1). Thus, in this case Fomenko’s conjecture is true.

Example 2. Consider two—dimensional ellipsoids B r in IR3, given by the equations

2 2 2
f=1(xy32) =35+ %2' +5-1r"=0 (alb<c, 0<r<1)
a (o .

Assume, at first, that b =c,i.e. B_ are ellipsoids of revolution. Denote by M and M’
the central hyperplanes, given by the equations z =0 and x = 0 respectively. Clearly,
M’ N 8B, is a circle with radius b. Suppose 7 is a symmetric curve in dB,. The inter-
section (M’ N&B,)N7y contains antipodal points {P,Q}. Denote by = half a hyperplane,
passing through P and Q and perpendicular to M’. Let B be the map, defined as in
Proposition 4.1. It is easy to see that 8(B,) C r\Bl. Therefore, #16B, is length mini-
mizing in 6B1 by force of Corollary 4.4. Hence,

length (7) 2 2length(#1dB,) = length(MN 4B, ). Consequently, we have

(4.5) length(MNJB, ) = inf length(7),
7

where 7 is an arbitrary symmetric curve in BBl. Without lost generality we can assume
that = is contained in the coordinate plane M. Set a; = MNJB,N{x>0,y<0},

ay = MﬂBBlﬂ{x>0,y>0} and denote by N (respectively, 72) the connected component
of M{x>0,y<0} (respectively, /M{x>0,y>0}), containing the point (0,—1,0) (respec-
tively, (0,1,0)). Fist of all we note that length(7y,) 2 length(a, ). Really, suppose not. One
can consider the curve 7", consisting of 7, and its image under the symmetry with res-

pect to the coordinate plane y=0. Obviously,
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length (7”) 2 2 length(a,) = length (#19B,) and this is contradict to the fact that
rﬂ&Bl is volume minimizing. We define the mapping 7: a; — 7; by the following
requirement: for any P € ay the length of the part of a between (0,-1,0) and P and
the length of the part of 7, between (0,-1,0) and 7(P) are equal.

Lemmg 4.5. For any P € a we have

(4.6) | gradi(P)| 2 | gradi(~(P))|

Proof. We have

2x 2y 2z
gradf = (55, ~%,~5).
P
Therefore,

4.7 adfl“=4%+ L +2
(4.7) | grad {| (;( ly;‘ ;{)

On the other hand, from the statement c) of Proposition 4.1 it follows that the x—coordin-
ate of 7(p) does not exceed the x—coordinate of P. Combining this fact with (4.7) proves
(4.6). Now taking (4.6) into account, we obtain
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By = | rgraterr =] TerdtORT
ay a
< | ettt = f M%HU’TF

ay
ds(P _
SJ "_S—T%T[gra D —H1(71)
N

Similarly, one can get Hl(a2) < H1(72). Consequently,

(4.8) Hl(‘l‘naBl) < H1(01)+H1(a2) < Hl( 71) + H1(72)
< %Hl(')’)

for any symmetric curve 7 in 8B1. By using Theorem 3.2, we can conclude that
(4.9) vol,(XNB) 2 vol,(MNB) ,

where X is an arbitrary simply connected volume minimizing hypersurfacein B with

boundary on &B, which contains 0 as an isolated singularity, satisfying the condition

(1.1).

Finally, since every ellipsoid with axes a,b,c (aSb<c) contains an ellipsoid of revolution
with axes a,b,b, the inequality (4.9) is also true in general case of an arbitrary two—dimen-

sional ellipsoid. Thus, in this case Fomenko’s conjecture is true.
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