A NEW PROOF THAT TEICHMULLER SPACE

 IS A COMPLEX STEIN MANIFOLDby
A.J. Tromba

[^0]Dept. of Mathematics
Univ. of California Santa Cruz CA 95064 USA

A.J. Tromba

Abstract

We show that Dirichlet's energy is a proper pluri-subharmonic function on Teichmũller space with respect to its natural complex structure.

Let M be an oriented compact surface without boundary and with genus greater than one. Let $\&$ be the space of almost complex structures on M compatible with its orientation and let \mathscr{D}_{0} be the space of all diffeomorpisms of M homotopic to the identity. Then [4], [5], [6] Teichmuller space is defined to be the quotient $s / / \mathscr{D}_{0}$, where \mathscr{D}_{0} acts on $\$$ by pull back. In [4] it is shown that $\mathscr{T}(M)$ has the structure of a 6(genus M) - $6 C^{\infty}$ smooth manifold. If H_{-1} denotes the infinite dimensional Fréchet manifold of Riemannian metrics of constant curvature -1 , then \mathscr{D}_{0} acts naturally on H_{-1} and $\mathscr{T}(M)$ is diffeomorphic to $H_{-1} / \mathscr{T O}_{0}$.

This diffeomorphism is described as follows (for details see [4], [8]: There is a natural \mathscr{D}-invariant diffeomorphism $\Phi: \mathcal{H}_{-1} \rightarrow \&$ given by

$$
\Phi(\mathrm{g})=-\mathrm{g}^{-1} \mu_{\mathrm{g}}
$$

where μ_{g} is the volume element of g. Φ then passes to a diffeomorphism $\bar{\Phi}$ from $\mathcal{H}_{-1} / \mathscr{D}_{0}$ to A_{A} / \mathscr{D}_{0}. Let $\theta: s A \rightarrow M_{-1}$ be the inverse of Φ. For $J \in \mathscr{A}, \theta(J)$ is the unique Poincaré metric associated to J. Denote by $\bar{\theta}$ the induced diffeomorphism from $\mathscr{A L D}_{0}$ to H_{-1} / \mathscr{D}_{0}. We also have a natural \$d 0 invariant metric on A given by

$$
\ll \mathrm{H}, \mathrm{~K} \gg=\frac{1}{2} \int_{\mathrm{M}} \operatorname{tr}(\mathrm{HK}) \mathrm{d}_{\mu_{\Phi(\mathrm{J})}}
$$

and a natural L_{2} splitting [8] of $T_{J} s$, namely each $H \in T_{J} d^{d}$ can be uniquely decomposed as

$$
\begin{equation*}
\mathrm{H}-\mathrm{H}^{\mathrm{TT}}+\mathrm{L}_{\mathrm{X}} \mathrm{~J} \tag{1.1}
\end{equation*}
$$

where $L_{X} J$ is the Lie derivative of J w.r.t. the vector field X on M, and $H^{T T}$ denotes a (1,1) tensor which is trace free and divergence free w.r.t. $\theta(J)$. The decomposition (1.1) is L_{2}-orthogonal. Since \mathscr{D}_{0} acts as a group of isometries <<,>> passes to a metric <,> on $\mathscr{T}(M)=\mathscr{A} / \mathscr{D}_{0}$ described as follows. The term $\mathrm{L}_{\mathrm{X}} \mathrm{J}$ is always tangent to the orbit of \mathscr{D}_{0} through J. We say that $I_{X} J$ is the vertical part of $H \in T_{J} A$ in the decomposition (1.1). Similarly we say that $H^{T T}$ represents the horizontal part of H. Let $\pi: \$ \rightarrow \Delta / D_{0}$ be the natural projection map. Given $H, K \in T_{[J]}{ }^{s A / \mathscr{D}_{0}}$ there are unique horizontal vectors $\tilde{H}, \tilde{K} \in T_{J} A$ such that $D \pi(J) K=K$. Then

$$
\begin{equation*}
\langle\mathrm{H}, \mathrm{~K}\rangle_{[\mathrm{J}]}=\left\langle<\tilde{\mathrm{H}}, \tilde{\mathrm{~K}} \gg_{\mathrm{J}} .\right. \tag{1.2}
\end{equation*}
$$

Let us now consider the model $\mathcal{H}_{-1} / \mathscr{D}_{0}$ of $\mathscr{T}(M)$. The tangent space of \mathcal{H}_{-1}. at a metric, $g \in T_{g} \mu^{\prime}-1$ consists of those $(0,2)$ tensors h on M satisfying the equation

$$
\begin{equation*}
-\Delta\left(\operatorname{tr}_{g} h\right)+\delta_{g} \delta_{g} h+\frac{1}{2}\left(\operatorname{tr}_{g} h\right)=0 \tag{1.3}
\end{equation*}
$$

where $\operatorname{tr}_{g} h=g^{i j} h_{i j}$ is the trace of h w.r.t. the metric tensor $g_{i j}, \delta_{g} \delta_{g}$ is the double covariant divergence of h w.r.t. g and Δ is the Laplace-Beltrami operator on functions. For example see [8] for details. The L_{2}-metric on \mathcal{H}_{-1} is given by the inner product

$$
\begin{equation*}
\ll h, k \gg_{g}-\frac{1}{2} \int_{M} \text { trace }(H K) d \mu_{g} \tag{1.4}
\end{equation*}
$$

where $H=g^{-1} h, K=g^{-1} k$ are the $(1,1)$ tensors on M obtained from h and k via the metric g, or "by raising an index", i.e.

$$
H_{j}^{i}-g^{i k^{\prime}} h_{k j}
$$

and similarly for K.
The inner product (1.4) is \mathscr{D}_{0} invariant. Thus \mathscr{D}_{0} acts smoothly on M_{-1} as a group of isometries with respect to this metric, and consequently we have an induced metric on $\mathscr{T}(M)$ in such a way that the projection map $\pi: M_{-1} \rightarrow M_{-1} / \mathscr{D}_{0}$ becomes a Riemannian submersion [4]. In [5] it is shown that this induced metric is precisely the metric originally introduced by Weil.

Let $<,>$ be the induced metric on $\mathscr{T}(M)$. We can characterize <,> as follows. From [3] we can show that given $g \in \mu_{-1}$ every

$$
\begin{equation*}
h=h^{T T}+L_{X} g \tag{1.5}
\end{equation*}
$$

where $L_{X} g$ is the Lie derivative of g w.r.t. some (unique X) and $h^{T T}$ is a trace free, divergence free, symmetric tensor. Moreover the decomposition (1.5) is L_{2}-orthogonal. Recall that a conformal coordinate system (where $g_{i j}=\lambda \delta_{i j}, \lambda$ some smooth positive function) is also a complex holomorphic coordinate system. In this system .

$$
\mathrm{h}^{\mathrm{TT}}=\operatorname{Re}\left(\xi(z) \mathrm{dz}{ }^{2}\right)
$$

where Re is "real part" and $\xi(z) \mathrm{dz}^{2}$ is a holomorphic quadratic differential. In fact, trace free, divergence free symmetric two tensors are precisely the real parts of holomorphic quadratic differentials.

