Projecting surfaces into \mathbb{P}^{4}. by

Ingrid Kosarew

December 1990

Max-Planck-Institut fuer Mathematik

Gottfried-Claren-Strasse 26

5300 Bonn 3

FEDERAL REPUBLIC of GERMANY

Hhrsam d． 18 Apnil 1923
Therstaja str，Pimenoirsk per． $8,+3$
Hocigoehter Herr Profersor：
Schon，seit reeht langer Zeit stroton mir danach，Jhnan die orgeffire， diewn un der om，Ohnen geccheffenne Theone der topulagischen Daiume geffrien hader，mituteign．Wr，erfaider tins die Hoffring aussuisprechen， dass，$\delta_{\text {a }}$ die Gefalligkit haben verden，uns zu geitatter，hier einge

 stelleung du Dedoxton der Leitschift y Hendamenta Hathematioze vo uns cinalten eruvinscht hat
Das Wesch der Komparten topulogisither Roucme ut das erst，ins inio ciner swtematischen Untraichung unterwerfen wolfur y dieser Hinsicht hatten mor zueist dee sogenannten Glkompasten Rasime heraissuheben，die duifih： ancejede der chei fugenden ogquivalenter：Bigenschaften chanatersiert menden． Xönen：

Y \＆ne jede abnetimende vooblgerdnete．Henge vichtleerer abgesch bieno Hergen besttst cinen nichtleeren dardh schin ts
20 Bine jede unendeiche Henge み2－Besitst werigtous cinen volistande gen Haukungrnantt ξ（ di dase $D\left(\right.$ Dri，$\left.U_{i}\right)$ dieseloe Machtigntitin
It hat，welche auch die Alomgelung U_{ξ} wn ξ suin nige）
3．Der verscha－te Borelsche Satz（vgé Sati II，S 272 ）Jhergfoudrine） Die Bixampartu Raiume Besitien mehrere Bementinswerte Bigensihaften，sonves menyenthimetscaser，aos topooiogischer Nator．Jnsbesondere sei auf Jolgendes hingonment Jede perfente Henge besitst daselsit dor Hachtigkit $\geqslant 2$ Sic Buctot inss Romider genau die höchtigteit $2^{1 / 0}$ wern in Raume jeder Fein G_{r}＂̈t Hé Btathe Bedinging（immer in Bixsmpacter Röumen），dee ceinesurgos dan． Atriome．$\Gamma^{\prime \prime}$（IIT：Abxihlianautsaxiom）aque valant ist，wht aber au dam 6 ath folit，hat zur yolge das uxiorn E＂sre genigt um mierove keachigueit． fragen zu eridigeri； $2 B$ B last sech，unter der erwaikuten Bodinging，

Contents.

0 . Introduction

1. Background material
2. The main theorem

References

1

	Automorphic Forms, Representation Theory, and Arithmetic Tats Institute of Fundamental Research Proceedings Bombay Colloquium 1979 Berlin Heidelberg New York 1981	
yah, Wall	Cohomology of groups in [C-F] S. 94-115	weeffixienten
evich, afarevich	Zablentheorie Based ...	
cela, Frölich (ed.)	Algebraic Number Theory Proceedings of an Instructional Conference Washington 1967	
to Shalit	Iwasawa Thoory of Eliptic Curvee with Complex Multiplication Orlando 1987	
Harder	On the Cohomology of Discrete Arithmetically Defined Groupe Proceedings of the Int. Colloquium on Discrete Subgroups of Lie Groupe and Application to Moduli, Bombay 1973 Oxford University Prese 1975 S. 129-160	n!
Barder	Period Integrals of Cohomology Classes which are Represented by Eisenstein Series in $[A-F]$ S. $41-115$	
Harder	Period Intograls of Eisenstein Cohomology Classes and Special Values of some L-Functions in [Ko] S. 103-142	
Harder	Eisenstein Cohomology of Arithmetic Groups The Case $G l_{2}$ Inv. Math. 89 (1987) S. 37-118	
Jarder	Kohomologie arithmetischer Gruppen Vorlesung Universităt Bonn SS 87 -WS 87/88 Typoskript	
Iurwitz	Über die Entwicklungakoeffixienten der Iemniskatigchen Funktionen Math. Ann. 51 (1899) [Math. Werke Bd.II S. 342-373]	
\therefore Gaub	Theoria Reariduorum Biquadraticorum, Commentatio prima Göttinger Nachrichten 1828 [Werke Bd.II S. 90]	
<atz	The Congruencea of Clausen - von Staudt and Kummer for Bernoulli - - Hurwitz Numbers Math. Ann. 216 (1975) S. 1-4	
Kats	p-adic Interpolation of Real Analytic Eisenstein Series: Annala of Math. 104 (1976) S. 459-571	

0. Introduction.

In this note we want to deal with projections of smooth surfaces in $\mathbb{P}^{5}\left(=\mathbb{P}^{5}(\mathbb{C})\right)$ to \mathbb{P}^{4}. First of all we recall the following classical result, which was proved by F. Severi in 1901 (cf. [Se]).

Theorem, Let $Y \subset \mathbb{P}^{5}$ be a smooth, connected, non-degenerate surface. Then the secant variety of $Y, \operatorname{Sec}(Y)$, equals \mathbb{P}^{5}, unless Y is the Veronese surface.

