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Abstract

We show that Dirichlet’s energy 1s a proper pluri-subharmonic function

on Teichmiller space with respect to its natural complex structure.

Let M be an oriented compact surface without boundary and with genus
greater than one. Let # be the space of almost complex structures on M
compatible with its orientation and let ﬁo be the space of all
diffeomorpisms of M homotoplc to the identity. Then [4], [5], [6]
Teichmiller space 1s defined to be the quotient d/@o, where @0 acts on
4 by pull back. In [4] it is shown that J(M) has the structure of a
6(genus M) - 6 ¢” smooth manifold. If A-l denotes the infinite
dimensional Fréchet manifold of Riemannian metrics of constant curvature
-1, then %0 acts naturally on A-l and J(M) 1s diffeomorphic to

A_l/ﬂo.
This diffeomorphism 1s described as follows (for details see [4], [8]:

There is a natural D-invariant diffeomorphism & : A-l -+ o given by

-1
) -
(g) g #g

where ﬂg is the volume element of g. & then passes to a diffeomorphism

® from ﬂ_l/% to d/%o. Let 6 : M be the inverse of &. For

0 -1
J ed, §8(J) 1is the unique Poincaré metric associated to J. Denote by 8
the induced diffeomorphism from d/%o to ﬂ_l/ﬁo. We also have a natural

QO invariant metric on A given by



<<H,K>> = % f tr(HK)d
M Pe3)

and a natural L2 splitting [8] of TJM, namely each H € TJd can be

uniquely decomposed as

(1.1) H=HT 4 LJ

where LXJ is the Lie derilvative of J w.r.t. the vector fleld X on M,

and HTT denotes a (1,1) tensor which is trace free and divergence free

w.r.t. @{(J). The decomposition (1.1) is L,-orthogonal. Since & acts as

2 0
a group of isometries <<«,>> passes to a metric <,> on JT(M) = d/@o
described as follows. The term LXJ 1s always tangent to the orbit of %@

through J. We say that J 1s the vertical part of He T A in the
B Yy P J

decomposition (1.1). Similarly we say that HTT represents the horizontal
part of H. Let = : o -+ d/Do be the natural projection map. Given

H,K € T[J]d/%o there are unique horizontal vectors H,K e T4 such that
Dn(J)XK = K. Then

(1.2) <H,K> - <<f,>>

{J] J’

Let us now consider the model ﬂ_l/ﬁo of J(M). The tangent space of ﬂ-l
at a metric, g e Tgﬂ_l consists of those (0,2) tensors h on M

satisfying the equation

1
1.3 -A(tr h) + § § h + 5(tr h) = 0
(1.3) (cr h) + 8.6 h + 5(cr h)

where trgh - gijhij is the trace of h w.r.t. the metric tensor
gij’sgsgh 1s the double covariant divergence of h w.r.t. g and A is
the Laplace-Beltrami operator on functions. For example see {8] for

details. The Lz-matric on ﬂ-l is given by the Inner product



(1.4) <<h,k>> = ! I trace (HK)du
g 2y g

where H = g-lh, K= g-lk are the (1,1) tensors on M obtalned from h

and k via the metric g, or "by raising an index", i.e.

i ikh
H, =
178 Ty
and similarly for K.
The inner product (1.4) is ®. invariant. Thus 9, acts smoothly on

0 0
M as a group of isometries with respect to this metric, and consequently

welhave an induced metric on J(M) in such a way that the projection map
- A-l - ﬂ"l/ﬁo becomes a Riemannian submersion [4]. In [5] 1t is shown
that this induced metric is precisely the metric originally introduced by
Weil.

Let <,> be the induced metric on J(M). We can characterize <,> as

follows. From [3] we can show that given g € A-l every

(1.5) h=h +Lg

where Lxg i1s the Lie derivative of g w.r.t. some (unique X) and hTT

is a trace free, divergence free, symmetric tensor. Moreover the
decomposition (1.5) is Lz-orthogonal. Recall that a conformal coordinate
system (where gij - Asij, A  some smooth positive function) 1s also a

complex holomorphic coordinate system. In this system -

hIT = Re(£(z)dz?)

