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Abstract. We show how the ground state energy per site for the phase
I regime in the superintegrable chiral Potts model can be expressed as abelian
integrals of second kind of the hyperelliptic curve for rapidity variables. The
Prym varieties related to this curve are explicitly described for the splitting of
Jacobian variety of the rapidity curve.



Introduction

Considerable progress has been made in understanding chiral Potts model of
statistical mechanics [1-9] [11]. This model gives the solutions of Yang-Baxter
equation ( or the star-triangle equation) with Boltzmann weights depending on
“rapidities” which lic on high genus curves. For the N-state chiral Potts model,
these “rapidity” curves have the algebraic expression:

(1-KA)(1 - K1)
k2

depending on a complex parameter k', k'? 3 0,1 , here k%2 4 k'2 = 1. For the
eigenvalue problem of quantum chiral Potts spin chain associated to this statistical
mechanical model, many important results have been derived from the physical
consideration, e.g., the ground state energy, the phenomena of level crossing
transition to a new ground state [1, 4, 5, 11]. All those results are obtained
with no uniformization substitutions for the Riemann surface Wy .. However
we have seen many tantalizing clues that the theory of abelian integrals have
much involved in the solution of chiral Potts model and would like to make
these structure explicit. Using the abelian integral of first kind, Baxter [6] has
obtained the hyperelliptic theta function parametrization of the curve Wy xr. The
mathematical treatment of these hyperelliptic theta functions is given in [12],
which is based on symmetries of the curves Wy ;. In this paper, we would like
to indicate the abelian integrals of second kind also appear in the ground state
energy per site found by Baxter, McCoy et al. [1, 4].

The ground state energy per site for the (phase I) regime 0 < k' < 1 of the
superintegrable chiral Potts model [1] is expressed by

1 4k'

and at k' =

, (t,A) € C?,

Wy N =

N-1
4,,,}2:1“% %)
1

where I'(a, b; ¢; £) is the hypergeometric function and has the expression

Pa,bic;5) = F(b)r(c / S - 6 (1 - k) (2)
(Rec > Reb >0, |&] < 1).
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We shall show the above expression is an abelian integral of second kind of the
“rapidity” curve Wy p». For our purpose, we shall restrict our attention to only
the regime

0<k <1

unless otherwise specified except Sect. 4.

The organization of this paper is as follows. In Sect. 1 we shall list the basic
geometrical properties of the curve Wy ;+ needed for later discussion and state
the main result of this paper (Theorem 1) which is the relation of (1) and the
abelian integral of second kind for the curve Wy 4. The proof of this result will
be given in Sect. 2 ( for odd N ) and Sect. 3 ( for even N ). The structure of
Prym varieties related to Wy inevitably emerges from the discussion of energy
per site for even N in Sect. 3.. In Sect. 4, we shall study the other Prym
varieties related to Wy . We have found the splitting of Jacobian of Wy 4 into
a dual pair of abelian subvarieties, which are the Jacobians of different quotients
of Wy w. The conclusions are stated in Theorem 2 and 3. The important aspect
for the splitting of Jacobian related to their hyperelliptic theta functions has not
been discussed in this paper. Its understanding should be useful for the application
to the solvable statistical system. Also for the non-superintegrable chiral Potts
model, the relation between abelian integrals and ground energy per site is not
clear at this moment. Work along this line is under consideration.

I would like to thank Professor B. M. McCoy for introducing me the research
area of chiral Potts models. It is believed that the geometry underlying the rapidity
curves should somehow explain the nature of the solution of this statistical model
and this work is out of one of the attempts. We are able to relate the result
obtained by McCoy et al [1] to the geometry of Riemann surface for rapidity
variables. I am most grateful to Professor F. Hirzebruch for his kind invitation
and warm hospitality of Max-Planck-Institut fir Mathematik where this work
was completed.

Section 1. Chiral Potts curves

The algebraic curves for the “rapidity” variables of chiral Potts N-state model
are characterized as hyperelliptic curves of genus N — 1 having an order N
automorphism with exactly 4 fixed points. Here we shall always assume

N >3,

and call them the CP (N —) curves. The geometry of such curves have been
studied in [12] . In this section we shall describe the basic properties needed for
the discussion of this paper.



