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On uniformity conjectures for abelian varieties
and K3 surfaces

Martin Orr, Alexei N. Skorobogatov and Yuri G. Zarhin

Abstract

We discuss logical links among uniformity conjectures concerning K3 sur-
faces and abelian varieties of bounded dimension defined over number fields
of bounded degree. The conjectures concern the endomorphism algebra of
an abelian variety, the Néron–Severi lattice of a K3 surface, and the Galois
invariant subgroup of the geometric Brauer group.
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1 Introduction

The aim of this paper is to explore logical links among several conjectures about K3
surfaces and abelian varieties defined over number fields. These conjectures state
that certain invariants take only finitely many values provided the degree of the field
of definition and the dimension (in the case of abelian varieties) are bounded.

Let k be a number field with algebraic closure k̄ and let Γ = Gal(k̄/k). For a
variety X over k we write X = X ×k k̄.

Coleman’s conjecture about End(A). There are only finitely many rings R, up
to isomorphism, for which there exists an abelian variety A of bounded dimension
defined over a number field of bounded degree such that End(A) ∼= R.

This or a closely related conjecture is attributed to Robert Coleman in [Sha96,
Remark 4], see also Conjecture C(e, g) in [BFGR06, p. 384]. There is a version of
this conjecture in which End(A) is replaced by the ring End(A) of endomorphisms
of A defined over k. It is not too hard to show that Coleman’s conjecture about
End(A) is equivalent to Coleman’s conjecture about End(A), see Theorem 3.4.

In his recent paper Rémond proved that Coleman’s conjecture implies the uniform
boundedness of torsion A(k)tors and of the minimal degree of an isogeny between
isogenous abelian varieties, see [Rem18, Thm. 1.1]. In this paper we would like to
point out several other consequences of Coleman’s conjecture.

Shafarevich’s conjecture about NS (X). There are only finitely many lattices
L, up to isomorphism, for which there exists a K3 surface X defined over a number
field of bounded degree such that NS (X) ∼= L.

It is in this form that Shafarevich has stated his conjecture in [Sha96]. Since there
are only finitely many lattices of bounded rank and discriminant [Cas78, Ch. 9,
Thm. 1.1], Shafarevich’s conjecture is equivalent to the boundedness of the discrim-
inant of NS (X). One can also state a variant of Shafarevich’s conjecture in which
NS (X) is replaced by its Galois-invariant subgroup NS (X)Γ, or, alternatively, by
Pic(X). In Theorem 3.5 we show that all these versions of Shafarevich’s conjecture
are equivalent.

We denote by Br(X) = H2
ét(X,Gm) the (cohomological) Brauer group of a scheme

X. When X is a variety over a field k, we use the standard notation Br0(X) for the
image of the canonical map Br(k) → Br(X). Assume that k is finitely generated
over Q, for example, k is a number field. The geometric Brauer group Br(X) has
a natural structure of a Γ-module. By the main result of [SZ08], if X is an abelian
variety or a K3 surface over k, then Br(X)Γ is finite.

Várilly-Alvarado’s conjecture. [VA17, Conj. 4.6] Let L be a primitive sublattice
of the K3 lattice E8(−1)⊕2 ⊕ U⊕3. If X is a K3 surface defined over a number field
of bounded degree such that NS (X) ∼= L, then the cardinality of Br(X)/Br0(X) is
bounded.
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A stronger form of this conjecture omits the reference to the Néron–Severi lat-
tice. It concerns the uniform boundedness of the Galois invariant subgroup of the
geometric Brauer group.

Conjecture Br(K3). If X is a K3 surface defined over a number field of bounded
degree, then the cardinality of Br(X)Γ is bounded.

A similar conjecture can be stated for abelian varieties of given dimension.

Conjecture Br(AV). If A is an abelian variety of bounded dimension defined over
a number field of bounded degree, then the cardinality of Br(A)Γ is bounded.

All of the aforementioned conjectures hold for abelian varieties and K3 surfaces
with complex multiplication [OS18].

Similarly to Shafarevich’s conjecture, Coleman’s conjecture can be restated in
terms of lattices. Recall that End(A) is an order in the semisimple Q-algebra
End(A)Q = End(A) ⊗ Q. Let us define discr(A) as the discriminant of the inte-
gral symmetric bilinear form tr(xy) on End(A), where tr : End(A)Q → Q is the
reduced trace. An equivalent form of Coleman’s conjecture says that discr(A) is
uniformly bounded for abelian varieties A of bounded dimension defined over num-
ber fields of bounded degree. Thus all of the above conjectures state that a certain
integer attached to an abelian variety or a K3 surface is uniformly bounded.

The main results of this paper are summarised in the following diagram:

Coleman’s conjecture =⇒ Shafarevich’s conjecture
⇓

Br(AV) =⇒ Várilly-Alvarado’s conjecture

 =⇒ Br(K3)

Here is an outline of the paper. After discussing some preliminary results in
Section 2, we establish the equivalence of various forms of Coleman’s conjecture and
also those of Shafarevich’s conjecture in Section 3.

Section 4 is devoted to proving that Coleman’s conjecture implies Br(AV). We
give two different proofs that uniformly large primes do not divide |Br(A)Γ|. In
Section 4.1 we give a shorter proof based on the aforementioned result of Rémond
[Rem18, Thm. 1.1] and the methods of [Zar77, Zar85]. In Section 4.2 we give a proof
that does not use [Rem18, Thm. 1.1]; this approach has the advantage of being more
general as it applies also to finitely generated fields. Here the key role is played by
the image Λ`(A) of the `-adic group algebra of the Galois group in the endomorphism
ring of the `-adic Tate module T`(A). A crucial observation (Theorem 4.6) is that
a matrix algebra over the opposite algebra of Λ`(A) is isomorphic to End(B)⊗ Z`,
where B is an abelian variety isogenous to an abelian subvariety of a bounded power
of A. Hence discr(Λ`(A)) divides discr(B), so under Coleman’s conjecture we obtain
an upper bound for discr(Λ`(A)). The relevance of this to Br(AV) is that a prime
` > 4dim(A) dividing |Br(A)Γ| must also divide discr(Λ`(A×A∨)), where A∨ is the
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dual abelian variety of A. To complete the proof that Coleman’s conjecture implies
Br(AV) one needs to show the uniform boundedness of the `-primary torsion of
Br(A)Γ for a fixed `; this proof can be found in Section 4.3. In Section 4.4, we
prove some partial converses to Theorem 4.1: bounds for Brauer groups of abelian
varieties imply information about their endomorphisms.

In Section 5 we use the K3 surfaces version of Zarhin’s trick from [OS18] to
produce a uniform Kuga–Satake construction that does not depend on the degree
of polarisation. The Hodge-theoretic aspect of this construction allows us to show
that Coleman’s conjecture implies Shafarevich’s conjecture. In Section 6 we use the
compatibility with Galois action to prove that Br(AV) implies Várilly–Alvarado’s
conjecture. By the finiteness of the isomorphism classes of lattices of the same rank
and discriminant, it is clear that the conjectures of Shafarevich and Várilly–Alvarado
together imply Conjecture Br(K3).

2 Preliminaries

2.1 Lattices

In this paper we refer to a free abelian group L of finite positive rank with a non-
degenerate integral symmetric bilinear form (x.y) as a lattice. Write L∗ = Hom(L,Z)
and LQ = L⊗ZQ. The discriminant group of a lattice L is defined as the cokernel of
the map L→ L∗ sending x ∈ L to the linear form (x.y). The discriminant discr(L)
of L is the determinant of the matrix (ei.ej), where e1, . . . , en is a Z-basis of L. This
is independent of the choice of basis e1, . . . , en. We have |discr(L)| = |L∗/L|.

Let ` be a prime. We define the discriminant discr(L) of a free Z`-module L of
finite positive rank equipped with a symmetric Z`-valued bilinear form in the same
way. However, in this case there is an ambiguity coming from the choice of Z`-basis
for L: discr(L) is well-defined up to multiplication by a square in Z×` . In practice,
every use we make of the discriminant of a Z`-module L will only depend on the
`-adic valuation of discr(L), which is well-defined.

Lemma 2.1 Let L be a lattice with discriminant d. Let G be a finite group that
acts on L preserving the bilinear form (x.y). If LG 6= 0, then the restriction of (x.y)
makes LG a lattice of discriminant dividing (d|G|)r, where r = rk(LG).

Proof. The G-module LQ is semisimple, hence is a direct sum of G-modules LGQ⊕V ,
where V is a vector space over Q such that V G = 0. If x ∈ LGQ and y ∈ V , then
(x.y) = (x.gy) for any g ∈ G. Since

∑
g∈G gy ∈ V G = 0, we have (x.y) = 0. Thus

LQ = LGQ ⊕ V is an orthogonal direct sum. It follows that the discriminant of the
restriction of the bilinear form on L to LG is non-zero, so LG is indeed a lattice. It
is clear that the finite abelian group (LG)∗/LG is generated by at most r elements.
Thus it is enough to show that (LG)∗/LG is annihilated by d|G|.
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The map LG → (LG)∗ is the composition of the natural maps

LG ↪→ L −→ L∗ −→ (LG)∗.

Since LG is a primitive sublattice of L, the last map here is surjective. Thus any
a ∈ (LG)∗ is in the image of L∗, hence da is in the image of L. Since |G|a =

∑
g∈G ga,

we see that (d|G|)a is in the image of LG. �

Lemma 2.2 Let ` be a prime. Let M be a free Z`-module of finite positive rank
equipped with a symmetric Z`-valued bilinear form (x.y). Let Γ be a group that acts
on M preserving the form (x.y). If L ⊂ M is a Z`[Γ]-submodule such that the
restriction of (x.y) to L has discriminant d 6= 0, then d · (M/L)Γ belongs to the
image of the natural map MΓ → (M/L)Γ.

For any positive integer n the image of the natural map (M/`n)Γ → ((M/L)/`n)Γ

contains d · ((M/L)/`n)Γ.

Proof. Let L⊥ ⊂ M be the orthogonal complement to L with respect to (x.y). We
have L ∩ L⊥ = 0 because d 6= 0. Hence the natural map L⊕ L⊥ →M is injective.