where Re 1is "real part" and £(z)dz2 is a holomorphic quadratic
differential. In fact, trace free, divergence free symmetric two tensors

are precisely the real parts of holomorphic quadratic differentials.
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Now Lxg is always tangent to the orbit of EO through g. We say
that Lxg is the vertical part of h 1in decomposition 1l.4. Similarly we

say that hTT represents the horizontal part of h. Given h,k € T,k .J(M)

[g]
there are unique horizontal vectors h,k e Tgﬂ_l such that Dw(g)ﬁ = h

and Dw(g)ﬁ =~ k. Then

The map 4 : d/@o -+ A_l/ﬁo has a derivative which can be described as

follows. Let H € T[J]d/ﬁo and H 1its horizontal 1lift. Then

(1.6) DI([J])H = Dxr - DO(JI)H

where D@ (J)H -(Jﬁ)# and (Ji) is the (0,2) tensor obtained from

#
(JH) by lowering an index via the metric g, i.e.

~ k
Suppose now that Bg (= ﬂ-l 1s fixed and that s : (M,g) - (M,go) is a
smooth Cl map homotoplc to the identity and 1s viewed as a map from M
with some aribtrary metric g € A-l to M with its g0 metric,
Define the Dirichlet energy of s by the formula

1 2
1. -
(1.7) E_(s) 21{ |ds| “an,

where ds 2 . trace ds ® ds depends on both g and gy
By the embedding theorem of Nash-Moser we may assume that (M,go) is

isometrically embedded in some Euclidean RK . Thus we can think of



s 1 M,g) = (M,go) ‘as a map into RK and Dirichlet’s functional takes the

equivalent form

k

1 i i
(1.8) Eg(s) -5 }11 g(x) < Vgs (x),Vgs x) > dpg
im=

There 1s another, equivalent, and useful way to express (1.5) and (1.8)

using local conformal cordinate systems Asij and on

gij = (gO)ij - p6ij

(M,g) and (M,g;) respectively, namely

(1.9) B (o) = ] £ (@), 12 + p(s(2)) 5512 1dzdz

For fixed g, the critical points of Eg are then sald to be harmonic
maps. The following result is due to Eells-Sampson, Hartman and Schoen-Yau
(3], [10].

Theorem (1.10) Given metrics g and o with By € M-l there exists a
ungiue harmonic map s(g) : (M,g) - (M,go) which is homotopic to the

identity, and is the absolute minimum for Eg. Moreover s(g) depends

differentialy on g 1in any n' topology, ¥ > 2, and is a c®
diffeomorphism,

Consider now the function

g Eg(S(g)).

This function on #-l is %-invariant and thus can be viewed as a

function on Teichmiller space. To see this one must show that

Epg (£ (8))) = E_(s(8)).

Let c¢(g) be the complex structure assoclated to g, and induced by a

conformal coordinate systém for g. For f & 90, £ : (M,f*c(g)) - (M,c(g))



is holomorphic and consequently since the composition of harmonic maps and

holomorphic maps is still harmonic we may conclude, by uniqueness that
s(f*g) = s(g) o £ .

Since Dirichlet’s functional 1s invariant under complex holomorphic changes -

of coordinates it follows immediately that
Ef*(g)(s(g) o f) = Eg(s(g)).
Consequently for [g] € ﬂ_l/ﬁo define the C€° smooth function
E : A_l/ﬁo -+ R
by

Elg] = E,(s(g)).

In [9] we prove the following

Theorem 1.1. If s : (M,g) - (M,go) is harmonic the form f(z)dz2 is a

holomorphic quadratic differential on the complex curve (M,c(go)), and
thus Re E(z)dz2 represents a trace free, divergence free symmetric two

tensor on (M,g). Hence Re $(z)dz2 is a horizontal tangent vector to {

at g. In addition

-1

- 1 2 =~ 1 = £ £
(1.12) DE[g]lh = 5 <<Re £(2z)dz ’h>>g ~ -3 Z I g(x)(HVgs ,Vgs )d,ug
M

where h 1is the horizontal 1ift of h = T(g)ﬁ(M) and H = (E)# is

obtained from h by raising an index via g.

Finally ([g,] is the only critical point of E . The Hessian of E
at [go] is given by



(1.13) Dzﬁ[go](h,k) - <h, k>

h,k € T[g ]3(M). That is, the second variation of Dirichlet’s energy
0

function is (up to a positive constant) Weil-Petersson metric.