Now $\mathrm{L}_{\mathrm{X}} \mathrm{g}$ is always tangent to the orbit of \mathscr{D}_{0} through g . We say that $L_{X} g$ is the vertical part of h in decomposition 1.4. Similarly we say that $h^{T T}$ represents the horizontal part of h. Given $h, k \in T{ }_{[g]}^{\mathscr{T}(M)}$ there are unique horizontal vectors $\widetilde{h}, \widetilde{k} \in T_{g} \mu_{-1}$ such that $D \pi(g) \widetilde{h}=h$ and $\quad \mathrm{D} \pi(\mathrm{g}) \overline{\mathrm{k}}=\mathrm{k}$. Then

$$
\langle\mathrm{h}, \mathrm{k}\rangle_{[g]}=\left\langle\langle\tilde{\mathrm{h}}, \tilde{\mathrm{k}}\rangle_{\mathrm{g}}\right.
$$

The map $\bar{\theta}: \not A / \mathscr{D}_{0} \rightarrow \mathcal{H}_{-1} / \mathscr{D}_{0}$ has a derivative which can be described as follows. Let $H \in T[J]^{\mathscr{A} / \mathscr{D}_{0}}$ and \hat{H} its horizontal lift. Then

$$
\begin{equation*}
\mathrm{D} \bar{\theta}([\mathrm{~J}]) \mathrm{H}=\mathrm{D} \pi \cdot \mathrm{D} \theta(\mathrm{~J}) \tilde{\mathrm{H}} \tag{1.6}
\end{equation*}
$$

where $D \theta(J) \tilde{H}=-(J \tilde{H})_{\#}$ and $(J \tilde{H})_{\#}$ is the $(0,2)$ tensor obtained from ($\mathrm{J} \tilde{\mathrm{H}})$ by lowering an index via the metric g , i.e.

$$
(J \tilde{H})_{\# i j}=g_{i k}(J H)_{j}^{k}
$$

Suppose now that $g_{0} \in M_{-1}$ is fixed and that $s:(M, g) \rightarrow\left(M, g_{0}\right)$ is a smooth C^{1} map homotopic to the identity and is viewed as a map from M with some aribtrary metric $g \in \mu_{-1}$ to M with its g_{0} metric. Define the Dirichlet energy of s by the formula

$$
\begin{equation*}
E_{g}(s)=\frac{1}{2} \int_{M}|d s|^{2} d \mu_{g} \tag{1.7}
\end{equation*}
$$

where $d s^{2}=$ trace ds $\otimes d s$ depends on both g and g_{0}.
By the embedding theorem of Nash-Moser we may assume that $\left(M, g_{0}\right)$ is isometrically embedded in some Euclidean R^{K}. Thus we can think of
$s:(M, g) \rightarrow\left(M, g_{0}\right)$ as a map into R^{K} and Dirichlet's functional takes the equivalent form

$$
\begin{equation*}
E_{g}(s)=\frac{1}{2} \sum_{i=1}^{k} \int g(x)<\nabla_{g} s^{1}(x), \nabla_{g} s^{1}(x)>d \mu g \tag{1.8}
\end{equation*}
$$

There is another, equivalent, and useful way to express (1.5) and (1.8) using local conformal cordinate systems $g_{i j}=\lambda \delta_{i j}$ and $\left(g_{0}\right)_{i j}=\rho \delta_{i j}$ on (M, g) and (M, g_{0}) respectively, namely

$$
\begin{equation*}
E_{g}(s)=\frac{1}{4} \int_{M}\left[\rho(s(z))\left|s_{z}\right|^{2}+\rho(s(z))\left|s_{z}\right|^{2}\right] d z d \bar{z} \tag{1.9}
\end{equation*}
$$

For fixed g, the critical points of E_{g} are then said to be harmonic maps. The following result is due to Eells-Sampson, Hartman and Schoen-Yau [3], [10].

Theorem (1.10) Given metrics g and g_{0} with $g_{0} \in M_{-1}$ there exists a unqiue harmonic map $s(g):(M, g) \rightarrow\left(M, g_{0}\right)$ which is homotopic to the identity, and is the absolute minimum for E_{g}. Moreover $s(g)$ depends differentialy on g in any H^{r} topology, $r>2$, and is a C^{∞} diffeomorphism.

Consider now the function

$$
g \rightarrow E_{g}(s(g))
$$

This function on $\mathcal{H}-1$ is \mathscr{D}-invariant and thus can be viewed as a function on Teichmuller space. To see this one must show that

$$
E_{f \times g}\left(s\left(f^{\star}(g)\right)\right)=E_{g}(s(g))
$$

Let $c(g)$ be the complex structure associated to g, and induced by a conformal coordinate system for g. For $f \in \mathscr{D}_{0}, f:\left(M, f^{*} c(g)\right) \rightarrow(M, c(g))$
is holomorphic and consequently since the composition of harmonic maps and holomorphic maps is still harmonic we may conclude, by uniqueness that

$$
s(f * g)-s(g) \circ f
$$

Since Dirichlet's functional is invariant under complex holomorphic changes of coordinates it follows immediately that

$$
E_{f *(g)}(s(g) \circ f)=E_{g}(s(g))
$$

$$
\begin{gathered}
\text { Consequently for }[g] \in \mu_{-1} / \mathscr{D}_{0} \text { define the } C^{\infty} \text { smooth function } \\
\tilde{E}: \mu_{-1} / \mathscr{D}_{0} \rightarrow R
\end{gathered}
$$

by

$$
\widetilde{E}[g]=E_{g}(s(g))
$$

In [9] we prove the following

Theorem 1, . If $s:(M, g) \rightarrow\left(M, g_{0}\right)$ is harmonic the form $\xi(z) d z^{2}$ is a holomorphic quadratic differential on the complex curve ($M, c\left(g_{0}\right)$), and thus $\operatorname{Re} \xi(z) d z^{2}$ represents a trace free, divergence free symmetric two tensor on (M, g). Hence $\operatorname{Re} \xi(z) \mathrm{dz}^{2}$ is a horizontal tangent vector to \mathcal{M}_{-1} at g. In addition
(1.12) $\left.D \widetilde{E}[g] h--\frac{1}{2} \ll \operatorname{Re} \xi(z) d z^{2}, \widetilde{h} \gg\right\rangle_{g}--\frac{1}{2} \sum_{\ell} \int_{M} g(x)\left(\bar{H} \nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}\right) d \mu_{g}$
where \tilde{h} is the horizontal lift of $h-T(g){ }^{\mathscr{T}}(\mathrm{M})$ and $\tilde{H}-(\tilde{\mathrm{h}})^{\#}$ is obtained from h by raising an index via g.

Finally $\left[g_{0}\right]$ is the only critical point of \tilde{E}. The Hessian of \tilde{E} at $\left[g_{0}\right]$ is given by

$$
\begin{equation*}
D^{2} \tilde{E}\left[g_{0}\right](h, k)=\langle h, k\rangle \tag{1.13}
\end{equation*}
$$

$h, k \in T_{\left[g_{0}\right]}{ }^{\mathscr{G}(M)}$. That is, the second variation of Dirichlet's energy function is (up to a positive constant) Weil-Petersson metric.