Let x ∈ M . For y ∈ L the map y 7→ (x.y) is an element of HomZ`
(L,Z`). Thus

we get a map of Z`-modules M → HomZ`
(L,Z`). Since d 6= 0, the restriction of this

map to L is injective and has cokernel annihilated by d. Hence there is a z ∈ L such
that d(x.y) = (z.y) for all y ∈ L. Thus dx − z ∈ L⊥, proving that dM ⊂ L ⊕ L⊥.
We summarise this in the following commutative diagram:

dM � � //

��

L⊕ L⊥

��

� � //M

��
d(M/L) �

� // L⊥ �
� //M/L

The group Γ preserves L and (x.y), hence Γ also preserves L⊥; thus all the arrows
in the diagram are maps of Γ-modules. Since the homomorphism L⊕L⊥ → L⊥ has
a section, the first claim of the lemma follows.

For n ≥ 1 we obtain a commutative diagram of Z`[Γ]-modules

dM/`n //

��

L/`n ⊕ L⊥/`n

��

//M/`n

��
d(M/L)/`n // L⊥/`n // (M/L)/`n

(1)

If α ∈ ((M/L)/`n)Γ, then dα comes from (L⊥/`n)Γ. Similarly to the previous case,
the map L⊥/`n → (M/L)/`n factors through M/`n → (M/L)/`n. This proves the
lemma. �
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Let ` be a prime and let N be a free Z`-module of finite positive rank. The free
Z`-module EndZ`

(N) has a symmetric Z`-valued bilinear form Tr(xy), where Tr is
the usual matrix trace.

Let Λ ⊂ EndZ`
(N) be a Z`-subalgebra. We write EndΛ(N) for the centraliser of

Λ in EndZ`
(N), that is, the set of x ∈ EndZ`

(N) such that xλ = λx for all λ ∈ Λ.

Lemma 2.3 If the restriction of the bilinear form Tr(xy) to EndΛ(N) has discrim-
inant d 6= 0, then there is an integer r ≥ 0 such that for all n ≥ 1 we have

`r · EndΛ(N/`n) ⊂ EndΛ(N)/`n ⊂ EndΛ(N/`n).

Proof. Write M = EndZ`
(N), L = EndΛ(N), and let L⊥ be the orthogonal comple-

ment to L in M . Since d 6= 0 we have L ∩ L⊥ = 0. In particular, the only element
of L⊥ commuting with Λ is 0.

It is clear that L and L⊥ are saturated, free Z`-submodules of M . Thus for all
n ≥ 1 we have L/`n ⊂ M/`n and L⊥/`n ⊂ M/`n. Let `a be the highest power of
` dividing d in Z`. We are in the situation of Lemma 2.2, so we have commutative
diagram (1). The first row of (1) implies

`a · (M/`n) ⊂ L/`n + L⊥/`n ⊂M/`n.

By retaining only the elements commuting with Λ we obtain

`a · EndΛ(N/`n) ⊂ EndΛ(N)/`n + (L⊥/`n) ∩ EndΛ(N/`n) ⊂ EndΛ(N/`n). (2)

We claim that there exists a positive integer b such that for all n > b we have

(L⊥/`n) ∩ EndΛ(N/`n) ⊂ ` · (L⊥/`n). (3)

Indeed, let Sn be the subset of the left hand side consisting of the elements that are
not contained in ` ·(L⊥/`n). Reduction mod `n maps Sn+1 to Sn−1 for each n ≥ 1. If
all the finite sets Sn are non-empty, then lim←−Sn 6= ∅. Any x ∈ lim←−Sn is an element
of L⊥ \ `L⊥, hence x 6= 0. But x ∈ EndΛ(N) = L, contradicting L ∩ L⊥ = 0.

From (3), in view of a canonical isomorphism ` · (L⊥/`n)−̃→L⊥/`n−1, for each
n > b we obtain an injection

(L⊥/`n) ∩ EndΛ(N/`n) ↪→ (L⊥/`n−1) ∩ EndΛ(N/`n−1). (4)

This implies
`b · ((L⊥/`n) ∩ EndΛ(N/`n)) = 0, n ≥ 1. (5)

Combining (2) with (5) proves the lemma with r = a+ b. �
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2.2 Algebras

Let B be a separable semisimple algebra over a field k. Then B is the product of
matrix algebras Bi = Matri(Di), where Di is a division k-algebra, for i = 1, . . . ,m.
Let Ki be the centre of Di and let d2

i = dimKi
(Di). Here Ki is a finite separable field

extension of k. We call the intrinsic trace of x ∈ B the trace TrB(x) of the linear
transformation of B defined by the left multiplication by x. Write x = x1 + . . .+xm,
where xi ∈ Bi. The relative reduced trace trB/k : B → k is defined as the sum of
compositions of the usual reduced trace trBi/Ki

: Bi → Ki of the central simple
Ki-algebra Bi with the trace of the finite separable field extension TrKi/k : Ki → k,
for i = 1, . . . ,m, see [Rei03, Def. 9.13]. Thus

trB/k(x) =
m∑
i=1

trBi/k(xi) =
m∑
i=1

TrKi/ktrBi/Ki
(xi).

These two natural notions of trace are related as follows, see [Rei03], formula (9.22):

TrB(x) =
m∑
i=1

diri trBi/k(xi). (6)

The two notions of trace give rise to two symmetric bilinear forms on B with values
in k:

(1) The form trB/k(xy). This form is non-degenerate, see [Rei03, Thm. 9.26].

(2) The intrinsic bilinear form TrB(xy).

Now let k = Q. Let Λ be an order in the semisimple Q-algebra B. In other words,
Λ is a subring of B such that Λ⊗ZQ = B. The restriction of trB/Q to Λ takes values
in Z (see [Rei03, Thm. 10.1]), so the bilinear form trB/Q(xy) is integral on Λ. We
define the discriminant discr(Λ) to be the discriminant of the lattice Λ, equipped
with this bilinear form.

If k = Q`, we similarly define the discriminant of an order in a semisimple Q`-
algebra (well-defined up to multiplication by a square in Z×` ).

The following two statements are undoubtedly well known. For example, the
implication “` - discr(Λ)⇒ Λ/` is semisimple” of Corollary 2.5 is essentially [MW95,
Lemma 2.3] (except that in [MW95], the discriminant is defined using the intrinsic
trace TrB, while we use the reduced trace trB/Q). Nevertheless we give a detailed
proof as we could not find the full statement of this proposition in the literature.

Proposition 2.4 Let ` be a prime and let Λ be an order in a semisimple Q`-algebra.
Then the following conditions are equivalent.

(i) ` does not divide discr(Λ).

(ii) for some positive integers n1, . . . , nr we have Λ ∼= ⊕ri=1Matni
(Oki), where Oki

is the ring of integers of an unramified finite field extension ki/Q` for i = 1, . . . , r.

(iii) the F`-algebra Λ/` is semisimple.
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Proof. By assumption Λ is an order in the semisimple Q`-algebra B = Λ⊗Q`.

Let us first assume that this order is maximal. Any maximal order M ⊂ B is a
direct sum of maximal orders of the simple components of B, see [Rei03, Thm. 10.5
(i)]. This direct sum is an orthogonal direct sum for the bilinear form trB/Q`

(xy),
so it is enough to consider a maximal order M ⊂ Matr(D), where D is a division
Q`-algebra. By [Rei03, Thm. 12.8] there is a unique maximal order O ⊂ D; it is the
integral closure of Z` in D. By [Rei03, Thm. 17.3] any maximal order in Matr(D) is
conjugate to Matr(O) by an element of GLr(D), so we have an isomorphism of rings
M ∼= Matr(O). From this we get an F`-algebra isomorphism M/` ∼= Matr(O/`).

It is well known that rad(O/`) = 0 if and only if D is an unramified field extension
of Q`. Then O/` is a field extension of F`, hence Matr(O/`) is a semisimple F`-
algebra. This shows the equivalence of (ii) and (iii).

If K is the centre of D, and R is the integral closure of Z` in K, then we have (cf.
Exercise 1 on p. 223 of [Rei03])

discr(Matr(O)) = NK/Q`
(discr(Matr(O)/R)) · discr(R/Z`)r

2dimK(D). (7)

This element of Z` is not divisible by ` if and only if D = K is an unramified field
extension of Q`, see [Rei03, Cor. 25.10]. This proves the equivalence of (i) and (ii).

Now suppose that Λ is not a maximal order. Let us show that in this case each
of (i), (ii), (iii) is false. By [Rei03, Cor. 10.4] there is a maximal order M ⊂ B
that contains Λ. Since the index [M : Λ] equals `a for an integer a ≥ 1 and
discr(Λ) = [M : Λ]2 discr(M), we see that ` divides discr(Λ), so (i) does not hold.

To show that (iii) does not hold we need to show that rad(Λ/`) 6= 0, for which it is
enough to exhibit a non-zero two-sided nilpotent ideal in Λ/`. Let N = Λ∩`M . This
is a two-sided ideal in Λ, hence N/`Λ is a two-sided ideal in Λ/`. By Nakayama’s
lemma we have M/(Λ+ `M) 6= 0. Since dimF`

(M/`) = dimF`
(Λ/`), the cardinalities

of the kernel and the cokernel of the natural homomorphism Λ/`→M/` are equal,
so N/`Λ 6= 0. This ideal of Λ/` is nilpotent. Indeed, take any x ∈ N/`Λ and lift it
to x̃ ∈ N ⊂ `M . Then x̃a+1 ∈ `a+1M ⊂ `Λ, hence xa+1 = 0.

This also implies that (ii) does not hold. Indeed, otherwise Λ/` would be a
semisimple F`-algebra, which it is not. �

Corollary 2.5 Let Λ be an order in a semisimple Q-algebra. A prime ` does not
divide discr(Λ) if and only if the F`-algebra Λ/` is semisimple.

Proof. Apply Proposition 2.4 to the order Λ ⊗Z Z` in the semisimple Q`-algebra
Λ⊗Q`. �

2.3 Abelian varieties

Let k be a field with a separable closure k̄ and Galois group Γk = Gal(k̄/k). Let A
be an abelian variety over k and let ` be a prime different from char(k). For each

8



positive integer n the Kummer sequence gives rise to an exact sequence of Γ-modules

0 −→ NS (A)/`n
c1−→ H2

ét(A, µ`n) −→ Br(A)[`n] −→ 0 (8)

Let A∨ be the dual abelian variety, and let e`n,A : A[`n]×A∨[`n]→ µ`n be the Weil
pairing. We have canonical isomorphisms of Γ-modules

H2
ét(A, µ`n) ∼= ∧2H1

ét(A, µ`n)(−1) ∼= (∧2A∨[`]n)(−1) ∼= Hom(∧2A[`n], µ`n) (9)

and an injective map of Γ-modules, cf. [SZ08, Section 3.3]:

H2
ét(A, µ`n) ∼= Hom(∧2A[`n], µ`n) ↪→ Hom(A[`n], A∨[`n]). (10)

Here the image consists of those u : A[`n] → A∨[`n] such that e`n,A(x, ux) = 0 for
all x ∈ A[`n], that is, the form e`n,A(x, uy) is alternating.

