A NEW FORMULATION OF THE

 EXPLICIT RECIPROCITY LAWby

Gilles ROBERT

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

A NEW FORMULATION OF THE EXPLICIT RECIPROCITY LAW

par Gilles ROBERT

SURYEY

Il s'agit ici en quelque sorte de la conclusion restée non écrite du § 6.8 consacré à la loi explicite de de réciprocité par G. Shimura dans son livre [2].

Soit N un entier, $N \geq 1$. Pour $f: z \longmapsto f(z)$ une fonction modulaire de niveau N dont les coefficients de Fourier à l'infini relatifs à $e^{2 \pi i z / N}$ sont rationnels, on exprime la loi de réciprocité de loc. cit. p. 157 à l'aide de la fonction associeé π_{f} définie sur les triplets formés d'un réseau complexe \underline{L}; d'un sous-réseau L tel que $\underline{L} / \mathrm{L} \simeq \mathbb{Z} / \mathrm{N}$, et d'un point \underline{w}_{2} de \underline{L} dont le classe modulo L est un point de torsion d'ordre exact N dans \mathbb{C} / L. La formule que l'on trouve fait appel à l'action de l'inverse de l'idèle s du corps de multiplication complexe des réseaux L et \underline{L} sur ceux-ci et sur la classe modulo L du point \underline{w}_{2}, d'ordre N dans \mathbb{C} / L.

Précisément, quand elle est définie la valeur $\pi_{f}\left(\mathrm{~L}, \underline{\mathrm{~L}}, \underline{\underline{w}}_{2}\right)$ appartient à la cloture abélienne $K^{a b}$ de K, et on a

$$
\pi_{\mathrm{f}}\left(\mathrm{~L}, \mathrm{~L}, \underline{w}_{2}\right)^{\left[\mathrm{s}, \mathrm{~K}^{\mathrm{ab}}\right]}=\pi_{\mathrm{f}}\left(\mathrm{~s}^{-1} \mathrm{~L}, \mathrm{~s}{ }^{-1} \underline{\mathrm{~L}, \mathrm{~s}}^{-1} \underline{\underline{w}}_{2}\right)
$$

où $s^{-1} \underline{w}_{2}$ désigne un représentant complexe de la classe modulo $s^{-1} L$ du point $\mathrm{s}^{-1}\left(\underline{\underline{w}}_{2} \bmod \mathrm{~L}\right) \quad$ d'ordre exact N dans $\mathbb{C} / \mathrm{s}^{-1} \mathrm{~L}$, cf. th. infra. On
notera que toute référence à un plongement particulier de $K^{\mathbf{x}}$ dans le groupe $G \ell_{2}^{>0}(\mathbb{Q})$ (dépendant du point quadratique imaginaire où est évalué f) a disparu de l'énoncé.

GREETINGS

They do not only go to the work [2] of G. Shimura, but also to S. Lang whose very useful book [1] has given us the possibility of understanding what the first named author did; particularly, his chapter 11 there was remarkably interesting (and his th. 5 loc. cit. gave us a prototype of our key proposition).

Let N be some integer, $N \geq 1$. Let L and \underline{L} be two complex lattices satisfying i) LCL and ii) the quotient $\underline{L} / \mathrm{L}$ is cyclic of order N . Choose a basis $\left(\underline{W}_{1}, \underline{W}_{2}\right)$ of \underline{L}, with $\operatorname{Im}\left(\underline{\mathrm{w}}_{2} / \underline{\mathrm{w}}_{1}\right)>0$, such that $\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=\left(\underline{\mathrm{w}}_{1}, N \underline{\mathrm{w}}_{2}\right)$ be a basis of L; in particular \underline{W}_{2} modulo L is a torsion point of exact order N in \mathbb{C} / L. If z is any complex number with $\operatorname{Im}(z)>0$, let a matrix $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of $G \ell_{2}^{>}(\mathbb{R})$ act on z by

