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A·NEW PROOF TRAT. TEICHMÜLLER SPACE

IS A COMPLEX STEIN MANIFOLD

A.J. Tromba

Abstract

We show that Dirichlet's energy is a proper pluri-subharrnonic function

on Teichmüller space with respect to its natural complex structure.

Let M be an oriented compact surface without boundary and with genus

greater than one. Let ~ be the space of almost complex structures on M

compatible with its orientation and let ~O be the space of all

diffeomorpisms of M homotopic to the identity. Then [4], [5], [6]

Teichmüller space is defined to be the quotient ~/~O' where ~O acts on

~ by pull back. In [4] it is shown that ~(M) has the structure of a

co
6(genus M) - 6 C smooth manifold. Ii ~-l denotes the infinite

dimensional Frechet manifold of Riemannian metries of constant curvature

-1, then ~o acts naturally on ~-l and ~(M) is diffeomorphic to

oM_1/!:l)O'

This diffeomorphism is described as follows (for details see [4], [8]:

There is a natural ~-invariant diffeomorphism ~ : ~-l ~ cl given hy

-1
ll>(g) - -g ~

g

where oM is the volume element of g. cl' then passes to a diffeomorphism
g

~ from ~-l/~O to cl/~O' Let e 91-+ M_l be the inverse of ~. For

J E tA, 8(J) is the unique Poincare metric associated to J. Denote by 8
the induced diffeomorphism from 91/~O to oM_l/~O' We also have a natural

~O invariant metric on A given by
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<<H,K» - ~ J tr(HK)d
M Pif>(J)

and a natural LZ splitting [8] of TJ~' namely each H E TJ~ can be

uniquely deeomposed as

(1.1) H - H
TT

+ IxJ

where LxJ is the Lie derivative of J w.r.t. the vector field X on M,

and H
TT denotes a (1,1) tensor which is traee free and divergence free

w.r.t. 8(J). The decomposition (1.1) is L2~orthogonal. Since ~O acts as

a group of isometries «,» passes to ametrie <,> on ~(M) - ~/~O

described as foliows. The term IxJ is a1ways tangent to the orbit of ~O

through J. We say that LxJ is the vertical part of H E TJA in the

decomposition (1.1). Simi1ar1y we say that HTT represents the horizontal

part of H. Let ~ : ~ ~ ~/DO be the natural projection map. Given

H,K E T[J]~/~O there are unique horizontal vectors H,K E TJ~ such that

D~(J)K - K. Then

(1.2)

Let us now consider the model ~-1/~0 of

at a metric, g E T ~ 1 consists of those
g -

satisfying the equation

~(M) .

(0,2)

The tangent space of

tensors h on M
.M -1

(1.3)

where tr h -
ij is the traee of h the metricg h ij w.r.t. tensor

g

gij lOgO gh is the double covariant divergence of h w.r.t. g and !J. is

the Laplace-Beltrami operator on functions. For exarnp1e see [8 ] for

details. The L2-metrie on ~-l is given by the inner produet



(1.4)
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~ J trace (HK)djJ
M g

where H - g-lh, K - g-lk are the (1,1) tensors on M obtained from h

and k via the metric g, or "by r:aising an index", i.e.

i ik.
H

j
- g -n

kj

and similarly for K.

The inner product (1.4) is ~O invariant. Thus ~O acts smoothly on

~.l as a group of isometries with respect to this metric, and eonsequently

we have an induced metric on ~(M) in such a way that the projeetion map

~ : ~.l ~ ~.l/~O becomes a Riemannian submersion [4]. In [5] it is shown

that this induced metric is precisely the metrie originally introduced by

Weil.

Let <,> be the indueed metrie on ~(M). We ean characterize <,> as

fol1ows. From [3] we ean show that given g E ~-l every

(1.5)
TT

h - h + Ixg

where Ixg is the Lie derivative of g w.r.t. some (unique X) and hTT

is a traee free, divergence free, symmetrie tensor. Moreover the

deeomposition (1.5) 1s L
2

-orthogona1. Reeall that a conforma1 coordinate

system (where gij - ~Sij' ~ some smooth positive function) is also a

complex holomorphie coordinate system. In this system .