Because the projection of \mathbb{P}^{5} to \mathbb{P}^{4} with center $y \in \mathbb{P}^{5} \backslash Y$ gives rise to a closed embedding $\pi_{y}: Y \rightarrow \mathbb{P}^{4}$ iff y doesn't lie on a secant line of Y, this means that no smooth surface in \mathbb{P}^{5} except the Veronese surface can be projected to a smooth surface in \mathbb{P}^{4}.

In this paper we want to study projections with center on the surface, i.e. we consider the following situation:

Let $\pi_{y}: \mathbb{P}^{5-} \rightarrow \mathbb{P}^{4}$ be the projection from a point $y \in Y$. Then π_{y} induces a morphism $Y^{\wedge}(y) \rightarrow \mathbb{P}^{4}$ (which we also denote by π_{y}) from the blow-up $Y^{\wedge}(y)$ of Y in y to \mathbb{P}^{4}.

A natural question is now : when is $\pi_{y}: Y^{\wedge}(y) \rightarrow \mathbb{P}^{4}$ a closed embedding?
For this we have the following criterion which is quite easy to verify.

Lemma $\pi_{y}: Y^{\wedge}(y) \rightarrow \mathbb{P}^{4}$ is a closed embedding if and only if y does not lie on a trisecant of Y.

This means that a smooth surface $Y \subset \mathbb{P}^{5}$ can be projected (with center on Y) to a smooth surface in \mathbb{P}^{4} iff $\operatorname{Trisec}(Y) \cap Y \neq Y$.

The purpose of this note is to give a proof of the following conjecture of A. Van de Ven, which is in some sense an analogue to Severi's theorem.

Conjecture. There exist only finitely many families of smooth surfaces Y in \mathbb{P}^{5} with $\operatorname{Trisec}(Y) \cap Y \neq Y$.

Besides the classical (in-)equalities (Severi's double point formula, Miyaoka-Yau inequality, Hodge index theorem,...) the main tool in our proof is a formula of P. Le Barz. He calculates there the degree of a certain zero cycle, which is in appropriate geometric situations just the number of trisecants of Y intersecting a
general plane in $\mathbb{P} 5$, as an universal polynomial in the degree and the Chern numbers of Y.
We prove that in our case the degree of this cycle has the right geometric meaning and that in fact it is zero.
This additional equality allows us to bound the degree of Y under the assumption. Trisec $(Y) \cap Y \neq Y$. Actually it turns out that the degree of Y has to be smaller or equal to 11 , and with the help of the list of smooth surfaces in \mathbb{P}^{4} up to degree 10 (cf. Okonek, Ionescu, Decker /Schreyer, Aure, Ranestad) we give here a complete list of all the smooth surfaces in \mathbb{P}^{4} which are projections in the above sense.

In the first part of this paper we essentially state the result of P. Le Barz (without proof), the second section is devoted to the proof of our main theorem.

Acknowledgements. This result is part of my Ph.D. thesis at the University of Bonn. I would like to thank my advisor Christian Okonek for suggesting this research, following its development, and for many stimulating discussions. I am grateful to F.-O. Schreyer, who pointed out to me a mistake in a previous version. It is a pleasure for me to acknowledge my indebtness to MPI in Bonn for providing an excellent environment for my work.

1. Background material.

In this section we want to recall some basic definitions and state a result of P. Le Barz, which is essential for the proof of our main theorem.

Throughout the paper Y shall be a smooth, connected, nondegenerate algebraic surface in $\mathbb{P}^{5}\left(=\mathbb{P}^{5}(\mathbb{C})\right.$), and we shall denote by K a canonical divisor and by H a hyperplane section.

By Hilb ${ }^{3} \mathbb{P}^{5}$, resp. Hilb ${ }^{3}$ Y, we denote the Hilbert scheme of zero dimensional subschemes of \mathbb{P}^{5}, respectively Y, of length three ("3-tuples").
Hilb $_{c}{ }^{3} \mathbb{P}^{5}$ is the open subset of Hilb $^{3} \mathbb{P}^{5}$ given by the 3 -tuples lying (locally around every point of the support) on a smooth curve, Hilb $_{c}{ }^{3} Y:=\operatorname{Hilb}^{3} Y \times{ }_{\text {Hilb }} \mathbb{P}^{5} \operatorname{Hilb}_{c}{ }^{3} \mathbb{P}^{5}$.
> (1.1) Remark Hilb $_{c}{ }^{3} \mathbb{P}^{5}$ is smooth and has dimension 15 (compare [LB] ${ }_{1}$).

Al ${ }^{3} \mathbb{P} 5$ is the subvariety given by these elements of Hilb $_{c}{ }^{3} \mathbb{P}^{5}$, which are subscheme of some line in \mathbb{P}^{5}.

Abstract

(1.2) Remark a) $\mathrm{Al}^{3} \mathrm{P}^{5}$ is a smooth subvariety of $\mathrm{Hilb}_{c}{ }^{3} \mathbb{P}^{5}$, b) one has a canonical fibration $a: A^{3} \mathbb{P}^{5} \rightarrow \mathbb{G}\left(1, \mathbb{P}^{5}\right)(:=$ Grassmann manifold of lines in \mathbb{P}^{5}), where an element of $\mathrm{Al}^{3} \mathbb{P}^{5}$ is mapped to the line on which it lies, c) $\mathrm{Al}^{3} \mathrm{P}^{5}$ is projective.

