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Abstract. We show how the ground state energy per site for the phase
I regime in the superintegrable chiral Potts model can be expressed as abelian
integrals of second kind of the hyperelliptic curve für rapidity variables. The
Prym varieties related to this curve are explicitly described für the splitting of
Jacobian variety of the rapidity curve.
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Introduction

Considerable progress has been made in understanding chiral Potts model of
statistical mechanics [1-9] [11]. This model gives the solutions of Yang-Baxter
equation ( or the star-triangle equation) with Boltzmann weights depending on
"rapiditiestt which lie on high genus curves. For the N -state chiral Potts model,
these "rapidity" curves have the algebraic expression:

N (I - k'.\) (I - k' A-1 )
t = k2 ,(t,A)EC2

,

depending on a complex parameter k', k'2 =F 0,1 , here k2 + k'2 = 1. For the
eigenvalue problem of quantum chiral Potts spin chain associated to this statistical
mechanical model, many important results have been derived from the physical
consideration, e.g., the ground state energy, the phenomena of level crossing
transition to a new ground state [1, 4, 5, 11]. All those results are obtained
with no uniformization substitutions for the Riemann surface WN k'. However,
we have seen many tantalizing clues that the theory of abelian integrals have
much involved in the solution of chiral Potts model and would like to make
these structure explicit. Using the abelian integral of first kind, Baxter [6] has
obtained the hyperelliptic theta function parametrization of the curve WN ,1'. Tbe
mathematical treatment of these hyperelliptic theta functions is given in [12],
which is based on symmetries of the curves WN,k'. In this paper, we would like
to indicate the abelian integrals of second kind also appear in the ground state
energy per site fouod by Baxter, McCoy et al. [1, 4].

The ground state energy per site for the (phase nregime 0 ::; k' ::; 1 of the
superintegrable chiral Potts model [1] is expressed by

N-l ( 1 t 4k')
e~(k') = -(I + k') L F -2' Ni I; 2

l=1 (I + k')

and at k' = I,

1 N-l r(3 _ l)
e~(1) = -410 L (N-~ ,

l=1 r-,,-
where F(a, bj Cj "') is the hypergeometrie function and has the expression

I

( b) r(c) Jb-l ( t)c-b-1 ( t)-Od t
Fa, j Ci1\: =r(b)r(c-b) ~ I-~ l-K~ ~

o
(Rec> Reb > 0, 1"'\ < 1).

2
...
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We shall show the above expression is an abelian integral of second kind of the
"rapidity" curve WN,l'. For our purpose, we shall restrict our attention to only
the regime

o< k' < 1

unless otherwise specified except Sect. 4.

The organization of this paper is as follows. In Sect. 1 we shalllist the basic
geometrical properties of the curve WN ,k' needed for later discussion and state
the main result of this paper (Theorem 1) which is the relation of (l) and the
abelian integral of second kind for the curve WN ,i', The proof of this result will
be given in Secl. 2 ( for odd N ) and Secl. 3 ( for even N ). The structure of
Prym varieties related to WN,l' inevitably emerges from the discussion of energy
per site for even N in Sect. 3.. In Sect. 4, we shall study the other Prym
varieties related to WN,l'. We have found the splitting of Jacobian of WN,l' ioto
a dual pair of abelian subvarieties, which are the Jacobians of different quotients
of WN,l'. The conclusions are stated in Theorem 2 and 3. The important aspect
for the splitting of Jacobian related to their hyperelliptic theta functions has not
been discussed in this paper. Its understanding should be useful for the application
to the solvable statistical system. Also for the non-superintegrable chiral Potts
model, the relation between abelian integrals and ground energy per site is not
clear at this moment. Work along this line is under consideration.

I would like to thank Professor B. M. McCoy for introducing me the research
area of chiral Potts models. It is believed that the geometry underlying tOO rapidity
curves should somehow explain the nature of the solution of this statistical model
and this work is out of one of the atteropts. We are able to relate the result
obtained by McCoy et al [1] to the geometry of Riemann surface for rapidity
variables. I am most grateful to Professor F. Hirzebruch for bis kind invitation
and warm hospitality of Max-Planck-Institut für Mathematik where this work
was completed.