$$
\gamma(z)=\frac{a z+b}{c z+d}
$$

so that $\operatorname{Im}(\gamma(z))>0$.
Suppose that L and \underline{L} have complex multiplication by some imaginary quadratic field K. Let $q: K^{x} \longrightarrow \mathrm{Gl}_{2}{ }^{0}(\mathbb{Q})$ be the normalized embedding with fixed point $\underline{W}_{2} / \underline{w}_{1}$ defined by

$$
\underline{q}(\mu)\left[\begin{array}{l}
\mathbf{w}_{2} \tag{1}\\
\underline{w}_{1}
\end{array}\right]=\left[\begin{array}{l}
\mu \underline{w}_{2} \\
\mu \underline{w}_{1}
\end{array}\right], \mu \in \mathrm{K}^{\mathbf{x}} ;
$$

denote also q the associated embedding of $\left(K \otimes_{Q} A_{f}\right)^{X}$ inside $G \ell_{2}\left(A_{f}\right)$ where the latter term is the group $G \ell_{2}$ evaluated on the algebra of finite adeles A_{f} of Q and the former is the group of finite ideles of K. Adopt the analogous notation for the embedding $q: K^{\mathrm{x}} \longrightarrow \mathrm{G} \ell_{2}^{>0}(\mathbb{Q})$ with fixed point $\mathrm{w}_{2} / \mathrm{w}_{1}$ associated in the same way with w_{1} and w_{2} in place of \underline{w}_{1} and \underline{w}_{2}; for any finite idele s of K, we have

$$
\mathrm{q}(\mathrm{~s})=\left[\begin{array}{cc}
\mathrm{N} & 0 \tag{2}\\
0 & 1
\end{array}\right] \mathrm{q}(\mathrm{~s})\left[\begin{array}{cc}
\mathrm{N} & 0 \\
0 & 1
\end{array}\right]^{-1}
$$

For any finite idèle t of K and any sublattice L_{0} of L, let $t L_{0}$ be the complex lattice defined by multiplication by the idele t. Recall that this action defines an isomorphism

$$
\begin{equation*}
\mathrm{t}:\left(\mathbb{C} / \mathrm{L}_{0}\right)_{\mathrm{tors}} \longrightarrow\left(\mathbb{C} / \mathrm{tL}_{0}\right)_{\mathrm{tors}} \tag{3}
\end{equation*}
$$

of the group of torsion points of $\mathbb{C} / \mathrm{L}_{0}$ inside the group of torsion points of $\mathbb{C} / \mathrm{tL}_{0}$.

We have the following lemma:

LEMMA For any sublattice L_{0} of L and any finite idele t of K, we have

$$
\underset{\sim}{\mathrm{q}(\mathrm{t})}\left[\begin{array}{l}
\underline{w}_{2} \tag{4}\\
\underline{w}_{1}
\end{array}\right] \underset{\mathrm{t}}{\overline{\mathrm{~L}_{0}}}\left[\begin{array}{l}
\mathrm{t}\left(\underline{w}_{2} \bmod \right. \\
\mathrm{t}\left(\mathrm{~L}_{0}\right) \\
\underline{w}_{1} \\
\bmod \\
\left.L_{0}\right)
\end{array}\right]
$$

where on both lines the congruence is to be readed modulo the complex lattice tL_{0}.

PROOF: For p a prime, let t_{p} be the p-component of t and denote by $L_{0, p}$ the tensor product $L_{0} \otimes Z_{p}$ inside $L_{0} \otimes Q_{p}$. Then the right hand side of (4) satisfy by definition the congruence

$$
\left.\left[\begin{array}{l}
t_{p}\left(\underline{w}_{2} \bmod \right. \\
\left.L_{0, p}\right) \\
t_{p}\left(\underline{w}_{1}\right. \\
\bmod
\end{array} L_{0, p}\right)\right]{\underset{t}{p} \overline{\bar{L}}_{0, p}}\left[\begin{array}{ll}
t_{p} & \underline{w}_{2} \\
t_{p} & \underline{F}_{1}
\end{array}\right]
$$