We denote by $\left[\mathrm{Hilb}_{\mathrm{c}}{ }^{3} \mathrm{Y}\right]$ the cycle (of codimension 9) in the Chowring $\mathrm{Ch}\left(\mathrm{Hilb}_{\mathrm{c}}{ }^{3}{ }^{\mathrm{P}}\right.$) associated to the irreducible and smooth subscheme $\operatorname{Hilb}_{c}{ }^{3} Y \subset \operatorname{Hilb}_{c}{ }^{3} \mathbb{P} 5$.

Therefore, by considering the canonical inclusion i: $A^{3} \mathbb{P} 5 \rightarrow$ Hilb $_{c}{ }^{3} \mathbb{P}^{5}$ we get a cycle $\mathrm{i}^{*}\left[\mathrm{Hilb}_{c}{ }^{3} \mathrm{Y}\right] \in \operatorname{Ch}^{9}\left(\mathrm{Al}^{3} \mathbb{P} 5\right)$. We call $\mathrm{i}^{*}\left[\mathrm{Hilb}_{c}{ }^{3} \mathrm{Y}\right]$ the trisecant cycle in $\mathrm{Al}^{3} \mathbb{P}^{5}$.

Let $\sigma \in \operatorname{Ch}^{2}\left(\mathbb{G}\left(1, \mathbb{P}^{5}\right)\right)$ be the Schubert cycle of lines in $\mathbb{P} 5$, which intersect a fixed plane in \mathbb{P}^{5}.

With this set-up we are now able to formulate the theorem of P. Le Barz.
(1.3) Theorem ($[\mathrm{LB}]_{2}$, Theoreme 3). Let $Y \subset \mathbb{P} 5$ be a smooth surface of degree n, δ the number of improper double points of a generic projection of Y to \mathbb{P}^{4}. Furthermore let d be the degree of the double curve and t the number of triple points of a generic projection of Y to \mathbb{P}^{3}. Then the degree of the zero cycle

$$
\mathrm{a}^{*} \sigma \cdot \mathrm{i} *\left[\operatorname{Hilb}_{c}^{3} \mathrm{Y}\right]
$$

in $C h \cdot\left(A l^{3} P^{5}\right)$ is

$$
n(n-1)(n-2) / 6+2 t+(n-2)(8-d)
$$

(1.4) Remark a) If one knows by geometric reasons that there exist only finitely many trisecants of Y intersecting a general plane in $\mathbb{P} 5$, then this number counted with appropriate multiplicities, is equal to $n(n-1)(n-2) / 6+2 t+(n-2)(\delta-d)$.
b) One can express the invariants t, δ, d of Y in terms of $H, K, c_{2}(Y)$ in the following way:

$$
\begin{aligned}
& d=1 / 2(n(n-4)-H \cdot K), \\
& \delta=1 / 2\left(n(n-10)+c_{2}-K^{2}-5 H . K\right),
\end{aligned}
$$

$$
t=1 / 6\left(n\left(n^{2}-12 n+44\right)+4 K^{2}-2 c_{2}-3 H \cdot K(n-8)\right),
$$

(cf. [LB] $]_{2}$, Annexe 6).

Finally we want to give a definition of the embedded trisecant variety of Y.
For this we denote by Z the closure of $a\left(\mathrm{Al}^{3} Y\right)$ in $\mathbb{G}\left(1, \mathbb{P}^{5}\right)$, where $\mathrm{Al}^{3} \mathrm{Y}:=\mathrm{Al}^{3} \mathbb{P}^{5} \mathrm{x} \operatorname{Hilb}_{\mathrm{c}}{ }^{3} \mathbb{P}^{5} \mathrm{Hilb}_{c}{ }^{3} Y$. We consider the flag manifold $F:=\left\{(x, L) \in \mathbb{P}^{5} x \mathbb{G}\left(1, \mathbb{P}^{5}\right): x \in L\right\}$ with the two projections

$$
\begin{aligned}
& \mathrm{p}: F \rightarrow \mathbb{G}\left(1, \mathbb{P}^{5}\right) \\
& \mathrm{q}: F \rightarrow \mathbb{P}^{5} .
\end{aligned}
$$

(1,5) Definition (" embedded trisecant variety").
$\operatorname{Trisec}(Y):=q\left(p^{-1}(Z)\right) \subset \mathbb{P}^{5}$.

Obviously as a set $\operatorname{Trisec}(Y)$ is just the union of all trisecants of Y, where a trisecant is either a line contained in Y or a line in \mathbb{P}^{5} which intersects Y in a zero dimensional subscheme of length at least three.

2. The main theorem.

This section is devoted to formulate and prove our main result. For this let $Y \subset \mathbb{P}^{5}$ as usual be a smooth (connected, nondegenerate) surface. We consider the diagram:

\[

\]

where π_{y} is the projection of \mathbb{P}^{5} to \mathbb{P}^{4} with center y and σ is the blow-up of Y in y. Then we have the following:
(2.1) Lemma. $\pi_{y}: Y^{\wedge}(y) \rightarrow \mathbb{P}^{4}$ is a closed embedding if and only if y does not lie on a trisecant line of Y.

