A NEW FORMULATION OF THE EXPLICIT RECIPROCITY LAW

by

.

Gilles ROBERT

.

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

.

.

,

.

MPI/89 - 12

÷ --.

A NEW FORMULATION OF THE EXPLICIT RECIPROCITY LAW

par Gilles ROBERT

<u>SURVEY</u>

Il s'agit ici en quelque sorte de la conclusion restée non écrite du § 6.8 consacré à la loi explicite de de réciprocité par G. Shimura dans son livre [2].

Soit N un entier, $N \ge 1$. Pour $f: z \longmapsto f(z)$ une fonction modulaire de niveau N dont les coefficients de Fourier à l'infini relatifs à $e^{2\pi i z/N}$ sont <u>rationnels</u>, on exprime la loi de réciprocité de loc. cit. p. 157 à l'aide de la fonction associée π_f définie sur les triplets formés d'un réseau complexe \underline{L} , d'un sous-réseau L tel que $\underline{L}/L \simeq \mathbb{Z}/N$, et d'un point \underline{w}_2 de \underline{L} dont le classe modulo L est un point de torsion d'ordre exact N dans \mathbb{C}/L . La formule que l'on trouve fait appel à l'action de l'inverse de l'idèle s du corps de multiplication complexe des réseaux L et \underline{L} sur ceux-ci et sur la classe modulo L du point \underline{w}_2 , d'ordre N dans \mathbb{C}/L .

Précisément, quand elle est définie la valeur $\pi_f(L,\underline{L},\underline{w}_2)$ appartient à la cloture abélienne K^{ab} de K, et on a

$$\pi_{f} (L, \underline{L}, \underline{w}_{2})^{[s, K^{ab}]} = \pi_{f} (s^{-1}L, s^{-1}\underline{L}, s^{-1}\underline{w}_{2})$$

où s $^{-1}\underline{w}_2$ désigne un représentant complexe de la classe modulo s ^{-1}L du point s $^{-1}(\underline{w}_2 \mod L)$ d'ordre exact N dans $C/s^{-1}L$, cf. th. infra. On

notera que toute référence à un plongement particulier de K^x dans le groupe $G\ell_2^{>0}(\mathbb{Q})$ (dépendant du point quadratique imaginaire où est évalué f) a disparu de l'énoncé.

GREETINGS

They do not only go to the work [2] of G. Shimura, but also to S. Lang whose very useful book [1] has given us the possibility of understanding what the first named author did; particularly, his chapter 11 there was remarkably interesting (and his th. 5 loc. cit. gave us a prototype of our key proposition).

Let N be some integer, $N \ge 1$. Let L and <u>L</u> be two <u>complex</u> lattices satisfying i) $L \subset \underline{L}$ and ii) the quotient \underline{L} / L is cyclic of order N. Choose a basis $(\underline{w}_1, \underline{w}_2)$ of \underline{L} , with $\operatorname{Im}(\underline{w}_2/\underline{w}_1) > 0$, such that $(w_1, w_2) = (\underline{w}_1, N \underline{w}_2)$ be a basis of L; in particular \underline{w}_2 modulo L is a torsion point of exact order N in \mathbb{C}/L . If z is any complex number with $\operatorname{Im}(z) > 0$, let a matrix $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of $G\ell_2^{>0}(\mathbb{R})$ act on z by

$$\gamma$$
 (z) = $\frac{az + b}{cz + d}$

so that $\operatorname{Im}(\gamma(z)) > 0$.