Section 1. Chiral Potts curves

The algebraic curves for the "rapidity" variables of chiral Potts N -state model
are characterized as hyperelliptic curves of genus N - 1 having an order N
automorphism with exact1y 4 fixed JX>ints. Here we shall always assurne

N?:.3,

and call them the CP (N-) curves. The geometry of such curves have been
studied in [12] . In this section we shall describe the basic properties needed for
the discussion of this paper.



For a fixed N, the CP curves are defined by

N (1-k'..\)(1-k'A-1)
t = k2 ' (t,..\) E C

2
, (3)

depending on a a eomplex parameter k', k'2 =F 0,1 , bere k2 + k,2 = l.
ean also expressed by

w
2 = (t

N
- ~ ~ ::) (t

N
- ~ =::) ,(t, w) E C

2
,

with the relations

They

(4)

(6)

k'
w 2 = -(A - A-1)

k2 '

A = 2~' { k
2

( w - tN
) + k'2 + 1} .

The automorphism group Aut(WN,k') of WN,k' has the order 4N with the
following generators

(J: (t, A) (wt, ..\),
u: (t,A) (t,A- 1), (5)

(
1 1 - k'A)

1,: (t, A)....... t' k' -..\ I

here w = e'f-. In the coordinate of (4), the above generators are expressed by

B: (t, w) (wt, w),

(I: (t, w) (t, -w),

t: (t,w) ~ G,~),

(I is the hyperelliptie involution, and 8 is the order N element with 4 fixed points.
We have

1,8 = 9-1
I, ,

< (I > for odd N
Center of Aut(WN k') = { lJß- r N' (7)

t < u,I7T > lor even

For the rest of this nate, t, A, w will always be the coordinates (3) (4) of the CP
eurve WN,l' and 8, (I, I, the automorphisms defined by (5) or (6). It is known
that that the abelian differential of first kind of WN,k' is given by

r(wN,k', 11) = {p(t)~ Ipet) : polynomial of t with degree ~N - 2}.
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For the expression of ground state energy per site (1), it involves the abelian
differentials of second kind which we are going to describe.

Let b j , bj, 1 :$ j :$ N, be the elements of WN,k ' fixed by u with the t
coordinate given by

bi -- w-iG ~ ::)*, bj -- w-iG ~ ::) *,
and p,p' ,q,q' be the elements fixed by 8 with the .\ coordinate given by

O ' k' , k'-Ip........ , p ........ 00, q........ , q......... .

Define the following meromorphic fonns on the Riemann surface WN,k',

_ (t
N

- ~!t;) ti-Idt
Tl- tN_~ ---;- , l=I, ... ,N-l. (8)

The divisor of Ti has the expression:

N

div(T i) = (t - l)(q+q') + (N -l- l)(p+p') + 2L (bj-bj).
j=1

Hence Ti, 1 :$ l ::; N - I, are N - 1 linear independent abelian differentials of
second kind of the CP curve WN,k t • DenOle

qp = the path in WN,k' {rom q to p with t coordinate
1f'

along arg( t) = N'

We now state the main result of this paper:

Theorem 1. With Ti, qp as above, the ground state energy per site (1)
for the (phase n regime of 0 < k' < 1 is

I , , N-l (-I)!jl (I -k') 2-* J
eo (k ) = N (1+ k ) ~ r ( l ) r (1 _ l) 1+ k' Tl

i-I 1l 1l ,...,
qp

The proof of the above theorem will be given in the next 2 sections.