TT 2
h - Re(€(z)dz )

where Re is "real part" and 2
~(z)dz is a holomorphie quadratie

differential. In fact, trace free, divergence free symmetrie two tensors

are precise1y the real parts of holomorphie quadratic differentials.
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Now Lxg is always tangent to the orbit of ~O through g. We say

that Lxg is the vertical part of h in decomposition 1.4. Similarly we

say that hTT represents the horizontal part of

there are unique horizontal vectors

and D~(g)k - k. Then

h. Given

such that

h,k E T[g]:1(M)

D1f(g)h - h

Tbe map 8 : ~/~o ~ J_l/~O has a derivative which can be described as

foliows. Let H E T[J]~/~O and Hits horizontal lift. Then

(1.6) D9([J])H - D1f . DD(J)R

wbere DD(J)R - -(JR)# and (JH)# i5 the (0,2) tensor obtained from

(JR) by lowering an index via the rnetric g, i.e.

Suppose now tbat go E ~-l 1s fixed and tbat s : (M,g) ~ (M,gO) is a

smooth Cl map homotopic to the identity and is viewed as a map from M

with some aribtrary metric g E ~-l to

Define the Dirichlet energy of s

M with its go

by the formula

metric.

(1.7)

where 2
ds - trace ds @ ds depends on boch g and gO'

By the embedding theorem of Nash-Moser we may assume that is

isometrically embedded in some Euclidean RK . Thus we can think of
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s : (M, g) -+ (M, gO) 'as a map into R
K

and Dirichlet ' s functional takes the

equivalent form

(1.8)
1

E (s) - -g 2

k

2f
i-I

There 1s another, equivalent, and useful way to express (1.5) and (1.8)

using local conformal cordinate systems gij - Ab ij
(M,g) and (M,gO) respectively, namely

and on

(1.9) E (s) - ! J [p(s(z»ls 1
2

+ p(s(z»ls-1
2

]dzdz
g 4 M Z Z

For fixed g, the critieal points of E are then said to be harmonie
g

~. The following result is due to Eells-Sampson, Hartman and Sehoen-Yau

[3], [10].

with go E M_l there exists a

whieh is homotopie to the

E . Moreover s(g) depends
g

Theorem (1.10) Given metries g and go

unqiue harmonie roap s(g) : (M,g) -+ (H,gO)

identity, and is the absolute minimum for

co
Ctopology, r > 2, and is ain any Hr

gdifferentialy on

diffeomorphism.

Consider now the function

g -+ E (s(g».
g

This funetion on ~-l 18 ~-invariant and thus ean be viewed as a

funetion on Teiehmüller spaee. To see this one must show that

Let e(g) be the eomplex strueture assoeiated to g, and indueed by a

eonformal eoordinate system for g. For f E ~O' *f : (M,f e(g» -+ (M,e(g»
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i9 holomorphie and eonsequently sinee the eomposition of harmonie maps and

holomorphie map9 i9 still harmonie we may eonelude, by uniqueness that

s(f*g) - s(g) 0 f .

Sinee Diriehlet's funetional is invariant under eornplex holomorphie ehanges .

of coordinates it follows immediately that

by

Consequently for [g] E ~-l/~O define the

E[g] - E (s(g)).
g

co
C smooth funetion

2E(z)dz

(M,e(gO))'

In [9] we prove the following

Theorem 1.1. If s : (M,g) ~ (M,gO) is harmonie the form

holornorphie quadratie differential on the eomplex eurve

is a

and

thus 2
Re E(z)dz represents a traee free, divergenee free symmetrie two

tensor on (M,g). Henee 2Re E(z)dz i9 a horizontal tangent veetor to At_I
at g. In addition

(1.12)

where h 1s the horizontal lift of h - T(g)~(M) and H- (h)# is

obtained from h by raising an index via g.

Finally [gO] is the only eritieal point of E . The Hessian of E
at [gO] is given by
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2-
D E[gO](h,k) - <h,k>

h,k E T[gO]~(M). That 1s, the second variation of Dirichlet's energy

funct10n 1s (up to a positive constant) Weil-Petersson metric.

Suppose we look at the first derivative 1.12 in conformal coordinates

(g)ij - A5 ij · Then if h is horizontal

BE - f # 1 12 Bg(g,s)h - - <h Vs ,Vs > 2dxdy
R

- -5

where h
# _ 1

~{hij}' Since this is equal to

Now

is a quadratic differential. But

If s 1s harmonic 2
Re(€(z)dz ) 1s a trace free divergence free tensor. In

general the second derivative of E at an arbitrary [g] will not be

intrinsic. However we can ask for the second derivative of the function

g ~ E (s(g» - ~(g). (For g E ~, the space of all Riemannian metrics itg
still follows from [3], [10] that E has a unique minimum s(g) which

g
depends differentiably on g}. This was computed in [9]. Thus we have
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If h is not trace free

D~(g)h - -i 2J g(X)(~vsl.vSl)dPg
1 M

where H
T

is the trace free part of

trace free:

#(h) moreover if hand kare

-2J
1 M

where

(1.5) h . k _ abgc~ k
g ac-lJd

- tr(HK)

H - h#, K - k# the (1.1) tensors obtained from hand k by raising an

index and

w
1

(k) - Ds
1

(g)k, the derivative of s(g) in the direction k.
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§2 The complex structure on ~(M)

In this section we describe the explicite complex coordinates on ~(M)

discevered by Uwe Abresch and Arthur Fischer. We shall use the description

~/~O for Teichmüller space. The tangent space of the Frechet manifold i

of almost cemplex structures J E C
oo

(T
1

,(M», J2 - ~I at a point J E TJ~

consists of all those
00

C (1.1) tensors H such that HJ - -JH. d has a

natural almest complex structure ~

defined by

i8

We then have

Theorem 2.1 The Frechet manifold d ef almost complex structures can be

given an explicite comp1ex structure.

Proaf. (a sketch) Let J O Eibe fixed, and let ~ be an open

neighborheod of 0 E TJ d consisting of those (1,1) tensors H such that
o

(I + H) i5 invertible. Define the mapping

by

(2.2) ~(H) - (I + H)JO(I + H)-l - J.

It is clear that
J2 _

-I TM -+ TM iff 2 which says that theJ --Io '
range of ~ i8 in b4. A straightforward a1gebraic excercise shows that the

inverse of VJ,
-1

ljJ(U) -+ TJrA~ is given by

(2.3)
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A short calculation shows that

(2.4) ~*(~) - ~J '
o

where ~ is the almost complex structure on d (~J(K) - JK) and

~J TJ d ~ TJ ~ the fixed linear almost complex struture on TJ~'

o 0 0 A
Relation 2.4 says that ~ is a complex coordinate that for ~.

The Explicit Complex Coordinates on ~(M)

We shall now describe how this complex structure on ~ induces a

comp1ex structure for ~(M). For J E ~ let 8(J) be the unique

Poincare metric associated to J and B : ~/~O ~ ~-l/~O the induced map. We

know that the tangent space to ~/~O at [J] can be identified with

~TT(J) the space of trace free divergence free (1,1) tensors w.r.t. 8(J).

Let H E T[J]~/~O be a tangent vector, and let H be the ~-invariant

horizontal lift of

all -1JEn- ([J]),

H. ThUB for f E ~O' f*H - H , Dn-(J)H(J) - H([J])

Let W be the open neighborhood of 0 E ~TT(JO)

for

consisting of those H(JO) with

the map defined in (2.2). If w :

define ~:. ~ ~(M) by

(I + H(JO» invertible, and ~ : W ~ A

W ~ Adenotes the bundle projection,

(2.6)

Thus

(2.7)
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Then the set of all such ~'s is a complex structure for ~(M),

We can identify an open neighborhood of [JO] in ~(M) in ~(M)

with an open neighborhood of ~(W), The first derivative D~H(J),J E TJ d
o

is easily calculated to be

(2,8)

Thus

-1' -1
(I + H)JO(1 + H) J(1 + H) ,

(2.9)

As a map into Coo(Ti(M» we can compute the second derivative:

(2.10)
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§3 Teicbmüller space i5 aStein manifold

This theorem was first proved by Bers and Ehrenpreis [1].

Dur main re5u1t i5

Theorem 3.1 The map E ~(M) ~ R is proper and

(3.2)
2-
~[g} > 0
8z 8z

where the derivative is taken w.r.t. the natural comp1ex structure on ~(M)

introduced in the last section.

fLQQf. That E is proper is proved in [7]. Tt clearly suffices to show

that

(3.3)

for any h E T[g](~_l/~O) and where ~ is a comp1ex coordinate system

for ~(M).

8

For g a Riemannian metric on M, let ~(g) - E (s(g)). Let
g

~ ~ ~-1 be the Poincare maps and ~ a complex coordinate system for

-1
about J O - 0 (g). Therefore (3.3) is clearly equivalent to

(3.4)

for all H E ~TT(J )o where ~ - 0 0 ~ . However

(3.5)
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We would like to eompute IXpO(H) and 2 Let 52 be theD t'PO(H,H).

space of
co

(0,2) 52
TT (g) forC tensors and denote the traee divergenee

free symmetrie two tensors with respeet to g. Then from [8] we know that

(3.6) D9(J)J - pg + h

where g - 9(J), h - -(JJ)# and

ßp - P - 5 5 h
g g

ß the Lap1aee-Beltrami operator on funetions (see for examp1e 1.6).

Let L - ß - 1 , I the identity. Then
g

p -

If h i5 divergenee free then p - O.