Suppose we look at the first derivative 1.12 in conformal coordinates

g)ij - Asij' Then if h 1is horizontal
2 Qg(g,s)ﬁ f<h# 2 Vs£> dxdy
dg R2
2 2 2 2
1~ ,3s5,2 ~ ,ds ds ~ ds
- At Gr) o F G Gy + Py Gy )% axay

# 1 ~ =~
where h = i[hij,' Since h11 - -h22 this is equal to
£ 2 2
1 - ds”. 2 6s
Now
2 2
G - 1o e+ an? - g’

is a quadratic differential. But

£ 2 2 £ 2 2
Re(é(2)dz) = (57 - Fo%1ex’ + 1§ - Eohiey® + 4 G raxgy

If s 1is harmonic Re(f(z)dzz) is a trace free divergence free tensor. In

general the second derivative of E at an arbitrary [g] will not be

intrinsic. However we can ask for the second derivative of the function

g — Eg(s(g)) - ﬁ(g). {For g € M, the space of all Riemannian metrics it
still follows from {3], [10] that Eg has a unique minimum s(g) which
depends differentiably on g). This was computed in [9]. Thus we have



Theorem 1.14 If h 1is not trace free

pf(g)h = -3 } ) g0x) (Byvs” vs"yau
£ M

where HT is the trace free part of (h)# moreover 1f h and k are

trace free:

p*f(g) (h, k) = 3 E [ SHOICEN L
2 M

- E I g(X)(h# : VgSE,VWE(k))dpg
M

where

b
(1.5) h - k=gigt acKpd

= tr(HK)

H = h#, K= k# the (1.1) tensors obtained from h and k by raising an

index and

wj(k) - Ds£(g)k, the derivative of s(g) Iin the direction k.



§2 The complex structure on J(M)

In this section we describe the explicite complex coordinates on J(M)
discovered by Uwe Abresch and Arthur Fischer. We shall use the description
d/D . for Teichmiller space. The tangent space of the Fréchet manifold

2

0

of almost complex structures J € Cm(Tl,(M)), J” = -1 at a point J € TJd

consists of all those G (1.1) tensors H such that HJ = -JH., d has a
natural almost complex structure & [6] , where ﬁj : TJd - TJd is
defined by

QJ(H) = JH

We then have

Theorem 2,1 The Fréchet manifold # of almost complex structures can be

given an explicite complex structure.

Proof, (a sketch) Let J0 € § be fixed, and let % be an open

neighborhood of 0 € TJ 4 consisting of those (1,1) tensors H such that
0
(I + H) 1is invertible. Define the mapping

P U4
by
(2.2) B = (1 + H)J (1 + H) " = J.
It is clear that J2 - -1 : T™M~TM I1ff Jg = -1, which says that the
range of ¥ 1is in #. A straightforward algebraic excercise shows that the
inverse of ¥, ¢.1 DP(U) - TJd is given by

-1 -1
(2.3) Yy T J) = (J - JO)(J + JO)
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A short calculation shows that

(2.4) (@) = 8
0

(2.5) D¢31{¢JD¢H(3)} -2 J) - Joj
0

where & 1s the almost complex structure on o (QJ(K) = JK) and

i : T.d - T_ o the fixed linear almost complex struture on T. 4.
Yo Jo Yo Ta

Relation 2.4 says that ¢ 1is a complex coordinate that for &.

The Explicit Gomplex Coordinates on JT(M)

We shall now describe how this complex structure on o induces a

complex structure for J(M). For Je€d let 6(J) be the unique

Poincaré metric assoclated to J and § : d/%o - ﬂ_l/mo the induced map. We
know that the tangent space to d/@o at [J] can be identified with

TT

#°7(J) the space of trace free divergence free (1,1) tenmsors w.r.t. #6#(J).

Let He T d/%o be a tangent vector, and let H be the ®-invariant

[J1]
horizontal 1lift of H. Thus for f € Eo, fxH = H , Dn(J)H(J) = H([J]) for

all J e n Y([J]), . Let # be the open neighborhood of 0 & ﬂTT(JO)

consisting of those ﬁ(Jo) with (I + ﬁ(JO)) invertible, and % : # - A
the map defined in (2.2). If x : # - A denotes the bundle projection,
define ¢ : # - J(M) by

(2.6) p=moyp.
Thus
2.7) PATP) = 71+ BEIHT + B ™.
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Then the set of all such ¥'s 1is a complex structure for J(M).