Section 2. Energy per site ror odd N

First we state an easy lemma and omit the proof:

Lemma 1 . The automorphism T of pI with

(
I k') (I +k') = (I + k,)2

T(O)=O, T(oo)=I, T I~~' =00, T l-k' 4k'



is given by by the transfonnation

(e= T«) = l-k'
(- I+F

, (E C ,

and the following relations hold:

d~ =

(
1 - k') ,

( = - 1 + k' 1 - e '

1-1:'
T+F d(

( - ~+t;)2 .
We now introduce the variables

tN - 1

v=--,
w

(9)

(10)

(12)

(11 )

_(1 + k') 1-* . (
1] - 1 _ k' " , e= ( 1-1:' .

-I+F

By (3), (4), (9), (10), , we have

v2N _ (2N-2

- ( - :+t;)N ( - t!t:)N '
~2N-2(1 _ e)2

Tf2N =

(
41:' )N

1 - (1+1:1)~ ~

The above curves are birational equivalent, hence with the same Riemann surface
for their non-singular models. In this seetion we are going to discuss the case for
odd N. The even N case will be discussed in the next section.

For odd N, the curve (11) is irreducible. The corresponding Riemann surface
is a cyclic 2N-fold covering of the Riemann sphere with the projection map

«, v) ..... ( ,

and the covering transfonn is induced by

«,v) ..... (,eiv).
Proposition 1. For odd N, WN,I:' is birational to the curve (11) (or (12)),

and the projection



corresponds to the map

Proof. The automorphism group of WN.k l generated by 8 and u is cyclic
with the generator 8u. From the definition of 8 and u, one knows the variable
( is the coordinate of WN ,1' / < 8u >. By the relation of (10), we have the
commutative diagram:

-+ { ( ( , v) E curve (11)}
!

= p1={(EC}U{oo}.

Both the vertical morphisms are of degree 2N, therefore the conclusion follows
immediately. q.e.d.

Lemma 2. The expression

(-~-)~ d{ ,1 ~ t ~ N - 1,
1 - e 7J

defines the meromorphic form of the curve (12) and equals to the differential
1+ '-1

( ,)2-~of secon~ kind N (-1) -rr 1+t, Tl of WN,k' under the isomorphism in
Proposition 1.

Proof. By (9), (10),

(_e_)!jt. d{ = N(-1)l+~(1 -k,)2-* wtt-1dt
1 - e 7J 1 + k' (t N -1+t:)2

1-1 (1 -k,)2- it (tN -~) tt-1dt- N( l)l+T I=F
- - 1 +k' tN - I:;j: -w-

( k') 2-j,= N(-I)l+lj1 ~ T
1 +k' l.

q.e.d.

Lemma 3 . Let C be the path in the curve (12) from (e, 7J)=(0,0) to (1,0)
with the real coordinates e, 7J and 0 ~ ~ ~ 1. Then for 1 ~ l ~ N - 1,
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q.e.d.

By (1) and Lemma 2, 3, we have obtain Theorem 1 for odd N.

Section 3. Energy per site {or even N

In this section we shall discuss the case of even N. In this situation, (11) (or
(12» defines a reducible curve with 2 irreducible components. The component in
(11), (12) which the functions v ,( , 11, eof (10) for WN ,A:' satisfy is giyen by

(N-I
vN = jJ }J, ((, v) E C2

, (13)
(( - I+Z;)"- (( - l!t:).,-
_~N-I(1 - e)

fJN = R (e, 71) E C2
• (14)

(1 - (I~~/te) T

The curves (13) and (14) are birational equivalent and they define a cyclic N-fold
covering of the Riemann sphere under the projection map

((, v) ov+ (, (or (e, 71) ...... ~ ) .

It relates to the CP curve WN,l' through the following proposition.

Proposition 2. For even N, denote

(15)

Then WN,k' is birational 10 the curve (13) (or (14», and the projection

~ -. WN,k ' / < 8, u > (= pI)



corresponds to the map

((, v) ....... ( ,(or (e, 71) ....... ~) .