7

Suppose that L and <u>L</u> have complex multiplication by some imaginary quadratic field K. Let $q: K^x \longrightarrow G\ell_2^{> 0}(\mathbb{Q})$ be the normalized embedding with fixed point $\underline{w}_2/\underline{w}_1$ defined by

(1)
$$\frac{q(\mu) \left[\begin{array}{c} \underline{w}_2 \\ \underline{w}_1 \end{array} \right]}{-} = \left[\begin{array}{c} \mu \ \underline{w}_2 \\ \mu \ \underline{w}_1 \end{array} \right] , \ \mu \in K^{\mathbf{X}};$$

denote also \underline{q} the associated embedding of $(K \otimes_{\mathbb{Q}} A_f)^x$ inside $G\ell_2(A_f)$ where the latter term is the group $G\ell_2$ evaluated on the algebra of finite adèles A_f of \mathbb{Q} and the former is the group of finite idèles of K. Adopt the analogous notation for the embedding $q: K^x \longrightarrow G\ell_2^{>0}(\mathbb{Q})$ with fixed point w_2/w_1 associated in the same way with w_1 and w_2 in place of \underline{w}_1 and \underline{w}_2 ; for any finite idèle s of K, we have

(2)
$$q(s) = \begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix} \underbrace{q(s)} \begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix}^{-1}$$

For any finite idèle t of K and any sublattice L_0 of L, let tL_0 be the complex lattice defined by multiplication by the idèle t. Recall that this action defines an isomorphism

(3)
$$t: (\mathbb{C}/L_0)_{tors} \longrightarrow (\mathbb{C}/tL_0)_{tors}$$

of the group of torsion points of C/L_0 inside the group of torsion points of C/tL_0 .

We have the following lemma:

<u>LEMMA</u> For any sublattice L_0 of L and any finite idèle t of K, we have

(4)
$$\frac{q(t) \begin{pmatrix} \underline{w}_2 \\ \underline{w}_1 \end{pmatrix}}{-} \frac{\Xi}{tL_0} \begin{pmatrix} t (\underline{w}_2 \mod L_0) \\ t (\underline{w}_1 \mod L_0) \end{pmatrix}$$

where on both lines the congruence is to be readed modulo the complex lattice tL_0 .

<u>PROOF</u>: For p a prime, let t_p be the p-component of t and denote by $L_{0,p}$ the tensor product $L_0 \otimes \mathbb{Z}_p$ inside $L_0 \otimes \mathbb{Q}_p$. Then the right hand side of (4) satisfy by definition the congruence

$$\begin{pmatrix} \mathbf{t}_{p} (\underline{\mathbf{w}}_{2} \mod \mathbf{L}_{0,p}) \\ \mathbf{t}_{p} (\underline{\mathbf{w}}_{1} \mod \mathbf{L}_{0,p}) \end{pmatrix} \stackrel{\equiv}{\underset{p}{\overset{=}{\overset{}}{_{p}}} \begin{bmatrix} \mathbf{t}_{p} & \underline{\mathbf{w}}_{2} \\ \mathbf{t}_{p} & \underline{\mathbf{w}}_{1} \end{bmatrix}$$

where on both lines the congruence is to be readed modulo the lattice $t_p L_{0,p}$. But, we have the matrix equality

$$\begin{bmatrix} t_p & \underline{w}_2 \\ t_p & \underline{w}_1 \end{bmatrix} = q(t_p) \begin{bmatrix} \underline{w}_2 \\ \underline{w}_1 \end{bmatrix} , t_p \in K \otimes_{\mathbf{Q}} \mathbf{Q}_p ,$$

where $\underline{q}(t_p)$ belongs to $G\ell_2(K \otimes_{\mathbb{Q}} \mathbb{Q}_p)$. Hence we have the congruence (4) with a p added everywhere; as p is arbitrary, the lemma is proved.