For a fixed N, the CP curves are defined by

v (I=KEN)(1-FAr)

depending on a a complex parameter k', k'% # 0,1 , here k% + k'% = 1. They
can also expressed by

1-F 1+ &
) 2 _ [N _ N _ 2
Wyp: wi= (t 1+k,)(t ——-l_k,) , (W) eC?  (4)

with the relations

Wy t y (H,A) € Cz, 3)

w?= %(A -1,
A= %{kz(w—tN) +k’2+1}.

The automorphism group Aut(WN'p) of Wy has the order 4N with the
following generators

6: (1,A) ~ (wt,A),
o: (§A)~ (¢,A71), (5)

1 1—#A
ci (tA) ~ (?’-I?-_A),

here w = e, In the coordinate of (4), the above generators are expressed by

6: (t,w)~ (wt,w),
o: (t,w)~ (t,—w), (6)

i (tw) (%;‘})

a is the hyperelliptic involution, and 4 is the order N element with 4 fixed points.
We have

=801,

Center of Aut(Wy i) = { <o> forodd N

<0,6% > for even N (M)

For the rest of this note, ¢, A, w will always be the coordinates (3) (4) of the CP
curve Wy o and 8, o, « the automorphisms defined by (5) or (6). It is known
that that the abelian differential of first kind of Wy 4+ is given by

T(Wyp,0) = {p(t)%t- | p(t) : polynomial of ¢ with degree <N — 2}.
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For the expression of ground state energy per site (1), it involves the abelian
differentials of second kind which we are going to describe.

Let b,,bj, 1 <7 < N, be the elements of Wy, fixed by o with the ¢
coordinate given by

1 1
i1+ K\¥ i1 -K\7F
bjmwj(l_kr) 3 b:‘imw J(]-{-k') ]

and p,p’,q,q' be the elements fixed by § with the A coordinate given by

pew 0, pemroo, qem i, ¢ ek,
Define the following meromorphic forms on the Riemann surface Wy ;,

tN —- 144 £-1
ng( 1_--tw)t @ =1, N-1. (8)

N 1=k

The divisor of T, has the expression:
N
div(Te) = (€ = 1)(a+a’) + (¥ = €= 1)(p+p') +2 ) (bj=b;).
i=1
Hence T;,, 1 < £ < N —1, are N — 1 linear independent abelian differentials of
second kind of the CP curve Wy ;. Denote

qp = the path in Wy i from q to‘p with t coordinate
along arg(t) = %
We now state the main result of this paper:
Theorem 1. With T,, gp as above, the ground state energy per site (1)
for the (phase I) regime of 0 < &' < 1 is

AW =040 Y 0 () *’jn

The proof of the above theorem will be given in the next 2 sectnonsj

Section 2. Energy per site for odd N

First we state an easy lemma and omit the proof:
Lemma 1. The automorphism T of P! with

B 1— & 1+ &Y\ (1+4K)




is given by by the transformation

€=T()=——% ,(eC,
¢— 1%

and the following relations hold:

__(1=K\_&
C__(1+k')1—f ’

1-k'
=T
(¢ - 139
We now introduce the variables
tN_l
V= ’ (= tN ’
w
(10)
U] (1 * k')l—% £ ¢
—_ — V, — — -
=¥ - EF
By (3), (4), (9), (10), , we have
C2N-2
Vil (¢,v) € C?, (11)

= _n N N
(¢-170)" (- 12)
2N-=-2 1— 2
o LU Emect. (1)
(1~ o)
The above curves are birational equivalent, hence with the same Riemann surface
for their non-singular models. In this section we are going to discuss the case for
odd N. The even N case will be discussed in the next section.

For odd N, the curve (11) is irreducible. The corresponding Riemann surface
is a cyclic 2N-fold covering of the Riemann sphere with the projection map

(Cv) ~» ¢,
and the covering transform is induced by
({,v) ~+ ((,e%v).