Suppose we look at the first derivative 1.12 in conformal coordinates $(\mathrm{g})_{i j}=\lambda \delta_{i j}$. Then if $\overline{\mathrm{h}}$ is horizontal

$$
\begin{gathered}
2 \frac{\dot{\partial E}}{\partial g}(g, s) \tilde{h}--\int\left\langle h^{\#} \nabla s^{\ell}, \nabla s^{\ell}\right\rangle{ }_{R^{2}} d x d y \\
-\int \frac{1}{\lambda}\left(\tilde{h}_{11}\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}+2 \widetilde{h}_{12}\left(\frac{\partial s^{\ell}}{\partial x}\right)\left(\frac{\partial s^{\ell}}{\partial y}\right)+\widetilde{h}_{22}\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}\right) d x d y .
\end{gathered}
$$

where $h^{\#}=\frac{1}{\lambda}\left(h_{i j}\right)$. Since $\tilde{h}_{11}=-\tilde{h}_{22}$ this is equal to

$$
-\int \frac{1}{\lambda}\left(\tilde{h}_{11}\left[\left(\frac{\partial s^{\ell}}{\partial \mathrm{x}}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial \mathrm{y}}\right)^{2}+2 \tilde{h}_{12}\left(\frac{\partial s^{\ell}}{\partial \mathrm{x}}\right)\left(\frac{\partial \mathrm{s}^{\ell}}{\partial \mathrm{y}}\right)\right\} \mathrm{dx} \mathrm{dy}\right.
$$

Now

$$
\left(\frac{\partial s^{\ell}}{\partial y}-1 \frac{\partial s^{\ell}}{\partial y}\right)^{2}(d x+d y)^{2}-\xi(z) d z^{2}
$$

is a quadratic differential. But
$\operatorname{Re}\left(\xi(z) d z^{2}\right)=\left[\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right] d x^{2}+\left[\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right] d y^{2}+4\left(\frac{\partial s^{\ell}}{\partial x}\right)\left(\frac{\partial s^{\ell}}{\partial y}\right) d x d y$ If s is harmonic $\operatorname{Re}\left(\xi(z) d z^{2}\right.$) is a trace free divergence free tensor. In general the second derivative of \tilde{E} at an arbitrary [g] will not be intrinsic. However we can ask for the second derivative of the function $g \mapsto E_{g}(s(g))=\hat{E}(g)$. (For $g \in \mathbb{H}$, the space of all Riemannian metrics it still follows from [3], [10] that E_{g} has a unique minimum $s(g)$ which depends differentiably on g). This was computed in [9]. Thus we have

Theorem 1, 14 If h is not trace free

$$
\mathrm{DE}(\mathrm{~g}) \mathrm{h}=-\frac{1}{2} \sum_{\ell \mathrm{M}} \int_{\mathrm{g}} \mathrm{~g}(\mathrm{x})\left(\mathrm{H}_{\mathrm{T}} \nabla \mathrm{~s}^{\ell}, \nabla \mathrm{s}^{\ell}\right) \mathrm{d} \mu_{\mathrm{g}}
$$

where H_{T} is the trace free part of $(h)^{\#}$ moreover if h and k are trace free:

$$
\begin{aligned}
D^{2} \hat{E}(g)(h, k)= & \frac{1}{2} \sum_{\ell} \int_{M}\{h \cdot k\} g(x)\left(\nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}\right) d \mu_{g} \\
& -\sum_{\ell} \int_{M} g(x)\left(h^{\#} \cdot \nabla_{g} s^{\ell}, \nabla_{w}^{\ell}(k)\right) d \mu g
\end{aligned}
$$

where

$$
\begin{align*}
h \cdot k & -g^{a b}{ }_{g} d_{h} h_{c} k_{b d} \tag{1.5}\\
& =\operatorname{tr}(H K)
\end{align*}
$$

$H=h^{\#}, k=k^{\#}$ the (1.1) tensors obtained from h and k by raising an index and

$$
w^{\ell}(k)-D s^{\ell}(g) k, \text { the derivative of } s(g) \text { in the direction } k .
$$

§2 The complex structure on $\mathscr{G}(M)$

In this section we describe the explicite complex coordinates on $\mathscr{T}(M)$ discovered by Uwe Abresch and Arthur Fischer. We shall use the description d / D_{0} for Teichmūller space. The tangent space of the Fréchet manifold A of almost complex structures $J \in C^{\infty}\left(T_{1},(M)\right), J^{2}-I$ at a point $J \in T_{J} d$ consists of all those C^{∞} (1.1) tensors H such that HJ - -JH. has a natural almost complex structure $\Phi[6]$, where $\Phi_{j}: T_{J} d \rightarrow T_{J}{ }^{d 4}$ is defined by

$$
\Phi_{J}(H)=J H
$$

We then have

Theorem 2.1 The Frechet manifold of almost complex structures can be given an explicite complex structure.

Progf. (a sketch) Let $J_{0} \in d$ be fixed, and let ol be an open neighborhood of $0 \in T_{J_{0}}{ }^{4}$ consisting of those $(1,1)$ tensors H such that $(\mathrm{I}+\mathrm{H})$ is invertible. Define the mapping

$$
\psi: U \rightarrow \notin
$$

by

$$
\begin{equation*}
\psi(\mathrm{H})=(\mathrm{I}+\mathrm{H}) \mathrm{J}_{0}(\mathrm{I}+\mathrm{H})^{-1}=\mathrm{J} . \tag{2.2}
\end{equation*}
$$

It is clear that $J^{2}=-I: T M \rightarrow T M$ iff $J_{0}^{2}=-I$, which says that the range of ψ is in $\delta 4$. A straightforward algebraic excercise shows that the inverse of $\psi, \quad \psi^{-1}: \psi(\mathrm{U}) \rightarrow \mathrm{T}_{\mathrm{J}} \mathscr{A}$ is given by

$$
\begin{equation*}
\psi^{-1}(\mathrm{~J})=\left(\mathrm{J}-\mathrm{J}_{0}\right)\left(\mathrm{J}+\mathrm{J}_{0}\right)^{-1} \tag{2.3}
\end{equation*}
$$

A short calculation shows that

$$
\begin{gather*}
\psi \star(\Phi)=\Phi_{J_{0}} \tag{2.4}\\
D \psi_{J}^{-1}\left\{\Phi_{J} D \psi_{H}(\dot{J})\right\}=\Phi_{J_{0}}(\dot{J})-J_{0} \dot{J}
\end{gather*}
$$

where Φ is the almost complex structure on $A\left(\Phi_{J}(K)=J K\right)$ and $\Phi_{J_{0}}: T_{J_{0}} A^{A} \rightarrow T_{J_{0}} A^{d}$ the fixed linear almost complex struture on $T_{J_{A}} A$ Relation 2.4 says that ψ is a complex coordinate that for Φ.