We can ldentify an open neighborhood of [JO] in IM) in TM)

with an open neighborhood of ¢(#). The first derivative D¢H(J),J [= TJ o

0
is easily calculated to be

(2.8) D¢H(j) - jJO(I +m oo H)I (1 + HY 23(T + 1)L,
Thus
(2.9) DYy () = 3Ty - Jd = 23,0

As a map into Cw(T}(M)) we can compute the second derivative:

s . .
(2.10) DY (I Ty) = 2333, + T I ).
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§3 TIeichmiller space is a Stein manifold

This theorem was first proved by Bers and Ehrenpreis [1].

Our maln result is

Theorem 3.1 The map E : J(M) » R 1is proper and

%%

3z dz

(3.2) (gl >0

where the derivative is taken w.r.t. the natural complex structure on J(M)

introduced in the last section.

Proof. That E 1is proper is proved in [7]. It clearly suffices to show
that

(3.3) D%(E o @) [g](h,h) > 0

for any h € T[g](ﬂ_l/%o) and where % 1is a complex coordinate system
for J(M).

For g a Riemannian metric on M, let ﬁ(g) - Eg(s(g)). Let

g : A~ ‘-1 be the Poincaré maps and ¥ a complex coordinate system for

d about Jo = 0'1(g). Therefore (3.3) is clearly equivalent to
(3.4) p(® o @) (i) > 0

for all H e ﬁTT(JO) where ¢ = § o 1 ., However

2 A 2" A9
(3.5) D"(E o ¢)0 =D E(Dpo,Dwo) + DE o D ®q
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We would like to compute D¢0(H) and D2¢0(H,H). Let 82 be the
space of c” (0,2) tensors and SzTT(g) denote the trace for divergence
free symmetric two tensors with respect to g. Then from [8] we know that

DA(T) : TJd -+ Tgﬂ'lc S, 1is given by

2

(3.6) DI = pg + h

where g = 6(J), h = -(JJ)# and
Ap - = § &8 h
P P g'g

A the Laplace-Beltrami operator on functions (see for example 1.6).
Let Lg = A - I, I the identity. Then

1
-1l 5 ny.
p = Ly (55,0

If h 1is divergence free then p = O.

From 2.8 we know that

: : -1 -1 -1
(1) D¢H(J1) - JlJO(I + H) - (1 + H)JO(I + H) Jl(I + H)
(i1) wo(&l) - -zJOjl
2 . . ) - . . -
(iii) D ¢0(J1J2) - 2J0(J1J2 + J2J1)

Therefore
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3.7 Do, () = DO) o D (3))
- {JD¢H(j1)1# + pg
- DB, + pW) - 8D
g = 0(3), J = (I+HJI I+ Bt and () = Lél(ﬁgsg(JD¢H(jl) where, as

usual, # denotes lowering an index via the metric g.

Now %(0) = JO and D¢0(Jl)
whence it follows that p(JO) - 0.

is a trace free divergence free tensor,

Let us first consider the term

H o (I, (3D,

in expression (3.7) for which we would like to compute the derivative in

the direction J2. But

. 1
(-3Dp, (T, = (T + BI (T + 1) 1Dy, (I,
e I+ I I+ I +m P+ (+mh
0 1Yo 1 #
For' H =0 this is equal ¢to -2&1 - D¢O(j1). The derivative of

-1 -1 : -1
Hr— -((I + H)JO(I + H) JlJO(I + H) + Jl(I + HY 7}

at 0, in the direction of J2 is easily computed to be
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(3.8) 2{J1J2 - J2J1}.
Consider now the map

2 2. #
(3.9) H +— 8(J)12Aj - (Aj)

where A 1is a fixed (1,1) tensor. The derivative of this at 0 in the

direction J2 is

. 2 . 2
(3.10) [Dﬁ(JO)Dw,{JO(Jz))iBAj - {(-2J2)#}1£Aj

In the case A? - -2J1 we see that thls 1s equal to

- 4[J2J1]#

Adding this and (3.8) together we find that the derivative of

at 0 1s the bilinear map
(J1J2) — 2[J1J2 + Jle}.
Thus in order to complete our computation of the derivative of