Proposition 1. For odd N, Wy y is birational to the curve (11) (or (12)),
and the projection

Wyp = Wy <b8o> (=P

b



corresponds to the map

(¥) » € (or (&m) ~ £) .

Proof. The automorphism group of Wy i+ generated by 8 and o is cyclic
with the generator §o. From the definition of  and o, one knows the variable
¢ is the coordinate of Wy 3/ < 8o >. By the relation of (10), we have the
commutative diagram:

Wi i = {(¢v) € crrve (11)}
l
WN'kr/ <boc> = P! ={¢ € C} U {oo}.

Both the vertical morphisms are of degree 2N, therefore the conclusion follows
immediately. q.ed.
Lemma 2. The expression

=1
(5}
S NVTE icecnoy,
1-¢ 1

defines the meromorphic form of the Lurve (12) and equals to the differential

of second kind N (-1 5 -i—pl k T¢ of Wy v under the isomorphism in
1
Proposition 1.

Proof. By (9), (10),

(_6-_) %l-(i) N( )1+71 (] - k') 'N Wtc_ldt -

— 1 —kt
T F) g
=4 /4N _ 14K\ 11
=N (1) (R )
14+ % tN..%{;_E., w

1 -Nl l—k
NI (1+k') T‘
qg.ed.

Lemma 3. Let C be the path in the curve (12) from (£,1)=(0,0) to (1,0)
with the real coordinates {,7 and 0 < ¢ < 1. Thenfor 1 <£< N -1,

16 a4k 1 ¢ \Tde
A(evigier) e ()5

c




Proof. By (2), we have

(-vi57¢)

-mrew | () %

c

g.e.d.
By (1) and Lemma 2, 3, we have obtain Theorem 1 for odd N.

Section 3. Energy per site for even N

In this section we shall discuss the case of even N. In this situation, (11) (or
(12)) defines a reducible curve with 2 irreducible components. The component in
(11), (12) which the functions v,(,n,¢ of (10) for Wy i satisfy is given by

VN CN_I Y 3 (Cav) € C21 (13)
C-H8)7 (C ﬁv)’
N—
I “‘“N , Emect . (14

(- et70°

(1+&)
The curves (13) and (14) are birational equivalent and they define a cyclic N-fold
covering of the Riemann sphere under the projection map

(€v) ~ ¢, (or (§n) ~¢).

It relates to the CP curve Wy p through the following proposition.
Proposition 2. For even N, denote

WN,}:' = WN*!/ < 040’ >, (15)
Then Wy i is birational to the curve (13) (or (14)), and the projection
WN,k" — WN,H/ < 0, o> (= P])
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corresponds to the map

(Gv) ~ ¢ 5 (or (6n) ~ €).
Proof The automorphism group < 8 , ¢ > of WN  is isomorphic to

< 8% 0 > x < 8 >. As the function v is invariant under §7 o and the variable ¢
is the coordinate of Wy 1/ < 8,0 >, we have the commutative diagram:

Warp/ < 870> — {(¢,v) € curve (13)}
! !

Wyp/<b,0> = Pl={(eC}u{cx}.
Both the vertical morphisms are of degree N, therefore the conclusion follows
immediately. gq.e.d.

It is easy to see that the order 2 automorphism 8% of Wy i has no fixed

points, hence the genus of Wy 4 equals to 4. Consider the degree 2 unramified
covering

[ N
A (= Am) : Wy = Wyp = WN,k’/ <87To > |, (16)
and define the line bundle over Wy .
E = (Wyx x C) /(w x 2 ~ 8% (W) x (-—z)). (17)

Denote 5 = A(p), T = A(q), b; = A(b;), B = A(b}) for 1 <j < 4. As

*
the function ¢ of Wy ;. satisfies the relation (0'5"0-) t = —t, it corresponds a
meromorphic section of E with the divisor @ — p. Hence we have

W.‘I 4 W N :q P)

It is known that

A.QWN’*, ~ Qm@ Qm(E) ’

and we shall make the above identification for simplicity of notations.
Lemma 4 . Under the isomorphism of Proposition 2, the expression

for the curve (14) corresponds to a meromorphic form of Wy i for odd £, and
a meromorphic section of Q——(E) for even £. The corresponding form for
£=1,...,N —1 has the divisor

-1+ (V- £-)p2 . (5 - )

j=1



. T . . . 1+52 1=k’ 2~%
in Wy 1, and equals to the differential of second kind N(—1)'TF (-};’i—;) T,
of WN,);:.