Proof. The automorphism group < e , u > of WN ,1' is isomorphie to

< e!fu > x < 8 >. As the funetion v is invariant under elfu and the variable (
is the coordinate of WN ,1' / < e, u >, we have the commutative diagram:

H
WN,k'/ < 8T u > -+ {((, v) E curve (13)}

! !
WN,1:'/ < 8, u> = pI ={( E C} U {oo}.

Bolb the vertical morphisms are of degree N, therefore the conclusion follows
immediately. q.e.d.

It is easy to see that the order 2 automorphism elfu of WN,1' has no fixed
poin~ hence the genus of WN,k' equals to ~. Consider the degree 2 unramified
covering

A (= Aw::;) : WN k' -+ WN k' =WN 1:'/ < e/fu > , (16)H,h' , , ,

and define the line bundle over WN ,1:' :

E = (WN,k' x C)/(w x z fV 8~u(w) x (-z)). (17)

Denole p = A(p), Ci = A(q), bj = A(bj ), bj = A(bj) for 1 ~ j ~ f. As

the function t of WN,l' satisfies the relation (8 i-u)·t = -t, it corresponds a

meromorphic section of E with the divisor q - p. Hence we have

0WIi,l,(E) = O-W;;<<i - p) .

It is known that

A.OwHII , ~ O~ffi O----'E) ,
, Yl' H,II' WN,k' \

and we shall make the above identification for simplicity of notations.

Lemma 4. Under the isomorphism of Proposition 2, the expression

(_~)!j;de
, 1 ~ l ~ N -1,

1 - ~ 7J

for the curve (14) corresponds to a meromorphie form of~ for odd l, and
a meromorphic section of O~wE) for even i. The corresponding form for

/V,II'

l = 1, ... , N - 1 has the divisor
...

.i.:.
:1

(l-l)q + (N -l-1)p+2 L (lii -~)
j=1



_ 1+ 1- 1 ( 1:') 2-j,
in WN,k', and equals to tbe differential of second kind N(-1) Fr 1+IiJ Tl
of WN,k"

Proof. Tbe proof is the same as Lemma 3, except we need the following
identification:

1

(1 ~ {) 11' .... meromorphie seetion of E with divisor Ci: - p .

q.e.d.

With the same argument as Lemma 3, we obtain the similar conclusion for
even N:

Lemma 5 . Let C be the path in the curve (14) from (e,1])=(O,O) to (1,0)
with the real coordinates e, 1] and 0 ~ e ~ 1. Tben for 1 ~ t ~ N - 1,

Combining Lemma 4 and 5, we have obtained Theorem 1 for even N, hence
completed the proof of Theorem 1.

Section 4. Prym varieties related to CF curves

In discussion of the previous section, the Prym variety for the 2-fold cover
(16) has involved in the description of meromorphic fonns in Lemma 4. In this
section we shall study the other Prym varieties related to the CP curves WN,k'

and we assume the parameter

k' E C, kl2 f. 0,1 .

for the rest of Out discussion. For convenience of notations, we shall identify
the Jacobian variety J(C) of aRiemann surface C with its Picard variety
H1(C, 0*) / H1( C, Z) through the isomorphism:

H1(C,0*)/H 1(C,Z) - J(C) = Hom(r(C,fl),C)/H1(C,Z)

Oe (d'-d).... dass (1 holomorphie differential)

here d, cl' are positive divisors of C with the same degree.

First we state a well-known fact in complex geometry and its proof can be
fouod in standard text book in algebraic geometry.
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Lemma 6. Let X be an-dimensional complex manifold, 0 a simple divisor
of X (Le., 0=0, or submanifold of codimension 1). Suppose L is a complex line
bundle over X such that L d has a holomorphic section f with 0 as the zero
divisor. Let

x= {I E Llid E f c Ld } ,

11'" : X -+ X the restrietion of the projection from L to X,
- - 2'"'r : X -+ X , i ........ edi .

Then the relations of holomorphic functions and n-fonns between X, X are as
follows.