From 2.8 we know that

( i)

(ii)

(iii)

Therefore
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(3.7)

g - 9(J), J - (I + H)JO(1 + H)-l and p(J) - L~1(5g5g(JD~H(J1) where, as

usua1, # denotes lowering an index via the metric g.

Now ~(o) - J O and D~O(J1) i9 a trace free divergence free tensor,

whence it fo11ows that p(JO) - O.

Let us first consider the term

in expression (3.7) for which we would 1ike to compute the derivative in

the direction J
2

, But

For' H - 0 this is equal to -2J1 - ~O(Jl)' The derivative of

at 0, in the direction of J
2

is easily computed to be
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(3.8)

Consider now the map

(3.9)

where A is a fixed (1,1) tensor. The derivative of this at 0 in the

direction J
2

is

(3.10)

In the case A~ - -2J
J 1

we see that this is equa1 to

Adding this and (3.8) together we find that the derivative of

at 0 is the bi1inear map

Thus in order to comp1ete our computation of the derivative of

we must consider the second term in the final expression (3.7) on the

derivative of the map
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J ~ p(J)8(J)

at the point J O' Since p(JO) - 0 we need on1y ca1cu1ate Dp(J O)J 2 . Let

x - JD~O(Jl)' Y - J~0(J2) and g - 8(JO)' Then since X and Y are

trace free divergence free it fol1ows that

(3.11) Dp(JO)Y - L-
1

(o D 0 (Y)X)
g g g g

where D 0 (Y) 1s the derivative of the divergence operator 0 with
g g g

in the direction Y. Thus we have our formula for 2respect to g D 'PO

namely

where

Lemma 3.13

o (D 0 )(X)X - 0g g g

fLQQf By corollary 4A of [8]

(D 0 )(X)X - 12- *d~
g g

~, areal valued function on M. Thus
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This gives us

Theorem 3.14

We are now ready to complete the proof of theorem 3.1. By formula (3.5) we

must show that the sum of D2~(~OH'~OH) and D~ 0 D2~O is strictly

positive.

Now for

see that for

TT
h E Sz (g), h E T[g]~(M),

k arbitrary

D~(g)(h) - DE[g]h. By 1.12 we

D~(g)k - -~ 2Jg(X)(~VgSl.VgSl)dPg
1 M

where K - (k)# and ~ is the trace free part of K. Therefore

Lemma 3.15

ZIf H E TJ~ is divergence free then H - ~I where ~ i8· a

non-negative function which vanishes at, at most finite1y many points of

M.

as~ Write H in conforma1 coordinates gij - A5 ij
Aa - iAh is 8 holomorphic quadratic differential on M

H _ (8 b). Then
b -a

and thus has

4(genus M) . 4 zeros (genus M > 1). HZ - (aZ + b 2)I - ~I, ~ _ ~ trace H2 ,

which conc1udes the proof of the lemma. Consequently we see that:
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(3.16)

Therefore (c.f. 3.4 and 3.5)

If k - ~O(H) - (-2H)# then

(3.17) 2~ - - 1 2J - - 1 1D ~(g)(k,k) - -2 (k·k)g(x)(V s ,V s )d~g g g
1, M·

J -# 1 1- g(x)(k V s ,V w (k)))dp
g g g

M

If the second term of 3.17 were positive we wou1d be done, 1.e. theorem 3.1

wou1d be proved. The next lemma shows that this is not the case

Lemma 3.18

-2J
1 M

fxQQ! Consider the map

E we have the relation
g

(3.19)

g ~ E (s(g)). Since
g

8E
~ 0 Ds(g)k ~ 0

s(g) is a critical point of

where W(k) - Ds(g)(k), for all g. Therefore the derivative of (3.19) with

respect to g, must be identically zero, or consequently we see that



- 19 -

a2
E a BE

o • ~ (k,Ds(g)k) + BS{~ 0 Ds(g)kl 0 Ds(g)k.

The second term is precisely the second variation of Dirichlet's energy

2D E (w,w), at the critical point s(g) in the direction W where
g

w(k) - Ds(g)(k). Since s(g) is an absolute minimum it follows that

D2E (w,w) ~ O. Thus (c.f. 1.12)
g

E
g

which completes 3.18.