Proof. The proof is the same as Lemma 3, except we need the following
identification;

b4
(L) +«~ meromorphic section of E with divisor 9 —p.

1-¢
q.e.d.

With the same argument as Lemma 3, we obtain the similar conclusion for
even N:

Lemma 5. Let C be the path in the curve (14) from (£,7)=(0,0) to (1,0)
with the real coordinates {,n and 0 < £ <1. Thenfor 1 <£< N -1,

A 1 € 4K _ 1 ¢ %ld_{
F( 2'N’l’(1+ﬂc')2) 1‘(7%)1‘(1—7%)6[(1-5) o

Combining Lemma 4 and 5, we have obtained Theorem 1 for even N, hence
completed the proof of Theorem 1.

Section 4. Prym varieties related to CP curves

In discussion of the previous section, the Prym variety for the 2—fold cover
(16) has involved in the description of meromorphic forms in Lemma 4. In this
section we shall study the other Prym varieties related to the CP curves Wy
and we assume the parameter

KecC, ¥2#£0,1.

for the rest of our discussion. For convenience of notations, we shall identify
the Jacobian variety J(C) of a Riemann surface C' with its Picard variety
H!(C,0*)/H(C,7) through the isomorphism:

H!(C,0%")/H)(C,1) ~ J(C) = Hom([(C,Q),C)/H;(C,Z)

dl
O¢ (d'—d) ~ class / holemorphic differential
d
here d,d’ are positive divisors of C with the same degree.
First we state a well-known fact in complex geometry and its proof can be

found in standard text book in algebraic geometry.
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Lemma 6 . Let X be a n—dimensional complex manifold, D a simple divisor
of X (i.e., D=§, or submanifold of codimension 1). Suppose L is a complex line
bundle over X such that L¢ has a holomorphic section f with D as the zero
divisor. Let

X={teLfefcLt},
7: X = X the restriction of the projection from L to X,
r: X—=X , T~ c'%r":?:

Then the relations of holomorphic functions and n-forms between X, X are as
follows.

() ™05~ Ox®Ox(L™)6...0 Ox (L),
{p em0x1 p(r(R)) = F (%)} = Ox (L)
for 0 < j <d-1.
(i) =0 =0ko0%(L)e...008 (L‘H),
{so emOgl 7 (p) = c"i-'""'v} =~ 0% ('—d"")
forl1 <j £d.

Remark.(i) In the situation for the free action of < r > on X (i.e., D=0),
the above line bundle L is given by

—2xi

L= (XxC)/(ixzrvr(i) xeTz) .
(ii) In the discussion of the paper, we consider only the case for n = 1, and
write Ox = QL. We shall denote the X as
X=(f2cL .

The following 2 propositions on Prym varieties for hyperelliptic curves are
useful for later discussions.

Proposition 3. Let C be a hyperelliptic curve of genus g(C) > 2, and o¢
be the hyperelliptic involution of C. Let ¢ be an order 2 automorphism of C
which is not equal to o¢. Denote the natural projections

Ap: C - B:=C/ <¢> with branched locus bgC B,
Ap+: C — B*:=C/ <poc > with branched locus bg.C B*.

Then

1



(i) The genus of C, B, B* have the relation

lba| _  pey . lbse|  g(C) +1
9(B)+ == =9(B" )+ —— ==
with even integers |bp|, |bp.| satisfying
|bs{+ [bpe| = 4.

(ii) The Prym variety Prym(A g) for the covering Ap is a principal polarized
abelian variety and under the induced morphism (A g.)* : J(B*) — J(B),
J(B*) ~ Prym(Ap) if bp-#£ 49,
J(B*)/12 ~ Prym(Ag) if bg.= 0.