The Explicit Complex Coordinates on $\mathscr{F}(M)$

We shall now describe how this complex structure on A induces a complex structure for $\mathscr{S}(M)$. For $J \in \mathscr{A}$ let $\theta(J)$ be the unique Poincaré metric associated to J and $\bar{\theta}: \mathscr{A} / \mathscr{S}_{0} \rightarrow M_{-1} / \mathscr{D}_{0}$ the induced map. We know that the tangent space to d / \mathscr{D}_{0} at [J] can be identified with $\mathscr{F}^{\mathrm{TT}}(J)$ the space of trace free divergence free (1,1) tensors w.r.t. $\theta(J)$.

Let $H \in T_{[J]^{A /} / \mathscr{D}_{0}}$ be a tangent vector, and let \tilde{H} be the \mathscr{D}-invariant horizontal lift of H. Thus for $f \in \mathscr{D}_{0}, f * \tilde{H}=\widetilde{H}, D \pi(J) \widetilde{H}(J)=H([J])$ for all $J \in \pi^{-1}([J])$, Let be the open neighborhood of $0 \in \mathscr{H}^{\mathrm{TT}}\left(\mathrm{J}_{0}\right)$ consisting of those $\overline{\mathrm{H}}\left(\mathrm{J}_{0}\right)$ with $\left(\mathrm{I}+\overline{\mathrm{H}}\left(\mathrm{J}_{0}\right)\right)$ invertible, and $\psi: H \rightarrow A$ the map defined in (2.2). If $\pi: W \rightarrow A$ denotes the bundle projection, define $\psi: \quad \rightarrow \mathscr{T}(M)$ by

$$
\begin{equation*}
\bar{\psi}=\pi \circ \psi \tag{2.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\bar{\psi}\left(\tilde{\mathrm{H}}\left(\mathrm{~J}_{0}\right)\right)=\pi\left\{\left(\mathrm{I}+\tilde{\mathrm{H}}\left(\mathrm{~J}_{0}\right)\right) \mathrm{J}_{0}\left(\mathrm{I}+\overline{\mathrm{H}}\left(\mathrm{~J}_{0}\right)^{-1}\right\}\right. \tag{2.7}
\end{equation*}
$$

Then the set of all such $\bar{\psi}$'s is a complex structure for $\mathscr{T}(M)$.
We can identify an open neighborhood of $\left[\mathrm{J}_{0}\right]$ in $\mathscr{T}(\mathrm{M})$ in $\mathscr{T}(\mathrm{M})$
with an open neighborhood of $\psi(\#)$. The first derivative $D \psi_{H}(J), J \in T_{J}{ }_{0}^{d}$ is easily calculated to be

$$
\begin{equation*}
\mathrm{D} \psi_{\mathrm{H}}(\dot{\mathrm{~J}})-\dot{\mathrm{J}}_{0}(\mathrm{I}+\mathrm{H})^{-1}-(\mathrm{I}+\mathrm{H}) \mathrm{J}_{0}(\mathrm{I}+\mathrm{H})^{-1} \mathrm{~J}_{(\mathrm{I}+\mathrm{H})^{-1} .} \tag{2.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathrm{D} \psi_{0}(\dot{\mathrm{~J}})=\mathrm{JJ}_{0}-\mathrm{J}_{0} \dot{J}=-2 \mathrm{~J}_{0} \mathrm{~J} . \tag{2.9}
\end{equation*}
$$

As a map into $C^{\infty}\left(T_{1}^{1}(M)\right)$ we can compute the second derivative:

$$
\begin{equation*}
\mathrm{D}^{2} \psi_{0}\left(\dot{\mathrm{~J}}_{1}, \dot{\mathrm{~J}}_{2}\right)-2 \mathrm{~J}_{0}\left(\dot{\mathrm{~J}}_{1} \dot{\mathrm{~J}}_{2}+\dot{\mathrm{J}}_{2} \dot{\mathrm{~J}}_{1}\right) \tag{2.10}
\end{equation*}
$$

§3 Teichmullier space is a Stein manifold

This theorem was first proved by Bers and Ehrenpreis [1].

Our main result is

Theorem 3.1 The map $\tilde{E}: \mathscr{T}(M) \rightarrow R$ is proper and

$$
\begin{equation*}
\frac{\partial^{2} \widetilde{\mathrm{E}}}{\partial z \partial \bar{z}}[\mathrm{~g}]>0 \tag{3.2}
\end{equation*}
$$

where the derivative is taken w.r.t. the natural complex structure on $\mathscr{T}(\mathrm{M})$ introduced in the last section.

Proof. That \tilde{E} is proper is proved in [7]. It clearly suffices to show that

$$
\begin{equation*}
\mathrm{D}^{2}(\tilde{\mathrm{E}} \circ \bar{\varphi})[\mathrm{g}](\mathrm{h}, \mathrm{~h})>0 \tag{3.3}
\end{equation*}
$$

for any $h \in T_{[g]}\left(\mathcal{H}_{-1} / \mathscr{I}_{0}\right)$ and where $\bar{\psi}$ is a complex coordinate system for $\mathscr{T}(M)$.

For g a Riemannian metric on M, let $\hat{E}(g)=E_{g}(s(g))$. Let
$\theta: \alpha \rightarrow \mu_{-1}$ be the Poincaré maps and ψ a complex coordinate system for A about $J_{0}=\theta^{-1}(g)$. Therefore (3.3) is clearly equivalent to

$$
\begin{equation*}
\mathrm{D}^{2}(\hat{\mathrm{E}} \circ \varphi)_{0}(\mathrm{H}, \mathrm{H})>0 \tag{3.4}
\end{equation*}
$$

for all $H \in \mathscr{H}^{\mathrm{TT}}\left(\mathrm{J}_{0}\right)$ where $\varphi=\theta \circ \psi$. However

$$
\begin{equation*}
\mathrm{D}^{2}(\hat{\mathrm{E}} \circ \varphi)_{0}-\mathrm{D}^{2 \hat{E}}\left(\mathrm{D} \varphi_{0}, \mathrm{D} \varphi_{0}\right)+\hat{\mathrm{DE}} \circ \mathrm{D}^{2} \varphi_{0} \tag{3.5}
\end{equation*}
$$

We would like to compute $\mathrm{D} \varphi_{0}(\mathrm{H})$ and $\mathrm{D}^{2} \varphi_{0}(\mathrm{H}, \mathrm{H})$. Let S_{2} be the space of $C^{\infty}(0,2)$ tensors and $S_{2}{ }^{T T}(g)$ denote the trace for divergence free symmetric two tensors with respect to g. Then from [8] we know that $\mathrm{D} \theta(\mathrm{J}): \mathrm{T}_{\mathrm{J}} \mathrm{A}^{d} \rightarrow \mathrm{~T}_{\mathrm{g}} H_{-1} \subset \mathrm{~S}_{2}$ is given by

$$
\begin{equation*}
\mathrm{D} \theta(\mathrm{~J}) \dot{\mathrm{J}}=\rho \mathrm{g}+\mathrm{h} \tag{3.6}
\end{equation*}
$$

where $g-\theta(\mathrm{J}), \mathrm{h}--(\mathrm{JJ})_{\#}$ and

$$
\Delta \rho-\rho=\delta_{g} \delta_{g} h
$$

Δ the Laplace-Beltrami operator on functions (see for example 1.6).
Let $\mathrm{L}_{\mathrm{g}}=\Delta-\mathrm{I}, \mathrm{I}$ the identity. Then

$$
\rho=\mathrm{L}_{\mathrm{g}}^{-1}\left(\delta_{\mathrm{g}} \delta_{\mathrm{g}} \mathrm{~h}\right) .
$$