(i) 1I'".Ox ~ Ox ffi Ox(L-1) ffi ... ffi Ox(L-d+1),
{p E1I'".Oxl p(r(i)) = ei~p():)} ~ Ox(L-i)

for 0 ~ j s: d - 1.

(ii) 1I'"*Oi ~ 0x ffi 0x (L) ffi ... ffi Ox (Ld-1),
{ Cf' E1I'".Oxl r· (Cf') = ei1T! Cf'} ~ 0x (Ld-i )

for 1 ~ j ~ d.
Remark.(i) In the situation for tOO free action of < r > on X(Le., 0=0),

the above line bundle L is given by

L = (X XC) /(x x Z "-J r(x) X e~z) .

(ii) In the discussion of the paper, we consider only the case for n == 1, and
write Ox == 0k. We shall denote the X as

-- 1
X==(f)ClcL

The following 2 propositions on Prym varieties for hyperelliptic curves are
useful for later discussions.

Proposition 3. Let C be a hyperelliptic curve of genus 9(C) ~ 2, and ere
be the hyperelliptic involution of C. Let Cf' be an order 2 automorphism of C
which is not equal to ere. Denate the natural projections

AB : C -+ B :== C / < Cf' > with branched locus bBeB,

AB. : C -+ B* :== C / < Cf'ere > with branched locus b B.C B·.

Then

1l.



(i) The genus of C, B, B· have the relation

g(B) + IbBI = g(B.) + IbB·1 = g(C) +1
442

with even integers IbBI, IbB.I satisfying

IbBI + IbB.1 = 4.

(ii) The Prym variety Prym(AB) for the covering AB is a principal polarized
abelian variety and under the induced morphism (AB.)* : J(B·) --t J(B),

J(B·) ~ Prym(AB)

J(B·)jZz ~ Prym(AB)

(iü) The morphism

if bB.# 0,
if bB.= 0.

J(B) x J(B*) --t

(d l , dz) ......
J(C)

(AB)*d l + (AB· rdz

defines an isogeny of degree 2g(O).

Proof. The hyperelliptic involution uc commutes with 'P. Since 'P # uc,
both AB, AB. are of degree 2. From Hurwitz Theorem, we have

g(B) + Ib4B 1= g(B*) + Ibr l = g(C~ +1,

hence IbBI, IbR.1 are even integers. As the degree of AB equals to 2, it is known
that Prym(AB) is a principal polarized abelian variety and tbere is an isogeny

of degree

J(B) x Prym(AB)

(d!, ß) ......
--t J(C)

(ABrdl + ß

2Zg(B) if bBIß,
{2 Zg(B)-l if bB= 0,

( See [10)). Since

Prym(AB) = {F E J(C) I'P*(F) = F-1
}

= {F E J(C) l(u'Pr(F) = F}

= (AB·r J(n*),

and
Kernel(AB.r :J(B*) --t J(B)) = {

Zj
1
2Z

if bB·:f 0,
if bB.= 0,

Il



it follows (H) and

22g(B) for bBf 0 and bB-f 9,
degree of isogeny in (ii) = {2 2g(B)-I for bB = 9 and bB-f 0,

22g(B)+I for bBf 0 and bB-= 0.

From the equality

9(B) +9(B*) = 9(0),

we obtain (i), hence (ili). q.e.d.

We now show how the curve 0 in the above Proposition is obtained from B
through the description of Lemma 6. The hyperelliptic involution ac of 0 induces
ones for the hyperelliptic curves B, B*, denoted by uB, uB- respectively. Denote
the hyperelliptic projections

IIe : 0 ~ pI = Cl < ue >,
IIB : B --t pI = BI < uB >,

IIB- : B* --t pI = B*I < U B- >,

We shall make the identification:

0/ < ue, r.p >= BI< U B >= B*I < U B- >

and let "'( be the degree 2 morphism of projective lines:

pI = 01 < ue >.2. GI < Uc,tp >= pI .