where on both lines the congruence is to be readed modulo the lattice $t_{p} L_{0, p}$. But, we have the matrix equality

$$
\left[\begin{array}{cc}
t_{p} & \underline{w}_{2} \\
t_{p} & \underline{w}_{1}
\end{array}\right]=\underset{-}{q}\left(t_{p}\right)\left[\begin{array}{l}
\underline{w}_{2} \\
\underline{w}_{1}
\end{array}\right], t_{p} \in K \otimes_{Q} Q_{p}
$$

where $q\left(t_{p}\right)$ belongs to $G \ell_{2}\left(K \otimes_{Q} Q_{p}\right)$. Hence we have the congruence (4) with a p added everywhere; as p is arbitrary, the lemma is proved.

Let U be the subgroup of $G \ell_{2}\left(A_{f}\right)$ defined by

$$
\mathrm{U}=\prod_{\mathrm{p} \text { prime }} \mathrm{G} \ell_{2}\left(\Pi_{\mathrm{p}}\right)
$$

Also, denote by $\mathrm{U}_{\mathrm{N}}=\prod_{\mathrm{p}} \mathrm{U}_{\mathrm{N}, \mathrm{p}}, \nabla=\prod_{\mathrm{p}} \nabla_{\mathrm{p}}$ and $\Delta=\prod_{\mathrm{p}} \Delta_{\mathrm{p}}$ the subgroups of U defined by the conditions

$$
\mathrm{U}_{\mathrm{N}, \mathrm{p}}=\left\{\begin{array}{l}
\mathrm{G} \mathrm{\ell}_{2}\left(\mathbb{Z}_{\mathrm{p}}\right), \quad \text { if } \mathrm{p} \nmid \mathrm{~N} \\
\mathrm{I}_{2}+\mathrm{NM}_{2}\left(\Pi_{\mathrm{p}}\right), \text { if } \mathrm{p} \mid \mathrm{N}
\end{array}\right.
$$

$$
\begin{aligned}
& \nabla_{p}=\left\{\begin{array}{l}
1, \text { if } p \nmid N \\
\left\{\left.\left[\begin{array}{ll}
1 & b_{p} \\
0 & d_{p}
\end{array}\right] \right\rvert\, b_{p} \in \mathbb{Z}_{p}, d_{p} \in \mathbb{Z}_{p}^{x}\right\}, \text { if } p \mid N
\end{array}\right. \\
& \Delta_{p}=\left\{\begin{array}{l}
1, \text { if } p \nmid N \\
\left\{\left.\left[\begin{array}{ll}
1 & 0 \\
0 & d_{p}
\end{array}\right] \right\rvert\, d_{p} \in \mathbb{Z}_{p}^{x}\right\}, \text { if } p \mid N
\end{array}\right.
\end{aligned}
$$

Fix some finite idèle s of K, and let $s^{-1} L$ and $s^{-1} \underline{L}$ be the complex lattices image of respectively L and \underline{L} by multiplication by the idele s^{-1}. By the isomorphism (3), the class

$$
\begin{equation*}
\underline{u}_{2} \bmod s^{-1} L \stackrel{d f n}{=} s^{-1}\left(\underline{w}_{2} \bmod L\right) \tag{5}
\end{equation*}
$$

is a torsion point of exact order N in $\mathbb{C} / \mathrm{s}^{-1} \mathrm{~L}$. Let us choose some complex representative \underline{u}_{2} of it. We have $\underline{u}_{2} \in s^{-1} \underline{\underline{L}}$, so that by the noted property we can find some other element $\underline{u}_{1} \in s^{-1} \underline{L}$, such that $\left(\underline{u}_{1}, \underline{l}_{2}\right)$ be a basis of ${ }^{-1} \underline{L}$ with $\operatorname{Im}\left(\underline{u}_{2} / \underline{u}_{1}\right)>0$ and $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\left(\underline{\mathrm{u}}_{1}, \mathrm{Nu}_{2}\right)$ be a basis of $\mathrm{s}^{-1} \mathrm{~L}$. Hence our choices define a matrix