If h is divergence free then $\rho=0$.
From 2.8 we know that
(i)

$$
\mathrm{D} \psi_{\mathrm{H}}\left(\mathrm{~J}_{1}\right)-\dot{\mathrm{J}}_{1} \mathrm{~J}_{0}(\mathrm{I}+\mathrm{H})^{-1}-(\mathrm{I}+\mathrm{H}) \mathrm{J}_{0}(\mathrm{I}+\mathrm{H})^{-1} \mathrm{~J}_{1}(\mathrm{I}+\mathrm{H})^{-1}
$$

$$
\begin{gather*}
\mathrm{D} \psi_{0}\left(\dot{J}_{1}\right)=-2 \mathrm{~J}_{0} \dot{\mathrm{~J}}_{1} \tag{ii}\\
\mathrm{D}^{2} \psi_{0}\left(\dot{\mathrm{~J}}_{1} \dot{J}_{2}\right)=2 \mathrm{~J}_{0}\left(\dot{J}_{1} \dot{\mathrm{~J}}_{2}+\dot{\mathrm{J}}_{2} \dot{J}_{1}\right)
\end{gather*}
$$

Therefore

$$
\begin{equation*}
\mathrm{D} \varphi_{\mathrm{H}}\left(\dot{\mathrm{~J}}_{1}\right)=\mathrm{D} \theta(\mathrm{~J}) \circ \mathrm{D} \psi_{\mathrm{H}}\left(\dot{\mathrm{~J}}_{1}\right) \tag{3.7}
\end{equation*}
$$

$$
-\left(J D \psi_{H}\left(\dot{J}_{1}\right)\right)_{\#}+\rho \mathrm{g}
$$

$$
=\left(\mathrm{JD} \psi_{\mathrm{H}}\left(\dot{\mathrm{~J}}_{1}\right)\right)_{\#}+\rho(\mathrm{J}) \cdot \theta(\mathrm{J})
$$

$\mathrm{g}=\theta(\mathrm{J}), \quad \mathrm{J}=(\mathrm{I}+\mathrm{H}) \mathrm{J}_{0}(\mathrm{I}+\mathrm{H})^{-1}$ and $\rho(\mathrm{J})=\mathrm{L}_{\mathrm{g}}^{-1}\left(\delta_{\mathrm{g}} \delta_{\mathrm{g}}\left(\mathrm{JD} \psi_{\mathrm{H}}\left(\dot{J}_{1}\right)\right.\right.$ where, as usual, \# denotes lowering an index via the metric g.

Now $\psi(0)=\mathrm{J}_{0}$ and $\mathrm{D} \psi_{0}\left(\mathrm{~J}_{1}\right)$ is a trace free divergence free tensor, whence it follows that $\rho\left(\mathrm{J}_{0}\right)=0$.

Let us first consider the term

$$
\mathrm{H} \mapsto\left(-\mathrm{JD} \psi_{\mathrm{H}}\left(\dot{\mathrm{~J}}_{1}\right)\right\}_{\#}
$$

in expression (3.7) for which we would like to compute the derivative in the direction J_{2}. But

$$
\begin{aligned}
& \left.\left\{-\mathrm{JD} \psi_{\mathrm{H}}\left(\dot{J}_{1}\right)\right)_{\#}--\left((\mathrm{I}+\mathrm{H}) \mathrm{J}_{0}(\mathrm{I}+\mathrm{H})^{-1} \mathrm{D} \psi_{\mathrm{H}} \dot{\mathrm{~J}}_{1}\right)\right)_{\#} \\
& \quad--\left((\mathrm{I}+\mathrm{H}) \mathrm{J}_{0}(\mathrm{I}+\mathrm{H})^{-1} \dot{J}_{1} \mathrm{~J}_{0}(\mathrm{I}+\mathrm{H})^{-1}+\dot{\mathrm{J}}_{1}(\mathrm{I}+\mathrm{H})^{-1}\right\}_{\#}
\end{aligned}
$$

For $H=0$ this is equal to $-2 \mathrm{~J}_{1}=\mathrm{D} \varphi_{0}\left(\mathrm{~J}_{1}\right)$. The derivative of

$$
H \mapsto-\left((I+H) J_{0}(I+H)^{-1} J_{J_{0}}(I+H)^{-1}+\dot{J}_{1}(I+H)^{-1}\right)
$$

at 0 , in the direction of J_{2} is easily computed to be

$$
\begin{equation*}
2\left\{\dot{\mathrm{~J}}_{1} \dot{\mathrm{~J}}_{2}-\mathrm{J}_{2} \mathrm{~J}_{1}\right\} \tag{3.8}
\end{equation*}
$$

Consider now the map

$$
\begin{equation*}
H \mapsto \theta(J)_{i \ell} A_{j}^{\ell}=\left(A_{j}^{\ell}\right)^{\#} \tag{3.9}
\end{equation*}
$$

where A is a fixed (1,1) tensor. The derivative of this at 0 in the direction J_{2} is

$$
\begin{equation*}
\left(\mathrm{D} \theta\left(\mathrm{~J}_{0}\right) \mathrm{D} \psi_{0}\left(\dot{J}_{2}\right)\right)_{i \ell} A_{j}^{\ell}=\left\{\left(-2 \dot{J}_{2}\right)_{\#}\right\}_{i \ell} \ell_{j}^{\ell} \tag{3.10}
\end{equation*}
$$

In the case $A_{j}^{\ell}=-2 \dot{J}_{1}$ we see that this is equal to

$$
-4\left(\mathrm{~J}_{2} \mathrm{~J}_{1}\right)_{\#}
$$

Adding this and (3.8) together we find that the derivative of

$$
H \mapsto\left(-\mathrm{JD} \psi_{\mathrm{H}}\left(\mathrm{~J}_{1}\right)\right)_{\#}
$$

at 0 is the bilinear map

$$
\left(\dot{J}_{1} \dot{J}_{2}\right) \mapsto 2\left\{\dot{\mathrm{~J}}_{1} \dot{\mathrm{~J}}_{2}+\dot{\mathrm{J}}_{2} \dot{\mathrm{~J}}_{1}\right\}
$$