2D E (w,w)
g

-# 1. 1.--f g(x)(k Vgs ,Vw (k))d~g 5 0

M

By this last lemma, our only chance to show that
azaz

> 0 is to show

(3.19) I - D
2

Eg (S)(W,W) < ~ 2f (k'k)g(X)(VgSl,VgSl)d~g
1. M

which is what we now proceed to do we, fortunately have an explicit formula

for the second variation of E
g

conformal coordinates gij - AO ij
we have

at a minimum s, namely

with local coordinates

[4,p. l39} in

1 2
(x,y) - (x ,x )

I - D
2

E (s)(w,w)g - J {<V B'w,V 8w> + V B'w,V BW>ldxAdy
- -- ----

M 8x ax 8y 8y

-J (d(w,~~)~:,w> + d(w,~;) ,~;,~;)ldXAdY
M

Rk
x Rk ~ R is the Euclidean inner product and ~ is the
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k
curvature tensor of (M,gO) c R

Since the curvature of (M,gO) is -1 we see that

I ~ J (<V 8'w,V 8w> + V 8'w,V 8w>}dx~dy
- - - -

M 8x 8x 8y 8y

where strict inequality holds if w pi O. We are assuming that (M,gO) is

isometrically embedded in Rk . For
. k

let IT(p) Rk
-+P E (M,gO) c R T M

P

be the orthogonal projection of Rk
onto the tangent space to M at p.

Then the condition that s, s

(in conformal coordinates) as

(M,g) -+ (M,gO) be harmonic can be written

2 2
IT(s)ßs - TI(s)(~ + ~) - 0

ax2 ay2

1 k
s .". (s , ... , s ).

This can be written in terms of the metric g as

IT(s)c)gß s) - 0
g

1 k
ß - Laplace-Beltrami on the coordinate functions (s, ... ,s ). We know

g
that the unique harmonie map s depends on g, so let us write this as

C3.20)

and this holds for all g.

TI(s(g»c)gß s(g» - 0
g

Differentiating (3.20) w.r.t. g in the direction of a trace free (w.r.t.

g) tensor h we obtain

(3.21) OIT(s)cjiß s(g» + TICs(g»(jiß W)
g g
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ll(S(g){aa [)gÖ ](h)}s • 0
g g

- DIT(s)w(~s) + IT(s)öw

+ IT(S){aa [Jiö }(h)}s
g g .

w - Ds(g)h.

Now

Therefore

aa (JiA (h»)(s) 
g g

But necessarily the second variation I - D2E (s)(w,w)
g

equals

1 - J <DIT(s)(w)(ös) + ll(s)(ös),w»dxAdy

M

From this and 3.21 we see that

f 'a ij a
I - <-j(Jih -is),w>dxAdy

M ax ax

Integrating by parts we get

J 11 as 8w c J 22 8s 8w c
-1 - h 8x· 8x ~g dXAdy + h 8y· 8y ~g dXAdy

M M
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Since
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J h12 as aw c J 21 as aw cax • ax .J g dx"dy + h ay· ay .J g dx"dy

M M

k• denotes the R inner product. Thus

-I - J (h22 as + h12 as) aw jg
ay ax • ax g dx"dy

M

+ J (h21 as + h21 as) aw jg
ay ax • ay g dx"dy

M

aw
'iJ w - II(s)--.J.. ay
ay

awv w - II(s)-a ax
ax

we see that this is equal to

J (h22 as + h 12 as) • ('iJ aW).[g dx"dyay ax
M ax

M

(h
21 as + h21 as) • (V aw»)g dx"dyay ax

ax

Applying the Schwartz inequa1ity and using the fact that gij - AO ij ,

)g - ~ we obtain

(3.22) dJ IIh22 ~~ + h
12 ~~) 112~2dx"dy} dJ 2

I :S IIV awll dx"dy}

M M ax

+ ds [lh11 ~= + h21 ~;) 11
2

). 2dx"dY} t1S 2IIV aw[1 dx"dy}

M M ax
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where

11\7 awl12 - II(s) ~: • II(s) ~:
ax

Now write the right hand side of 3.22 as

Using the fact that

and that h 11 __h 22 ,

we see that I is 1ess than or equa1 to

(in1 2 + C «>f + ij >uAdy; ( SuJvli +y
M M 8x 8y

Since hij 1 h
- 2" ij

.\
this is equa1 to

L)s
}. M

}. 1, .
(h·h) g(s)(\7 s ,\7 s )d~ }

g g g
(uvli + Ilv avl12dXAdy)

- -M ax ay

If w ~ 0 this is strictly 1ess than

() S
1, M

i 1, M(h·h) g(s)(V s ,V s )d~ ~I
g g g

or



whence

(3.23)
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1 2J 1 1I < -2 (h·h) g(s)(V s ,V s )d~
g g g

1 M

If w - 0 the inequality 3.23 clear1y holds. This establishes 3.19 and

thus 3.1, the ho1ornorphic convexity of Dirichlet's energy.
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