Let U be the subgroup of $\operatorname{Gl}_2(A_f)$ defined by

٠., ٠

$$U = \prod_{p \text{ prime}} G\ell_2(\mathbb{Z}_p) .$$

Also, denote by $U_N = \prod_p U_{N,p}$, $\nabla = \prod_p \nabla_p$ and $\Delta = \prod_p \Delta_p$ the subgroups of U defined by the conditions

3

$$\mathbf{U}_{\mathbf{N},\mathbf{p}} = \begin{cases} \mathsf{G\ell}_{2}(\mathbb{Z}_{\mathbf{p}}) , & \text{if } \mathbf{p} \nmid \mathbf{N} \\ \\ \mathbf{I}_{2} + \mathsf{NM}_{2}(\mathbb{Z}_{\mathbf{p}}) , & \text{if } \mathbf{p} \mid \mathbf{N} \end{cases}$$

$$\nabla_{\mathbf{p}} = \begin{cases} 1 & , \text{ if } \mathbf{p} \nmid \mathbf{N} \\ \left\{ \begin{bmatrix} 1 & b_{\mathbf{p}} \\ 0 & d_{\mathbf{p}} \end{bmatrix} \middle| \begin{array}{c} b_{\mathbf{p}} \in \mathbb{Z}_{\mathbf{p}}, \ d_{\mathbf{p}} \in \mathbb{Z}_{\mathbf{p}}^{\mathbf{X}} \\ , \text{ if } \mathbf{p} \mid \mathbf{N} \end{cases}$$
$$\Delta_{\mathbf{p}} = \begin{cases} 1 & , \text{ if } \mathbf{p} \nmid \mathbf{N} \\ & \\ \left\{ \begin{bmatrix} 1 & 0 \\ 0 & d_{\mathbf{p}} \end{bmatrix} \middle| \begin{array}{c} d_{\mathbf{p}} \in \mathbb{Z}_{\mathbf{p}}^{\mathbf{X}} \\ , \text{ if } \mathbf{p} \mid \mathbf{N} \end{cases}$$

Fix some finite idèle s of K, and let s⁻¹L and s⁻¹<u>L</u> be the complex lattices image of respectively L and <u>L</u> by multiplication by the idèle s⁻¹. By the isomorphism (3), the class

(5)
$$\underline{u}_2 \mod s^{-1}L \stackrel{\text{dfn}}{=} s^{-1}(\underline{w}_2 \mod L)$$

is a torsion point of exact order N in $\mathbb{C}/s^{-1}L$. Let us choose some complex representative \underline{u}_2 of it. We have $\underline{u}_2 \in s^{-1}\underline{L}$, so that by the noted property we can find some other element $\underline{u}_1 \in s^{-1}\underline{L}$, such that $(\underline{u}_1,\underline{u}_2)$ be a basis of $s^{-1}\underline{L}$ with $\operatorname{Im}(\underline{u}_2/\underline{u}_1) > 0$ and $(u_1,u_2) = (\underline{u}_1,\underline{Nu}_2)$ be a basis of $s^{-1}L$. Hence our choices define a matrix

$$\eta \in \mathrm{G\ell}_2^{>0}(\mathbf{Q}) \, ;$$

with rational coefficients and positive determinant, such that

,

a)
$$\begin{bmatrix} \underline{u}_2 \\ \underline{u}_1 \end{bmatrix} = \eta \begin{bmatrix} \underline{w}_2 \\ \underline{w}_1 \end{bmatrix}$$
, b) $\begin{bmatrix} u_2 \\ u_1 \end{bmatrix} = \begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix} \eta \begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} w_2 \\ w_1 \end{bmatrix}$.

By equation a), we have $\eta q(s) \in U$ and by equation b) we have $\begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix} \eta \begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix}^{-1} q(s) \in U$. But by (2) this can be rewritten as $\begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix} \eta \frac{q(s)}{0} \begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix}^{-1}$, so that

$$\eta \mathbf{q}(\mathbf{s}) \in \begin{bmatrix} \mathbf{N} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}^{-1} \mathbf{U} \begin{bmatrix} \mathbf{N} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \cap \mathbf{U}$$