$$
\eta \in G \ell_{2}^{>0}(Q)
$$

with rational coefficients and positive determinant, such that
a) $\left[\begin{array}{l}\underline{u}_{2} \\ \underline{u}_{1}\end{array}\right]=\eta\left[\begin{array}{l}\underline{w}_{2} \\ \underline{w}_{1}\end{array}\right]$,
b) $\left[\begin{array}{l}u_{2} \\ u_{1}\end{array}\right]=\left[\begin{array}{ll}N & 0 \\ 0 & 1\end{array}\right] \eta\left[\begin{array}{ll}N & 0 \\ 0 & 1\end{array}\right]^{-1}\left[\begin{array}{l}\mathrm{w}_{2} \\ \mathrm{w}_{1}\end{array}\right]$.

By equation a), we have $\eta \mathrm{q}(\mathrm{s}) \in \mathrm{U}$ and by equation b) we have $\left[\begin{array}{cc}\mathrm{N} & 0 \\ 0 & 1\end{array}\right] \eta\left[\begin{array}{cc}\mathrm{N} & 0 \\ 0 & 1\end{array}\right]^{-1} \mathrm{q}(\mathrm{s}) \in \mathrm{U}$. But by (2) this can be rewritten as $\left[\begin{array}{cc}\mathrm{N} & 0 \\ 0 & 1\end{array}\right] \underset{-}{\eta(\mathrm{s})}\left[\begin{array}{cc}\mathrm{N} & 0 \\ 0 & 1\end{array}\right]^{-1}$, so that

$$
\underset{-}{\mathrm{q}(\mathrm{~s})} \in\left[\begin{array}{cc}
\mathrm{N} & 0 \\
0 & 1
\end{array}\right]^{-1} \mathrm{U}\left[\begin{array}{cc}
\mathrm{N} & 0 \\
0 & 1
\end{array}\right] \cap \mathrm{U}
$$

Moreover by the lemma and the equation (5) we have the congruence

$$
\left.\left[\begin{array}{l}
\underline{u}_{2} \\
\underline{u}_{1}
\end{array}\right]_{8} \equiv{ }^{-1} L\left[\begin{array}{l}
s^{-1}\left(\underline{w}_{2} \bmod L\right) \\
s^{-1}\left(\underline{w}_{1} \bmod L\right)
\end{array}\right]_{s^{-1} L^{-}}^{\equiv} q^{-1}\right)\left[\begin{array}{l}
\underline{w}_{2} \\
\underline{w}_{1}
\end{array}\right] ;
$$

hence by the above definition a) of η

$$
(\eta \underline{q}(\mathrm{~s}))\left[\begin{array}{l}
\underline{\mathrm{u}}_{2} \\
\underline{u}_{1}
\end{array}\right]_{\mathrm{s}} \underset{\mathrm{~L}}{ }=\left[\begin{array}{l}
\mathrm{u}_{2} \\
\underline{\mathrm{u}}_{1}
\end{array}\right]
$$

this proves that the left upper coefficient of $\eta \mathrm{q}(\mathrm{s})$ is congruent to 1 modulo N . These two facts imply that

$$
\eta \underline{q}(\mathrm{~s}) \in \nabla \mathrm{U}_{\mathrm{N}}=\mathrm{U}_{\mathrm{N}} \nabla
$$

Yet, let $\Gamma_{1}(N)$ be the group

$$
\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, \mathrm{a} \equiv \mathrm{~d} \equiv 1(\bmod \mathrm{~N}), \mathrm{c} \equiv 0(\bmod \mathrm{~N})\right\}
$$

and put $\eta^{\prime}=\gamma \eta$ for some γ in $\Gamma_{1}(\mathrm{~N})$. Modify both basis $\left(\underline{\mathrm{u}}_{1}, \underline{\underline{u}}_{2}\right)$ and $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$ by putting