Let Hom(A[`n], A∨[`n])sym be the subgroup of symmetric (or self-dual) homo-
morphisms u : A[`n] → A∨[`n]. It is shown in [SZ08, Remark 3.2] that u in
Hom(A[`n], A∨[`n]) is symmetric if and only if e`n,A(x, uy) = −e`n,A(y, ux), that is,
the form e`n,A(x, uy) is skew-symmetric. All alternating forms are skew-symmetric,
so we get an injective map

H2
ét(A, µ`n) ↪→ Hom(A[`n], A∨[`n])sym. (11)

For ` 6= 2 all skew-symmetric forms are alternating, so that (11) is an isomorphism.

It is well known that NS (A) is canonically isomorphic to the subgroup of self-dual
elements Hom(A,A

∨
)sym ⊂ Hom(A,A

∨
). This allows one to rewrite the cycle map

as a map of Γ-modules

Hom(A,A
∨
)sym/`

n −→ H2
ét(A, µ`n). (12)

Lemma 2.6 Let k be a field of characteristic 0. The composition of maps (12) and
(11) is the negative of the natural map Hom(A,A

∨
)sym → Hom(A[`n], A∨[`n])sym

given by the action of endomorphisms of A on `n-torsion points.

Proof. The claim is that the following diagram commutes:

NS (A)/`n
c1 //

∼=
��

H2
ét(A, µ`n)

∼= // Hom(∧2A[`n], µ`n)

��
Hom(A,A

∨
)sym/`

n // Hom(A[`n], A∨[`n])sym
[−1] // Hom(A[`n], A∨[`n])sym.

The vertical arrow on the left is induced by the map NS (A) → Hom(A,A
∨
) that

sends L to φL, where φL is the morphism A→ A
∨

defined in [Mum74, Ch. 6, Cor. 4].
The vertical arrow on the right sends the Weil pairing eL`n , which is defined by

eL`n(x, y) = e`n,A(x, φL(y)),

9



to the restriction of φL to `n-torsion subgroups. Thus it suffices to prove that going
along the top of the diagram sends L to −eL`n .

For the proof we can assume that k is finitely generated over Q. Choose an
embedding k̄ ↪→ C and extend the ground field from k̄ to C. Let A(C) = V/Λ,
where V ∼= Cg is the tangent space to A at 0, and Λ is a lattice in V .

According to the Appell–Humbert theorem [Mum74, p. 20], any line bundle LC
on A(C) can be written in the form L(H,α) for some Hermitian form H on V
such that E = ImH takes integer values on Λ × Λ (and some additional data
α which are not relevant to us here). The first Chern class of L is given by E ∈
Hom(∧2Λ,Z) ∼= H2(A(C),Z). Thus the top line of the above diagram takes L mod `n

to exp(2πi`nE) ∈ Hom(∧2(`−nΛ/Λ), µ`n).

As explained on [Mum74, Ch. 24, p. 237], if x, y ∈ A(C)[`n] lift to x̃, ỹ ∈ `−nΛ,
then

exp(−2πi`nE(x̃, ỹ)) = eL`n(x, y).

This completes the proof. �

For any abelian variety A, let EA and HA be the Γ-modules which make the
following sequences exact:

0 −→ End(A× A∨)⊗ Z` −→ EndZ`
(T`(A)⊕ T`(A∨)) −→ EA −→ 0, (13)

0 −→ Hom(A,A
∨
)⊗ Z` −→ Hom(T`(A), T`(A

∨)) −→ HA −→ 0. (14)

Note that the exact sequence (14) is a direct summand of (13).

Using (8), (10) and Lemma 2.6, we have a commutative diagram of Γ-modules
with exact rows:

0 // NS (A)/`n //

��

H2
ét(A, µ`n) //

��

Br(A)[`n] //

��

0

0 // Hom(A,A
∨
)/`n

[−1] // Hom(A[`n], A∨[`n]) // HA/`
n // 0

(15)

Lemma 2.7 Let k be a field of characteristic 0. The kernel of the homomorphism
Br(A)[`n]→ HA/`

n at the right of (15) has exponent dividing 2.

Proof. Let C1 and C2 denote the cokernels of the left and central vertical arrows
of (15) respectively. Since the central vertical arrow is injective, the snake lemma
implies that ker(Br(A)[`n]→ HA/`

n) injects into ker(C1 → C2).

If ρ ∈ Hom(A,A
∨
)/`n maps to 0 in C2, then the image of ρ in Hom(A[`n], A∨[`n])

lies in the image of H2
ét(A, µ`n) and hence is in Hom(A[`n], A∨[`n])sym by (11). Choose

any ρ̃ ∈ Hom(A,A
∨
) lifting ρ. Then ρ̃ + ρ̃∨ is a symmetric lift of 2ρ. Since

NS (A)/`n → Hom(A,A
∨
)sym/`

n is an isomorphism, we conclude that 2ρ maps to 0
in C1. This shows that 2 · ker(C1 → C2) = 0, which proves the lemma. �

10



3 Equivalence of variants of conjectures of Cole-

man and Shafarevich

Let A be an abelian variety of dimension g ≥ 1 over a field k. Then End(A) is a free
abelian group of positive rank at most equal to 4g2; as a ring, it is an order in the
finite-dimensional semisimple algebra End(A)Q, see [Mum74, Ch. 19, Corollaries 1
and 3]. In Section 2 we defined two integral symmetric bilinear forms on any order in
End(A)Q, in particular, on End(A). The action of End(A) on A by endomorphisms
gives rise to a third bilinear form. To fix notation we review all these forms here.

• The bilinear form tr(xy) on End(A), where tr : End(A)Q → Q is the reduced
trace. We call the discriminant of this form discr(A).

• The intrinsic integral symmetric bilinear form on End(A) is TrEnd(A)(xy),
where TrEnd(A)(x) is the trace of the linear map End(A)→ End(A) sending z
to xz. We call the discriminant of this form ∆A.

• For any a ∈ End(A) and n ∈ Z the degree of the endomorphism [n] − a of A
is a monic polynomial in n with integer coefficients [Mum74, Ch. 19, Thm. 4].
Let TrA(a) ∈ Z be the negative of the coefficient of n2g−1 in this polynomial.
For any prime ` not equal to char(k), we have that TrA(a) is equal to the trace
of the Z`-linear transformation of the `-adic Tate module of A defined by a.
We call the discriminant of this form δA.

Lemma 3.1 Let g be a positive integer. We have ∆A 6= 0, δA 6= 0. There exist
positive real constants cg and Cg, depending only on g, such that for any abelian
variety A of dimension g over a field k we have

cg ≤ |∆A|/|discr(A)| ≤ Cg, cg ≤ |δA|/|discr(A)| ≤ Cg.

Proof. If A is a simple abelian variety, then End(A)Q is a division algebra over Q.
Let K be the centre of End(A)Q. Write e = [K : Q] and d2 = dimKEnd(A)Q.

Let m be a positive integer. By the proof of [Mum74, Ch. 19, Lemma], any
ΓQ-invariant linear map φ : End(Am) ⊗ Q → Q satisfying φ(xy) = φ(yx) for all x
and y is a rational multiple of the reduced trace. This implies that each of TrEnd(Am)

and TrAm is a non-zero rational multiple of the reduced trace tr on End(Am)Q. In
particular, each form is non-degenerate. By evaluating at the identity element of
End(Am) we obtain

TrEnd(Am)(x)

ed2m2
=

TrAm(x)

2gm
=

tr(x)

edm
.

Since ed divides 2g by [Mum74, Ch. 19, Cor., p. 182], we see that each of TrEnd(Am)(x)
and TrAm(x) is an integral multiple of the reduced trace.
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Now let A1, . . . , An be simple, pairwise non-isogenous abelian varieties over k, of
dimension dim(Ai) = gi. Let B =

∏n
i=1A

mi
i for some positive integers m1, . . . ,mn.

Then End(B) is the product of rings End(Ami
i ), hence the matrix of each of the

three forms on End(B) is the direct sum of n diagonal blocks. We deduce that

∆B = discr(B) ·
n∏
i=1

(dimi)
eid

2
im

2
i , δB = discr(B) ·

n∏
i=1

(
2gi
eidi

)eid2im2
i

This proves the lemma for B.

Finally, an arbitrary abelian variety A over k is isogenous to some B =
∏n

i=1 A
mi
i ,

where A1, . . . , An are simple and pairwise non-isogenous abelian varieties over k.
Then End(A) and End(B) are orders in End(A)Q ∼= End(B)Q. In each of the
three cases, the bilinear forms on End(A)Q and End(B)Q are compatible under this
isomorphism. We have

[End(A) : End(A) ∩ End(B)]2 · discr(A) = [End(B) : End(A) ∩ End(B)]2 · discr(B).

The same formula holds for the discriminants of the two other forms. Hence
∆A/∆B = δA/δB = discr(A)/discr(B), which proves the statement for A. �

Proposition 3.2 The following statements are equivalent:

(i) Coleman’s conjecture about End(A);

(ii) discr(A) is uniformly bounded for all abelian varieties A of bounded dimension
defined over a number field of bounded degree;

(iii) same as (ii), with discr(A) replaced by δA;

(iv) same as (ii), with discr(A) replaced by ∆A.

Proof. The equivalence of (ii), (iii) and (iv) was established in Lemma 3.1. It is
clear that (i) implies (iv). It remains to show that (ii) implies (i).

The ring End(A) is an order in the semisimple Q-algebra End(A)Q, which has
dimension at most 4g2. Since discr(A) is bounded, only finitely many semisimple
Q-algebras, up to isomorphism, can be realised as End(A)Q. Indeed, let B be
a semisimple Q-algebra, with simple components Bi for i = 1, . . . , n, such that
dimQ(B) is bounded and B contains an order of bounded discriminant. Then each
Bi is a matrix algebra over a division algebra Di with centre Ki such that dimQ(Bi)
is bounded. Using Proposition 2.4 and formula (7), we see that the discriminants of
the fields Ki are bounded, hence these fields belong to a fixed finite set of number
fields. By the same proposition, the division Ki-algebra Di has bounded rank and
ramification, so there are only finitely many isomorphism classes of such algebras.