Proof Let H be a hyperplane section of Y, then $\pi_{y}: Y^{\wedge}(y) \rightarrow \mathbb{P}^{4}$ is given by the linear system $|\mathrm{H}-\mathrm{y}|$. Using [Ha] II, 7.8.2 one checks easily that $|H-y|$ gives a closed embedding iff y is not an element of Trisec(Y). Q.E.D.

Now we state our main result.
(2.2) Theorem, Let $Y \subset \mathbb{P} 5$ be a smooth (connected, nondegenerate) surface with $\operatorname{Trisec}(Y) \cap Y \neq Y$. Then the degree of Y is smaller or equal to 11.

As a consequence we get the conjecture of A. Van de Ven.
(2.3) Corollary There exist only finitely many families of smooth surfaces $Y \subset \mathbb{P} 5$ with $\operatorname{Trisec}(Y) \cap Y \neq Y$.

Or equivalently There exist only finitely many families of smooth surfaces in \mathbb{P}^{4} which are obtained by projection (in the above sense).

Before giving a proof of theorem (2.2) we need some auxiliary results.
(2.4) Remark Let Y be as in (2.2), K a canonical divisor of Y, H a hyperplane section and $e=e(Y)$ the topological Euler characteristic of Y. Then

$$
K^{2}-e=n^{2}-12 n-5 H \cdot K+8,
$$

where $n:=\operatorname{deg} Y$.
Proof. We choose a point $y \in Y$ which does not lie on a trisecant. Then $\pi_{y}: Y^{\wedge}(y) \cong Y^{\prime} \subset \mathbb{P}^{4}$ is a closed embedding. Obviously we have then for the hyperplane section and canonical divisor of Y^{\prime} :

$$
\begin{aligned}
& H^{\prime}=H-E, \\
& \left.K^{\prime}=K+E \quad \text { (where } E:=\sigma^{-1}(y)\right),
\end{aligned}
$$

therefore:

$$
\begin{aligned}
& \mathrm{n}^{\prime}:=\operatorname{deg} \mathrm{Y}^{\prime}=\mathrm{n}-1 \\
& \mathrm{~K}^{\prime 2}=\mathrm{K}^{2}-1 \\
& \mathrm{H}^{\prime} \cdot \mathrm{K}^{\prime}=\mathrm{H} \cdot \mathrm{~K}+1
\end{aligned}
$$

By Severi's double point formula for $Y^{\prime} \subset \mathbb{P}^{4}$ (cf. [Ha], Appendix A, 4.1.3) we get:

$$
\begin{aligned}
0 & =n^{\prime 2}-10 n^{\prime}-5 H^{\prime} \cdot K^{\prime}-2 K^{\prime 2}+12\left(1+p_{a}\left(Y^{\prime}\right)\right)= \\
& =(n-1)^{2}-10(n-1)-5(H \cdot K+1)-2\left(K^{2}-1\right)+12\left(1+p_{a}\left(Y^{\prime}\right)\right) \\
& =n^{2}-12 n-5 H \cdot K+8-2 K^{2}+K^{2}+e,
\end{aligned}
$$

which implies the assertion. Q.E.D.
(2,5) Lemma Let $Y \subset \mathbb{P} 5$ be a smooth surface with $\operatorname{Trisec}(Y) \cap Y \neq Y$. Then the following holds (with the same notation as in (1.3):

$$
\begin{aligned}
& n(n-1)(n-2) / 6+2 t+(n-2)(8-d)= \\
= & 1 / 6\left(n^{2}-18 n-3 n H \cdot K+22 H \cdot K+4\left(K^{2}+20\right)\right) .
\end{aligned}
$$

Proof. This is just a straightforward calculation using (1.4)b) and (2.4). Q.E.D.

We are now going to prove that the degree of the zero cycle in (1.3) is in fact zero (under the assumption Trisec (Y) $\cap Y \neq Y$). By (1.4)a) we have to verify that for a general plane $P \subset \mathbb{P}^{5}$ it holds: $\operatorname{Trisec}(Y) \cap P=\varnothing$, which is equivalent to the fact that the dimension of $\operatorname{Trisec}(\mathrm{Y})$ is smaller or equal to two.
(2.6) Proposition Let $Y \subset \mathbb{P} 5$ be a smooth surface with $\operatorname{Trisec}(Y) \cap Y \neq Y$. Then every irreducible component of Trisec (Y) has dimension smaller or equal to two.