$$
\left[\begin{array}{l}
\underline{\mathbf{u}}_{2}^{\prime} \\
\underline{\underline{u}}_{1}^{\prime}
\end{array}\right]=\gamma\left[\begin{array}{l}
\underline{\mathbf{u}}_{2} \\
\underline{\mathbf{u}}_{1}
\end{array}\right],\left[\begin{array}{l}
\mathbf{u}_{2}^{\prime} \\
\mathbf{u}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{N} & 0 \\
0 & 1
\end{array}\right] \gamma\left[\begin{array}{ll}
N & 0 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{u}_{2} \\
\mathbf{u}_{1}
\end{array}\right]
$$

so that the pairs $\left(\underline{\underline{u}}^{\prime}{ }_{1}, \underline{\underline{u}}^{\prime}{ }_{2}\right)$ and $\left(\mathrm{u}^{\prime}{ }_{1}, \mathbf{u}^{\prime}{ }_{2}\right)=\left(\underline{\underline{u}}^{\prime}{ }_{1}, \mathrm{~N} \underline{\underline{u}}^{\prime}{ }_{2}\right)$ are always positively oriented basis of respectively $s^{-1} \underline{L}$ and $s^{-1} L$. Note that, if we write $\underline{u}^{\prime}{ }_{1}, \underline{u}^{\prime}{ }_{2}, \mathbf{u}^{\prime}{ }_{1}, \mathbf{u}^{\prime}{ }_{2}$ and η^{\prime} in place of $\mathrm{u}_{1}, \mathrm{y}_{2}, \mathrm{u}_{1}, \mathrm{u}_{2}$ and η, the above relations a) and b) as well as the equation (5) are satisfied by the new quantities. We thus have $\eta^{\prime} \in \nabla \mathrm{U}_{\mathrm{N}}$; as

$$
\nabla \mathrm{U}_{\mathrm{N}}=\Gamma_{1}(\mathrm{~N}) \Delta \mathrm{U}_{\mathrm{N}}
$$

we have proved:

PROPOSITION Let L and \underline{L} betwo complex lattices as above. Suppose given a basis $\left(\underline{w}_{1}, \underline{W}_{2}\right)$ of \underline{L}, with $\operatorname{Im}\left(\underline{w}_{2} / \underline{w}_{1}\right)>0$, such that $\left(\underline{w}_{1}, N \underline{w}_{2}\right)$ be a basis of L, and assume that L and \underline{L} have complex multiplication by some imaginary quadratic field K.

Let s be some finite idele of K. Then, one can find a basis $\left(\underline{u}_{1}, \underline{u}_{2}\right)$ of $s^{-1} \underline{\underline{L}}$, with $\operatorname{Im}\left(\underline{u}_{2} / \mathbf{u}_{1}\right)>0$, such that
i) $\quad\left(\underline{u}_{1}, N \underline{u}_{2}\right)$ is a basis of $s^{-1} \mathrm{~L}$,
ii) $\quad \underline{u}_{2} \bmod \mathrm{~s}^{-1} \mathrm{~L}=\mathrm{s}^{-1}\left(\underline{\mathrm{w}}_{2} \bmod \mathrm{~L}\right)$,
iii) the matrix $\eta \in G \ell_{2}^{>}{ }^{0}(\mathbb{Q})$ such that

$$
\left[\begin{array}{l}
\underline{\mathrm{u}}_{2} \tag{6}\\
\underline{\mathrm{u}}_{1}
\end{array}\right]=\eta\left[\begin{array}{l}
\underline{\mathrm{w}}_{2} \\
\underline{\mathrm{w}}_{1}
\end{array}\right]
$$

does satisfy $\eta \underline{q}(\mathrm{~s}) \in \Delta \mathrm{U}_{\mathrm{N}}=\mathrm{U}_{\mathrm{N}}{ }^{\Delta}$, where \underline{q} is the adelisation of the embedding of K^{X} inside $G \ell>{ }_{2}^{0}(Q)$ (with fixed point $W_{2} / \underline{w}_{1}$) defined by (1).

