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0. Introduction.

In this note we want to deal with projections of smooth surfaces

in P3(= P3(C)) to P4. First of all we recall the following classical
result, which was proved by F. Severi in 1901 (cf. [Sel).

Theorem. Let YCPS be a smooth, connected, non-degenerate

surface. Then the secant variety of Y, Sec(Y), equals PS5 ,unless Y
is the Veronese surface.

Because the projection of PS to P4 with center y€PS\ Y gives rise

to a closed ermbedding 1ry:Y—> P4 iff v doesn't lie on a secant line

of Y, this means that no smooth surface in P% except the

Veronese surface can be projected to a smooth surface in P4.

In this paper we want to study projections with genter on the
surface , 1.e. we consider the following situation:

Let Try:lP5--—> P4 be the projection from a point ye€Y. Then Ty

induces a morphism Y ~ (y) = P4 (which we also denote by )

from the blow-up Y © (y) of Y in y to P4.

A natural question is now : when is 7w, Y ~ (y) = P% a closed

Y
embedding ?

For this we have the following criterion which is quite easy to
verify.

Lemma. Y ~ (y) = P4%is a closed embedding if and only if vy
does not lie on a trisecant of Y.

This means that a smooth surface YCPS can be projected (with

center on Y) to a smooth surface in P42 iff Trisec(Y)~AY2Y.



The purpose of this note is to give a proof of the following
conjecture of A. Van de Ven, which is in some sense an analogue
to Severt's theorem. '

Conjecture, There exist only finitely many families of smooth
surfaces Y in PS5 with Trisec(Y)~nYzY.

Besides the classical (in-)equalities ( Severi's double point formula,
Miyaocka-Yau inequality, Hodge index theorem,.. ) the main tool
in our proof is a formula of P. Le Barz. He calculates there the
degree of a certain zero cycle, which is in appropriate geometric
situations just the number of trisecants of Y intersecting a

general plane in PS5, as an universal polynomial in the degree
and the Chern numbers of Y.

We prove that in our case the degree of this cycle has the right
geometric meaning and that in fact it is zero.

This additional equality allows us to bound the degree of Y under
the assumption . Trisec(Y)~Y2Y. Actually it turns out that the
degree of Y has to be smaller or equal to 11, and with the help of

the list of smooth surfaces in P4 up to degree 10 (cf. Okonek,
Ionescu, Decker /Schreyer, Aure, Ranestad) we give here a

complete list of all the smooth surfaces in P4 which are
projections in the above sense.

In the first part of this paper we essentially state the result of P.
Le Barz (without proof), the second section is devoted to the proof
of our main theorem.

Acknowledgements, This result is part of my Ph.D. thesis at the

University of Bonn. I would like to thank my advisor Christian
Okonek for suggesting this research, following its development,
and for many stirmmulating discussions. | am grateful to F.-O.
Schreyer, who pointed out to me a mistake in a previous version.
It is a pleasure for me to acknowledge my indebtness to MPI in
Bonn for providing an excellent environment for my work.



1. Background material.

In this section we want to recall some basic definitions and state
a result of P. Le Barz, which is essential for the proof of our main
theorem.

Throughout the paper Y shall be a smooth, connected, non-

degenerate algebraic surface in P3(= P3(C)), and we shall denote
by K a canonical divisor and by H a hyperplane section.

By Hilb3PS, resp. Hilb3Y, we denote the Hilbert scheme of zero

dimensional subschemes of P°, respectively Y, of length three
("3-tuples ).

Hilb 3PS is the open subset of Hilb3PS given by the 3-tuples lying
(locally around every point of the support) on a smooth curve,

Hilb 3Y:= Hilb3Y X 1,5 ps Hilb3PS.

(1.1) Remark, Hilb 3PS is smooth and has dimension 15
(compare [LB], ).

Al3P5 is the subvariety given by these elements of

Hilb 3PS,which are subscheme of some line in PS.

(1.2) Remark. =a) AIBPS is a smooth subvariety of Hilb 3PS,

b) one has a canonical fibration a: AI3PS — G(1,P3) (= Grassmann

manifold of lines in PS), where an element of AI3PS is mapped to
the line on which it lies,

c) AIBPS is projective.