Moreover by the lemma and the equation (5) we have the congruence

$$\begin{bmatrix} \underline{\mathbf{u}}_2 \\ \underline{\mathbf{u}}_1 \end{bmatrix} \underset{s \to \mathbf{L}}{\equiv} \begin{bmatrix} s^{-1} (\underline{\mathbf{w}}_2 \mod \mathbf{L}) \\ s^{-1} (\underline{\mathbf{w}}_1 \mod \mathbf{L}) \end{bmatrix} \underset{s \to \mathbf{L}}{\equiv} q(s^{-1}) \begin{bmatrix} \underline{\mathbf{w}}_2 \\ \underline{\mathbf{w}}_1 \end{bmatrix} = q(s^{-1}) \begin{bmatrix} \underline{\mathbf{w}}_2 \\ \underline{\mathbf{w}}_2 \end{bmatrix} = q(s^{-1}) \begin{bmatrix} \underline{\mathbf{w}}_2 \\ \underline{\mathbf{w$$

hence by the above definition a) of η

$$(\eta \mathbf{q}(\mathbf{s})) \begin{bmatrix} \underline{\mathbf{u}}_2 \\ \underline{\mathbf{u}}_1 \end{bmatrix} \underset{\mathbf{s}}{=} \mathbf{1}_{\mathbf{L}} \begin{bmatrix} \underline{\mathbf{u}}_2 \\ \underline{\mathbf{u}}_1 \end{bmatrix};$$

this proves that the left upper coefficient of $\eta q(s)$ is congruent to 1 modulo N. These two facts imply that

$$\eta \operatorname{\underline{q}}(s) \in \nabla \operatorname{\underline{U}}_{\operatorname{N}} = \operatorname{\underline{U}}_{\operatorname{N}} \nabla .$$

Yet, let $\Gamma_1(N)$ be the group

$$\left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \operatorname{SL}_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \pmod{N} , \ c \equiv 0 \pmod{N} \right\}$$

and put $\eta' = \gamma \eta$ for some γ in $\Gamma_1(N)$. Modify both basis $(\underline{u}_1, \underline{u}_2)$ and (u_1, u_2) by putting

$$\begin{bmatrix} \underline{\mathbf{u}}'_{2} \\ \underline{\mathbf{u}}'_{1} \end{bmatrix} = \gamma \begin{bmatrix} \underline{\mathbf{u}}_{2} \\ \underline{\mathbf{u}}_{1} \end{bmatrix}, \begin{bmatrix} \mathbf{u}'_{2} \\ \mathbf{u}'_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{N} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \gamma \begin{bmatrix} \mathbf{N} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{u}_{2} \\ \mathbf{u}_{1} \end{bmatrix}$$

so that the pairs $(\underline{u'}_1, \underline{u'}_2)$ and $(u'_1, u'_2) = (\underline{u'}_1, N \underline{u'}_2)$ are always positively oriented basis of respectively $s^{-1}\underline{L}$ and $s^{-1}L$. Note that, if we write $\underline{u'}_1, \underline{u'}_2, u'_1, u'_2$ and η' in place of $\underline{u}_1, \underline{u}_2, u_1, u_2$ and η , the above relations a) and b) as well as the equation (5) are satisfied by the new quantities. We thus have $\eta' \in \nabla U_N$; as

$$\nabla U_{\mathbf{N}} = \Gamma_1(\mathbf{N}) \Delta U_{\mathbf{N}}$$

we have proved:

<u>PROPOSITION</u> Let L and L be two complex lattices as above. Suppose given a basis $(\underline{w}_1, \underline{w}_2)$ of L, with $Im(\underline{w}_2/\underline{w}_1) > 0$, such that $(\underline{w}_1, N \underline{w}_2)$ be a basis of L, and assume that L and L have complex multiplication by some imaginary quadratic field K.