REMARK If, for the same finite idele s of K, another basis ($\underline{\underline{u}}^{\prime}{ }_{1}, \underline{\underline{\mu}}^{\prime}{ }_{2}$) of $s^{-1} \underline{L}$, with $\operatorname{Im}\left(\underline{\underline{u}}_{2}^{\prime} / \bar{u}^{\prime}{ }_{1}\right)>0$, also satisfy the conditions i), ii) and iii) of the proposition, then for the corresponding matrix $\eta^{\prime} \in G \ell_{2}^{>0}(\mathbb{Q})$ we have $\eta^{\prime}=\gamma \eta$ with γ element of

$$
\mathrm{SL}_{2}(\mathbb{Z}) \cap \Delta \mathrm{U}_{\mathrm{N}}=\left\{\delta \in \mathrm{SL}_{2}(\mathbb{I}) \mid \delta \equiv \mathrm{I}_{2}(\bmod \mathrm{~N})\right\}
$$

Let now $f: z \longmapsto f(z)$ be some modular function of level N, defined over the Poincaré half plane $\{z \mid \operatorname{Im}(z)>0\}$, and invariant under the action of $\Gamma_{1}(N)$. As usual, associate to f a function π_{f} on the triples ($\mathrm{L}, \mathrm{L}, \mathrm{W}_{2}$) where the complex lattices L and \underline{L} satisfy i) $\mathrm{L} C \underline{L}$ and ii) $\underline{L} / \mathrm{L} \simeq \mathbb{I} / \mathrm{N}$, and where the point \underline{W}_{2} satisfy iii) $\underline{W}_{2} \in \underline{L}$ and iv) the class of \underline{W}_{2} modulo L is of exact order N in \mathbb{C} / L. Recall how to define π_{f} : the above conditions on $\underline{\underline{F}}_{2}$ imply the existence of a second point $\underline{\mathrm{w}}_{1}$ of $\underline{\mathrm{L}}$ such that i) $\left(\underline{W}_{1}, \underline{W}_{2}\right)$ be a basis of \underline{L}, with $\operatorname{Im}\left(\mathbb{W}_{2} / \mathbb{W}_{1}\right)>0$, and ii) $\left(\underline{W}_{1}, N W_{2}\right)$ be a basis of L; then put

$$
\pi_{\mathrm{f}}\left(\mathrm{~L}, \mathrm{~L}, \underline{\mathrm{w}}_{2}\right) \stackrel{\mathrm{dfn}}{=} \mathrm{f}\left(\underline{W}_{2} / \underline{w}_{1}\right)
$$

The invariance condition on the function f implies that the above definition is meaningfull.

Also, note that π_{f} does not depend of the choice of \mathbb{H}_{2} if and only if f is invariant under the action of the bigger group

$$
\Gamma_{0}(N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

We have:

THEOREM Let f be a modular function of level N, and suppose that its Fourier coefficients at ∞ relative to $\mathrm{e}^{2 \pi \mathrm{iz} / \mathrm{N}}$ are rational (which necessarily implies the invariance of f under $\Gamma_{1}(\mathrm{~N})$).

Let ($\mathrm{L}, \underline{\mathrm{L}}, \underline{\mathrm{w}}_{2}$) be a triple as above. Assume that L and L have complex multiplication by an imaginary quadratic field K, and that π_{f} is well defined on the triple ($\mathrm{L}, \underline{\mathrm{L}}, \underline{\mathrm{w}}_{2}$) .

Then, the element $\pi_{f}\left(L, \underline{L}, \underline{W}_{2}\right)$ belongs to the abelian closure $K^{a b}$ of K, and for any (finite) idèle s of K we have

$$
\pi_{\mathrm{f}}\left(\mathrm{~L}, \underline{\mathrm{~L}, \underline{w}_{2}}\right)^{\left[\mathrm{s}, \mathrm{~K}^{\mathrm{ab}}\right]}=\pi_{\mathrm{f}}\left(\mathrm{~s}^{-1} \mathrm{~L}, \mathrm{~s}-1, \underline{L}_{\mathrm{s}}-1 \underline{W}_{2}\right)
$$

where $\left[s, K^{a b}\right]$ denotes the Artin automorphism of $K^{a b} / K$ associated to s, and $s^{-1} \mathrm{w}_{2}$ is any number of $\mathrm{s}^{-1} \underline{L}$ whose class modulo $s^{-1} \mathrm{~L}$ coincides with the point $s^{-1}\left(\underline{w}_{2} \bmod L\right)$ of exact order N in $\mathbb{C} / s^{-1} L$.

