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In this note we explain how the work of the second author described in [7],[11] can
be used to canonically associate to each compact real-analytic Riemannian manifold a
family of complete Kahler-Einstein metrics. The underlying manifolds of these metrics

are open disc bundles in the tangent bundle of the original Riemannian manifold.

Let (M, g) be a complete real-analytic Riemannian manifold. If v is a geodesic in

M we can define a map ¢, : € = TM by

Py o+ (o).

If S € (0,00] welet TSM denote the open disc bundle in 7'M consisting of tangent
vectors of norm less than S (note that we allow S to be infinite). A complex structure
on TSM is said to be adapted with respect to g if 1, is holomorphic on ¢ (T¥M) for
each geodesic y. We shall usually omit the phrase “with respect to ¢” if it is obvious

which metric is being discussed.

Theorem 1 [11]

If (M,g) is a compact real-analytic Riemannian manifold then there exists S €

(0,00] such that T5M carries an adapted complex structure. D

In fact, the adapted complex structure is uniquely determined by (M, g) [7]. The
existence of adapted complex structures has also been shown (using a different ap-

proach) by Guillemin and Stenzel [5].

From now on we shall take (M,g) to be a compact Riemannian manifold, and
use R to denote the largest element of (0, 00] such that TRM supports an adapted

complex structure.

The second author and L. Lempert {7] have shown that the function F' on TM
which assigns to each tangent vector its norm-square with respect to the metric ¢ is
strictly plurisubharmonic on T%M . It follows that — log( R?— F) is a strictly plurisub-
harmonic exhaustion function, so Grauert’s theorem implies that TR®M equipped with
the adapted complex structure is a Stein manifold and that T°M is strictly pseudo-

convex whenever 0 < S < R.



Now it follows from work of Cheng and Yau [3] that a strictly pseudoconvex rela-
tively compact domain € in a Stein manifold N admits a complete Kahler-Einstein
metric. Moreover this metricon 2 is unique if we normalise its Einstein constant to be
—1. (The existence result is not explicitly stated in {3] for Stein manifolds, although
it is used in the later paper [9]. We can see that it is true by embedding N as a closed
complex submanifold of € ™ for some n, with the closure of the relatively compact
domain  being contained in an open ball B of sufficiently large radius. The Poincaré
metric on B induces a Kahler metric on some neighbourhood of Q in N whose Ricci
curvature is bounded from above by a negative constant. The arguments of Cheng and

Yau then give the required result).

We deduce the following theorem.

Theorem 2

Let (M, g) be a compact real-analytic Riemannian manifold. Then TSM
carries a complete Kahler-Einstein metric g with Einstein constant —1 whenever

0<S<R.D

Remarks

(1) Since the adapted complex structure on T°M is unique, the natural map of
TM toitself induced by an isometry of (M, g) is a biholomorphism of 7 M and hence
an isometry of the Kahler-Einstein metric hs (by the uniqueness result of Cheng and
Yau [3]). It follows that the isometry group of (M, g) injects into the isometry groups
of (TSM,hs) and (M, hs |ar). We deduce that if (M,g) is an isotropy irreducible

homogeneous space, then ¢ and hg |y are homothetic.

(2) It was shown in [11] that if (M,g) is a compact symmetric space U/K then
an adapted complex structure exists on the entire tangent bundle. If the rank of the
symmetric space is one the generic orbit of the action of U on T'M has codimension
one, so in this case it follows that for each S € (0,00) we have a complete Kahler-
Einstein metric of cohomogeneity oneon TSM. When M is the two-sphere this metric
was shown to exist in the course of a classification of Kahler-Einstein metrics of Bianchi

IX type [4].



We shall conclude by showing that, under certain topological assumptions on M,
the metrics hg are distinct for different S. We first need to establish some preliminary

lemmas.

Lemma 3

Let X be a connected complex manifold of complex dimension n, admitting a
smooth strictly plurisubharmonic bounded exhaustion function. Suppose that the
nth. integral homology group H,(X;Z) is finitely generated and nonzero. Let f :
X = X be a holomorphic injection inducing an isomorphism on H,(X;Z). Then f

is a biholomorphism of X.
Proof

The result is essentially contained in Theorem 1 of a paper of N. Mok [8], except
that Mok also assumes that X is Caratheodory-hyperbolic. However the only place
where he uses this extra condition is in the proof of Proposition 1.1 of his paper, and
in fact to establish this result it is sufficient to know that X is teut (that is, for each
complex manifold Y the set of holomorphic maps from Y to X is a normal family).
The tautness of X under our assumptions follows from Corollary 5 of [10] and Theorem

20f[1]. O

Given a Riemannian manifold (M, g) we may lift g to a metric § on the universal
cover M. If TSM supports an adapted complex structure, then TSM does also, and

the covering map M — M induces a holomorphic covering 7 : TSM — T5M |

Corollary 4

Let (M,g) be a compact connected real-analytic Riemannian manifold which is
either orientable or has compact universal cover. Then for each S,Q with 0 < § <

