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COUNTING ZEROS IN QUATERNION ALGEBRAS USING

JACOBI FORMS

HATİCE BOYLAN, NILS-PETER SKORUPPA, AND HAIGANG ZHOU

Abstract. We use the theory of Jacobi forms to study the number of ele-
ments in a maximal order of a definite quaternion algebra over the field of

rational numbers whose characteristic polynomial equals a given polynomial.

A certain weighted average of such numbers equals (up to some trivial factors)
the Hurwitz class number H(4n−r2). As a consequence we obtain new proofs

for Eichler’s trace formula and for formulas for the class and type number

of definite quaternion algebras. As a secondary result we derive explicit for-
mulas for Jacobi Eisenstein series of weight 2 on Γ0(N) and for the action of

Hecke operators on Jacobi theta series associated to maximal orders of definite

quaternion algebras.

1. Introduction and statement of result

A Jacobi form of scalar index 1 has a Fourier expansion in terms of powers of
the elementary functions q(τ) = e2πiτ and ζ(z) = e2πiz. Its Fourier coefficients
c(n, r) are indexed by pairs of integers n and r, and it is a basic fact that c(n, r)
depends only on D = 4n−r2 and is zero unless D ≥ 0. Natural sequences c(n, r) of
this kind are obtained by counting the zeros of quadratic polynomials x2 − rx+ n
with non-positive discriminant in, say, some given ring O, provided, of course, the
number of zeros is finite. If we denote the number of zeros of x2−rx+n by ρO(n, r),
one can ask when

(1) θO :=
∑
n,r∈Z

4n−r2≥0

ρO(n, r) qnζr

is a Jacobi form.
We might take as a first test for O the ring Z of integers itself. Then, for

D = 4n− r2 ≥ 0, we have ρZ(n, r) = 0 unless D = 0, and we obtain

θZ =
∑
s∈Z

qs
2

ζ2s,

which is indeed a Jacobi form. In fact, θZ is an element of the space J1/2,1(4) of
Jacobi forms of weight 1/2 and index 1 on Γ0(4).

As another example consider the maximal order Z∆ of the imaginary quadratic
number field of discriminant ∆. Here ρZ∆

(n, r) = 0 unless D = 4n − r2 = −∆f2

for some integer f , and we obtain

θZ∆
=

∑
r,f∈Z

r2≡∆f2 mod 4

q
r2−∆f2

4 ζr,
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which again is a Jacobi form, this time in the space J1,1

(
|∆|,

(
∆
·
))

of Jacobi forms

on Γ0(|∆|) with character
(

∆
·
)
.

In this note we consider more closely the case where O is a maximal order in a
definite quaternion algebra Q over the field of rational numbers. Here ρO(n, r), for
4n− r2 ≥ 0, equals the number of x in O whose reduced characteristic polynomial
equals x2 − rx + n, i.e. the number of x in O with reduced trace r and reduced
norm n. From the latter it is clear that θO is a Jacobi form (in fact, a Jacobi
theta series; see Proposition 4.1 below). The purpose of this note is to use, based
on this observation, the theory of Jacobi forms to derive an explicit formula for
the weighted average of the numbers ρO(n, r) when O runs through a system of
representatives for the Q×-conjugacy classes of the maximal orders of Q. Recall
that the number of Q×-conjugacy classes of the maximal orders, which is usually
called the type number of Qp, is finite (a formula is recalled below). Note also that
the numbers ρO(n, r), for fixed r and n depend only on the Q×-conjugacy class
of O. To state the formula for the weighted average we need some notations.

Let −D be a negative discriminant (i.e. a negative integer which is a square
modulo 4) and N a squarefree positive integer. We let f be the largest positive
integer containing only primes dividing N and whose square divides D such that
−D/f2 is still a discriminant, and we set

(2) H(N)(D) = H(D/f2)
∏
p|N

(
1−

(
−D/f2

p

))
.

Here H(D), for any D ≥ 0 is the Hurwitz class number, that is, for D > 0, the
number of SL(2,Z)-equivalence classes of binary integral positive definite quadratic
forms of discriminant −D, where forms which are equivalent to a multiple of x2 +y2

or x2 +xy+y2 are counted with multiplicity 1/2 and 1/3, respectively, and H(0) =
−1/12. We also set

H(N)(0) =
1

12

∏
p|N

(p− 1),

and H(p)(D) = 0 for positive D ≡ 1, 2 mod 4.
For a maximal order O of a quaternion algebra Q we use Aut(O) for the group

of all classes xQ× in Q×/Q× such that xOx−1 = O. If Q is definite the group
Aut(O) is finite (see Prop. 6.1). 1.