By the structure theorem for maximal orders over Dedekind domains [Rei03,
Thm. 21.6] and the Jordan–Zassenhaus theorem [Rei03, Thm. 26.4], we know that
there are only finitely many maximal orders in B, up to conjugation by an element
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of B×, see [Rei03, Section 26, Exercise 8]. Hence there are only finitely many
isomorphism classes of maximal orders in B. It follows that there are only finitely
many isomorphism classes of orders of bounded discriminant, so only finitely many
rings can be realised as End(A). �

Definition 3.3 Let p be 0 or a prime number. Define dp(g) = |GL(2g,F3)| if p 6= 3,
and dp(g) = |GL(2g,Z/4)| if p = 3. Let us write d(g) = d0(g).

Theorem 3.4 Coleman’s conjecture about End(A) is equivalent to Coleman’s con-
jecture about End(A).

Proof. Proposition 3.2 can be applied over the ground field k as well as over k̄.
Thus to prove the theorem it is enough to show that the uniform boundedness of
δA is equivalent to the uniform boundedness of δA. It is clear from the definition of
TrA that for any a ∈ End(A) we have TrA(a) = TrA(a). We note that End(A) =
End(A)Γ. By a result of Silverberg [Sil92, Thm. 2.4], the cardinality of the image G
of Γ in the automorphism group of End(A) is bounded by d(g). Thus assuming the
boundedness of δA, the boundedness of δA follows from Lemma 2.1.

Conversely, let A be an abelian variety of dimension g defined over a number field
of degree at most e. By Silverberg’s result, the boundedness of discr(A), where A is
considered over a number field of degree at most e · d(g), implies the boundedness
of discr(A). �

Theorem 3.5 The following conjectures are equivalent:

(i) Shafarevich’s conjecture about NS (X);

(ii) Shafarevich’s conjecture about NS (X)Γ;

(iii) Shafarevich’s conjecture about Pic(X).

Proof. Let discr(NS (X)) be the discriminant of the bilinear form on NS (X) given
by the intersection pairing. Define discr(NS (X)Γ) and discr(Pic(X)) similarly. The
ground field k being of characteristic 0, the ranks of these lattices do not exceed 20.
By [Cas78, Ch. 9, Thm. 1.1], (i) is equivalent to the boundedness of discr(NS (X))
for K3 surfaces defined over number fields of bounded degree, and similarly for (ii)
and (iii). It remains to prove the equivalence of these three boundedness conditions.

The boundedness of discr(NS (X)) is equivalent to that of discr(NS (X)Γ) in view
of Lemma 2.1 and the classical Minkowski’s lemma that gives a bound on the size
of finite subgroups of GL(n,Z) in terms of n. To complete the proof it is enough to
show that Pic(X) is a subgroup of NS (X)Γ of bounded index. The spectral sequence
Hp(k,Hq(X,Gm))⇒ Hp+q(X,Gm) gives rise to the well known exact sequence of low
degree terms

0 −→ Pic(X) −→ Pic(X)Γ −→ Br(k)→ Br(X).
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Every K3 surface has a 0-cycle of degree 24, namely the second Chern class of
the tangent bundle. This implies that there are finite field extensions k1, . . . , kn of k
such that X has a ki-point for each i, and g.c.d.([k1 : k], . . . , [kn : k]) divides 24.
If K is a finite extension of k such that X has a K-point, then the natural map
Br(K) → Br(XK) has a section and so is injective. Now a restriction-corestriction
argument shows that the kernel of Br(k) → Br(X) is annihilated by 24. It follows
that Pic(X) is a subgroup of Pic(X)Γ = NS (X)Γ of index dividing 24. �

4 Coleman implies Br(AV)

4.1 Abelian varieties at large primes, I

We now show that Coleman’s conjecture implies Br(A)[`]Γ = 0 for abelian varieties
A of dimension g defined over a number field of degree d, for all ` greater than some
constant depending only on d and g.

Theorem 4.1 Suppose that for all pairs of positive integers (d, g) there is a constant
c = c(d, g) such that |discr(A)| < c for any abelian variety A of dimension g defined
over a number field of degree d. Then there is a constant C = C(d, g) such that for
any prime ` > C and any abelian variety A of dimension g defined over a number
field of degree d we have the following statements.

(a) the F`-algebra End(A)/` is semisimple;

(b) the Γ-module A[`] is semisimple;

(c) End(A)/` = End(A[`])Γ;

(d) Br(A)[`]Γ = 0.

We give two proofs of Theorem 4.1. In this section we prove it via a shortcut
provided by a recent theorem of Rémond [Rem18, Thm. 1.1]. In Section 4.2 we
prove a slightly stronger statement, which is valid over finitely generated fields of
characteristic zero rather than just number fields, without using Rémond’s theorem.

Parts (a), (b) and (c) of Theorem 4.1 can be proved by combining results of
Masser and Wüstholz [MW95] with [Rem18, Thm. 1.1]. The methods of Masser and
Wüstholz are similar to the proof given in this section. See [MW95, Lemma 2.3] for
part (a), [MW95, p. 222] for part (b) and [MW95, Lemma 3.2] for part (c).

The result of Rémond is used via the following lemma.

Lemma 4.2 Suppose that for all pairs of positive integers (d, g) there is a constant
c = c(d, g) such that |discr(A)| < c for any abelian variety A of dimension g defined
over a number field of degree d. Then for all pairs of positive integers (d, g) there
is a positive integer r = r(d, g) such that for any abelian variety A of dimension
g defined over a number field of degree d, for any positive integer n and any Γ-
submodule W ⊂ A[n] there is an isogeny u : A→ A such that rW ⊂ uA[n] ⊂ W .
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Proof. Let A be an abelian variety over a number field k such that [k : Q] = d and
dim(A) = g. Under our assumptions, by [Rem18, Thm. 1.1] for any abelian variety
B defined over k and k-isogenous to A there is a k-isogeny A→ B of degree bounded
in terms of d and g. One deduces the existence of a positive integer r = r(d, g) such
that, for every pair of isogenous abelian varieties A and B of dimension g defined
over a number field k of degree d, [r] : A → A factors through some k-isogeny
A→ B. The rest of proof is identical to the proof of [Zar85, Cor. 5.4.1]. �

Proof of Theorem 4.1. (a) For ` not dividing discr(A), the semisimplicity of the
F`-algebra End(A)/` follows from Corollary 2.5.

(b) We follow the proof of [Zar85, Cor. 5.4.3]. Assume that ` does not divide
r(d, g)discr(A), where r(d, g) is as in Lemma 4.2. To prove that A[`] is a semisimple
Γ-module it is enough to show that for any Γ-submodule W ⊂ A[`] there is an
idempotent π ∈ End(A)/` such that W = πA[`]. We apply Lemma 4.2 with n = `
to obtain an isogeny u : A → A such that W = uA[`], where we used that ` and
r are coprime. Since End(A)/` is semisimple by (a), we can write u(End(A)/`) =
π(End(A)/`) for some idempotent π ∈ End(A)/`. Then W = πA[`].

(c) We follow the proof of [Zar85, Cor. 5.4.5] which refers to [Zar77, 3.4]. Assume
that ` does not divide any of the integers discr(A), r(d, g), r(d, 2g).

Let D be the centraliser of End(A)/` in End(A[`]) ∼= Mat2g(F`). Since End(A)/`
is a semisimple F`-algebra by (a), the End(A)/`-module A[`] is semisimple, hence
D is a semisimple F`-algebra. By the double centraliser theorem, the centraliser of
D in End(A[`]) is End(A)/`.

Take any ϕ ∈ End(A[`])Γ. To prove that ϕ ∈ End(A)/` we need to show that
ϕ commutes with D. Applying Lemma 4.2 to the graph of ϕ in A[`]⊕2 and using
that ` does not divide r(d, 2g), we write the graph of ϕ as uA[`]⊕2 for some u ∈
Mat2(End(A)/`). Let pi : A[`]⊕2 → A[`] be the projector to the i-th summand,
for i = 1, 2. Since p1u is surjective, for each x ∈ A[`] we can write x = p1u(y) for
some y ∈ A[`]⊕2. Then since p1u, p2u : A[`]⊕2 → A[`] are maps of D-modules and
ϕp1u = p2u, we have for all d ∈ D:

ϕ(dx) = ϕp1u(dy) = p2u(dy) = d.p2u(y) = dϕ(x).

This proves (c).

(d) This follows from (b), (c) applied to A× A∨ and the following lemma.

Lemma 4.3 Let k be a field of characteristic 0. Let A be an abelian variety over k
of dimension g ≥ 1. If ` > 4g, the Γ-module A[`] is semisimple, and

End(A× A∨)/` = EndΓ(A[`]⊕ A∨[`]),

then Br(A)[`]Γ = 0.
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Proof. Since the Γ-module A[`] is semisimple, so is A∨[`] ∼= Hom(A[`], µ`). Hence by
Serre’s theorem [Ser94] and the fact that ` > 4g, we deduce that End(A[`]⊕A∨[`])
is a semisimple Γ-module.

Let EA and HA be the Γ-modules from the exact sequences (13) and (14). The
assumption End(A×A∨)/` = EndΓ(A[`]⊕A∨[`]), together with the semisimplicity
of End(A[`]⊕ A∨[`]), implies that (EA/`)

Γ = 0. Since the sequence (14) is a direct
summand of (13), we deduce that (HA/`)

Γ = 0. Because ` is odd, combining this
with Lemma 2.7 implies that Br(A)[`]Γ = 0. �

This finishes the proof of Theorem 4.1. �

Remark The statement of Lemma 4.3 remains true in positive characteristic. For
the proof one has to replace the reference to Lemma 2.7 by a counting argument
similar to the one used in [SZ08, Lemma 3.5].

4.2 Abelian varieties at large primes, II

The aim of this section is to prove a somewhat stronger version of Theorem 4.1, see
Corollaries 4.7 and 4.8.

Let A be an abelian variety over a field k. For a prime ` 6= char(k) let T`(A) be
the `-adic Tate module of A, and let ρ`,A : Γ → AutZ`

(T`(A)) be the attached `-
adic Galois representation. We denote by Λ`(A) the Z`-subalgebra of EndZ`

(T`(A))
generated by ρ`,A(Γ). Write V`(A) = T`(A)⊗Z`

Q` and define

D`(A) = Λ`(A)⊗Z`
Q` ⊂ EndQ`

(V`(A)).

Thus Λ`(A) is an order in the Q`-algebra D`(A). Define

E(A) = End(A)⊗Q, E`(A) = End(A)⊗Q` ⊂ EndQ`
(V`(A)).