One easily see that in C

Gf1c n C", = CUC n O"'uc = GI;' n CIpf1C = 0, (18)

bence Uc acts freely on CIp U CIpf1C, and the orbits give the critical points

of (. Since IGI;' I = Ibnl, ICIpf1CI = IbH-I, by Proposition 3 (i), we have
IGIp I+ IGl;'uC I = 4, therefore

(19)

consists of 2 elements which are the branched locus of f. By (18),

c = disjoint union of CH and CH- ,

CH:= ;Jlc(CIp), CB- := "'(Jlc(CIpf1C
). (20)

As cue corresponds to the branched locus of IIet it is rnapped 2-1 ooto



under ,. The data e, cB, cB. shall detennine the stnlcwre of the hyperelliptic
curves B, B* as follows. Consider the commutative diagram:

C ~ B
IIe ! ! IIB

pI = CI < ere > ~ BI < erB >= pI.

By (18), c.p acts freely on Ct7c U Cl(Juc. Then in E,

bB = II:BI(CB),

B t7
B = IIiI(CB-) U IIiI(e)~ cB. U e,

IIiI(CB.) = AB(ClpUC), IIiI(e) = AB(CUC).

The only possibilities for the decomposition of the branclled locus of '7 is the
following:

ICB I= 2, ICB·I = 0, (<=> IbBI= 4, IIIi1(CR·)/ = 0), (22h

ICBI = 1, ICB.I = 1, (<=> IbRI = 2, IIIJjI(CB·)1 = 1), (22h

ICBI = 0, ICB-I = 2, (<=> IbBI = 0, IIIJjI(CB-)1 = 2). (22h

Let L be the line bundle over B defined 8S follows:

(22h: OB(L) = (IIB)*Opl(l) ,

(22h: OB(L) = OB(IIBI(CB-)), (23)

(22h: OB(L) = OB(a - ß) with ITj/(CB-) = {a,ß}·

Then there is a section f E r(B, L2) with div( f)= TInI(CB) and C is obtained
1

from (L, f) by C = (f)' C L ( in Lemma 6 ). Therefore we have shown the
following result:

Proposition 4. With C, B, B*, bB , bB - the same as Proposition 3, let
c, cB, cB-, e be the subsets of CI < ""erG> (=pI) defined by (19), (20). Then
B is the hyperelliptic curve with 2-fold cover over C / < c.p, ere > branched at
CB. Ue, and the curve C

C = (f)t CL

with L defined by (23) and div(f) = ITj/(CB).
Lemma 7 . (i) The fixed points of t, ter in WN,10/ are

(WN k.r = { u, W = (1, (l~~~;!) } for odd N,

, {(t, w) = (1, (l~~~;!),(-1, (l~~~;!)} for even N.

14



for even ~,

for odd ~.

(WH.i.) .... = {{(t, w) = (-1, (l-~~)')} for odd N,

9 for even N.

(ii) For even N, The fixed points of tSlf, tofu are

~f N
(WN,I,:') = 0 for odd"2'

- {(t w) - (i ±2k'i) (-i ±2k
/i)}

- , - '(l-kr.il);' , (l-l:r.iI);

( ) ~fO' N
WN,k' = 0 for even - i

- {(t w) - (i ±2k'; \ (-i ±2I:'i) }
- , - , (l-l.:r.iI)r), , (I-kr.il);

Proof. By the definition of t, tu, we have

(t, w) E WH 1,:' <=? t2 = 1, tN w = w ,,
(t,W)EWNk, <=? t 2 =1,tN w=-w.,

Then (i) following from the equation (4) of WN,k" With the same argument, we
obtain (ii). q.e.d.

We are going 10 describe the various Prym varieties attaehed 10 the curve
WN,I,:' by applying Proposition 3, 4 on hyperelliptic curves related 10 it.