We- denote by [Hilb.3Y] the cycle (of codimension 9) in the
Chowring Ch'( Hilb 3PS) associated to the irreducible and smooth

subscheme Hilb 3Y C Hilb 3PS,



Therefore, by considering the canonical inclusion i: AI3P5-—
Hilb 3PS5 we get a cycle i*[Hilb_3Y] € ChS(AI3PS). We call

i*[Hilb_3Y] the trisecant cycle in AlI3PS.

Let ¢ € Ch2(G(1,P5)) be the Schubert cycle of lines in PS5, which

intersect a fixed plane in PS.

With this set-up we are now able to formulate the theorem of P.
Le Barz.

(1.3) Theorem ( [LB],, Theoreme 3). Let YCPS be a smooth
surface of degree n, § the number of immproper double points of a

generic projection of Y to P4. Furthermore let d be the degree of
the double curve and t the number of triple points of a generic

projection of Y to P3. Then the degree of the zero cycle

a*c. i*[Hilb 3Y]
in Ch*( AI3P9) is

n(n-1)(n-2)/6 + 2t + (n-2)(6-d) .

(14) Remark, a) If one knows by geometric reasons that there
exist only finitely many trisecants of Y intersecting a general

plane in PS5, then this number counted with appropriate
multiplicities , is equal to n(n-1)(n-2)/6 + 2t + (n-2)(6-4d).
b) One can express the invariants t,6,d of Y in terms of H, K, cy(Y)

in the following way:

d=1/2 ( n(n-4) - H.K),

[o2]
1

1/2 (n(n-10) + ¢, - K2 - SH.K ),



t = 1/6 (n(n2-12n+44) + 4K2 - 2¢c, - 3H.K (n-8)),

(cf. [LB),, Annexe 6 ).

Finally we want to give a definition of the embedded trisecant
variety of Y.

For this we denote by Z the closure of a( AI3Y ) in G(1,P%), where
ABY : = ABPS x iy 5 ps Hilb3Y . We consider the flag manifold

F:= { (x,L) € PS5 x G(1,Pd) : x € L} with the two projections
p:F - G(1,P5) ,
q:F - PS

(1.5) Definition (" embedded trisecant variety " ).
Trisec(Y) : = q(p~1(2)) € PS.

Obviously as a set Trisec(Y) is just the union of all trisecants of Y,

where a trisecant is either a line contained in Y or a line in PS5
which intersects Y in a zero dimensional subscheme of length at
least three.

2. The main theorem.

This section is devoted to formulate and prove our main result.

For this let YCPS as usual be a smooth ( connected, non-
degenerate ) surface. We consider the diagram:



vevY C PS

O'T lTl'
Y~(y) = P4,

b4

where T is the projection of PS to P4 with center y and o is
the blow-up of Y in y. Then we have the following:

(2.1) Lemma, Ty Y ~ (y) = P4%is a closed embedding if and only

if y does not lie on a trisecant line of Y.

Proof, Let H be a hyperplane section of Y, then Try:Y ~ (y) = P4

is given by the linear systemmn | H - y |. Using [Ha] II, 7.8.2 one
checks easily that | H - y | gives a closed embedding iff y is not an
element of Trisec(Y). QED.

Now we state our main result.

(22) Theorem, Let YCPS be a smooth ( connected, non-
degenerate ) surface with Trisec(Y)~YzY. Then the degree of Y is
smaller or equal to 11.

As a consequence we get the conjecture of A. Van de Ven.

(2,.3) Corollary, There exist only finitely many families of smooth
surfaces YCPS with Trisec(Y)aYzY.

Or eguivalently: There exist only finitely many families of

smooth surfaces in P4 which are obtained by projection ( in the
above sense ).

Before giving a proof of theorem (2.2) we need some auxiliary
results. '



(24) Remark. Let Y be as in (2.2), K a canonical divisor of Y, H

a hyperplane section and e = e(Y) the topological Euler
characteristic of Y. Then

K2-e=n2-12n - SH.K + 8,
where n = degY.

Proof. We choose a point y € ¥ which does not lie on a trisecant.

Then my:Y ~(y) = Y' C P4 is a closed embedding. Obviously we

have then for the hyperplane section and canonical divisor of Y

H'=H-E,

K'=K+E ( where E : = o71(y) ),
therefore: n'=deg¥' =n-1,

K2 = K2 - 1,

H'.K'= HK+ 1,

By Severi's double point formula for Y'CP% ( cf. [Hal, Appendix A,
413 ) we get:

0=n2-10n'-5H.K' - 2K2+ 12(1 + py(Y") =

(n-1)2-10(n-1) - 5(H.K+ 1) - 2(K2 - 1) + 12(1 + p(Y")

nZ - 12n - SH.K + 8 - 2KZ2+ K2 + e,

which implies the assertion. QE.D.