It is well known that E(A) is a semisimple Q-algebra [Mum74], so that E`(A) is
a semisimple Q`-algebra. The Z-algebra End(A) is an order in E(A), hence the
Z`-algebra End(A)⊗Z` is an order in E`(A). It is clear that Λ`(A) and End(A)⊗Z`
are commuting subalgebras of EndZ`

(T`(A)), and D`(A) and E`(A) are commuting
subalgebras of EndQ`

(V`(A)). By the work of Weil, Tate, Zarhin, Faltings, Mori
on the Tate conjecture [Zar75, Zar76, Fal83, Fal84, Mor85] it is known that if k is
finitely generated over its prime subfield, then D`(A) is a semisimple Q`-algebra and

EndΓ(T`(A)) = EndΛ`(A)(T`(A)) = End(A)⊗ Z`.

This implies

E`(A) = EndD`(A)(V`(A)), D`(A) = EndE`(A)(V`(A)), (16)

where the second identity follows from the first by the double centraliser theorem.
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Proposition 4.4 Let k be a field finitely generated over Q. Let A be an abelian
variety over k of dimension g ≥ 1. If ` is a prime not dividing discr(Λ`(A)), then
the Γ-module A[`] is semisimple, End(A)/` is a semisimple F`-algebra, and

EndΓ(A[`]) = End(A)/`.

Proof. Because k is finitely generated over Q, Λ`(A) is an order in the semisimple
Q`-algebra D`(A). By Proposition 2.4 the F`-algebra Λ`(A)/` is semisimple, thus
A[`] is a semisimple Λ`(A)/`-module, hence also a semisimple Γ-module.

Also by Proposition 2.4 we have an isomorphism Λ`(A) ∼= ⊕ri=1Matni
(Oki), where

Oki is the ring of integers of an unramified field extension ki/Q` and ni is a positive
integer, for i = 1, . . . , r. Write Fi = Oki/` for the residue field of Oki .

Using the fact that Matni
(Oki) is Morita-equivalent to Oki , we obtain that for

each i = 1, . . . , r there exists a free Oki-module Ti of finite rank such that T`(A) ∼=
⊕ri=1T

⊕ni
i , where the action of Λ`(A) on T⊕ni

i = Ti⊗Oki
O⊕ni
ki

is induced by the natu-

ral action of Matni
(Oki) on O⊕ni

ki
. Hence End(A)⊗Z`, being the centraliser of Λ`(A)

in EndZ`
(T`(A)), is equal to ⊕ri=1EndOki

(Ti). Thus End(A)/` = ⊕ri=1EndFi
(Ti/`) is a

semisimple F`-algebra. On the other hand, the centraliser of Λ`(A)/` = ⊕ri=1Matni
(Fi)

in EndF`
(A[`]) = EndF`

(⊕ri=1(Ti/`)
⊕ni) is also equal to ⊕ri=1EndFi

(Ti/`). This fin-
ishes the proof. �

Proposition 4.5 Let k be a field finitely generated over Q. Let A be an abelian
variety over k of dimension g ≥ 1. If ` > 4g is a prime that does not divide
discr(Λ`(A× A∨)), then Br(A)[`]Γ = 0.

Proof. This follows from Proposition 4.4 applied to A× A∨ and Lemma 4.3. �

For positive integers g, let n(g) = [2ge2g/e], where e is the base of the natural
logarithm. The significance of this quantity will appear in the proof of Theorem 4.6.

The following theorem is the main result of this section.

Theorem 4.6 Let k be a field finitely generated over Q. Let A be an abelian variety
over k of dimension g ≥ 1. There exists an abelian variety B over k which is k-
isogenous to an abelian subvariety of An(g) such that End(B)⊗ Z` is isomorphic to
a matrix algebra over Λ`(A)op. In particular, discr(Λ`(A)) divides discr(B).

Proof. Let us first prove the statement in the isotypic case, i.e. when A is a power
of a simple abelian variety. Then E(A) is a simple Q-algebra.

Let us fix an embedding k̄ ↪→ C. The natural action of E(A) on H1(AC,Q)
gives rise to an embedding E(A) ⊂ EndQ(H1(AC,Q)), so that E(A) is a simple
Q-subalgebra of the matrix algebra EndQ(H1(AC,Q)) containing its centre Q Id. By
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[Her68, Thm. 4.3.2] the centraliser D(A) = EndE(A)(H1(AC,Q)) is also a simple
Q-subalgebra of EndQ(H1(AC,Q)). Moreover, by [Her68, p. 105] we have

dimQ(D(A)) · dimQ(E(A)) = dimQ(EndQ(H1(AC,Q))) = 4g2.

Next, D(A) is isomorphic to a matrix algebra over a division Q-algebra F , say
D(A) ∼= Matm(F ). Comparing dimensions over Q we see that m divides 2g.

Let M ∼= F⊕m be a simple left D(A)-module (unique up to isomorphism). Any
left D(A)-module that has finite dimension over F is isomorphic to a direct sum of
finitely many copies of M ; in particular, the left D(A)-module D(A) is isomorphic
to M⊕m and the D(A)-module H1(AC,Q) is isomorphic to M⊕r, where r divides 2g.
We obtain an isomorphism of left D(A)-modules

H1(AmC ,Q) = H1(AC,Q)⊕m ∼= M⊕mr ∼= D(A)⊕r. (17)

The Tate module T`(A) is isomorphic to H1(AC,Z)⊗Z` as an End(A)⊗Z`-module.
Hence V`(A) ∼= H1(AC,Q)⊗Q` as an E`(A)-module. But T`(A) is naturally a Galois
module; in fact, we know that V`(A) is a D`(A)-module satisfying (16). From this
and the definition of D(A) it follows that D`(A) = D(A)⊗QQ`. Now (17) gives rise
to isomorphisms of left D`(A)-modules (hence also of Γ-modules)

V`(A
m) = V`(A)⊕m ∼= D`(A)⊕r. (18)

Recall that Λ`(A) is an order, hence a lattice in D`(A). Let S be the lattice in
V`(A

m) obtained from the lattice Λ`(A)⊕r ⊂ D`(A)⊕r via the isomorphism (18).
It is clear that S is stable under the action of the Galois group Γ. We note that
T`(A

m) is also a Γ-stable lattice in V`(A
m). Hence for some positive integer N we

have `NS ⊂ T`(A
m). There exists an abelian variety B over k such that S ∼= T`(B)

as Γ-modules together with a k-isogeny α : B → Am of degree |T`(Am)/`NS| such
that α∗(T`(B)) = `NS. From the construction of S we have

End(B)⊗Z` = EndΓ(T`(B)) = EndΓ(Λ`(A)⊕r) = EndΛ`(A)(Λ`(A)⊕r) = Matr(Λ`(A)op).

Since m divides 2g, this finishes the proof in the isotypic case.

In the general case A is isogenous to
∏s

i=1Ai, where each Ai is a power of a
simple abelian variety and Hom(Ai, Aj) = 0 for i 6= j. Fixing such an isogeny
we obtain an isomorphism of Γ-modules V`(A) ∼= ⊕si=1V`(Ai) and an isomorphism
of Q`-algebras D`(A) ∼= ⊕si=1D`(Ai). For each i = 1, . . . , s we construct an iso-
morphism of Γ-modules V`(A

mi
i ) ∼= D`(Ai)

⊕ri as in (18), where both mi and ri
divide 2 dim(Ai). Write r =

∏s
i=1 ri. Then we have isomorphisms of Γ-modules

V`(A
mir/ri
i ) ∼= D`(Ai)

⊕r, which add up to an isomorphism of Γ-modules

V`(A
′) ∼= D`(A)⊕r, where A′ =

s∏
i=1

A
mir/ri
i . (19)
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For any x > 0 we have log(x) ≤ x/e, whence we obtain r ≤ e
∑s

i=1 ri/e ≤ e2g/e. Thus
A′ is an abelian subvariety of An(g).

Let S be the lattice in V`(A
′) obtained from the lattice Λ`(A)⊕r ⊂ D`(A)⊕r

via isomorphism (19). As above, there is an abelian variety B over k such that
S ∼= T`(B) as Γ-modules together with a k-isogeny B → A′, for which there is an
isomorphism End(B)⊗ Z` ∼= Matr(Λ`(A)op). This proves the theorem. �

Remark By the Poincaré reducibility theorem there are only finitely many abelian
subvarieties of a given abelian variety considered up to k-isogeny. (In fact, the same
is true up to k-isomorphism, see [LOZ96].) When k is finitely generated over Q
each isogeny class of abelian varieties over k consists of finitely many k-isomorphism
classes. (The case of number fields was treated in [Zar85, Prop. 3.1]. For the case of
arbitrary finitely generated fields see [Fal84, Thm. 2 and its proof on pp. 214–215].)
Thus the abelian variety B in Theorem 4.6 belongs to a finite set of k-isomorphism
classes determined by A.

Corollary 4.7 Consider a family F of abelian varieties such that each A ∈ F is
defined over a field kA finitely generated over Q. Suppose that there is a constant c
such that for every A ∈ F and every abelian variety B over kA which is kA-isogenous
to an abelian subvariety of An(dim(A)), we have discr(B) < c. Then for every prime
` > c and every A ∈ F , the Γ-module A[`] is semisimple, End(A)/` is a semisimple
F`-algebra, and EndΓ(A[`]) = End(A)/`.

Proof. Combine Theorem 4.6 with Proposition 4.4. �

Corollary 4.8 Consider a family F of abelian varieties such that each A ∈ F is
defined over a field kA finitely generated over Q. Suppose that there is a constant c
such that for every A ∈ F and every abelian variety B over kA which is kA-isogenous
to an abelian subvariety of An(2dim(A)), we have discr(B) < c. Then for every prime
` > max(c, 4dim(A)) and every A ∈ F we have Br(A)[`]Γ = 0.

Proof. Combine Theorem 4.6 with Proposition 4.5. �

4.3 Abelian varieties at a fixed prime

The following proposition develops [Zar85, Remark 5.4.7]. For abelian varieties over
number fields, this proposition can also be proved by combining [MW95, Lemma 4.1]
with [Rem18, Thm. 1.1].

Proposition 4.9 Let ` be a prime and let g be a positive integer. Consider a family
F of abelian varieties such that each A ∈ F has dimension at most g and is defined
over a field kA finitely generated over Q. Suppose that there is a constant c such
that for every A ∈ F and every abelian variety B over kA which is kA-isogenous to
an abelian subvariety of An(dim(A)), we have discr(B) < c.
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Then there exists a positive integer a = a(F) such that for every abelian variety
A ∈ F and every n ≥ 1, the subgroup [`a]·EndΓ(A[`n+a]) of EndΓ(A[`n]) is contained
in the image of End(A)/`n.