Main Theorem. Let Q be a definite quaternion algebra over the field of ratio-
nal numbers, let e and N be the number and the product of primes at which Q
ramifies. If Oµ (µ = 1, 2, . . . , t) denotes a complete set of representatives for the
Q×-conjugacy classes of maximal orders of Q, then one has

(3)

t∑
µ=1

1

card (Aut(Oµ))
θOµ =

1

2e

∑
n,r∈Z

4n−r2≥0

H(N)(4n− r2) qnζr,

where θOµ are the function defined in (1),

If we write out (3) in terms of Fourier coefficients and express Aut(Oµ) in terms
of ideal classes (see Prop. 6.1) we obtain

(4)

t∑
µ=1

2m(Oµ)

card
(
O×µ
) ρOµ(n, r) = H(N)(4n− r2),

1The basic notions concerning quaternion algebras as used in the following theorem and the
subsequent discussion will be shortly recalled in Section 6.
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where m(O), for any maximal order O, denotes the number of left-ideal classes
of O which contain a two-sided ideal. For a given maximal order O, let aµ (µ =
1, 2, . . . , h) be a complete set of representatives for the O-left-ideal classes and
let Rµ be the right order of aµ. Every maximal order O′ is Q×-conjugate to at
least one of the Rµ (since the O-left ideal OO′ is contained in one of the aµ).
Moreover, Rµ is Q×-conjugate to exactly m(Rµ) of the Rν (ν = 1, . . . , h) (since
Rµ is conjugate to Rν if and only if a−1

µ aν is right equivalent to a two sided ideal

of Rµ, and since a−1
µ aν (ν = 1, . . . , h) represents the left ideal classes of Rµ). We

can therefore rewrite (4) in the form

(5)

h∑
µ=1

2

card
(
R×µ
) ρRµ(n, r) = H(N)(4n− r2).

For n = r = 0 we obtain in particular

h∑
µ=1

2

card
(
R×µ
) =

1

12

∏
p|N

(p− 1),

which is Eichler’s mass formula [Eic38, Satz 1].
For the case that N is a prime the identities (5) were stated and proved in [Gro87,

§1, p. 123], however, without reference to Jacobi forms. It was used in [Gro87, §1]
for sketching a proof of Eichler’s trace formula. This is a formula for the trace
trB(n) of the nth Brandt matrix B(n) =

(
bµ,ν(n)

)
µ,ν

associated to Q, which is the

h× h matrix with

bµ,ν(n) = card
({
b ∈ a−1

ν aµ : n(a−1
µ aνb) = n

})
/ card

(
R×µ
)
.

Indeed, if we take, for a fixed n ≥ 1, the sum of both sides of (5) over all r
with r2 ≤ 4n, the sum on the left becomes 2 trB(n), and we obtain the following
corollary.

Corollary. In the notations of the main theorem the trace of the nth Brandt ma-
trix B(n) of the quaternion algebra Q is given by the formula

(6) trB(n) =
1

2

∑
r2≤4n

H(N)(4n− r2).

This formula is, in a slightly differently stated form, Eichler’s trace formula for
the quaternion algebra Q [Eic55, Satz 10]. (Gross exposition reduces (5) to a for-
mula [Gro87, Eq. (1.12)] for counting embeddings of orders of imaginary quadratic
fields into Qp as it can be read off from Eichler [Eic55, §6, p. 145]. Latter formula
can also be found in a more explicit form in [Vig80, Thme. 5.11] as “formule de
trace”, where it is derived by adelic considerations.).