H = D, (J))

we must consider the second term in the final expression (3.7) on the

derivative of the map
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J — p(I)8)

at the point J.. Since p(JO) = 0 we need only calculate Dp(JO)JZ' Let

0

X = JD¢0(J1), Y = JD¢0(J2) and g = B(JO). Then since X and Y are

trace free divergence free it follows that

-1
(3.11) Dp(I)Y = L 7(8.D 5 (DX)

where Dg&g(Y) is the derivative of the divergence operator 6g with

respect to g 1in the direction Y. Thus we have our formula for Dzwo

namely
D2p(3,d,) = 23, + J,0.) + LN (D 6_) (DX
1’72 172 2°1 E B EE

where X = JD¢(J1), Y = JD¢O(J2).

Lemma_3.13
§ (D § XX =0 .
g(gg)()

Proof By corollary 4A of [8]

1
(DgSg)(X)X =3 *du

s, a real valued function on M. Thus

1
6 {D § Y(X)X} = 56 *du = 0 .
g (Dgh ) COX) = 56 *du
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This gives us
eorem 3.14

2 2
D ‘Po(H,H) - 4“‘{ }#

We are now ready to complete the proof of theorem 3.1. By formula (3.3) we

must show that the sum of Dzﬁ(Dwoﬂ,D@OH) and Dﬁ o Dzwo is strictly

positive.

Now for h e ng(g), heT, . JM, bdR(g)(R) - dDE[glh. By 1.12 we

§:4

see that for k arbitrary

1 £ £
gk - -3 } / B() (Ky7 s", 7 s )du,
£ M

where K = (k)# and KT is the trace free part of K. Therefore

D (g)D 0y (H,H) = -2 E | g(x)((ﬂ2>TVsﬂ,vS£>dpg,
£ M

Lemma 3.15

If H e TJd 1s divergence free then H2 = pI where p 1is a
non-negative function which vanishes at, at most finitely many points of

M.

Proof Write H 1n conformal coordinates gij - Asij as H = (: _2). Then
Aa - idh 1s a holomorphic quadratic differential on M and thus has

2 2 2 1 2
4(genus M) - 4 =zeros (genus M > 1). H = (a” + b")I = ulI, g = 5 trace H™,

which concludes the proof of the lemma. Consequently we see that:
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(3.16) Dﬁ(g)D2¢O(H,H) -0

Therefore (c.f. 3.4 and 3.5)
24 2
D7E(g) (Do, (H), Dpy(H)) = D7(k o ®) o (H,H)
If k = Dpg (H) = (-2H),, then
2 - ~ 1 ~ = 2 2
(3.17) D ﬁ(g)(k,k) -3 E f (k-k)g(x)(vgs ,Vgs )dpg
2 M

- [ g & s*

M

2
V¥ (k)))d,ug

If the second term of 3.17 were positive we would be done, i.e. theorem 3.1

would be proved. The next lemma shows that this is not the case

Lemma 3,18
- E .[ g(x) (E#Vgsj.ij(E))dpg <0
I M

Proof Consider the map g +— Eg(s(g)). Since s(g) 1is a critical point of

Eg we have the relation

(3.19) o Ds(g)k = 0

Q|
U)Lq[‘l'j

where W(k) = Ds(g)(E), for all g. Therefore the derivative of (3.19) with

respect to g, must be identically zero, or consequently we see that
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a%e _ 5 OE _ _
0 = —2E& (&,Ds(g)k) + S(=—F o Ds(g)k} o Ds(g)k.
8gds 8s ds

The second term is precisely the second varlation of Dirichlet’s energy E
DzEg(w,w), at the criticel point s(g) in the direction w where
wik) = Ds(g)(E). Since s(g) 1s an absolute minimum it follows that

DzEg(w,w) 2z 0. Thus (ec.f. 1.12)

2

3°E_ ) »
gggf (k,w) = - DB _(w,w) - -[ gx)(k v,s
M

B,ij(E))dpg <0

which completes 3.18.