Proof. We can apply Lemma 2.3 to the Tate module N = T`(A), where Λ = Λ`(A)
is the Z`-subalgebra of EndZ`

(T`(A)) generated by ρ`,A(Γ). Indeed, by Faltings
[Fal84] we have EndΛ(N) = EndΓ(T`(A)) = End(A)⊗Z`, whereas the restriction of
(x.y) = Tr(xy) to End(A)⊗ Z` is non-degenerate by Lemma 3.1.

Lemma 2.3 now gives a positive integer a such that `a ·EndΓ(A[`n+a]) is contained
in the image of End(A) for every n ≥ 1. However a may depend on the subalgebra
Λ of EndZ`

(T`(A)) and on the structure of T`(A) as a Λ-module.

As recalled in Section 4.2, Λ is an order in an semisimple Q`-algebra of dimension
at most 16g2. By Theorem 4.6, discr(Λ) is bounded by c. By a similar argument
to that used in the proof of Proposition 2.3, there are only finitely many isomor-
phism classes of Z`-orders of given discriminant in semisimple Q`-algebras of given
dimension. Thus there are finitely many possibilities for Λ.

Furthermore, for each Z`-algebra Λ, there are only finitely many isomorphism
classes of Λ-modules of given finite Z`-rank. This implies that our constant a can
be chosen to depend only on F . �

The main result of this section is the following theorem.

Theorem 4.10 Let ` be a prime and let g be a positive integer. Consider a family
F of abelian varieties such that each A ∈ F has dimension at most g and is defined
over a field kA finitely generated over Q. Suppose that there is a constant c such
that for every A ∈ F and every abelian variety B over kA which is kA-isogenous to
an abelian subvariety of An(2dim(A)), we have discr(B) < c.

Then there exists a positive integer r such that for every abelian variety A ∈ F the
group Br(A){`}Γ is annihilated by `r, and so is a finite abelian group of cardinality
dividing `r(g(2g−1)−1).

Proof. Recall the definitions of EA and HA from the exact sequences (13) and (14).

By Lemma 2.7, it suffices to prove that there is an integer s depending only on F
such that, for every n ≥ 1, we have [`s] · (HA/`

n)Γ = 0.

We equip EndZ`
(T`(A) ⊕ T`(A∨)) with the unimodular symmetric bilinear form

Tr(xy), where Tr is the usual matrix trace. By Lemma 3.1 and our hypothesis
on F , the restriction of this form to End(A × A

∨
) ⊗Z Z` has bounded, non-zero

discriminant. By Lemma 2.2 this gives a positive integer b such that [`b] · (EA/`n)Γ

is contained in the image of

(EndZ`
(T`(A)⊕ T`(A∨))/`n)Γ = EndΓ(A[`n]⊕ A∨[`n]),

for every n ≥ 1.
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By Proposition 4.9, this implies that [`a+b] · (EA/`n)Γ is contained in the image
of End(A×A∨)/`n. But by the exact sequence (13), the image of End(A×A∨)/`n
in EA/`

n is 0. Thus [`a+b] · (EA/`n)Γ = 0. Since the exact sequence (14) is a direct
summand of (13), it follows that [`a+b] · (HA/`

n)Γ = 0, as required.

To deduce the bound on the cardinality of Br(A){`}Γ, observe that Br(A)[`] is a
quotient of a free Z`-module H2(A,Z`(1))/(NS (A)⊗ Z`) of rank

rk(H2(A,Z`))− rk(NS (A)) ≤ g(2g − 1)− 1. �

4.4 Converse results

Let p be 0 or a prime number. The function dp(g) was introduced in Definition 3.3.

For an abelian group B and a prime p, define B(p′) to be the subgroup of Btors

consisting of the elements whose order is not divisible by p. For p = 0, we write
B(p′) = Btors.

The following statement will be used in Section 6.

Proposition 4.11 Let k be a field of characteristic p. Let A be an abelian variety
over k of dimension g ≥ 1. If Br(A×A∨)(p′)Γ is annihilated by a positive integer M ,
then for any positive integer n not divisible by p, we have

dp(g)M · EndΓ(A[n]) ⊂ End(A)/n ⊂ EndΓ(A[n]).

In particular, if ` is a prime not dividing dp(g)M and not equal to p, then

EndΓ(A[`]) = End(A)/`.

Proof. In [SZ14] the last two authors used the Kummer sequence and the Künneth
formula to obtain an expression for the Brauer group of a product of varieties, see
[SZ14, formula (20), p. 761]. Applied to the abelian variety A × A∨ it gives a
canonical isomorphism of Γ-modules

Br(A× A∨)[n] ∼= Br(A)[n]⊕ Br(A
∨
)[n]⊕ EndZ/n(A[n])/

(
End(A)/n

)
.

Thus
(
EndZ/n(A[n])/

(
End(A)/n

))Γ
is a subgroup of Br(A× A∨)[n]Γ, and so is an-

nihilated by M . In view of the exact sequence of Γ-modules

0 −→ End(A)/n −→ EndZ/n(A[n]) −→ EndZ/n(A[n])/
(
End(A)/n

)
−→ 0

we conclude that M · EndΓ(A[n]) ⊂ (End(A)/n)Γ.

Let G be the image of Γ in Aut(End(A)) via its natural action on End(A). By
a result of Silverberg [Sil92, Thm. 2.4], G is a finite group of order dividing dp(g).
The exact sequence of Γ-modules

0 −→ End(A)
[n]−→ End(A) −→ End(A)/n −→ 0
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comes from the same sequence considered as an exact sequence of G-modules. It
gives rise to the exact sequence of abelian groups

0 −→ End(A)/n −→ (End(A)/n)Γ −→ H1(G,End(A)),

where we took into account that End(A)G = End(A)Γ = End(A). Since H1(G,End(A))
is annihilated by dp(g), we obtain dp(g) · (End(A)/n)Γ ⊂ End(A)/n, and thus
dp(g)M · (EndΓ(A[n]) ⊂ End(A)/n. �

We point out the following partial converse to Theorem 4.1.

Corollary 4.12 Let ` be a prime and let k be a field of characteristic p 6= `. Let
A be an abelian variety over k of dimension g ≥ 1. If ` does not divide dp(g), the

Γ-module A[`] is semisimple and Br(A× A∨)[`]Γ = 0, then the following hold:

(a) the F`-algebra End(A)/` is semisimple;

(b) ` does not divide discr(A).

Proof. (a) Since the Γ-module A[`] is semisimple, the F`-algebra EndΓ(A[`]) is
semisimple. By the second part of Proposition 4.11 it coincides with End(A)/`.

(b) This follows from (a) and Corollary 2.5. �

5 Coleman implies Shafarevich

In this section, we show that Coleman’s conjecture implies Shafarevich’s conjecture.
We use the Kuga–Satake construction to relate Hodge structures associated with K3
surfaces to abelian varieties. In order to obtain a result which is independent of the
degree of polarisation of the K3 surface, we use a K3 surfaces version of Zarhin’s trick
from [OS18] and [She], which is described in terms of orthogonal Shimura varieties.

We first recall how one constructs an orthogonal Shimura variety from a lattice L
with signature (2, n), n ≥ 1. Let SO(L) be the group scheme over Z whose functor of
points associates to a ring R the group SO(L⊗ZR). Let S = ResC/R(Gm) denote the
Deligne torus and let ΩL be the set of h ∈ Hom(S,SO(L)R) such that the associated
Z-Hodge structure on L is of K3 type, that is, the following properties are satisfied:

1. dim((L⊗Z C)
(1,−1)
h ) = dim((L⊗Z C)

(−1,1)
h ) = 1 and dim((L⊗Z C)

(0,0)
h ) = n;

2. for every non-zero v ∈ (L⊗Z C)
(1,−1)
h we have (v, v) = 0 and (v, v̄) > 0;

3. ((L⊗Z C)
(1,−1)
h , (L⊗Z C)

(0,0)
h ) = 0.

Sending h to (L⊗ZC)
(1,−1)
h identifies ΩL with {[x] ∈ P(L⊗ZC) | (x2) = 0, (x, x̄) > 0},

which is a homogeneous space of SO(L⊗Z R).
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Let K ⊂ SO(L)(AQ,f) be a compact open subgroup. The canonical model of the
associated Shimura variety ShK(L) := ShK(SO(L)Q,ΩL) is a quasi-projective variety
over Q. By construction, the C-points of ShK(L) parameterise Z-Hodge structures
on L satisfying properties 1, 2, 3 above.

Suppose that K is torsion-free. (Every compact open subgroup of SO(L)(AQ,f)
contains a torsion-free subgroup of finite index.) Then for each prime ` there is
a lisse Z`-sheaf L` on ShK(L) defined by the inverse system of finite étale covers
ShK(`m)(L)→ ShK(L), where K(`m) is the largest subgroup of K that acts trivially on
L/`m. Thus, to a k-point x of ShK(L) there corresponds a representation Gal(k/k)→
SO(L⊗Z Z`). Putting together these representations for all ` gives a representation

φx : Gal(k/k)→ SO(L⊗Z Ẑ). (20)

This construction was also described in [CM, 3.1] or [UY13, 2.2].

From a lattice L with signature (2, n), n ≥ 1, one can also construct a spin
Shimura variety, see [MP16, Section 3]. Let C(L) be the Clifford algebra of L, and let
C+(L) ⊂ C(L) be the even Clifford algebra. Let GSpin(L) be the group Z-scheme
whose functor of points associates to a ring R the group of invertible elements g of
C+(L⊗ZR) such that g(L⊗ZR)g−1 = L⊗ZR. If K̃ ⊂ GSpin(L)(AQ,f) is a compact
open subgroup, we write Shspin

K̃ (L) for the Shimura variety ShK̃(GSpin(L)Q,ΩL). Let

K be the image of K̃ in SO(L)(AQ,f). By [And96, 4.4] this subgroup of SO(L)(AQ,f)
is compact and open. The natural group homomorphism GSpin(L)Q → SO(L)Q
induces a morphism Shspin

K̃ (L)→ ShK(L). This morphism is finite and surjective by
[Orr13, Thm. 2.4], and defined over Q because the Shimura datum (GSpin(L)Q,ΩL)
has reflex field Q [And96, App. 1].

Let K̃N ⊂ GSpin(L)(Ẑ) be the set of elements congruent to 1 modulo N in
C+(L ⊗Z Ẑ). If K̃ ⊂ K̃N for N ≥ 3, then K̃ and K are torsion-free and the
morphism Shspin

K̃ (L)→ ShK(L) is étale. Rizov shows in [Riz10, Section 5.5, (32)] that
this morphism restricts to an isomorphism on each geometric connected component.
Thus Shspin

K̃ (L) → ShK(L) has a section defined over a number field E which only

depends on L and K̃.