Thus in order to complete our computation of the derivative of

$$
\mathrm{H} \mapsto \mathrm{D} \varphi_{\mathrm{H}}\left(\mathrm{~J}_{1}\right)
$$

we must consider the second term in the final expression (3.7) on the derivative of the map

$$
\mathrm{J} \mapsto \rho(\mathrm{~J}) \theta(\mathrm{J})
$$

at the point J_{0}. Since $\rho\left(J_{0}\right)=0$ we need only calculate $D \rho\left(J_{0}\right) \dot{J}_{2}$. Let $X-J D \psi_{0}\left(\dot{J}_{1}\right), Y=\operatorname{JD} \psi_{0}\left(\dot{J}_{2}\right)$ and $g-\theta\left(J_{0}\right)$. Then since X and Y are trace free divergence free it follows that

$$
\begin{equation*}
\mathrm{D} \rho\left(\mathrm{~J}_{0}\right) \mathrm{Y}=\mathrm{L}_{\mathrm{g}}^{-1}\left(\delta_{\mathrm{g}} \mathrm{D}_{\mathrm{g}} \delta_{\mathrm{g}}(\mathrm{Y}) \mathrm{X}\right) \tag{3.11}
\end{equation*}
$$

where $D_{g} \delta_{g}(Y)$ is the derivative of the divergence operator δ_{g} with respect to g in the direction Y. Thus we have our formula for $D^{2} \varphi_{0}$ namely
where

$$
X=J D \psi\left(\dot{J}_{1}\right), Y=J D \psi_{0}\left(\dot{J}_{2}\right)
$$

Lemma 3.13

$$
\delta_{g}\left(D_{g} \delta_{g}\right)(X) X=0
$$

Proof By corollary 4A of [8]

$$
\left(D_{g} \delta_{g}\right)(X) X=\frac{1}{2} * d \mu
$$

μ, a real valued function on M. Thus

$$
\left.\delta_{g}\left(D_{g} \delta_{g}\right)(X) X\right)=\frac{1}{2} \delta_{g} * d \mu=0
$$

This gives us

Theorem 3. 14

$$
\mathrm{D}^{2} \varphi_{0}(\mathrm{H}, \mathrm{H})=4\left\{\mathrm{H}^{2}\right\}_{\#}
$$

We are now ready to complete the proof of theorem 3.1. By formula (3.5) we must show that the sum of $D^{2} \hat{E}\left(D \varphi_{0} H, D \varphi_{0} H\right)$ and $D \hat{E} \circ D^{2} \varphi_{0}$ is strictly positive.

Now for $\widetilde{\mathrm{h}} \in \mathrm{S}_{2}^{\mathrm{TT}}(\mathrm{g}), \quad \mathrm{h} \in \dot{T}_{[g]}^{\mathscr{T}}(\mathrm{M}), \quad \mathrm{D} \hat{\mathrm{E}}(\mathrm{g})(\widetilde{\mathrm{h}})=\mathrm{DE}[\mathrm{g}] \mathrm{h}$. By 1.12 we see that for k arbitrary

$$
D \hat{E}(g) k=-\frac{1}{2} \sum_{\ell} \int_{M} g(x)\left(K_{T} \nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}\right) d \mu_{g}
$$

where $K=(k)^{\#}$ and K_{T} is the trace free part of K. Therefore

$$
D \hat{E}(\mathrm{~g}) \mathrm{D}^{2} \varphi_{0}(\mathrm{H}, \mathrm{H})=-2 \sum_{\ell} \int_{\mathrm{M}} \mathrm{~g}(\mathrm{x})\left(\left(\mathrm{H}^{2}\right) \mathrm{T}^{\left.\nabla \mathrm{s}^{\ell}, \nabla \mathrm{s}^{\ell}\right) \mathrm{d} \mu \mathrm{~g}}\right.
$$

Lemma 3,15

If $H \in T_{J} A$ is divergence free then $H^{2}=\mu \mathrm{I}$ where μ is a non-negative function which vanishes at, at most finitely many points of M.

Proof Write H in conformal coordinates $g_{i j}=\lambda \delta_{i j}$ as $H=\left(\begin{array}{ll}a & b \\ b & -a\end{array}\right)$. Then $\lambda a-i \lambda h$ is a holomorphic quadratic differential on M and thus has 4 (genus M) - 4 zeros (genus $M>1$). $H^{2}-\left(a^{2}+b^{2}\right) I=\mu I, \mu-\frac{1}{2}$ trace H^{2}, which concludes the proof of the lemma. Consequently we see that:

$$
\begin{equation*}
\mathrm{D} \hat{\mathrm{E}}(\mathrm{~g}) \mathrm{D}^{2} \varphi_{0}(\mathrm{H}, \mathrm{H})=0 \tag{3.16}
\end{equation*}
$$

Therefore (c.f. 3.4 and 3.5)

$$
D^{2} \hat{E}(\mathrm{~g})\left(\mathrm{D} \varphi_{0}(\mathrm{H}), \mathrm{D} \varphi_{0}(\mathrm{H})\right)=\mathrm{D}^{2}(\hat{\mathrm{E}} \circ \varphi)_{0}(\mathrm{H}, \mathrm{H})
$$

If $\quad \tilde{k}=\mathrm{D} \varphi_{0}(\mathrm{H})-(-2 \mathrm{H}) \#$ then

$$
\begin{align*}
\mathrm{D}^{2} \widehat{\mathrm{E}}(\mathrm{~g})(\tilde{\mathrm{k}}, \tilde{\mathrm{k}})= & \frac{1}{2} \sum_{\ell} \int_{\mathrm{M}}(\widetilde{\mathrm{k}} \cdot \tilde{\mathrm{k}}) \mathrm{g}(\mathrm{x})\left(\nabla_{\mathrm{g}} \mathrm{~s}^{\ell}, \nabla_{\mathrm{g}} \mathrm{~s}^{\ell}\right) \mathrm{d} \mu_{\mathrm{g}} \tag{3.17}\\
& \left.-\int_{\mathrm{M}} \mathrm{~g}(\mathrm{x})\left(\widetilde{\mathrm{k}}^{\#} \nabla_{\mathrm{g}} \mathrm{~s}^{\ell}, \nabla_{\mathrm{g}}{ }^{\ell}(\mathrm{k})\right)\right) \mathrm{d} \mu_{\mathrm{g}}
\end{align*}
$$

If the second term of 3.17 were positive we would be done, i.e. theorem 3.1 would be proved. The next lemma shows that this is not the case

Lemma 3,18

$$
-\sum_{\ell} \int_{M} g(x)\left(\widetilde{k}^{\# \nabla_{g}} s^{\ell}, \nabla w^{\ell}(\tilde{k})\right) d \mu_{g} \leq 0
$$

Proof Consider the map $g \mapsto E_{g}(s(g))$. Since $s(g)$ is a critical point of E_{g} we have the relation

$$
\begin{equation*}
\frac{\partial \mathrm{E}_{\mathrm{g}}}{\partial s} \circ \mathrm{Ds}(\mathrm{~g}) \tilde{\mathrm{k}}=0 \tag{3.19}
\end{equation*}
$$

where $W(\tilde{k})=\operatorname{Ds}(g)(\tilde{k})$, for all g. Therefore the derivative of (3.19) with respect to g, must be identically zero, or consequently we see that

$$
0=\frac{\partial^{2} \mathrm{E}_{\mathrm{g}}}{\partial \mathrm{~g} \partial}(\tilde{\mathrm{k}}, \mathrm{Ds}(\mathrm{~g}) \tilde{\mathrm{k}})+\frac{\partial}{\partial s}\left\{\frac{\partial \mathrm{E}_{\mathrm{g}}}{\partial s} \circ \mathrm{Ds}(\mathrm{~g}) \tilde{\mathrm{k}}\right\} \circ \mathrm{Ds}(\mathrm{~g}) \tilde{\mathrm{k}}
$$