Proof. Because $\operatorname{Trisec}(Y) \cap Y \neq Y$ we see that $\operatorname{Trisec}(Y) \cap Y=: C$ has dimension smaller or equal to one. Let $C=U_{1 s i s r} C_{i} U U_{1 s j s s}\left\{x_{j}\right\}$ be the decomposition of C in its irreducible components.
Assume that there exists an irreducible component T of Trisec (Y) (cf. (1.5)) with $\operatorname{dim} T=3$. Then we have the following possibilities for T :

1) $T=U_{x} \in C_{i} T_{X} Y$, where C_{i} is an irreducible component of C and each of these trisecants is a tangent line at $x \in C_{i}$ meeting Y in a third point. Since dimT = 3, this third point is not fixed. The union of these points must then be an irreducible component $C_{j}(j \neq i)$ of C.
2) $T=U_{x} \in C_{i} T_{X} Y$, where C_{i} is an irreducible component of C and every tangent line in each $T_{X} Y$ meets Y in x of order at least three.
3) $T=\operatorname{Sec}\left(C_{i}\right)$, where C_{i} is a reduced, irreducible component of C, which is not contained in a plane.
4) $T=C_{i} * C_{j}$, where C_{i}, C_{j} are reduced, irreducible components of C, and $C_{i} \cup C_{j}$ is not contained in a plane.

We are going to exclude step by step all these possibilities.

1) Note that for all $x \in C_{i}$ it holds $C_{j} \subset T_{x} Y$. Therefore C_{j} must be a line, because otherwise $T_{X} Y$ would be an unique plane for all $x \in C_{i}$ contradicting $\operatorname{dim} T=3$. We state the following

Lemma Let $C \subset \mathbb{P} n$ be an irreducible, reduced curve. If there exists a line $L \subset \mathbb{P}^{n}$, s. th. each tangent line of C meets L, then C must be a plane curve.

Proof Let t be a local parameter of C, and $v(t)$ a local lift to \mathbb{C}^{n+1}. Furthermore let $V \subset \mathbb{C} n+1$ be the rank 2 vector subspace, such that $L=\mathbb{P}(V)$. Then setting $w(t)=p(v(t))$, where $p: \mathbb{C}^{n+1} \rightarrow$ $\mathbb{C}^{n+1 / V}$ is the natural projection, we have that $w(t)$ and $w^{\prime}(t)$ are always proportional, whence $w(t)$ is constant. Q.E.D.

From the proof of the previous lemma we get that C_{i} is contained in a plane π containing the line C_{j}. But then $T_{X} Y=\pi$ for all $x \in C_{i}$, since $T_{X} Y$ is the span of C_{j} and the tangent line to C_{i} at x, which again contradicts $\operatorname{dim} T=3$.
2) We consider the Gauss map

$$
\varphi: Y \rightarrow \mathbb{G}\left(2, \mathbb{P}^{5}\right), \quad y \longmapsto T_{y} Y .
$$

It is easy to verify that $(\mathrm{d} \varphi)_{y}=0$ for a point $y \in Y$ where every tangent line has contact of order at least three and so φ / C_{i} is constant. Therefore also in this case the dimension of T must be smaller than three.

The cases 3), 4) can be treated simultaneously. The argument we use is the same as in [A-C-G-H] p. 110.
$T=\operatorname{Sec}\left(C_{i}\right)\left(r \operatorname{esp} . C_{i} * C_{j}\right)$, so for $p, q \in C_{i}$ (resp. $\left.p \in C_{i}, q \in C_{j}\right)$ the line $p * q$ meets C in a third point $v=u(p, q)$. After choosing appropriate local parameters s, t, u around p, q, v and viewing $p(s)$, $q(t), v(u)$ as functions with values in \mathbb{C}^{6}, we can assume:

$$
p(s) \wedge q(t) \wedge v(u(s, t)) \equiv 0
$$

Differentiation with respect to s and t gives:

$$
\begin{aligned}
& p^{\prime}(s) \wedge q(t) \wedge v(u(s, t))+p(s) \wedge q(t) \wedge v^{\prime}(u(s, t))(\partial u / \partial s)(s, t) \equiv 0 \\
& p(s) \wedge q^{\prime}(t) \wedge v(u(s, t))+p(s) \wedge q(t) \wedge v^{\prime}(u(s, t))(\partial u / \partial t)(s, t) \equiv 0
\end{aligned}
$$

Since $\operatorname{dim} T=3$, it is clear that $\partial u / \partial s$ and $\partial u / \partial t$ are not identically zero. Hence:

$$
p^{\prime} \wedge q \wedge v=\lambda\left(p \wedge q^{\prime} \wedge v\right)
$$

with $\lambda \neq 0$, which implies that $p, p^{\prime}, q, q^{\prime}$ lie in $a \mathbb{C}^{3}$. So we have shown that any two tangent lines of C_{i} (resp. a tangent line of C_{i} and a tangent line of C_{j} always meet in a point. Because C_{i} (resp. $C_{i} \cup C_{j}$) is not contained in a plane this point must be the same for all tangents (in fact, if $1, l^{\prime}$ are tangent lines of C_{i}, L is a tangent line of $C_{i}\left(\right.$ resp. $\left.C_{j}\right)$, then if l^{\prime} does not pass through $1 \cap L$, it is contained in the plane $1 * L$). Projection from this point (we call it c) in \mathbb{P}^{4} gives a map

$$
f: C_{i} \backslash\{c\}\left(\operatorname{resp} . C_{i} \cup C_{j} \backslash\{c\}\right) \rightarrow \mathbb{P}^{4}
$$

with df $=0$ and so C_{i} must be a line containing c (resp. $C_{i} \cup C_{j}$ must be the union of two lines through c) which is a contradiction.