Note that the class and type number of Q (i.e. the number h of left ideal classes
of a maximal order modulo right-multiplication by Q× and the number of maximal
orders of Q up to Q×-conjugacy) equal h = tr (B(1)) and t = 2−e

∑
d|N tr (B(d)),

respectively. The first formula is obvious. The second follows on writing tr (B(d)) =∑t
µ=1 bµ,µ(d)m(Rµ), where we order the aµ in such a way that the Rµ (µ =

1, 2, . . . , t) are pairwise non-conjugate modulo Q×. The numbers bµ,µ(d) count the
two-sided principal Rµ-ideals of norm d. Since card (P(Rµ)/Q×) = 2e/m(Rµ)
(see Proposition 6.1) we find

∑
d|N bµ,µ(d)m(Rµ) = 2e, which implies the claimed

formula. Inserting (6) into the formulas for h and t we obtain after some obvious
modifications the following corollary.
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Corollary. In the notations of the main theorem the number h of left ideal classes
of a given maximal order equals

h =
∑
t|N

µ(t)

(
N/t

12
+

1

3

(
t

3

)
+

1

4

(
−4

t

))
,

and the number t of maximal orders of Q up to Q×-conjugacy equals

t = 2−e−1
∑
n|N

∑
r2≤4n

H(N)(4n− r2) = 2−e
(
h+

1

2

∑
n|N,n>1

∑
r2≤4n

H(N)(4n− r2)
)
.

(Note that, for n | N and n > 1, we have H(N)(4n− r2) = 0 unless n | 4n− r2,
i.e. unless r = 0 or n, r = 2,±1 or n, r = 3,±1.) For N equal to a prime, a formula
for h was given in [Eic38, Satz 2] and a formula for t in [Deu50, Eq. (10)]; for
arbitrary N formulas for h and t were stated and proved in [Eic55, Satz 10, 11].
(Formulas for h and t have in fact an extended history in the literature since the
formulas loc.cit. and also variants in later publications contained little errors or
were somewhat clumsily stated.) It is an elementary though somewhat unpleasant
exercise to transform the class and type number formulas given loc.cit. into the
form given here.

Our proof of (4), and hence also of the corollaries, uses (apart from some basic
facts from the arithmetic of quaternion algebras including Eichler’s mass formula)
merely the theory of Jacobi forms. In § 2 we recall shortly those tools from the
theory of Jacobi forms on Γ0(N) which we need. In § 4 we shall see that the
functions θOµ of the main theorem are Jacobi forms of a certain subspace S(N)
of the space J2,1(N) of Jacobi forms of weight 2 and index 1 on Γ0(N). We shall
prove, using the arithmetic of Q, that the left hand side of (3) is a Hecke eigenform
with the same eigenvalues as the unique Jacobi Eisenstein series in S(N). The
Eisenstein series in J2,1(N) (for squarefree N) are rapidly constructed in Section 3
from the mock Eisenstein series of weight 3/2 [HZ76, Ch. 2, Thm. 2]. Using the
method of Rankin convolutions we shall prove in § 2 that no cusp form in J2,1(N)
can have the same eigenvalues as a Jacobi Eisenstein series in this space. The main
theorem is then an immediate consequence on comparing the Fourier coefficients
c(0, 0) on both sides of (3) and revoking Eichler’s mass formula. In § 7 the reader
finds various tables and numerical examples concerning the main theorem. In § 6
we recall basic facts concerning quaternion algebras which are used in this article,
and we prove two lemmas about the arithmetic in quaternion algebras which we
need in the proof that the left hand side (3) is indeed a Hecke eigenform.

We note that the proof of (3) is trivial if J2,1(N) is one-dimensional, which is
the case exactly for N = 2, 3, 5, 7, 13, when the type number and the class number
of Q is 1. In this case it suffices to remark that the left and right hand side of (3)
are Jacobi forms in J2,1(N), and the coincidence of the Fourier coefficient c(0, 0)
on both sides of (3) can be checked by direct computation (e.g. using [S+13]).

2. Review of Jacobi forms in J2,1(N)

If not otherwise stated N denotes in this section an arbitrary positive integer.
We use J2,m(N) for the space of Jacobi forms of weight 2 and index m on Γ0(N)
as defined in [EZ85, §1]. A formula for the dimension of this space can be found
in [Sko06, Thm. 3].