PROOF: First note that the modular function f is invariant under the subgroup ΔU_{N} of $G \ell_{2}\left(A_{f}\right)$.

Then, let $\left(\underline{W}_{1}, \underline{W}_{2}\right)$ with $\operatorname{Im}\left(\underline{W}_{2} / \underline{w}_{1}\right)>0$ be a basis of \underline{L} such that $\left(\underline{W}_{1}, N \underline{W}_{2}\right)$ be a basis of L. By the above proposition, we can choose $\left(u_{1}, u_{2}\right)$ with $\operatorname{Im}\left(u_{2} / \underline{u}_{1}\right)>0$ a basis of $s^{-1} \underline{L}$ satisfying conditions i), ii) and iii) of $i t$; hence by iii), the matrix η of $G \ell_{2}{ }^{0}(\mathbb{Q})$ defined by the identity (6) is such that the product $\eta \underline{q}(s)$ belongs to

As we can, suppose f to be defined at $z=\underline{W}_{2} / W_{1}$. Then, by the conditions i) and ii) of the proposition, the assertion of the theorem would result of the equality

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})^{\left[\mathrm{s}, \mathrm{~K}^{\mathrm{ab}}\right]}=\mathrm{f}(\eta(\mathrm{z})) \tag{7}
\end{equation*}
$$

But, noting exponentially the action τ of $G \ell_{2}\left(\mathrm{~A}_{\mathrm{f}}\right)$ on f , the explicit reciprocity law of G. Shimura of [2] § 6.8 p .157 says that the left hand side of (7) is equal to

$$
\mathrm{f}^{\tau\left(\mathrm{q}\left(\mathrm{~s}^{-1}\right)\right)}(\mathrm{z})=\mathrm{f}^{\tau(\mathrm{t} \eta)}(\mathrm{z})
$$

and we have as in loc. cit. p. 163

The theorem is proved.

NOTA Let \mathscr{F}_{0} be the field of all modular functions f as in the theorem, where the integer N takes any convenient value.

Then, for \mathscr{F} the field of all modular functions whose Fourier coefficients belong to the abelian closure \mathbf{Q}^{ab} of Q, we have

$$
\mathscr{F}=Q^{\mathrm{ab}} \mathscr{F}_{0}
$$

as is noted in [2] Exercise 6.26 p. 152.
It is for the elements of the field \mathscr{F} that . Shimura did first state his explicit reciprocity law.
[1] S. LANG, Elliptic Functions (1973) Ed: Addison-Wesley.
[2] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions (1971) Ed: Iwanami Shoten and P.U.P.

Errata (31 mars 1989)
p. $8,1 .-8$, suppress: "and invariant under the action of $\Gamma_{1}(N)$ "
p. 9, first two lines, add more precisely:
"The fact that the function f be invariant under the action of

$$
\left\{\left.\left[\begin{array}{ll}
1 & 0 \\
\mathrm{c} & 1
\end{array}\right] \right\rvert\, \mathrm{c} \equiv 0(\bmod \mathrm{~N})\right\} \mathrm{C}\left\{\delta \in \mathrm{SL}_{2}(\mathbb{Z}) \mid \delta \equiv \mathrm{I}_{2}(\bmod \mathrm{~N})\right\}
$$

implies that the above definition is meaningful."
p. 9, inside THEOREM, suppress: "(which necessarily implies the invariance of f under $\left.\Gamma_{1}(N)\right)^{\prime \prime}$
p. 10, 1. 1, write: "First note that by hypothesis the modular function $f . . .$. "