There is a finite morphism of Shimura varieties from Shspin

K̃ (L) to a moduli space
of abelian varieties, defined over Q. In order to construct this, we find a skew-
symmetric form on C(L) following [Huy16, Ch. 4, 2.2]. Indeed, we choose orthogonal
elements f1, f2 ∈ L satisfying (f 2

1 ), (f 2
2 ) > 0. Then we can define a skew-symmetric

form on C(L) by ±TrC(L)(f1f2v
∗w), where TrC(L) is the intrinsic trace. The action

of GSpin(L) on this form is multiplication by the spinor norm (see [Huy16, Ch. 4,
Prop. 2.5] for proofs of these facts, as well as the correct choice of sign). The group
GSpin(L) injects into the group of symplectic similitudes GSp(C(L)) of this form.

If K̃ ⊂ K̃N , then we have a morphism from Shspin

K̃ (L) to the Shimura variety

ShΓN
(GSp(C(L))Q,H±), where ΓN is the subgroup of GSp(C(L))(Ẑ) consisting of
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the elements that are congruent to 1 modulo N . The latter Shimura variety is iden-
tified with the moduli variety Ag,δ,N parameterising abelian varieties of dimension
g = 2n+1, polarisation type δ (explicitly computable in terms of L and f1, f2) and
level structure of level N . If N ≥ 3, then Ag,δ,N is a fine moduli space, so we can
define the Kuga–Satake abelian scheme f : A → ShK(L)E as the pullback of the
universal family of abelian varieties on Ag,δ,N to Shspin

K̃ (L), and then, after extending
the ground field from Q to E, to ShK(L)E. (As above, E is a number field over
which there exists a section of Shspin

K̃ (L)E → ShK(L)E. The Kuga–Satake scheme
depends on the choice of such a section.)

The left multiplication of L ⊂ C(L) on C(L) gives a homomorphism L ↪→
EndZ(C(L)) whose cokernel is torsion-free. Since C(L) = R1fan,∗Z as sheaves on
ShK(L)C, this gives rise to a morphism of variations of Z-Hodge structures

L→ C(L)→ EndZ(R1fan,∗Z).

Via the comparison theorems we get a morphism of Z`-sheaves L` → EndZ`
(R1f∗Z`).

Proposition 5.1 Let L be a unimodular lattice of signature (2, n), n ≥ 1. Let
K̃ ⊂ K̃3 ⊂ GSpin(L)(Ẑ) be a compact open subgroup and let K be the image of K̃
in SO(L)(Ẑ). For a C-point s of ShK(L), write Ls for the Z-Hodge structure on L
parameterised by s. Define Ts to be the smallest primitive sub-Z-Hodge structure of
Ls whose complexification contains L

(1,−1)
s .

If Coleman’s conjecture about End(A) holds for abelian varieties of dimension
2n+1, then the discriminant of the restriction of the bilinear form on L to Ts is
bounded by a constant that depends only on n and d, provided that s is defined over
a number field of degree d.

Proof. Define Ns = L ∩ (Ls ⊗Z C)(0,0). Then Ts is the orthogonal complement to
Ns in L. Since L is unimodular, we have |discr(Ns)| = |discr(Ts)|, so it is enough to
prove that |discr(Ns)| is bounded.

We equip the Z-algebra EndZ(C(L)) = Mat2n+2(Z) with the unimodular bilin-
ear form TrC(L)(xy), where TrC(L) is the usual matrix trace (which, by definition,
is the same as the reduced trace). This form is compatible with the Hodge struc-
ture, because the Hodge parameter hEnd : S → GL(EndZ(C(L)) ⊗ R) is given by
hEnd(z)(x) = hC(L)(z)xhC(L)(z)−1. From the definition of the Clifford algebra we
see that the restriction of this form to L ⊂ EndZ(C(L)) is the original unimodu-
lar form on L multiplied by 2n+2. Let L⊥ be the orthogonal complement to L in
EndZ(C(L)). By the non-degeneracy of the form on L we have L ∩ L⊥ = 0. The
index of L⊕ L⊥ in EndZ(C(L)) is equal to the discriminant of the restriction to L
of the bilinear form on EndZ(C(L)), and so depends only on n.

Suppose s is defined over a number field k. Without loss of generality we can
assume that k contains E. Thus we have an abelian variety As defined over k
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which is the fibre of f : A → ShK(L) at s. The natural injection End(As,C) ↪→
EndZ(H1(As,C,Z)) gives an identification

End(As,C) = EndZ(H1(As,C,Z)) ∩ EndC(H1(As,C,C))(0,0).

In particular, End(As,C) is saturated in EndZ(H1(As,C,Z)).

Since Ls is a sub-Z-Hodge structure of EndZ(H1(As,C,Z)) and the Hodge structure
is compatible with the bilinear form on EndZ(H1(As,C,Z)) ∼= EndZ(C(L)), we see
that L⊥s is also a sub-Z-Hodge structure. Write N ′s = L⊥ ∩ (L⊥s ⊗Z C)(0,0). In the
category of Q-Hodge structures, EndQ(H1(As,C,Q)) = Ls ⊗Z Q⊕ L⊥s ⊗Z Q, and so

End(As,C)⊗Z Q = (Ns ⊗Z Q)⊕ (N ′s ⊗Z Q).

It follows that Ns ⊕N ′s has finite index in End(As,C).

We have End(As,C) ∩ L = Ns and End(As,C) ∩ L⊥ = N ′s. If x ∈ L and y ∈ L⊥
are such that (x, y) ∈ (L ⊕ L⊥) ∩ End(As,C), then both x and y have type (0, 0),
hence x ∈ Ns and y ∈ N ′s. This shows that (L ⊕ L⊥) ∩ End(As,C) = Ns ⊕ N ′s.
Using the fact that End(As,C) is saturated in EndZ(H1(As,C,Z)), we deduce that the
index of Ns ⊕ N ′s in End(As,C) divides the index of L ⊕ L⊥ in EndZ(C(L)). Hence
|discr(Ns)| divides the product of |discr(End(As,C))| and a constant depending only
on n. By Proposition 3.2 and Theorem 3.4, Coleman’s conjecture implies that
|discr(End(As,C))| is bounded. This finishes the proof. �

The construction of the orthogonal Shimura variety associated to a lattice of
signature (2, n) is functorial with respect to primitive embeddings of such lattices
ι : L ↪→ L′. Indeed, ι induces an injective group homomorphism of algebraic groups
SO(L)Q → SO(L′)Q and thus an injective homomorphism r : SO(L)(AQ,f) →
SO(L′)(AQ,f). If K ⊂ SO(L)(AQ,f) and K′ ⊂ SO(L′)(AQ,f) are compact open sub-
groups such that r(K) ⊂ K′, then this gives rise to a finite morphism of Q-varieties
f : ShK(L) −→ ShK′(L′). When K′ is torsion-free, this morphism is compatible with
the associated variations of Hodge structures on L and L′, as well as with the asso-
ciated `-adic sheaves. In particular, a C-point x of ShK(L) gives rise to an isometric
embedding of associated Z-Hodge structures Lx → L′f(x).

We apply these considerations to orthogonal Shimura varieties related to moduli
spaces of polarised K3 surfaces, giving a version of Zarhin’s trick for K3 surfaces
as proposed in [OS18] and [She]. For a positive integer d let Λ2d be the lattice
E8(−1)⊕2 ⊕U⊕2 ⊕ 〈−2d〉. There exist a positive integer n and a unimodular lattice
Λ# of signature (2, n) such that for each d ≥ 1 there is a primitive embedding
Λ2d → Λ#. In the version of [OS18] this lattice has been chosen as the even lattice
E8(−1)⊕3 ⊕ U⊕2 (so that n = 26), using results of Nikulin. Here we follow a
simpler version based on Lagrange’s four squares theorem as in [She, Lemma 3.3.1]
and set Λ# = E8(−1)⊕2 ⊕ U⊕2 ⊕ 〈−1〉⊕5 (so that n = 23). For each d we pick a
primitive embedding ιd : Λ2d → Λ#, inducing rd : SO(Λ2d)(AQ,f) → SO(Λ#)(AQ,f).

25



If K ⊂ SO(Λ2d)(AQ,f) and K# ⊂ SO(Λ#)(AQ,f) are compact open subgroups such
that rd(K) ⊂ K#, then there is a finite morphism of Shimura varieties over Q

fd : ShK(Λ2d) −→ ShK#
(Λ#).

Let M2d be the coarse moduli space over Q of primitively polarised K3 surfaces
of degree 2d; this is a quasi-projective variety defined over Q, see [Huy16, Ch. 5].
Let M̃2d be the coarse moduli space over Q of triples (X,λ, u) such that X is a K3
surface over a field of characteristic 0, λ is a primitive polarisation of X of degree 2d,
and u is an isometry

det(P 2(X,Z2(1))) −→ det(Λ2d ⊗Z Z2),

where P 2(X,Z2(1)) is the orthogonal complement of the image of λ in the 2-adic
étale cohomology H2(X,Z2(1)). We have a double cover M̃2d →M2d. By the work of
Rizov and Madapusi Pera (based on the Torelli theorem), there is an open immersion
M̃2d ↪→ ShKd

(Λ2d) defined over Q, where

Kd = {g ∈ SO(Λ2d ⊗Z Ẑ) : g acts trivially on Λ∗2d/Λ2d}.

For a proof that this immersion is defined over Q, see [MP15, Cor. 5.4] (see also
[Riz10, Thm. 3.9.1] and [Tae]).

Theorem 5.2 Coleman’s conjecture about End(A) implies Shafarevich’s conjecture
about NS (X).

Proof. Let k be a number field and let X be a K3 surface defined over k. Let d be
a positive integer such that X has a polarisation of degree 2d over k. Then X gives
rise to a k-point on M2d. Replacing k by a quadratic extension, we can assume that
this point lifts to a k-point x on M̃2d ⊂ ShKd

(Λ2d).

Let K# ⊂ SO(Λ#)(Ẑ) be the image of K̃3 ⊂ GSpin(Λ#)(Ẑ). Define

K′d = r−1
d (K#) ∩Kd.

By [Huy16, Ch. 14, Prop. 2.6], we have rd(Kd) ⊂ SO(Λ#)(Ẑ). Hence [Kd : K′d] ≤
[SO(Λ#)(Ẑ) : K#], that is, the index [Kd : K′d] is uniformly bounded. Thus replacing
k by an extension of uniformly bounded degree we can assume that x lifts to a k-
point x′ on ShK′

d
(Λ2d).