(iii) The morphism

JBYx J(B*) -  J(C)
(dl, dz) ~ (AB)‘dl + (AB-)*dz

defines an isogeny of degree 29(©).
Proof. The hyperelliptic involution o¢ commutes with ¢. Since ¢ # og,
both Ap, Apg- are of degree 2. From Hurwitz Theorem, we have

|bB| |bB l_gC)+1

2 b

hence |bg|, |bp-| are even integers. As the degree of A g equals to 2, it is known
that Prym(A g) is a principal polarized abelian variety and there is an isogeny

9(B)+—=—=g(B") +

J(B) x Prym(Ag) — J(C)
(di, ) ~ (Ap)'di+8

of degree

2%(B)  jf bg+# 0,
229(B)-1 if by=4,
( See [10]). Since

Prym(Ap) = {F € J( )I‘P‘(F) =F7'}
={F € J(C)|(s¢)"(F) = F}
= (Ap:)"J(B"),
and

1 if bp# 8,

Kemnel((Ap)": J(BY) = J(B) = {7 )07 it bpoc s,

12



it follows (ii) and

228(8)  for bg# @ and bp.# 0,
degree of isogeny in (i) = { 229(B)-1 for b = @ and bg.# ,
229(B)+1  for bps# @ and bg.= 9.

From the equality
9(B) +¢(B*) = 9(C),

we obtain (i), hence (iii). q.e.d.

We now show how the curve C' in the above Proposition is obtained from B
through the description of Lemma 6. The hyperelliptic involution o¢ of C induces
ones for the hyperelliptic curves B, B*, denoted by o5, o g+ respectively. Denote
the hyperelliptic projections

lg:C—-P =C/ < oc >,
HB:B-*P1=B/<O'B>,
Mg.:B*>P'=B*/ <op. >,

We shall make the identification:
Cl/ <oc,p >= B/ <op>=B'/ <op.>
and let v be the degree 2 morphism of projective lines:
P! =C/ <o¢ > C/ <o¢,p >=P!
One easily see that in C
C°°NCY =C°°NC¥°=C¥NC¥*c =9, (18)

hence o¢ acts freely on C¥ U C¥7¢, and the orbits give the critical points
of 4. Since |C¥| = |bgl, |C¥°¢| = |bg.|, by Proposition 3 (i), we have
|C¥| + {C¥?¢| = 4, therefore

c :=yM(C¥ U C¥7°) (19)
consists of 2 elements which are the branched locus of v. By (18),

¢ = disjoint union of cpg and cp-,
cgi=lc(C¥), cp+ := vl c(C¥°). (20)

As C¢ corresponds to the branched locus of I, it is mapped 2-1 onto

e := ~IIc(C7¢) (21)

13



under v. The data e, cg, cp- shall determine the structure of the hyperelliptic
curves B, B* as follows. Consider the commutative diagram:
C A% B
e | 11p
Pl=C/<o¢c> 5 B/<op>=Pl

By (18), ¢ acts freely on ¢ U C¥°¢, Then in B,
bp = HBI(CBL
B°? = T3 (cp)U H;‘(e) 3 cg-Ue,
N5 (cp:) = Ap(C¥7¢), T3 (e) = Ap(C*°).

The only possibilities for the decomposition of the branched locus of + is the
following:

|cB| =2, ICB'I = 0: ('<=> |bB| = 4, |HBI(CB'), = 0), (22)1
legl =1, Jepe| =1, (& |bpl =2, |lZ'(es.)|=1), (22),
lcal =0, eg| =2, (& |bp| =0, |3\ (cp.)|=2). (22)

Let L be the line bundle over B defined as follows:

(22);:  Op(L)=I15)"Om(1),
(22),:  Op(L) = 0p(1I3' (cs+)), (23)
(22);: Op(L) = Op(a — ) with HEI(CB-) = {a,8}.
Then there is a section § € ['(B,L?) with div(f)=II5'(cp) and C is obtained

from (L,f) by C = (f)’}r C L (in Lemma 6 ). Therefore we have shown the
following result:

Proposition 4. With C, B, B*,bg, bp. the same as Proposition 3, let
c,cp,cp, e be the subsets of C/ < ¢,0¢ > (=P!) defined by (19), (20). Then
B is the hypereliiptic curve with 2-fold cover over C/ < ¢,0¢ > branched at
cpg+ Ue, and the curve C

c=(fcL

with L defined by (23) and div(f) = HEI(cB).
Lemma 7. (i) The fixed points of ¢, to in Wy p+ are

{(t,w) = (l,ﬁ%)} for odd N,
_ +2k's _ 2k's .
(t,W)— (l,m),( l,m)} for even N,

14
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(Wrw)* = { {(t’w) = (‘I(Tii,?)} for odd N,

@ for even N.
(ii) For even N, The fixed points of 6%, .05 are

(Wﬂ,k.)“’g — 9 for odd ¥,
= {(t,w) = (i,(l—iﬁ%—), (—i,%)} for even ¥,

(WN.k‘)wq- =0 for even — ?-

{(t w) 3 §, 42k } for odd -‘:2"-
ka) kn)

Proof. By the deﬁmtlon of ¢, 1o, we have

(t,w)e Wy & =1 t"w=w,
tweWy, o t*=1,t"w=—w.
Nk

Then (i) following from the equation (4) of Wy ;. With the same argument, we
obtain (ii). q.e.d.

We are going to describe the various Prym varieties attached to the curve
W i by applying Proposition 3, 4 on hyperelliptic curves related to it.

For odd N, consider the double coverings

AVN’*; : WN.kF — Vle: = WN,&'/ <>,
(24)

AV::vu Wyp — Vﬁ,k' = Wyp/ <w >

which have 2 branched points, and the genus

\ N-1
a(Vaw) = g(Viu) = 5
by Proposition 3 (i). With the coordinate ¢ of Wy x/ < ¢ > in (3) , consider the

coordinate s of Wy 3+/ < ¢,0 > given by

Pl = WN,k‘/ <Tg> — WN,E’/ <o >= Pl (25)

1
i ~ 3=t+.t-

15



By Lemma 7 (i) the subsets cv, ,,cvy: e of Wx '/ < ¢,0 > in Proposition
4 for this situation are '

: 27 1+k' * T l—k' ‘IN N
={g=edFT|{—— - —_—
e=ys=e¢ (1-1:') te (1+k’) )

J=
vy, = {s = -2},
cv, .= {s=2}

Therefore by Proposition 3 and 4, we have the following result:
Theorem 2. For odd N, let

V=Vyp, V'=Vig

be the hyperelliptic curves of genus &1 defined by (24), and s the coordinate
of Wy v/ < t,0 > defined by (25). Then

(i) The double covers

Iy : V — P1(= Wy p/ <o >),
Oy.: V* = PY(= Wy e/ <t,0>),

have the branched loci

j=1
1 1y N
1+ M\T _an(1-K\T
e=aUfe=#(Z5) e (155) )
J=
respectively.

(ii) The projections (24) induce an isogeny
JV)x J(V*) = J(Wy i)

of degree 21, and Prym(Ay)=J(V*), Prym(Ay.)=J (V).
(iii) The 2—fold covering of Wy y over V, V* are described by

Wy = ()7 cL
with
div(f) = ,'(2), Ov(L) = Oy(Ily'(~2)) for V,
div(f) = M1 (=2), Oy-(L) = Oy-(IIA(2)) for V*.

16



We now consider the case of even N. Let Wy p be the same as in (15),
and define
Am :WN,];: — Wyp = WN,k'/ < 0%" >, (26)
Am: WN*J — WN'kf = WN,k'/ < 9'1;'0 >.

Am has 4 branched points, hence by Proposition 3 (i),

N e N
sWaw) =< Q(WN,k‘ ) =5 -1 (27)
The coordinate ¢’ of Wy p/ < 8%,0 > (= P1) is given by

Pl = Wyp/<o> — Wyp/< 0'?:,0’ >=Pl  (28)
t ~—h t' — t2

The subsets T v e of Wy i/ < 83!",0 > for Proposition 4 are

N
[y (LERNT g (12 RYFLT
I AV e A Ve ) B

Cm’ = {t' = 0,00},
iih‘,l-’ =0

As ¢ commutes with 9'?5{0, it induces an order 2 automorphism 7 of Wy p.. Let &

be the hyperelliptic involution of Wy i induced by o, and define -

AV;J,_/: WN,;;' — VN,;;' = WN,;;J/ <T>, (29)

AV;’T : WN.I:' — VN'kfv = WN’y/ <17 >.