(25) lLemma. Let YCPS be a smooth surface with
Trisec(Y)~Y=2Y. Then the following holds ( with the sarmne notation
as in (1.3):



n(n-1)(n-2)/6 + 2t + (n-2)(6-d) =

= 1/6( n2 - 18n - 3nH.K + 22H.K + 4(KZ2 + 20) ) .

Proof, This is just a straightforward calculation using (1.4)b) and
(24). QED.

We are now going to prove that the degree of the zero cycle in
(1.3) is in fact zero ( under the assumption Trisec(Y)~Y2Y ). By

(1.4)a) we have to verify that for a general plane PCP® it holds:
Trisec(Y)~nP = & , which is equivalent to the fact that the
dimension of Trisec(Y) is smaller or equal to two.

(2.6) Proposition, Let YCP®S be a smooth surface with

Trisec(Y)~Y2Y. Then every irreducible component of Trisec(Y)
has dimension smaller or equal to two.

Proof. Because Trisec(Y)AYzY we see that Trisec(Y)~Y =: C has
dimension smaller or equal to one. Let C = U;;,C; U Ujggj{xj}

be the decomposition of C in its irreducible components.

Assume that there exists an irreducible component T of Trisec(Y)
( cf. (15) ) with dimmT = 3 . Then we have the following possibilities
for T:

1) T = Uxec; TxY, where C; is an irreducible component of C and

each of these trisecants is a tangent line at x€C;, meeting Y in a

third point. Since dimT = 3, this third point is not fixed. The union
of these points must then be an irreducible component C; ( jzi)

of C.

2) T = UxeC TyxY, where C; is an irreducible component of C and

every tangent line in each TyxY meets Y in x of order at least
three.

3) T = Sec(C;), where C, is a reduced, irreducible component of C,
which is not contained in a plane.



4) T = C, » CJ- , where C; ,CJ are reduced, irreducible components

of C, and C; U C; is not contained in a plane.

We are going to exclude step by step all these possibilities.

1) Note that for all x € C; it holds C; € TyY. Therefore Cjmust be

a line, because otherwise TyY would be an unique plane for all
x € C; contradicting dimT = 3. We state the following

Lemma., Let CCPn be an irreducible,reduced curve. If there exists

a line LCPn, s, th. each tangent line of C meets L, then C must be
a plane curve.

Proof, Let t be a local parameter of C, and v(t) a local lift to Cn*1,
Furthermore let VCCn*l be the rank 2 vector subspace ,such
that L. = P(V). Then setting w(t) = p(v(t)), where p: Cn*l—

Cn+1/V is the natural projection, we have that w(t) and w'(t) are
always proportional, whence w(t) is constant. QED.

From the proof of the previous lemma we get that C, is contained
in a plane T containing the line C; . But then TyY = w for all

x € C;, since TyY is the span of C; and the tangent line to C; at x,
which again contradicts dimT = 3.

2) We consider the Gauss map

®:Y = G(2,P5), y — T,Y.

It is easy to verify that (dg), = O for a point y € Y where every
tangent line has contact of order at least three and so ¢lC,is

constant. Therefore also in this case the dimension of T must be
smaller than three.

The cases 3),4) can be treated simultaneously. The argument we
use is the same as in [A-C-G-H] p.110,
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T = Sec(C) (resp.C; # C; ), sofor pge C; (resp.p€ C;, qe€ Cj)
the line p*q meets C in a third point v = u(p,q). After choosing
appropriate local parameters s,t,u around p,q,v and viewing p(s),

q(t), v(u) as functions with values in €6 , we can assume:
p{s)Aq(t)Av(u(s,t)) = 0.
Differentiation with respect to s and t gives:

P(S)A Q) Aululs,£)) + p(s)Aq(t) Av'(uls,t))(3u/ds)(s,t)