The second term is precisely the second variation of Dirichlet's energy E_{g} $D^{2} E_{g}(w, w)$, at the critical point $s(g)$ in the direction w where $w(\tilde{k})=\operatorname{Ds}(g)(\bar{k})$. Since $s(g)$ is an absolute minimum it follows that $D^{2} E_{g}(w, w) \geq 0$. Thus (c.f. 1.12)

$$
\frac{\partial^{2} E_{g}}{\partial g \partial s}(\tilde{k}, w)=-D^{2} E_{g}(w, w)=-\int_{M} g(x)\left(\tilde{k}^{\#} \nabla_{g} s^{\ell}, \nabla w(\tilde{k})\right) d \mu_{g} \leq 0
$$

which completes 3.18 .

By this last lemma, our only chance to show that $\frac{\partial^{2} \widetilde{E}}{\partial z \partial \widetilde{z}}>0$ is to show

$$
\begin{equation*}
I=D^{2} E_{g}(s)(w, w)<\frac{1}{2} \sum_{\ell} \int_{M}(\tilde{k} \cdot \tilde{k}) g(x)\left(\nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}\right) d \mu_{g} \tag{3.19}
\end{equation*}
$$

which is what we now proceed to do we, fortunately have an explicit formula for the second variation of E_{g} at a minimum s, namely [4, p . 139] in conformal coordinates $g_{i j}=\lambda \delta_{i j}$ with local coordinates $(x, y)-\left(x^{1}, x^{2}\right)$ we have

$$
\begin{aligned}
I=D^{2} E_{g}(s)(w, w)= & \int_{M}\left\{\left\langle\nabla \frac{\partial}{\partial x}, w, \nabla \frac{\partial}{\partial x}{ }^{w}+\frac{\partial}{\partial y}^{\partial y}{ }^{w, \nabla} \frac{\partial}{\partial y}{ }^{w\rangle\} d x_{\wedge} d y}\right.\right. \\
& -\int_{M}\left\{\left\langle\Re\left(w, \frac{\partial s}{\partial x}\right) \frac{\partial s}{\partial x}, w\right\rangle+\left\langle\Re\left(w, \frac{\partial s}{\partial y}\right), \frac{\partial s}{\partial y}, \frac{\partial w}{\partial y}\right)\right\} d x_{\wedge} d y
\end{aligned}
$$

where $<,>: R^{k} \times R^{k} \rightarrow R$ is the Euclidean inner product and \mathscr{R} is the
curvature tensor of $\left(M, g_{0}\right) \subset R^{k}$.
Since the curvature of $\left(M, g_{0}\right)$ is -1 we see that
where strict inequality holds if $w * 0$. We are assuming that (M, g_{0}) is isometrically embedded in R^{k}. For $p \in\left(M, g_{0}\right) \subset R^{k}$ let $\Pi_{(p)}: R^{k} \rightarrow T_{p} M$ be the orthogonal projection of R^{k} onto the tangent space to M at p. Then the condition that $s, s:(M, g) \rightarrow\left(M, g_{0}\right)$ be harmonic can be written (in conformal coordinates) as

$$
\begin{aligned}
\Pi(s) \Delta s & =\Pi(s)\left(\frac{\partial^{2} s}{\partial x^{2}}+\frac{\partial^{2} s}{\partial y^{2}}\right)=0 \\
s & =\left(s^{1}, \ldots, s^{k}\right)
\end{aligned}
$$

This can be written in terms of the metric g as

$$
\Pi(s)\left(\sqrt{g} \Delta_{g} s\right)=0
$$

Δ_{g} - Laplace-Beltrami on the coordinate functions (s^{1}, \ldots, s^{k}). We know that the unique harmonic map s depends on g, so let us write this as

$$
\begin{equation*}
\Pi(s(g))\left(\sqrt{g} \Delta_{g} s(g)\right)=0 \tag{3.20}
\end{equation*}
$$

and this holds for all g.

Differentiating (3.20) w.r.t. g in the direction of a trace free (w.r.t.
g) tensor h we obtain

$$
\begin{equation*}
D \Pi(s)\left(\sqrt{g} \Delta_{g} s(g)\right)+\Pi(s(g))\left(\sqrt{g} \Delta_{g} w\right) \tag{3.21}
\end{equation*}
$$

$$
\begin{gathered}
\Pi\left(s(g)\left\{\frac{\partial}{\partial g}\left[\sqrt{g} \Delta_{g}\right](h)\right\} s=0\right. \\
-D \Pi(s) w(\Delta s)+\Pi(s) \Delta w \\
+\Pi(s)\left\{\frac{\partial}{\partial g}\left[\sqrt{g} \Delta_{g}\right](h)\right) s
\end{gathered}
$$

$w=\operatorname{Ds}(g) h$.

Now

$$
\sqrt{g} \Delta_{g} s=\frac{\partial}{\partial x^{j}}\left(\sqrt{g} g^{i j} \frac{\partial s}{\partial x^{i}}\right)
$$

Therefore

$$
\begin{aligned}
& \frac{\partial}{\partial g}\left(\sqrt{g} \Delta_{g}(h)\right)(s)= \\
& -\frac{\partial}{\partial x^{1}}\left(\sqrt{g} h^{1 j} \frac{\partial s}{\partial x^{1}}\right)
\end{aligned}
$$

But necessarily the second variation $I=D^{2} E_{g}(s)(w, w)$ equals

$$
\left.I=\int_{M}\langle D \Pi(s)(w)(\Delta s)+\Pi(s)(\Delta s), w\rangle\right) d x_{\wedge} d y
$$

From this and 3.21 we see that

$$
I=\int_{M}<\frac{\partial}{\partial x^{j}}\left(\sqrt{g} h^{i j} \frac{\partial}{\partial x^{i}} s\right), w>d x \wedge d y
$$

Integrating by parts we get

$$
-I=\int_{M} h^{11} \frac{\partial s}{\partial x} \bullet \frac{\partial w}{\partial x} \sqrt{g} d x_{\wedge} d y+\int_{M} h^{22} \frac{\partial s}{\partial y} \bullet \frac{\partial w}{\partial y} \sqrt{g} d x_{\wedge} d y
$$

$$
\int_{M} h^{12} \frac{\partial s}{\partial x} \cdot \frac{\partial w}{\partial x} \sqrt{g} d x \wedge d y+\int_{M} h^{21} \frac{\partial s}{\partial y} \bullet \frac{\partial w}{\partial y} \sqrt{g} d x \wedge d y
$$

where - denotes the R^{k} inner product. Thus

$$
\begin{aligned}
-I & =\int_{M}\left(h^{22} \frac{\partial s}{\partial y}+h^{12} \frac{\partial s}{\partial x}\right) \cdot \frac{\partial w}{\partial x} \sqrt{g} d x_{\wedge} d y \\
& +\int_{M}\left(h^{21} \frac{\partial s}{\partial y}+h^{21} \frac{\partial s}{\partial x}\right) \cdot \frac{\partial w}{\partial y} \sqrt{g} d x_{\wedge} d y
\end{aligned}
$$