Q < R the spaces T°M and T9M are neither biholomorphic nor antibiholomorphic.
Proof

If M is compact and orientable then T9M satisfies the conditions of Lemma 3.
Any biholomorphism from T9M to T°M would define a holomorphic injective self-

map of T9M which was not onto. Moreover such a map would induce an isomorphism



on the nth. homology of T9M , so we would have a contradiction to Lemma 3. Using
the fact that the involution of T9M defined by changing the sign of tangent vectors
to M is antiholomorphic [7], we see that there can be no antibiholomorphism from

TSM onto T°M either.

Any (anti)biholomorphism between T9M and TSM will induce one between T5M
and T9M , where M is the universal cover of M. If M is compact then we can argue as
above to derive a contradiction (we need the compactness of M to ensure the existence

of an exhaustion function on T9Af). O

Lemma 5

Let (M,g) be a compact connected real-analytic Riemannian manifold with uni-
versal cover (M,§). Then whenever 0 < S < R, the complex manifold TSM is not

biholomorphic to a product of complex manifolds.
Proof

A result of Huckleberry [6] shows that a connected strictly pseudoconvex relatively
compact domain £ in a complex manifold cannot be the total space of a locally trivial
holomorphic fibre bundle, so in particular cannot be biholomorphic to a product of

complex manifolds.

The only use made of relative compactness in his proof is as follows. There is
given a sequence of holomorphic maps ¢; from a polydisc A to E, such that ¢;(0)
converges to a point pg on the boundary 9E. If E is relatively compact, then Montel’s
theorem implies the convergence of a subsequence of ¢; to a‘llolomorphic function
é: A = E, where ¢(0) = po. An easy argument, involving peak functions (using
the strict pseudoconvexity of 0F at pg) and the maximum principle, shows that ¢
is identically equal to pg. It follows that for each z € A, a subsequence of ¢;(z)

converges to pg. It is this result that we must establish.

In our situation E = TSM will be connected and strictly pseudoconvex, but not
relatively compact in TRM unless M has finite fundamental group. However, as

explained earlier, we have a lholomorphic covering = : TRM — THRM ; moreover this



restricts to a covering £ — H = T°M mapping 0F onto dH. Now H is relatively
compact in T*M as well as connected and strictly pseudoconvex, so the argument
of the preceding paragraph shows that a subsequence n¢;, of m¢d; converges to the
constant map from A to dH with value wps. Let V' be a neighbourhood of mpp in
TRM such that 7=!(V) is a disjoint union of open sets V, , each containing precisely
one element of m~!(mpp). Let V, be the open set in this family containing pg. As ¢;(A)
is connected, and as ¢;(0) converges to pg by hypothesis, we see that for sufficiently
large k the subsequence ¢;, has image contained in V5. We can make V arbitrarily
small by shrinking V suitably, so we deduce that for each z € A the subsequence

@;,.(z) converges to py.

The remainder of the proof proceeds as in [6]. O

Theorem 6

Let (M,g) be a compact connected real-analytic Riemannian manifold. Suppose
further that M is orientable or has compact universal cover, and, as before, let R be
the greatest element of (0, co| such that T7RM supports an adapted complex structure.
If S and @ are distinct positive numbers less than R, then hgs and hg are not isometric

as Riemannian manifolds.

Proof

The metrics hg and hqg lift to Kahler metrics on TSM and TOM. If hs or hg
is locally reducible, then the associated Kahler metric on T79M or TSM is reducible,
contradicting Lemma 5. We see that hg and hg are Kahler metrics with nonvanishing

Ricci tensor (by definition) and are not even locally reducible.

Suppose now that hg and hg are isometric. If they are locally symmetric then
TOM and TSM are irreducible symmetric spaces of negative Ricci curvature. The
isometry between hg and hq lifts to an isometry between the symmetric spaces, and
this must be a biholomorphism or antibiholomorphism. It follows that 7°M and
T9M are biholomorphic or antibiholomorphic, contradicting Corollary 4. If hg and
hg are not locally symmetric, then the preceding paragraph shows that for each metric

the only covariant constant two-forms are multiples of the Kahler form. For Berger’s



classification of holonomy groups shows that the existence of other covariant constant
two-forms would reduce the holonomy to the symplectic group, and this would force

the Ricci tensor to vanish [2].

Note also that the volume forms of hAg and hg are powers of the Kahler forms (up
to multiplication by a constant depending only on the dimension of M). We deduce
that any isometry between hg and hg will preserve the Kahler forms up to a sign, so
is either a holomorphic or antiholomorphic bijection between TSM and T9M . This

again contradicts Corollary 4, so no isometry can exist. O
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