= 0,
p(s)Aq'(t) A vluls,t)) + p(s) A q(t) A v'(uls,t))(du/at)(s,t) = 0.
Since dimT = 3, it is clear that Jdu/ds and du/dt are not

identically zero. Hence:

pPAgAv=x(pAgAv),

with 220, which implies that p,p',q,q' lie in a €C3. So we have
shown that any two tangent lines of C; ( resp. a tangent line of C;

and a tangent line of C; always meet in a point. Because C; (resp.
C; U CJ-) i1s not contained in a plane this point must be the same
for all tangents ( in fact, if 1,1' are tangent lines of C,, L is a
tangent line of C; ( resp. C; ), then if 1' does not pass through 1 nL,
it is contained in the plane 1*L ). Projection from this point ( we

call it ¢ ) in P4 gives a map

f: Ci \Mc} (resp. C; U Cj \(c} ) = P4

with df = 0 and so C; must be a line containing ¢ ( resp. C; U C;

must be the union of two lines through ¢ ) which is a
contradiction.

Alltogether we have shown that the dimension of T must be
strictly smaller than three. QE.D.

2.7) Co Let YCPS be as in (2.6). Then



nZ - 18n - 3nH.K + 22H.K + 4(K2 + 20) = 0,
where n is again the degree of Y.

Proof. This follows by combining (1.3), (1.4)a), (25) and (2.6).
QED.

Proof of (2.2). The assumption Trisec(Y)~Yz2Y implies
(1) KZ-e=n2-12n-5H.K+ 8 (cf.(24)),
(2) n2 - 18n - 3nH.K + 22H.K + 4(K2 + 20) = O (cf(27)).

1. case, kod(Y) 2 0 or Y is rational.
Then it follows by the Miyaocka-Yau inequality :

K2 = -1/4(n2 - 18n - 3nH.K + 22H.K + 80 ) ¢ 3e =

-3/4 ( 5n2 - 66n - 3nH-K + 2H.K + 112)

and therefore one gets :
7n - 90n + 128

H.K 2 (3)
3n + 8

Z.case, Y is a birationally ruled surface.

Using the inequality K2 ¢ 2e we get by the same calculation as
above :

9n2 - 114n + 144
H.K

Iv

(4)
In + 18

From the Hodge index theorem it follows now in both cases :

K2 = -1/4( n2 - 18n - 3nH.K + 22H.K + 80 ) ¢ (H.-K)2/n ,

11



which implies :

HK(3n2-22n -4H.K)¢ n3 - 18n< + 80n . (5)

We assume from now on that the degree of Y is bigger or
equal to 12 and distinguish again between the two cases :

1. case, kod(Y) 2 0 or Y is rational.

a) 3n2-22n - 4H.K ¢ 0.
This implies

H.K 2 3/4n2 - 11/2n . (6)

b) 3nZ - 22n - 4H.K > 0.

Then we have
7n¢ - 90n + 128
(3n2-22n - 4H.K) ¢

3n + 8

¢ HLK (3n2 - 22n - 4H.K) n3 - 18n2 + 80n .

i~

v

Because 7n2 - 90n + 128 > 0 for n » 12 this implies

(3n + 8)(n3 - 18n2 + 80n)
3n2 - 22n - 4H.K ¢

7n - 90n + 128

and therefore
(3n + 8)(n3 - 18n2 + 80n)
H.K 2 3/4n? - 11/2n - (7)

4(7n2 - 90n + 128)

On the other hand
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n3 - 18n2 + 80n

< 1/28n
28nZ - 360n + 512

for n 2 12 as one easily checks and so we get finally

H.K 2 3/4nZ2 - 11/2n - 1/28n(3n + 8) = 9/14n2 - 81/14n .

Alltogether we obtain in the first case ( under the assumption n 2
12 ) : '

H.K 2 min ( 3/4n2 - 11/2n, 9/14n2 - 81/14n )

= 9/14n2 - 81/14n . (8)

Z.case, Y is a birationally ruled surface.
The same calculation as in case 1 ( just replacing (3) by (4) ) gives
rise to the following inequality ( again for n > 12 ) :

H.K 2 2/3n2 - 6n . (9)

Using the Castelnuovo inequality ( cf. [A-C-G-H] p. 116 ) for the

genus T of H ( considered as a smooth curve in P4 ) we obtain :
HK=2w-2-n ¢ 2((3m(m-1))/2 + m(n-1-3m)) - 2 - n,
where m = [(n-1)/3] .