For odd N, consider the double coverings

(24)

Av· : WN 1;' --+ VN* L' := WN kll < LU >
/l,k" ,"" ,

which have 2 branched points, and the genus

N-l
9(VN,I.:') = 9(VN,k') = 2

by Proposition 3 (i). With the coordinate t of WN,k' I < (J > in (3) , consider the
coordinate oS of WN,k' I < t, U > given by

--+ WN,k,1 < t,u >= pI
1

...... s=t+t'

1~

(25)



By Lemma 7 (i) the subsets cYIt ,." CY;." e of WN,k' / < ",U > in Proposition
4 for this situation are '

{

02"'1 (1 + k')* _om(1 _k,)*}Ne = ~ = e1tr -- + e Jrr -- ,
1 - k' 1 + k'

i=1
cY· = {s = -2},

/0°,.1

cY/o'", = {s = 2}.

Therefore by Proposition 3 and 4, we have the following result:

Theorem 2. For odd N, let

v = VN,k" V* = VN,k'

be the hyperelliptic curves of genus 1fT! defined by (24), and oS the coordinate
of WN,k' / < t, U > defined by (25). Then

(i) Tbe double covers

TIy: V ~ pl(= WN,k'/<t,U»,

TIy. : V* ~ pl(= WN,k'/ < t,U »,

have the branched loci

U{ °2wi (1 +k')* 02'11"1 (1 -k,)*}N{s = -2} s = eJrr -- +e-1rr -- ,
1 - k' 1 + k'

j=l

u{ om(l+k')* _om(l_k,)*}N{s = 2} s = e1--,r -- + e lrr --
I - k' 1 + k'

j=l

respectively.

(ii) The projections (24) induce an isogeny

J(V) x J(V*) ~ J (WN,l/)

of degree 2N - 1, and Prym(Ay)=J(V*), Prym(Ay.)=J(V).
(iü) Tbe 2-fold covering of WN,k' over V, V* are described by

1

WN,k' = (f)' c L

with

div(f) = TIy1(2), Ov(L) = Ov(TI~}(-2)) for V,

div( f) = TIv~( -2), Ov. (L) = 0 v· (rrv~(2)) for ~.
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We now consider the case of even N. Let WN k' be the same as in (15),,
and define

":":"":"'"----.. II

A
wll

,.II:'· : WN,k' -+ WN,k' := WN,k'/ < 8""1' >, (26)
-- II

Aw;:;: WN);' -+ WN,A:' := WN,k'/ < 8T u > .
ll,.II:'

Aw:;:;-* has 4 branched points, hence by Proposition 3 (i),
11,.11:'

9(WN,k') = ~, 9(WN,k:) = ~ - 1. (27)

Tbe coordinate t' of WN,k'/ < elf,u > (= pI) is given by

pI = WN,k'/ < U > -+ WN,k'/ < 8/f,u >= pI (28)
t ....-+ t' = t2 •

The subsets c~,c~, e of WN,k'/ < 8lf,u > for Proposition 4 are

= {' = 2j~(~)* 2j~(~)*}fe ~ e 1 _ k' , e 1 + k' ,
j=I

c1V""""""'7* = {t' = 0, 00 } ,
"' ,I

e-:-:v-- = 0.
- W/o',I'

II --
As t commutes with 8Tu, it induces an order 2 automorphism r of WN ,k'o Let a
be the hyperelliptic involution of~ induced by u, and define -

A-rr-:~ -+ VN 10' := WN k l / < 7: >, (29)
Yll,lI' , , ,

~ ~ --/A---.v :WNk,-+VNk' :=WNk' <7a>.N,Jc' , , ,

By Lemma 7 and Proposition 3 (i), the numbers of the branched loci for
A- A~· are

VN ,II:" YlI,.II:'

N
for even 2'

N
for odd 2'

and

N
for even 2'

~ N-2 (~) N+2
9\VN ,k') = -4-,9 VN,k' = -4-
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for odd "2

(30)



The coordinate s of WN,k' / < 'i, q > (= pt) is given by

(31)

t'

pI = WN,k'/ < 7J > -+~/<7,7f> =pt
, 1

......-+ s=t+-
t'

The subsets e-v;;-, c"'V;7' e of WN,l' / < 'i,7J > in Proposition 4 are

{

~ 2 }f_{ _ }U - 2j'lwi (1 +k')l1 -2jll (1 -k')l1e- s-oo s-e 11'" -- +e rr __
I - k' 1 +k' ,

j=I

and

N
cV- = 0, e-v:-:-; = {s = ±2} für üdd -2 '

... ,I-' /li ,i'

N
c~ = {s = -2}, C";-r- = {s = 2} für even -.