In particular, it turns out that, for a prime N , the dimension of J2,1(N) equals
the class number h of the definite quaternion algebra which ramifies exactly at N .
For general squarefree N , the dimension of J2,1(N) equals the dimension of the
space M2(N) of modular forms of weight 2 on Γ0(N). However, for the following
we do not have any use of this.
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We recall that every Jacobi form φ in J2,1(N) has a Fourier expansion of the
form

φ =
∑

D≥0,r∈Z
−D≡r2 mod 4

Cφ(D)q
r2+D

4 ζr

(cf. [EZ85, Thm. 2.2]). Indeed, Cφ(D) = c( r
2+D
4 , r) if D is a non-negative in-

teger D ≡ 0, 3 mod 4, where r denotes any integer such that r ≡ D mod 2, and
where c(n, r) are the Fourier coefficients of ψ. We set Cφ(D) = 0 if −D is not a
discriminant.

Proposition 2.1. For squarefree N with, say, e prime divisors, the subspace of
cusp forms has co-dimension 2e − 1 in J2,1(N).

Proof. Note that 2e equals the number of cusps of Γ0(N). Let Aj (1 ≤ j ≤ 2e)
be matrices in SL(2,Z) such that the Aj∞ represent the cusps of Γ0(N). If φ is a
Jacobi form in J2,1(N) the singular part2 of the Fourier development of φ at Aj∞
equals cj

∑
s∈Z q

s2ζ2s for some constant cj . Clearly φ is a cusp form if cj = 0 for
all j. Therefore the co-dimension of the subspace of cusp forms is less or equal
to 2e. However,

∑
A φ|2,1A, where A runs through a set of representatives for

Γ0(p)\ SL(2,Z), is an element of J2,1

(
SL(2,Z)

)
, and hence equals 0. If we take as

representatives the matrices AjT
k, where 1 ≤ j ≤ 2e and 0 ≤ k < wj for each j

with wj the cusp width of Aj∞, we obtain
∑
j wjcj = 0. Hence the co-dimension

in question is less or equal to 2e − 1. In the next section we shall construct 2e − 1
linearly independent non-cusp forms (see the remark after Theorem 3.7). This
proves the proposition. �

We need the Hecke operators T (l) on J2,1

(
N
)
, where l runs through the primes

which do not divide N . These are defined as in [EZ85, §4, eq. (3)], however,
with Γ1\M2(Z) replaced by the right cosets modulo Γ0(N) of the subset of all
matrices

[
a b
c d

]
in M2(Z) where N divides c. Since the cosets whose determinant is

l2 (and relatively prime to N) are in both cases represented by the same collection of

matrices (namely, the matrices
[
l2/d b

0 d

]
with d running through the positive divisors

of l2 and 0 ≤ b < d), [EZ85, Theorem 4.5] and its proof remain literally valid for
positive integers l relatively prime to N . In particular, we have for any prime l not
dividing N and any φ in J2,1(N) the formula

Proposition 2.2. For any form φ in J2,1(N), we have

(7) CT (l)φ(D) = Cφ(l2D) +

(
−D
l

)
Cφ(D) + lCφ(D/l2).

We shall also need the following property of Hecke eigenforms.

Proposition 2.3. Let φ in J2,1(N) be a common eigenform of T (l) for all primes l,
which do not divide a given multiple M of N , and let T (l)φ = λ(l)φ. Then, for
any negative discriminant −D such that for no square of a prime l outside M the
number D/l2 is a discriminant, we have∑

n≥1
gcd(n,M)=1

Cφ(Dn2)

ns
= Cφ(D)

∏
l prime
l-M

1−
(−D
l

)
l−s

1− λ(l)l−s + l1−2s
.

Proof. The proof is a standard computation which can be found in a similar form
as needed here e.g. in [Shi73, Thm.1.9]. For the convenience of the reader we recall

2This is the part
∑
r2≡0 mod 4 Cφ(0) q

r2

4 ζr of the Fourier expansion of φ|k,mAj .
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it for our case. From (7) we obtain, for any prime l outside M and any n not
divisible by l,

λ(l)C(Dn2) = C(Dn2l2) +

(
−D
l

)
C(Dn2),

λ(l)C(Dn2l2m) = C(Dn2l2m+2) + lC(Dn2l2m−2) (m ≥ 1),

where we suppressed the index φ. Setting Fn(T ) =
∑
m≥0 C(Dn2l2m)xm we deduce

from the preceding identities

λ(l)Fn(T ) =
(
Fn(T )− C(Dn2)

)
/x+

(
−D
l

)
C(Dn2) + lTFn(T ),

in other words

Fn(x) = C(Dn2)
1−

(−D
l

)
T

1− λ(l)T + lT 2
.