As an easy calculation shows, this implies :

H.K ¢ 1/3n2 - 8/3n + 7/3 . (10)

Combining now (10) and (8) in the first case ( resp. (9) in the
second case ) we get the following inequalities :

1. case; 9/14n2 - 81/14n ¢ H.K ¢ 1/3n2 - 8/3n + 7/3 ,



and

2. case: 2/3n2 - 6n ¢ H.K ¢ 1/3n2 - 8/3n + 7/3

Checking that these two inequalities are never fulfilled for n 2> 12
we get a contradiction, and so it follows that the degree of Y has
to be smaller or equal to 11. QED.

(2.8) Remark. 1) If Y' cP4 is a smooth surface which comes
from PS by projection, theorem (2.2) says that deg¥' ¢ 10.
2) If ¥ € P4 contains an exceptional line and H1(Y',6(H)) = 0,

then Y' arises from a smooth surface Y € PS5 by projection with
center on Y.

Proof of 2). Because HI(Y',0(H)) = 0 we have the exact
sequence

0 — HO(Y',0(H')) = HO(Y',O(H'+E)) — HO(E,O(H'+E)IE) — O,

which shows that |H+E| gives an embedding ¢ of Y'\E to P> and
maps E to a point p not contained in ¢(Y'\E). That p is a smooth
point follows since

HO(Y',6(H')) - HO(E,0(H)IE) . QED.

Although it is not needed in the following we would like to
mention that in the case of rational surfaces also the converse is
valid,

(29 Lemma. Let Y € P4 be a smooth rational surface. Then Y’
is projection of a smooth surface Y € PS5 with center on Y iff Y

contains an exceptional line and H(Y',0(H)) = O.

14



Proof, It suffices to show that if Y C P4 arises by
then HI(Y',6(H)) = 0. By Riemann-Roch we have

*x(O(H)) = 1/2 H.(H - K) + 1.

Since Y' is linearly normal, it holds moreover:

¥ (G(H))

5 - h1(Y',0(H)) + h2(Y' ,0(H)) =

5 - hi(Y,0(H)) .
This implies:

H.K' = HZ + 2h1(Y',0(H)) - 8 =

H

n' + 2hi(Y' ,G(H)) - 8.

By [Al] Proposition (4.2) it holds :
K2=8-m,

where m' = -1/2(n'-3)(n'-12) + 5hi(Y’ O0(H)) .
Putting these equalities together with (2.7) we obtain

0 = nZ2-18n - 3nH.K + 22H.K + 4(K2 + 20) =

= h(Y',0(H)) (24 - 6n ),

15

projection,

which implies hi(Y',0(H)) = 0 or n' = 3 ( in which case also

hi(Y',0(H)) = 0). QED.

(2.10) Theorem. The smooth, non-degenerate, connected surfaces

Y' € P%, which are projections of a smooth surface ¥ € PS5 ( with

center on Y ) are exactly the following:
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deg Pg qg kod structure of the surface

3 0o 0o 0 -t P,~(x), IH[ = 2L - x|

4 1 0 0 -1 |P2A(x1,...,x5), |HII = ISL - inl,
Y' = compl. inters. of two
quadrics

S 2 0 0 -1 P, (xq,...%x5), IH| = 4L - 2x4 -
Zicig7%; |

6 3 0 0 -1 P, (xy,...x4q) , |Hl=I[4L -
Zigic10Xi |l

7 4 0 0 -1 Pz"(xi,...,xs,yl,...,ys) ,

IHT = IBL = Z,,62%; = £y 55V

7 S 1 0 0 K3-surface

8 5 0 0 -1 P, (%g,Xq0)
|H'I = I7L = XO - Ziililolel

9 6 0 0 0 Enriques surface .

Here m is the sectional genus of Y/, Pg is the geometric genus, g
the irregularity and kod the Kodaira dimension of Y'. L is the

strict transform of a line in [PZ2.

Proof, Checking the list of smooth surfaces in P4 up to degree 10
( cf. [Al] for the rational surfaces, [Ok] for degree smaller or equal
to 8, [A-Ra] for degree 9, [Ra] for degree 10 ) we see that eall the
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surfaces except the ones in the above table are either minimal or
don't fulfill (2.7), which means that they are not projections.
The rational surfaces Y' in our list contain an exceptional line and

it holds H1(Y',0(H)) = 0 ( cf. [All Theoreme (1)) and so they arise
by projection by (2.8). The Enriques surface is obtained by
projection ( cf. [Co-Vel, [Do-Rei] ) and also the K3-surface ( which
is obtained by projecting the complete intersection of three

quedrics in Ps into P4 ( cf. [Ok] ). QED.
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