Y"" ,l' - Y /i ,l' 2

Therefore by Proposition 3 and 4, we have the following result:
Theorem 3 . For even N, let

be the hyperelliptic curves defined by (26) and (292 with the genus given by (27)
and (30). Let t', s tOO coordinate of WN,k' / < 8"'1', U >, W / < 7, Ci > defined
by (28) and (31). Then

(i) The double covers

Ilw : W -+ pI (= WN.k'/ < sf,u »,

Ilw : W· -+ pI (= WN,k'/ < et,u »,

have the branched 100

2 'l K

{t' = 0 oe} U{t' = e2j2ftl (1 + k')l1 e2j~(1 - k')l1} 2

, 1 - k" 1 + k'
j=I

{
, = 2j~(1 +k')* 2i~(1 -k,)*}lf
tel _ k' , e 1 + k' ,

i=1

respectively. And the double covers

- 1 ( - )IlV : V -+ P = w/ < 'i,7f > ,
n~ : V* -+ pI (= w/ < 'i, Ü >),

1ß



have the branched loci

{

, 3 3 }f{s= oo} U s= e2j~ (1 + k)71 -2j~ (1 -k') 71
1 - k' + e 1 + k'

j=l
N

u{ e2j~(1+k')* _2j~(1-k')*}T
{s = ±2, 00 } s = 1 _ k' + e 1 + k' j=1

N
for add 2'

{s = -2.00} U{"oS = 2j~ (1 + k')* -2j~ (1 -k') *}f
, e 1 _ k' + e 1 + k'

j=l

U{ 2 "m (1 +k')* -2 ".w (1 -k') *} f{s = 2,00} oS = e Jrr -- +e Jrr --
I - k' 1 + k'

j=l

N
far even 2" '

respectively,

(ü) The projections of (26) and (29) induce the isogenies

J(W) x J(W) --. J(WN,k')'

J(V) x J(V) --. J(W)

of degree 2N - 1, 2f respectively. We have the following description of Prym
varieties:

Prym{Aw) = J(W),

Prym(AW·) = J(W)/Z2,

Prym(AV) = J(V),
( ) {

J (V) /1 2 far add Jf,
Prym A =

V J (V) far even lf.
(ili) The 2-fold cover of WN,.I:' over W, W· are described by

1

WN,k' = (f)~ C l

with

div( f) = 0, O-W(l) =Ow(rr1J.(O) - rr~(00)) far W;

div(f) = UW({O,oo}), Ow(l) = (II-W )·Opl(1) for W .



And the 2-fold covers of W over V, V are described by

with

div(g) = II~1(±2), Oy(L) = (IIv)·Opl(1) for V,

div(g*) = 0, ~(L) = Ov.(IIV(2) - II~(-2)) for V

when ~ = odd integer,

1

W = (g)l CL

with

div(g) = II~1(2), Oy{L) = Ov(II~l( -2)) for "V,

div(g*) = !IV(-2), Ov-(L) = Oy (!IV(2)) for "V

when ~= even integer.

Remark . The curve W (= WN,k'·) in the above theorem is a genus lf -1

hyperelliptic curve. It is a CP f-curve. The order q. automorphism of WN,k"
with 4 fixed elements is the one induced from 8 of WN,k" Hence we can spUt the
Jacobian of WN,k'· using Theorem 2 and 3. Proceeding the procedure inductively,
we obtain the splitting of the Jacobian of WN,k' into the Jacobians of quotients
of it.
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