2w
By this last lemma, our only chance to show that 9 E_ > 0 1s to show
0zdz
(3.19) I = D%E (s)(w,w) < = } | @%@ st v shau
’ g ’ 2 g '8 g

2 M

which is what we now proceed to do we, fortunately have an explicit formula

for the second variation of Eg at a minimum s, namely [4,p. 139} in

conformal coordinates AS with local coordinates (x,y) = (xl,xz)

Bij T °13

we have

2
I =D Eg(s)(w,w) - I {<v a,w,V aw) + vV a,w,V aw>}dxAdy

M 8x ax 3y  dy

ds.ds ds, ds aw
-J. {d(w,ax)ax,w> + dﬁ(w,'a—y-) ,E,E)}dXAdy
M

where <,> : R x Rk - R 1is the Euclidean inner product and % 1is the
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curvature tensor of (M,go) C Rk.

Since the curvature of (M,go) is -1 we see that

I = I {<V a,w,V aw> + V_Q,W,V aw>}dx,\dy

M ax ax ay ay

where strict inequality holds if w » 0, We are assuming that (M,go) is

isometrically embedded in Rk. For p € (M,go) C Rk let H(p) : Rk - TpM
be the orthogonal projection of Rk onto the tangent space to M at p.
Then the condition that s, s : (M,g) - (M,go) be harmonic can be written

{(in conformal coordinates) as

825 625
I{s)As = H(s)(—*z + —~§) =0
dx dy
5§ = (sl,...,sk).

This can be written in terms of the metric g as

n(s)(,/gags) -0

Ag = laplace-Beltrami on the coordinate functions (sl,...,sk). We know

that the unique harmonic map s depends on g, so let us write this as

(3.20) n(s(g))(JEAgs(g)) -0

and this holds for all g.

Differentiating (3.20) w.r.t. g 1in the direction of a trace free (w.r.t.

g) tensor h we obtain

(3.21) Dn(s><JEAgs<g)> + n(s(g>)(JEagw>
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H(s(g)[g—g[féag](hns -0

= DN(s)w(As) + H(s)Aw.

+ n<s>[g-gugag]<h>}s

w = Ds(g)h.
Now
ij ¢
JEAs-—(f 129
3 x
Therefore

a
a—g(/iagm) )(s) -

a ij o
e
ax ax

But necessarlly the second variation I = D2Eg(s)(w,w) equals

I = J <DI(s) (w) (As) + II(s) (As),w>)dx.dy
M

From this and 3.21 we see that

- <;§3(Jghij—gis),w>dxﬁdy
ax

Integrating by parts we get

-1 - f pil 8s as gﬁ Jg dxady + I n2? %§ . %§ Jg dxady
M
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12 38s ow 21 3s ow
b o Jg dxady + f LA~ Jg dxady

M M

where * denotes the Rk inner product. Thus

- R

dy ax
M
21 3s 21 E aw
+ J. (h 6—y' 3X hd 5} ‘/E dx.dy
M
dw
Since V_Qw - H(s)5§
dy
V_éw = II(s)
ax
we see that this is equal to
f (n?? n'? 2% o (v /g axady
3x
+ [ @t S *h h2t 8%y o (v /g dxady
M 3x

Applying the Schwartz inequality and using the fact that gij - Agij’

JE = A we obtain

(3.22) 1= ({f |n2? %§ + pt? as)” A dxady) {{f Iv aw”2dxAdy}
M M 9x

: {ﬂh” e+ 02 B anay) A1 o ey

M 3x
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where

2 8 a
"v_gw" - H(s)5¥ . n(s)5§

dx

Now write the right hand side of 3.22 as

R 187+ Iy

Using the fact that

By 05 + IR, [5, < (a5

and that hl1 - -h22,

we see that I 1is less than or equal to

1
{{I (e hH? 4 <h12)2}{H%§>H2 + "%3)”2}A2dxhdy} {ff{”v awH2 + v awnzdxAdy1
M M 3x ay

Since h'J = l'--h this is equal to
AZ ij

1 £ 2 : 2 2
[féi I (h-h) g(s)(V,s",V s )du ) {I(Hv_gwﬂ + Hv_gw" dxady}
2 M M ax dy

If w» 0 this is strictly less than

£ £
r; f (h-h) g(s)(V,s",V s)du, Ji
M

1 L 2
or JI< ré 5 f (h-h) g(s)(Vgs VS )dpg
M



-2 -

whence
(3.23) I<= EJ. (h-h) g(s) (v s%,v s¥)yau
2 ; g g g
M

If w = 0 the inequality 3.23 clearly holds. This establishes 3.19 and

thus 3.1, the holomorphic convexity of Dirichlet’s energy.
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