But ∑
n≥1

gcd(n,M)=1

C(Dn2)n−s =
∑
n≥1

gcd(n,Ml)=1

Fn(l−s)n−s,

and therefore∑
n≥1

gcd(n,M)=1

C(Dn2)n−s =
( ∑

n≥1
gcd(n,Ml)=1

C(Dn2)n−s
) 1−

(−D
l

)
T

1− λ(l)T + lT 2
.

Applying the same reasoning to the inner sum with an l′ - Ml instead of l and
repeating this again to the inner sum of the resulting identity and so forth we
obtain∑

n≥1
gcd(n,M)=1

C(Dn2)n−s =
( ∑

n≥1
gcd(n,Ml1···lm)=1

C(Dn2)n−s
) m∏
n=1

1−
(−D
ln

)
T

1− λ(ln)T + lnT 2

for any m, where l1, l2, . . . denote the primes outside N . Letting m tend to infinity
we obtain the claimed formula. �

As a consequence of the preceding proposition we obtain

Proposition 2.4. There is no non-zero cusp form in J2,1(N) which is a common
eigenfunction of all T (l) (l a prime, gcd(l, N) = 1) with eigenvalues l + 1.

Proof. Assume φ would be a nonzero cusp form in J2,1(N) which satisfies T (l)φ =
(l+ 1)φ for all primes l not dividing N . From Proposition 2.3 we deduce for every
negative discriminant −D such that −D/l2 is not a discriminant for any prime l
outside N ∑

n≥1
gcd(n,N)=1

Cφ(Dn2)

ns
= Cφ(D)

∏
l prime
l-N

(1−
(−D
l

)
l−s

(1− l−s)(1− l1−s)
.

The Dirichlet series D(s) on the left is the Rankin convolution of the elliptic cusp

forms h =
∑
N Cφ(N)qN and θ =

∑
n∈Z q

Dn2

of weights 3/2 and 1/2, respectively.
It is well-known that such a Rankin convolution possesses a continuation to a
meromorphic function on the complex plane which is holomorphic at s = 1. More
precisely, D(2s) multiplied by (4πD)−sΓ(s) equals (up to a constant) the integral∫
h(−τ)θ(τ)Es(τ)dxdyy2 , taken over a fundamental domain of Γ(4M) for a sufficiently

big M , where

Es = y3/2
∑

ys−1/2|1A,
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the sum being over all A in a set of representatives for 〈
[

1 M
0 1

]
〉\Γ(M), and y de-

noting the imaginary part of τ . The Eisenstein series Es(τ) possesses for each τ
a continuation to a meromorphic function in s on the complex plane, and is holo-
morphic at s = 1/2. For details we refer the reader e.g. to [Shi73, pp. 467–469] and
the list of references therein.

But the product on the right possesses an analytic continuation with a pole at
s = 1. It follows that Cφ(Dn2) = 0 for all n which are relatively prime to N .
But every negative discriminant −∆ can be written in the form −∆ = −D0f

2n2

with a fundamental discriminant −D0, a positive integer f containing only prime
factors of N and a positive integer n relatively prime to N . Applying the preceding
argument to D = D0f

2 shows that Cφ(∆) = 0. This shows that φ = 0, hence yields
a contradiction. �

3. The Eisenstein series in J2,1(N)

We say that a function φ defined on H × C (where H denotes the upper half
plane of complex numbers) transforms like a Jacobi form of weight k and index 1
on Γ if it satisfies Φ|k,mg = φ for all g in Γ and all g in Z2. Here the right action
(φ, g) 7→ φ|k,mg is as defined in [EZ85, §1, eqs. (2), (3)].

Theorem 3.1. Let

E∗2,1(τ, z) =
∑
n,r∈Z

H(4n− r2) qnζr + v−1/2
∑
r,f∈Z

r≡f mod 2

β(πvf2) q
r2−f2

4 ζr,

where

β(x) :=
1

16π

∫ ∞
1

u−3/2e−xu du (x ≥ 0).

Then E∗2,1 transforms like a Jacobi form of weight 2 and index 1 on SL(2,Z).