Alltogether we have shown that the dimension of T must be strictly smaller than three. Q.E.D.
(2.7) Corollary Let $Y \subset \mathbb{P}^{5}$ be as in (2.6). Then

$$
n^{2}-18 n-3 n H \cdot K+22 H \cdot K+4\left(K^{2}+20\right)=0
$$

where n is again the degree of Y.
Proof. This follows by combining (1.3), (1.4)a), (2.5) and (2.6). Q.E.D.

Proof of (2.2). The assumption Trisec $(Y) \cap Y \neq Y$ implies
(1) $K^{2}-e=n^{2}-12 n-5 H \cdot K+8 \quad(c f .(2.4))$,
(2) $n^{2}-18 n-3 n H \cdot K+22 H \cdot K+4\left(K^{2}+20\right)=0 \quad(c f(2.7))$.

1. case, $\operatorname{kod}(Y) \geq 0$ or Y is rational. Then it follows by the Miyaoka-Yau inequality :
$K^{2}=-1 / 4\left(n^{2}-18 n-3 n H \cdot K+22 H \cdot K+80\right) \leq 3 e=$

$$
=-3 / 4\left(5 n^{2}-66 n-3 n H \cdot K+2 H \cdot K+112\right)
$$

and therefore one gets:

$$
\begin{equation*}
H . K \geq \frac{7 n^{2}-90 n+128}{3 n+8} \tag{3}
\end{equation*}
$$

2. case Y is a birationally ruled surface.

Using the inequality $K^{2} \leq 2 e$ we get by the same calculation as above :

$$
\begin{equation*}
H . K \geq \frac{9 n^{2}-114 n+144}{3 n+18} \tag{4}
\end{equation*}
$$

From the Hodge index theorem it follows now in both cases:

$$
K^{2}=-1 / 4\left(n^{2}-18 n-3 n H \cdot K+22 H \cdot K+80\right) \leq(H \cdot K)^{2 / n},
$$

which implies

$$
\begin{equation*}
\text { H.K }\left(3 n^{2}-22 n-4 H . K\right) \leq n^{3}-18 n^{2}+80 n . \tag{5}
\end{equation*}
$$

We assume from now on that the degree of Y is bigger or equal to 12 and distinguish again between the two cases:

1. case, $\operatorname{kod}(Y) \geq 0$ or Y is rational.
a) $3 n^{2}-22 n-4 H . K \leq 0$.

This implies

$$
\begin{equation*}
H . K \geq 3 / 4 n^{2}-11 / 2 n . \tag{6}
\end{equation*}
$$

b) $3 n^{2}-22 n-4 H . K>0$.

Then we have

$\leq H . K\left(3 n^{2}-22 n-4 H . K\right) \leq n^{3}-18 n^{2}+80 n$.

Because $7 n^{2}-90 n+128>0$ for $n \geq 12$ this implies

$$
3 n^{2}-22 n-4 H . K \leq \frac{(3 n+8)\left(n^{3}-18 n^{2}+80 n\right)}{7 n^{2}-90 n+128}
$$

and therefore

$$
\begin{equation*}
(3 n+8)\left(n^{3}-18 n^{2}+80 n\right) \tag{7}
\end{equation*}
$$

H.K $\geq 3 / 4 n^{2}-11 / 2 n-$

$$
4\left(7 n^{2}-90 n+128\right)
$$

On the other hand

$$
\frac{n^{3}-18 n^{2}+80 n}{28 n^{2}-360 n+512} \leq 1 / 28 n
$$

for $n \geq 12$ as one easily checks and so we get finally

$$
\text { H.K } \geq 3 / 4 n^{2}-11 / 2 n-1 / 28 n(3 n+8)=9 / 14 n^{2}-81 / 14 n .
$$

Allogether we obtain in the first case (under the assumption $n \geq$ 12) :

$$
\begin{align*}
H . K & \geq \min \left(3 / 4 n^{2}-11 / 2 n, 9 / 14 n^{2}-81 / 14 n\right) \\
& =9 / 14 n^{2}-81 / 14 n . \tag{8}
\end{align*}
$$

2. case, Y is a birationally ruled surface.

The same calculation as in case 1 (just replacing (3) by (4)) gives rise to the following inequality (again for $\mathrm{n} \geq 12$):

$$
\begin{equation*}
H . K \geq 2 / 3 n^{2}-6 n . \tag{9}
\end{equation*}
$$

Using the Castelnuovo inequality (cf. [A-C-G-H] p. 116) for the genus π of H (considered as a smooth curve in \mathbb{P}^{4}) we obtain :

$$
\text { H.K }=2 \pi-2-n \leq 2((3 m(m-1)) / 2+m(n-1-3 m))-2-n,
$$

where $m:=[(n-1) / 3]$.
As an easy calculation shows, this implies :

$$
\begin{equation*}
H . K \leq 1 / 3 n^{2}-8 / 3 n+7 / 3 . \tag{10}
\end{equation*}
$$

Combining now (10) and (8) in the first case (resp. (9) in the second case) we get the following inequalities :

1. case: $\quad 9 / 14 n^{2}-81 / 14 n \leq H . K \leq 1 / 3 n^{2}-8 / 3 n+7 / 3$,
and

2.case: $2 / 3 n^{2}-6 n \leq H . K \leq 1 / 3 n^{2}-8 / 3 n+7 / 3$

Checking that these two inequalities are never fulfilled for $n \geq 12$ we get a contradiction, and so it follows that the degree of Y has to be smaller or equal to 11. Q.E.D.
(2.8) Remark 1) If $Y^{\prime} \subset \mathbb{P}^{4}$ is a smooth surface which comes from \mathbb{P}^{5} by projection, theorem (2.2) says that deg $Y^{\prime} \leq 10$.
2) If $Y^{\prime} \subset \mathbb{P}^{4}$ contains an exceptional line and $H^{1}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right)=0$, then Y^{\prime} arises from a smooth surface $Y \subset \mathbb{P} 5$ by projection with center on Y.