By Lemma 7 and Proposition 3 (i), the numbers of the branched loci for
Ay A are

N
bAVT,J = bAvﬂ_‘“. =2 for even 5
ba =4, bp—_.|=0 for odd -1!,
g Vet 9
and
* N
9(Vaw) = Q(VN,k' ) =T for even ox
. (30)
N-2 — N+2 N
g(Vvy) = , g(VN,y ) =— for odd 5

17



The coordinate s of Wy x/ < 7,7 > (= P!) is given by
Pl=Wyp/<7> - Wyp/<3,7> =P! (31)
i
t' ~d 8 =t'+'t"-

The subsets Y ey e of Wy / <7, > in Proposition 4 are

2 2\ ¥
-2mi 1+k' ¥ s2x l—k' ¥
= {s= = (T oL o el
e={s oo}U{s e (l—k’) + e (l+k') }'1,
J:

and
. N
oy =8 oy ={s =2} for odd =,

N
Vo = {s = -2}, Vo = {8 =2} for even CR

Therefore by Proposition 3 and 4, we have the following result:
Theorem 3. For even N, let

Wzma W":W_N,;T'a Vzma V‘:W,k"

be the hyperelliptic curves defined by (26) and (292 with the genus given by (27)
and (30). Let ¢/, s the coordinate of Wy x:/ < 87,0 >, W/ < 7,7 > defined
by (28) and (31). Then

(i) The double covers
My : W — P (: W o/ <9’r,a>),
—

Il : W' — P! (= Wi k] <0‘§,a>),

have the branched loci

2 2
:2%1 \NTF sami 1 _— k' ¥
- = it (LARNT pjap (1K
{t O’OO}U{t ¢ (]—k' y € 1+ Kk )

N Nk
T—%) T+F) [

respectively. And the double covers

Iy :V = P (=W/<13,7>),
Op : V' > P (=W/<73,7>),
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have the branched loci

N 1 e (=Y

J=

1
NEYT
sl () ()
N

iz

=1
for odd —,

2
{3=-2,00}U{s= "'Gt:f) te? (i;:’)%}r

B

for even — |

2
respectively.
(ii) The projections of (26) and (29) induce the isogenies

JW) x J(W') = I (Waw),
JV) x (V) - I(W)

of degree 2¥-1, 2F respectively. We have the following description of Prym
varieties:

Pr)'m(AW-) = J(W‘),
Peym(Ag) = J(W)/2s,
Prym(AV) = J(V'),

J(V)/2; for odd &,
Prym(Ap) = {J((;))/ : 2

for even &.
(iii) The 2-fold cover of Wy i over W, W~ are described by
Wy = (f)% cL
with
div(f) =8, Op(L) = O (T33(0) - (eo)) for W;
div(f) = 77 ({0,00}), Opr(L) = (U—-) op, 1) for W .

1%



And the 2-fold covers of W over V, V" are described by
W=@icL
with
div(g) = 17} (£2), OF(L) = (Iy) Ops(1) for V,
div(s") =9, Ope(L) = Op (I31(2) ~ M33(~2)) for 7

when %: odd integer,

=(g)7 cL
with
div(g) = I5(2), OpL) = O(15}(- 2) for V,
div(g*) = IA(=2), Ope(L) = Op (I51(2)) for 7
when &= even integer.

Remark . The curve W~ (—_- Wy i ) in the above theorem is a genus % -1
hyperelliptic curve. It is a CP %’--curve. The order -’-,_Y— automorphism of Wy ;s
with 4 fixed elements is the one induced from 8 of W)y ;.. Hence we can split the
Jacobian of W w4 using Theorem 2 and 3. Proceeding the procedure inductively,

we obtain the splitting of the Jacobian of Wy i into the Jacobians of quotients
of it.
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