Proof. Set H :=
∑
D≥0H(D) qD. In [HZ76, Ch. 2, Thm. 2] it was shown that

F(τ) := H(τ) + v−1/2
∑
f∈Z

β(4πf2v) q−f
2

transforms under Γ0(4) like a modular form of weight 3/2. Setting

F0(τ) :=
1

4

∑
x mod 4

F(
τ + x

4
),

F1(τ) :=
1

4

∑
x mod 4

ixF(
τ + x

4
),

it follows

F0(τ + 1) = F0(τ), F0(−1
τ ) =

√
τ

3 1+i
2

(
F0(τ) + F1(τ)

)
,

F1(τ + 1) = −iF1(τ), F1(−1
τ ) =

√
τ

3 1+i
2

(
F0(τ)−F1(τ)

)
.

The identities on the left are obvious. For the two others note, first of all, that
F(τ) = F0(4τ) + F1(4τ). From F( w

4w+1 ) = (4w + 1)3/2F(w) we therefore deduce,

on writing 4w + 1 = τ (so that 4w
4w+1 = 1− 1

τ ), the identity

F0(−1
τ )− iF1(−1

τ ) =
√
τ

3(F0(τ) + iF1(τ)
)
.

Replacing τ by −1/τ shows that this identity also holds true if we replace on both
sides i by −i and multiply the right hand side by i. Summing up we have(

F0(−1
τ ),F1(−1

τ )
) [ 1 1
−i i

]
=
√
τ

3(F0,F1

) [1 i
i 1

]
,
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from which the claimed transformation laws become obvious.
As in [EZ85, Thm. 5.4, p. 64] it follows from the transformation laws for F0 and

F1 that

F0(τ)
( ∑

r∈Z
r≡0 mod 2

qr
2/4ζr

)
+ F1(τ)

( ∑
r∈Z

r≡1 mod 2

qr
2/4ζr

)
transforms like a Jacobi form of weight 2 and index 1 on SL(2,Z). But this function
is E∗2,1, which proves the proposition. �

The holomorphic part of E∗2,1 is an eigenform for all Hecke operators T (l) with
eigenvalues l+ 1. This statement is essentially equivalent to the following formula.

Proposition 3.2. For any negative discriminant −D, say D = D0F
2 with a fun-

damental discriminant −D0 and a perfect square F 2, and for any exact divisor f
of F , one has

H(D) = H(D/f2) γD0
(f) where γD0

(f) =
∑
d|f

µ(d)

(
−D0

d

)
σ1(f/d).

Proof. This is an easy consequence of the well-known formula

(8) h(D0f
2) =

h(D0)

[o1
× : of×]

f
∏
p|f

(
1−

(
−D0

p

)
1

p

)
,

where h(D0f
2) denotes the number of modulo SL(2,Z) inequivalent integral prim-

itive binary quadratic forms of discriminant −D0f
2, and of denotes the order of

conductor f of the field Q(
√
−D0). Indeed, obviously

H(D) =
∑
f |F

h(D0f
2)

card (of×) /2
,

and inserting (8) we obtain

H(D) =
h(D0)

card (o1
×) /2

∑
f |F

f
∏
p|f

(
1−

(
−D0

p

)
1

p

)
= H(D0) γD0

(F ).

Since γD0
(F ) is multiplicative in F this implies then also H(D0F

2/f2)γD0
(f) for

any exact divisor of F .
A complete proof of (8), relating the class groups of of and o1, can be found

in [Lan73, Ch. 8, §1, Thm. 7]. However, the formula is much older. Loc.cit. hints
to [Web08, §98] (in fact, it is (10) in §98 and (15) in §100). Some refer for (8)
to [Ded77, end of §9], who himself contributes the case of an imaginary quadratic
number field (as needed here) to [GWC86, Art. 256, V, VI]), where the historically
interested reader might try to find its origin. �

Corollary 3.3. For all negative discriminants and all primes l one has

H(l2D) +

(
−D
l

)
H(l) + lH(D/l2) = (l + 1)H(D)

(with the convention H(D/l2) if D/l2 is not a discriminant).