Let s be some finite idèle of K. Then, one can find a basis $(\underline{u}_1,\underline{u}_2)$ of s⁻¹L, with $Im(\underline{u}_2/\underline{u}_1) > 0$, such that

- i) $(\underline{u}_1, N \underline{u}_2) \underline{is \ a \ basis \ of} \ s^{-1}L$,
- ii) $\underline{u}_2 \mod s^{-1}L = s^{-1}(\underline{w}_2 \mod L)$,
- iii) the matrix $\eta \in \mathrm{Gl}_2^{>0}(\mathbf{Q})$ such that

(6)
$$\begin{bmatrix} \underline{\mathbf{u}}_2 \\ \underline{\mathbf{u}}_1 \end{bmatrix} = \eta \begin{bmatrix} \underline{\mathbf{w}}_2 \\ \underline{\mathbf{w}}_1 \end{bmatrix}$$

<u>does satisfy</u> $\eta q(s) \in \Delta U_N = U_N \Delta$, where \underline{q} is the adelisation of the embedding of K^x <u>inside</u> $G\ell_2^{>0}(\underline{q})$ (with fixed point $\underline{w}_2/\underline{w}_1$) defined by (1).

<u>REMARK</u> If, for the same finite idèle s of K, another basis $(\underline{u'}_1, \underline{u'}_2)$ of $s^{-1}\underline{L}$, with $\operatorname{Im}(\underline{u'}_2/\underline{u'}_1) > 0$, also satisfy the conditions i), ii) and iii) of the proposition, then for the corresponding matrix $\eta' \in \operatorname{Gl}_2^{> 0}(\mathbb{Q})$ we have $\eta' = \gamma \eta$ with γ element of

 $\operatorname{SL}_2(\mathbb{Z}) \ \cap \ \vartriangle \ \operatorname{U}_N = \{\delta \in \operatorname{SL}_2(\mathbb{Z}) \mid \delta \equiv \operatorname{I}_2(\operatorname{mod} N)\} \ .$

*

Let now $f: z \longmapsto f(z)$ be some modular function of level N, defined over the Poincaré half plane $\{z \mid Im(z) > 0\}$, and invariant under the action of $\Gamma_1(N)$. As usual, associate to f a function π_f on the triples $(L, \underline{L}, \underline{w}_2)$ where the complex lattices L and <u>L</u> satisfy i) $L \subset \underline{L}$ and ii) $\underline{L} / L \simeq \mathbb{Z} / N$, and where the point \underline{w}_2 satisfy iii) $\underline{w}_2 \in \underline{L}$ and iv) the class of \underline{w}_2 modulo L is of exact order N in \mathbb{C}/L . Recall how to define π_f : the above conditions on \underline{w}_2 imply the existence of a second point \underline{w}_1 of <u>L</u> such that i) $(\underline{w}_1, \underline{w}_2)$ be a basis of <u>L</u>, with $Im(\underline{w}_2 / \underline{w}_1) > 0$, and ii) $(\underline{w}_1, N \underline{w}_2)$ be a basis of L; then put

$$\pi_{f}(L,\underline{L},\underline{w}_{2}) \stackrel{\text{dfn}}{=} f(\underline{w}_{2}/\underline{w}_{1}) .$$

The invariance condition on the function f implies that the above definition is meaningfull.

Also, note that π_f does not depend of the choice of \underline{w}_2 if and only if f is invariant under the action of the bigger group

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \, | \, c \equiv 0 (\bmod N) \right\} \ .$$

We have:

<u>THEOREM</u> Let f be a modular function of level N, and suppose that its Fourier coefficients at ∞ relative to $e^{2\pi i z/N}$ are <u>rational</u> (which necessarily implies the invariance of f under $\Gamma_1(N)$).

Let $(L,\underline{L},\underline{w}_2)$ be a triple as above. Assume that L and <u>L</u> have complex multiplication by an imaginary quadratic field K, and that π_f is well defined on the triple $(L,\underline{L},\underline{w}_2)$.