We need to show that |discr(NS (X))| is universally bounded when [k : Q] is
bounded. Choose an embedding k̄ ↪→ C. We have NS (X) = NS (XC). Let T (XC) ⊂
H2(XC,Z(1)) be the transcendental lattice of XC defined as the orthogonal comple-
ment to NS (XC) in H2(XC,Z(1)) with respect to the bilinear form given by the cup-
product. Since this form is unimodular, we have |discr(NS (XC))| = |discr(T (XC))|,
so it is enough to bound |discr(T (XC))|.

Let s = fd(x
′) ∈ ShK#

(Λ#). The proof of [OS18, Lemma 4.3] shows that ιd :
Λ2d → Λ# induces an isometry T (XC)−̃→Ts. Finally Proposition 5.1 tells us that
|discr(Ts)| is bounded by a constant that depends only on [k : Q]. �
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6 Br(AV) implies Várilly-Alvarado

The main result of this section is that uniform boundedness of Br(A)Γ, for abelian
varieties A of bounded dimension over number fields of bounded degree, implies
Várilly-Alvarado’s conjecture.

Before proving this main result, we relate two Galois representations attached to
a polarised K3 surface (X,λ) defined over a number field k. Choose an isometry
u : det(P 2(X,Z2(1)))→ det(Λ2d⊗Z Z2). After replacing k by a quadratic extension
we can assume that Γ acts trivially on det(P 2(X,Z2(1))). By [Sai12, Cor. 3.3] the
quadratic character through which Γ acts on det(H2(X,Q`(1))) does not depend
on `. Thus Γ acts trivially on det(P 2(X,Z`(1))) for all primes `, hence the repre-
sentation ρX : Γ→ O(P 2(X, Ẑ(1))) attached to X takes values in SO(P 2(X, Ẑ(1))).

The triple (X,λ, u) defines a k-point x in M̃2d ⊂ ShKd
(Λ2d). Choose a torsion-free

compact open subgroup K′d ⊂ Kd and let x′ be a lift of x in ShK′
d
(Λ2d), defined over

a finite extension k′ of k. Let Γ′ = Gal(k/k′) and let φx′ : Γ′ → SO(Λ2d⊗Z Ẑ) denote
the monodromy representation associated with the point x′, as defined at (20).

Lemma 6.1 The adelic Galois representations ρX|Γ′ : Γ′ → SO(P 2(X, Ẑ(1))) and

φx′ : Γ′ → SO(Λ2d ⊗Z Ẑ) are isometric.

Proof. This is an immediate consequence of [MP16, Prop. 5.6(1)]. �

Theorem 6.2 Assume that for every positive integer e, there exists B = B(e) > 0
such that every abelian variety A of dimension 225 defined over a number field of
degree at most e satisfies |Br(A)Γ| < B. Then for every pair of positive integers
(e,M), there exists a constant C = C(e,M) such that for every K3 surface X
defined over a number field of degree e, if |discr(NS (X))| < M , then |Br(X)Γ| < C.

Proof. Let X be a K3 surface defined over a number field k. Let d be a positive
integer such that X has a polarisation of degree 2d over k. After an extension of
the field k of degree at most 2, X is represented by a k-point x of M̃2d ⊂ ShKd

(Λ2d).

Let Λ2d, Λ# and K#, K′d be the same as in the proof of Theorem 5.2. This proof
shows that replacing k by an extension of uniformly bounded degree we can assume
that x lifts to a k-point x′ on ShK′

d
(Λ2d). Let s = fd(x

′) ∈ ShK#
(Λ#).

Write Λ2d ⊗Z Z` = Λ2d,` and Λ# ⊗Z Z` = Λ#,`. The injective homomorphism of
Z-modules ιd : Λ2d → Λ# gives rise to an injective homomorphism of Z`-modules
ιd,` : Λ2d,` → Λ#,`, which is also a homomorphism of Γ-modules (with respect to the
Γ-module structures associated with the points x′ ∈ ShK′

d
(Λ2d) and s ∈ ShK#

(Λ#)
respectively). Using comparison theorems between classical and étale cohomology,
and noting that T (XC) = NS (XC)⊥, we see that T (XC)` = T (XC)⊗ZZ` has a canon-
ical structure of a Γ-module. The proof of [OS18, Lemma 4.3], relying on [Zar83,
Thm. 1.4.1], shows that ιd(T (XC)) = Ts (where Ts is defined in Proposition 5.1),
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hence ιd,` sends T (XC)` isomorphically onto Ts,` = Ts ⊗Z Z`. By Lemma 6.1, we
conclude that ιd,` induces an isomorphism of Γ-modules T (XC)`−̃→Ts,`.

The Kummer exact sequence gives rise to short exact sequences of Γ-modules

0 −→ NS (X)/`n −→ H2(X,µ`n) −→ Br(X)[`n] −→ 0.

Since the intersection pairing on H2(XC,Z(1)) is unimodular, and using again the
comparison between Betti and étale cohomology, this implies that Br(X)[`n] ∼=
Hom(T (XC)`,Z/`n).

Therefore, it is enough to show that Br(AV) together with boundedness of [k : Q]
and discr(NS (X)) imply that

(1) there is a constant C such that HomΓ(Ts,`,Z/`) = 0 for any prime ` > C,
where s is any k-point of ShK(Λ#);

(2) for each prime ` there is an integer m ≥ 0 such that `mHomΓ(Ts,`,Z/`n) = 0
for any n ≥ 1, where s is any k-point of ShK(Λ#).

We assumed that |discr(NS (X))| = |discr(T (XC))| = |discr(Ts)| < M , thus the
natural homomorphism of abelian groups Ts → HomZ(Ts,Z) given by the intersec-
tion pairing is injective with cokernel of cardinality less than M . Hence if ` ≥ M ,
the Γ-modules Ts,`/` and Hom(Ts,`,Z/`) are canonically isomorphic, so to prove (1)
it is enough to prove the following statement:

(1′) there is a constant C such that (Ts,`/`)
Γ = 0 for any prime ` > C.

For any fixed prime ` we have an injective homomorphism of Γ-modules Ts,` →
Hom(Ts,`,Z`) with bounded cokernel. Thus, to prove (2) it is enough to prove

(2′) for each prime ` there is an integer m ≥ 0 such that [`m] · (Ts,`/`n)Γ = 0 for
all n ≥ 1.

We use the notation of the proof of Proposition 5.1. Recall that A = As is an
abelian variety over k of fixed dimension g = 2n+1 (where Λ# has signature (2, n) –
recall that we can take n = 23). We have an injective homomorphism of Z-Hodge
structures Ts → Λ#,s → EndZ(H1(AC,Z)). After tensoring with Z` it gives rise to
an injective homomorphism of Γ-modules Ts,` → EndZ`

(T`(A)).

We equip EndZ(H1(AC,Z)) with the unimodular symmetric bilinear form Tr(xy),
where Tr is the usual matrix trace. After tensoring with Z` this gives a Γ-invariant
form on EndZ`

(T`(A)) with values in Z`.
Let T⊥s be the orthogonal complement to Ts in EndZ(H1(AC,Z)) with respect to

Tr(xy). Clearly T⊥s is saturated in EndZ(H1(AC,Z)). In the proof of Proposition
5.1 we observed that the restriction of Tr(xy) to Ts is the intersection form on Ts
multiplied by 2n+2. Since this form is non-degenerate, we have Ts ∩ T⊥s = 0. The
discriminant of Ts is bounded by assumption and Tr(xy) is unimodular, so

F = EndZ(H1(AC,Z))/(Ts ⊕ T⊥s )
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is a finite abelian group of bounded size. We write T⊥s,` = T⊥s ⊗Z Z`. This is the
orthogonal complement to Ts,` in EndZ`

(T`(A)), so is naturally a Γ-module. In
particular, Ts/`

n and T⊥s /`
n are Γ-submodules of

EndZ(H1(AC,Z))/`n = EndZ`
(T`(A))/`n = EndF`

(A[`n])

for any prime ` and any positive integer n.

The bilinear form Tr(xy) is compatible with the Hodge structure. Since Ts⊗Q is
an irreducible Q-Hodge structure and contains elements of type (1,−1), it follows
that all elements of EndZ(H1(AC,Z)) of Hodge type (0, 0) are orthogonal to Ts. In
particular, End(AC) ⊂ T⊥s . Since End(AC) is saturated in T⊥s ⊂ EndZ(H1(AC,Z)),
we also have End(AC)/`n ⊂ T⊥s /`

n.

We shall first prove (2′). Fix an arbitrary prime ` and let `a be the highest power
of ` dividing the exponent of F . Since |F | is bounded, so is a. Applying the snake
lemma to the self-map [`n] of the exact sequence of Γ-modules

0 −→ Ts,` ⊕ T⊥s,` −→ EndZ`
(T`(A)) −→ F [`∞] −→ 0

and then applying the left exact functor −Γ, we get an exact sequence

0 −→ F [`n]Γ −→ (Ts,`/`
n)Γ ⊕ (T⊥s,`/`

n)Γ −→ EndΓ(A[`n]). (21)

By Proposition 4.11 there is a positive integer b that depends only on the upper
bound for the cardinality of Br(A×A∨)Γ such that [`b] ·EndΓ(A[`n]) is contained in
End(A)/`n ⊂ EndΓ(A[`n]). Recall that

End(A)/`n = End(A)Γ/`n ⊂ (End(AC)/`n)Γ ⊂ (T⊥s,`/`
n)Γ.

Let x ∈ (Ts,`/`
n)Γ. Using (21), we see that there is a y ∈ (T⊥s,`/`

n)Γ such that `bx⊕y
is in the image of F [`n]Γ. Therefore, `a(`bx⊕y) = 0 hence `mx = 0, where m = a+b.
This finishes the proof of (2′).

To prove (1′), note that if ` does not divide |F |, then a = 0 in the above argument.
And by the second part of Proposition 4.11, we can take b = 0 for all primes ` greater
than some constant depending only on the upper bound for Br(A×A∨)Γ. Thus for
large enough primes `, the above argument for (2′) shows that (Ts,`/`)

Γ = 0. �
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ment spéciales. PhD thesis, Université Paris-Sud, 2013. Available at http:

//tel.archives-ouvertes.fr/tel-00879010/.

[OS18] M. Orr and A.N. Skorobogatov. Finiteness theorems for K3 surfaces and abelian
varieties of CM type. Compositio Math. 154 (2018) 1571–1592.

[Rei03] I. Reiner. Maximal orders. London Mathematical Society Monographs. New Se-
ries 28. The Clarendon Press, Oxford University Press, 2003.
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