Proof. Write D = D0f
2 where f is a the maximal power of l whose square divides

D such that −D/f2 is still a discriminant. The claimed identity is then equivalent
to

γ(fl) +

(
−D
l

)
γ(l) + lγ(f/l) = (l + 1)γ(f)

(where γ = γD0
and γ(l/f) = 0 if l - f), which can be quickly checked. �
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The proof of the following two lemmas is straightforward and we leave them to
the reader. (For the invariance of U(p)φ under Γ0(p) in the first lemma one needs

that, for any A =
[
a b
c d

]
in Γo(p), one has

[
1/p x/p

p

]
A =

[ cx+a B/p2

p2c −cy+d

][
1/p y/p

p

]
,

where B = −(cx + a)y + (dx + b) and y is the integer modulo p2 such that y ≡
dx+b
cx+a mod p2, and that the map ξ 7→ dξ+b

cξ+a defines a bijection of Z/p2Z onto itself.)

Lemma 3.4. Suppose that φ is a function defined on H×C which transforms like
a Jacobi form of weight 2 and index 1 on Γ0(N). Then, for any prime p,

U(p)φ :=
1

p

∑
µ mod p

∑
x mod p2

φ|2,1
(

1
p

[ 1 x
p2

])
[0, µ]

transforms like a Jacobi form of weight 2 and index 1 on Γ0(Np). For every negative
discriminant −D ≤ 0, one has

(9) CU(p)φ(D) = Cφ(p2D).

Lemma 3.5. For any prime p, one has

U(p)E∗2,1 =
∑
n,r∈Z

H
(
p2(4n− r2)

)
qnζr + pR,

where R is the second term on the right of the defining equation of E∗2,1 (in Theo-
rem 3.1).

Using these two lemmas it is now obvious how to construct from E∗2,1 a holo-
morphic Jacobi form in Γ0(p).

Lemma 3.6. For any prime p, the function

E2,1,p := U(p)E∗2,1 − pE∗2,1
defines a Jacobi form in J2,1(p). Its n, rth Fourier coefficient equals the quantity

H(p)(4n− r2) defined in (2).

Proof. From Lemma 3.4 we see that E2,1,p transforms like a Jacobi form in J2,1(p),
and from Lemma 3.5 we see that E2,1,p(τ, z) is holomorphic in τ and z, and also
holomorphic at infinity.

We also need to show that E2,1,p is also holomorphic at the cusp 0. For this

note that the matrices
[ 1 x

p2

][ −1
1

]
(0 ≤ x < p2) represent the same cosets in

SL(2,Z)\M2(Z) as the set C of matrices
[ 1 x1

p2

]
,
[ p x2

p

]
,
[
p2

1

]
, where x1 and x2

run through representatives for the primitive residue classes modulo p2 and p, re-
spectively. Therefore

(
U(p)E∗2,1

)
|2,1
[

0 −1
1 0

]
= V (p)Q + V (p)R, where Q and R

denote the first and the second sum on the right of the defining equation of E∗2,1
(Theorem 3.1), and where V (p) denotes the operator

V (p)φ =
1

p

∑
µ mod p

∑
M∈C

φ|2,1( 1
pM)[µ, 0].

One verifies that V (p)Q has a Fourier development in terms of qnζr with 4n ≥ r2,
and that V (p)R = pR, which implies the claimed holomorphicity at 0.

A simple calculation shows that its n, rth Fourier coefficient equals H(p2D) −
pH(D), where D = 4n− r2. But this equals H(p)(D), as follows immediately from
the formula in Proposition 3.2. �

Theorem 3.7. For any squarefree positive integer N > 1, the series

E2,1,N :=
∑
n,r∈Z

H(N)(4n− r2) qnζr
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defines a Jacobi form in J2,1(N), which is a Hecke eigenform for T (l) with eigen-
value l + 1 for any prime l - N .

Remark. Let e be the number of primes in N . The 2e− 1 series E2,1,t (t | N, t > 1)
are linearly independent as follows from the fact that the Dth Fourier coefficient
of E2,1,t is zero if and only if

(−D0

p

)
= 1 for all primes p | t, where −D0 is the

fundamental discriminant which equals −D up to a perfect square. We define the
subspace JEis

2,1 (N) of Eisenstein series in J2,1(N) as the subspace of J2,1(N) spanned
by these series. Since every Eisenstein series is a Hecke eigenform with eigenvalue
l + 1 under T (l) we deduce from Proposition 2.4 that JEis

2,1 (N) does not contain

any cusp form. Since the co-dimension of the subspace J
(cusp
2,1 (N) of cusp forms in

J2,1(N) equals 2e − 1 (Proposition 2.1) we conclude

(10) J2,1(N) = JEis
2,1 (N)⊕ Jcusp

2,1 (N).