Then, the element $\pi_f(L,L,w_2)$ belongs to the abelian closure K^{ab} of K, and for any (finite) idèle s of K we have

$$\pi_{\mathbf{f}}(\mathbf{L},\underline{\mathbf{L}},\underline{\mathbf{w}}_{2})^{[\mathbf{s},\mathbf{K}^{\mathtt{ab}}]} = \pi_{\mathbf{f}}(\mathbf{s}^{-1}\mathbf{L},\mathbf{s}^{-1}\underline{\mathbf{L}},\mathbf{s}^{-1}\underline{\mathbf{w}}_{2})$$

where $[s, K^{ab}]$ denotes the Artin automorphism of K^{ab}/K associated to s, and $s^{-1}w_2$ is any number of $s^{-1}L$ whose class modulo $s^{-1}L$ coincides with the point $s^{-1}(w_2 \mod L)$ of exact order N in $C/s^{-1}L$.

<u>PROOF</u>: First note that the modular function f is invariant under the subgroup ΔU_N of $G\ell_2(A_f)$.

Then, let $(\underline{w}_1, \underline{w}_2)$ with $\operatorname{Im}(\underline{w}_2/\underline{w}_1) > 0$ be a basis of \underline{L} such that $(\underline{w}_1, N \underline{w}_2)$ be a basis of L. By the above proposition, we can choose $(\underline{u}_1, \underline{u}_2)$ with $\operatorname{Im}(\underline{u}_2/\underline{u}_1) > 0$ a basis of s⁻¹ \underline{L} satisfying conditions i), ii) and iii) of it; hence by iii), the matrix η of $\operatorname{Gl}_2^{>0}(\mathbb{Q})$ defined by the identity (6) is such that the product $\eta q(s)$ belongs to $\underline{\Lambda} U_N$. Put $t = (\eta q(s))^{-1}$.

As we can, suppose f to be defined at $z = \underline{w}_2/\underline{w}_1$. Then, by the conditions i) and ii) of the proposition, the assertion of the theorem would result of the equality

(7)
$$f(z)^{[s,K^{ab}]} = f(\eta(z)) .$$

But, noting exponentially the action τ of $\operatorname{Gl}_2(A_f)$ on f, the explicit reciprocity law of G. Shimura of [2] § 6.8 p. 157 says that the left hand side of (7) is equal to

$$f^{\tau(q(s^{-1}))}(z) = f^{\tau(t\eta)}(z),$$

and we have as in loc. cit. p. 163

$$f^{\tau(t\eta)}(z) = f^{\tau(t)}(\eta(z)) = f(\eta(z)) .$$

The theorem is proved.

<u>NOTA</u> Let \mathscr{F}_0 be the field of all modular functions f as in the theorem, where the integer N takes any convenient value. Then, for $\mathscr F$ the field of all modular functions whose Fourier coefficients belong to the abelian closure Q^{ab} of Q, we have

$$\mathscr{T} = \mathbf{Q}^{ab} \mathscr{T}_0$$

as is noted in [2] Exercise 6.26 p. 152.

It is for the elements of the field \mathscr{F} that G. Shimura did first state his explicit reciprocity law.

- [1] S. LANG, Elliptic Functions (1973) Ed: Addison-Wesley.
- [2] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions (1971) Ed: Iwanami Shoten and P.U.P.

p. 8, l. -8, suppress: "and invariant under the action of $\Gamma_1(N)$ "

p. 9, first two lines, add more precisely:

"The fact that the function f be invariant under the action of

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ c & 1 \end{array} \right] \middle| c \equiv 0 \pmod{N} \right\} \subset \left\{ \delta \in \operatorname{SL}_2(\mathbb{Z}) \middle| \delta \equiv \operatorname{I}_2 \pmod{N} \right\}$$

implies that the above definition is meaningful."

p. 9, inside THEOREM, suppress: "(which necessarily implies the invariance of f under $\Gamma_1(N)$)"

p. 10, l. 1, write: "First note that by hypothesis the modular function f"