Since

$$
\begin{aligned}
& \nabla_{\frac{\partial}{\partial y}}=\Pi(s) \frac{\partial w}{\partial y} \\
& \nabla_{\frac{\partial}{\partial x}}=\Pi(s) \frac{\partial w}{\partial x}
\end{aligned}
$$

we see that this is equal to

$$
\begin{aligned}
& \int_{M}\left(h^{22} \frac{\partial s}{\partial y}+h^{12} \frac{\partial s}{\partial x}\right) \cdot\left(\nabla \frac{\left.\partial^{w}\right)}{\partial x} \sqrt{g} d x_{\wedge} d y\right. \\
& +\int_{M}\left(h^{21} \frac{\partial s}{\partial y}+h^{21} \frac{\partial s}{\partial x}\right) \cdot\left(\nabla \frac{\left.\partial^{w}\right)}{\partial x} \sqrt{g} d x_{\wedge} d y\right.
\end{aligned}
$$

Applying the Schwartz inequality and using the fact that $g_{i j}=\lambda \delta_{i j}$, $\sqrt{g}=\lambda$ we obtain
(3.22) $I \leq\left(\sqrt{\left.\left.\int_{M} \| h^{22} \frac{\partial s}{\partial y}+h^{12} \frac{\partial s}{\partial x}\right) \|^{2} \lambda^{2} d x_{\wedge} d y\right\}} \quad\left\{\sqrt{\int_{M} \| \frac{\partial^{w}}{} \frac{w \|^{2} d x_{\wedge} d y}{\partial x}}\right.\right.$

$$
+\left(\sqrt { \int _ { M } \| h ^ { 1 1 } \frac { \partial s } { \partial x } + h ^ { 2 1 } \frac { \partial s } { \partial y }) \| ^ { 2 } \lambda ^ { 2 } d x _ { \wedge } d y \} } \quad \left\{\sqrt{\int_{M} \| \nabla \frac{\partial^{w} \|^{2} d x_{\wedge} d y}{\partial x}}\right.\right.
$$

where

$$
\left\|\frac{\partial}{\frac{\partial}{\partial x}}\right\|^{2}=\Pi(s) \frac{\partial w}{\partial x} \cdot \Pi(s) \frac{\partial w}{\partial x}
$$

Now write the right hand side of 3.22 as

$$
\sqrt{\mathrm{A}_{1}} \sqrt{\mathrm{~B}_{1}}+\sqrt{\mathrm{A}_{2}} \sqrt{\mathrm{~B}_{2}} .
$$

Using the fact that

$$
\sqrt{A_{1}} \sqrt{B_{1}}+\sqrt{A_{2}} \sqrt{B_{2}} \leq \sqrt{\left(A_{1}+A_{2}\right)\left(B_{1}+B_{2}\right)}
$$

and that $h^{11}=-h^{22}$,
we see that I is less than or equal to

$$
\left\{\sqrt{\left.\left.\left.\int_{M}\left\{\left(h^{11}\right)^{2}+\left(h^{12}\right)^{2}\right)\left(\| \frac{\partial s}{\partial x}\right)\left\|^{2}+\right\| \frac{\partial s}{\partial y}\right) \|^{2}\right\} \lambda^{2} d x_{\wedge} d y\right\}} \sqrt{\left.\int_{\{\| \nabla}\left\|_{\frac{\partial}{\partial x}}^{w}\right\|^{2}+\left\|\nabla \frac{\partial^{w}}{\partial y}\right\|^{2} d x_{\wedge} d y\right\}}\right.
$$

Since $h^{i j}-\frac{1}{\lambda^{2}} h i j$ this is equal to

$$
\left\{\sqrt{\frac{1}{2} \sum_{\ell} \int_{M}(h \cdot h) g(s)\left(\nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}\right) d \mu_{g}}\right\} \iint_{M}\left\{\left\|\nabla_{\frac{\partial}{\partial x}}\right\|^{2}+\left\|\nabla_{\frac{\partial}{\partial y}}\right\|^{2} d x_{\wedge} d y\right\}
$$

If $w \rightarrow 0$ this is strictly less than

$$
\sqrt{\sum_{\ell} \int_{M}(h \cdot h) g(s)\left(\nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}\right) d \mu_{g}} \sqrt{I}
$$

or

$$
\sqrt{\mathrm{I}}<\sqrt{\sum_{\ell} \frac{1}{2} \int_{\mathrm{M}}(\mathrm{~h} \cdot \mathrm{~h}) \mathrm{g}(\mathrm{~s})\left(\nabla_{\mathrm{g}} \mathrm{~s}^{\ell}, \nabla_{\mathrm{g}} s^{\ell}\right) \mathrm{d} \mu_{\mathrm{g}}}
$$

whence
(3.23)

$$
I<\frac{1}{2} \sum_{\ell} \int_{M}(h \cdot h) g(s)\left(\nabla_{g} s^{\ell}, \nabla_{g} s^{\ell}\right) d \mu_{g}
$$

If $w=0$ the inequality 3.23 clearly holds. This establishes 3.19 and thus 3.1, the holomorphic convexity of Dirichlet's energy.

REFERENCES

[1] BERS, L. and EHRENPREIS L., Holomorphic conxitiy of Teichmüller Spaces. Bull AMS (70) 1964 pp. 761-764.
[4] EARLE, C. and EELLS, J., Deformations of Riemannian Surfaces, Lecture Notes in Mathematics 103 Springer-Verlag.
[3] EELLS, J. and SAMPSON, J.H., Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109-160.
[4] FISCHER, A.E. and TROMBA, A.J., On a purely Riemannian proof of the structure and dimension of the unramified moduli space of a compact Riemann surface. Math. Ann. 267 (1984) 311-345.
[5] FISCHER, A.E. and TROMBA, A.J., On the Weil-Petersson metric on Teichmüller space, Trans. AMS 284 (1984), 319-335.
[6] FISCHER, A.E. and TROMBA, A.J., Almost complex principle bundles and the complex structure on Teichmuller space, Crelles J. Band 252, pp. 151-160 (1984).
[7] FISCHER, A.E. and TROMBA, A.J., A new proof that Teichmüller space is a cell, Trans. AMSS (to appear).
[8] TROMBA, A.J., On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric, Manuscripta Math. vol. 56, Fas. 4, 475-497 (1986).
[9] TROMBA, A.J., On an enery function for the Well-Petersson metric; Manuscripta Math. (to appear).
[10] SHOEN, R. and YAU, S.T., On univalent harmonic maps between surfaces, Inventiones mathematics 44, 265-278 (1978).

[^0]: Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3