Proof of 2). Because $H^{1}\left(Y^{\prime}, \mathcal{O}\left(H^{\prime}\right)\right)=0$ we have the exact sequence

$$
0 \rightarrow \mathrm{H}^{0}\left(\mathrm{Y}^{\prime}, \mathcal{O}\left(\mathrm{H}^{\prime}\right)\right) \rightarrow \mathrm{H}^{0}\left(\mathrm{Y}^{\prime}, \mathcal{\theta}\left(\mathrm{H}^{+}+E\right)\right) \rightarrow \mathrm{H}^{0}\left(\mathrm{E}, \boldsymbol{\theta}\left(\mathrm{H}^{+}+E\right) \mid E\right) \rightarrow 0,
$$

which shows that $|H+E|$ gives an embedding φ of $Y^{\prime} \backslash E$ to \mathbb{P}^{5} and maps E to a point p not contained in $\varphi\left(Y^{\prime} \backslash E\right)$. That p is a smooth point follows since

$$
\mathrm{H}^{0}\left(\mathrm{Y}^{\prime}, \theta\left(\mathrm{H}^{\prime}\right)\right) \rightarrow \mathrm{H}^{0}\left(E, \theta\left(\mathrm{H}^{\prime}\right) \mid E\right) \text {. Q.E.D. }
$$

Although it is not needed in the following we would like to mention that in the case of rational surfaces also the converse is valid.
(2.9) Lemma Let $Y^{\prime} \subset \mathbb{P}^{4}$ be a smooth rational surface. Then $Y{ }^{-}$ is projection of a smooth surface $Y \subset \mathbb{P} 5$ with center on Y iff Y ' contains an exceptional line and $H^{1}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right)=0$.

Proof It suffices to show that if $Y^{\prime} \subset \mathbb{P}^{4}$ arises by projection, then $H^{1}\left(Y^{\prime}, \mathcal{O}\left(H^{\prime}\right)\right)=0$. By Riemann-Roch we have

$$
\chi\left(\theta\left(H^{\prime}\right)\right)=1 / 2 H^{\prime} \cdot\left(\mathrm{H}^{\prime}-\mathrm{K}^{\prime}\right)+1 .
$$

Since Y^{\prime} is linearly normal, it holds moreover:

$$
\begin{aligned}
\chi\left(\theta\left(H^{\prime}\right)\right) & =5-h^{1}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right)+h^{2}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right)= \\
& =5-h^{1}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right) .
\end{aligned}
$$

This implies:

$$
\begin{aligned}
H^{\prime} \cdot K^{\prime} & =H^{\prime} 2+2 h^{1}\left(Y^{\prime}, \mathcal{O}\left(H^{\prime}\right)\right)-8= \\
& =n^{\prime}+2 h^{1}\left(Y^{\prime}, \mathcal{O}\left(H^{\prime}\right)\right)-8 .
\end{aligned}
$$

By [All Proposition (4.2) it holds :

$$
\mathrm{K}^{2}=8-\mathrm{m}^{\prime},
$$

where $m^{\prime}=-1 / 2\left(n^{\prime}-3\right)\left(n^{\prime}-12\right)+5 h^{1}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right)$.
Putting these equalities together with (2.7) we obtain

$$
\begin{aligned}
0 & =n^{2}-18 n-3 n H \cdot K+22 H \cdot K+4\left(K^{2}+20\right)= \\
& =h^{1}\left(Y^{\prime}, \theta\left(H^{\cdot}\right)\right)(24-6 n),
\end{aligned}
$$

which implies $h^{1}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right)=0$ or $n^{\prime}=3$ (in which case also $\left.h^{1}\left(Y^{\prime}, \theta\left(H^{\prime}\right)\right)=0\right) . Q . E . D$.
(2.10) Theorem The smooth, non-degenerate, connected surfaces $Y^{\prime} \subset \mathbb{P}^{4}$, which are projections of a smooth surface $Y \subset \mathbb{P}^{5}$ (with center on Y) are exactly the following:

deg	π	p_{g}	q	kod	structure of the surface
3	0	0	0	-1	$\mathbb{P}_{2}{ }^{\wedge}(x),\left\|H^{\prime}\right\|=\|2 L-x\|$
4	1	0	0	-1	$\mathbb{P}_{2} \wedge\left(x_{1}, \ldots, x_{5}\right),\left\|H^{\prime}\right\|=\left\|3 L-\sum x_{i}\right\|$ $Y^{\prime}=$ compl. inters. of two quadrics
5	2	0	0	-1	$\begin{aligned} & \mathbb{P}_{2} \wedge\left(x_{0}, \ldots, x_{7}\right), \quad\left\|H^{\prime}\right\|=14 L-2 x_{0}- \\ & \sum_{1 s i s 7} x_{i} \mid \end{aligned}$
6	3	0	0	-1	$\begin{aligned} & \mathbb{P}_{2}^{\wedge}\left(x_{1}, \ldots, x_{10}\right),\left\|H^{\prime}\right\|=\mid 4 L- \\ & \sum_{1 \leq i \leq 10} x_{i} \mid \end{aligned}$
7	4	0	0	-1	$\begin{aligned} & \mathbb{P}_{2} \wedge\left(x_{1}, \ldots, x_{6}, y_{1}, \ldots, y_{5}\right) \\ & \left\|H^{\prime}\right\|=\left\|6 L-\sum_{1 \leq i \leq 6} 2 x_{i}-\sum_{1 \leq i \leq 5} y_{i}\right\| \end{aligned}$
7	5	1	0	0	K3-surface
8	5	0	0	-1	$\begin{aligned} & \mathbb{P}_{2} \wedge\left(x_{0}, \ldots, x_{10}\right) \\ & \left\|H^{\prime}\right\|=\left\|7 L-x_{0}-\sum_{1 \leq i \leq 10} 2 x_{i}\right\| \end{aligned}$
9	6	0	0	0	Enriques surface

Here π is the sectional genus of Y, p_{g} is the geometric genus, q the irregularity and kod the Kodaira dimension of Y^{\prime}. L is the strict transform of a line in \mathbb{P}^{2}.

Proof Checking the list of smooth surfaces in \mathbb{P}^{4} up to degree 10 (cf. [Al] for the rational surfaces, [Ok] for degree smaller or equal to $8,[\mathrm{~A}-\mathrm{Ra}]$ for degree $9,[\mathrm{Ra}]$ for degree 10) we see that all the
surfaces except the ones in the above table are either minimal or don't fulfill (2.7), which means that they are not projections. The rational surfaces Y^{\prime} in our list contain an exceptional line and it holds $H^{1}\left(Y^{\prime}, \mathcal{O}\left(H^{\prime}\right)\right)=0$ (cf. [Al] Theoreme (1)) and so they arise by projection by (2.8). The Enriques surface is obtained by projection (cf. [Co-Ve], [Do-Rei]) and also the K3-surface (which is obtained by projecting the complete intersection of three quadrics in \mathbb{P}_{5} into \mathbb{P}^{4} (cf. [Ok]). Q.E.D.

References.

[Al]	Alexander, J., Surfaces rationelles non-speciales dans \mathbb{P}^{4}. Preprint (1986).
[A-C-G-H]	Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.,Geometry of Algebraic Curves (volume I), Grundlehren d. math. Wissenschaften 267, Springer Verlag (1985).
[A-Ra]	Aure, A., Ranestad, K., The smooth surfaces of degree 9 in P4. Preprint (1990).
[Co-Ve]	Conte, A., Verra, A., Reye constructions for nodal Enriques surfaces, Preprint (1990).
[Do-Rei]	Dolgachev, I., Reider, I., On rank 2 vector bundles with c ${ }^{2}=10$ and $c_{2}=3$ on Enriques surfaces,
[Ha]	Preprint (1990).
	Hartshorne, R., Algebraic Geometry, Springer Graduate Texts in Mathematics 52 (1977).

$[L B]_{1}$	Le Barz, P., Platitude et non-platitude de certain
	sous-schemas de Hilbkpn. J. reine u. angew. Math. 348 p. 116-134 (1984).
$[\mathrm{LB}]_{2}$	Le Barz, P., Formules pour les trisecantes des surfaces algebriques. L'Enseignement Mathematique 33, p. 1-66 (1987).
[Ok]	Okonek, C., On codimension 2 submanifolds in \mathbb{P}^{4} and \mathbb{P}^{5}. Mathematica Gottingensis 50 (1986).
[Ra]	Ranestad, K., On smooth surfaces of degree 10 in the projective fourspace. Preprint Oslo (1990).
[Se]	Severi, F., Intorno ai punti doppi impropri di una superficie generale dello spazio a quatro dimensioni e a suoi punti tripli apparenti. Rend. Circ. Mat. Palermo 15, 33-51 (1901).

$[L B]_{1}$	Le Barz, P., Platitude et non-platitude de certain sous-schemas de Hilbkpn. J. reine u. angew. Math. 348 p. 116-134 (1984).
$[\mathrm{LB}]_{2}$	Le Barz, P., Formules pour les trisecantes des surfaces algebriques. L' Enseignement Mathematique 33, p. 1-66 (1987).
[Ok]	Okonek, C., On codimension 2 submanifolds in \mathbb{P}^{4} and \mathbb{P}^{5}. Mathematica Gottingensis 50 (1986).
[Ra]	Ranestad, K., On smooth surfaces of degree 10 in the projective fourspace. Preprint Oslo (1990).
[Se]	Severi, F., Intorno ai punti doppi impropri di una superficie generale dello spazio a quatro dimensioni e a suoi punti tripli apparenti. Rend. Circ. Mat. Palermo 15, 33-51 (1901).