Proof of Theorem 3.7. Indeed, E2,1,N =
∏
p|N (U(p)− p) E∗2,1 as follows from the

formula γD0
(fp) − pγD0

(f) =
(

1−
(−D0

p

))
(valid for any p-power f and any dis-

criminant −D0). The first statement is therefore a consequence of Lemmas 3.4
and 3.5. Since T (l) and U(p) obviously commute for l 6= p, we read off T (l)E2,1,N =
(l + 1)E2,1,N from Corollary 3.3. �

4. The theta functions θO

In this section N is a squarefree positive integer with an odd number of prime
factors, and QN the quaternion algebra over Q which is ramified exactly at the
primes dividing N and at infinity. For a given quaternion algebra Q over Q, we use
t(x), n(x) and x = t(x)− x for the reduced trace, reduced norm and the conjugate
of an element x of Q. Thus n(x) = xx and t(xx) = 2 n(x).

Proposition 4.1. For any maximal order O of QN , the series θO in (1) defines a
Jacobi form in J2,1(N).

Proof. The Z-module O becomes an even integral positive definite lattice of level N
and determinant N2, when equipped with the bilinear form (x, y) 7→ t(xy).

Though this is an old and well-known result, we do not have any reference.
It can be easily proven though. For this observe that the discriminant module
DiscO (which is the quotient of the dual of O with respect to the bilinear form
(x, y) 7→ t(xy) modulo O equipped with the induced quadratic form n which maps
x + O to n(x) + Z ∈ Q/Z) has order equal to the determinant of the lattice O,
and its level (i.e. the smallest positive integer ` such that `n = 0) equals the level
of the lattice O. But the discriminant module decomposes as direct sum of the
discriminant modules DiscZp⊗O (where we view Qp/Zp as subgroup of Q/Z via the
natural map. Finally, DiscZp⊗O = 0 if p - N , i.e. if Zp⊗O ≈ M2(Zp), and DiscZp⊗O
has order p2 and level p if p | N . Indeed, for p | N we have Qp ⊗QN =

(
a,p
Qp

)
with(

a
p

)
= −1 (see Section 6 for the notations) and the unique maximal order of Qp⊗QN

is o + jo with o = Zp + iZp for odd p and o = Z2 + Z2
1+i
2 for p = 2. Therefore

DiscZp⊗O equals the discriminant module of the ring of integers in Qp(
√
a) equipped

with the bilinear form (x, y) 7→ p tK/Qp(xy), which implies the claim.
The series

θO =
∑
x∈O

qn(x)ζt(x)

is the Jacobi theta series associated to the lattice O, and defines therefore a Jacobi
form in J2,1(N) [Klo46, Thm. 1]. (It is somewhat cumbersome to deduce the fact
that θO is invariant under Γ0(N) from the given reference, and the reader might
find it more convenient to use instead [Eic66, App. to Ch. 1, §3, 3., pp. 48].) �
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Lemma 4.2. Let x be an integral element of the (not necessarily definite) quater-
nion algebra Q over Q, let −D = t(x)2−4 n(x), and p a prime at which Q ramifies.
Then

(−D
p

)
6= +1.

Proof. Indeed,
(−D
p

)
= +1 would imply that −D = a2 for an a in Zp. (Note

that −D is a discriminant, so that, for p = 2, the assumption
(−D
p

)
= +1 implies

−D ≡ +1 mod 8). With such an a we would have a2 = t(x)2 − 4 n(x), in other
words n(a − t(x) + 2x) = 0. But a − t(x) + 2x 6= 0 (since t(x)2 6= 4 n(x)) in
contradiction to the assumption that Qp ⊗Q is a skewfield. �

As an immediate consequence we obtain the following.

Proposition 4.3. For any maximal order O of QN the series θO is an element of
the subspace S(N) of J2,1(N) of forms φ such that, for every negative discriminant

−D, one has CθOr(D) = 0 unless
(−D
p

)
6= 1 for all primes p dividing N .

The subspace T(N) of S(N) generated by the theta functions θO, where O
runs through the maximal orders in Q is invariant under all Hecke operators as
we shall see in a moment. Note that θO depends only on the Q×-conjugacy class
of θO. In particular, the dimension of T(N) is bounded to above by the type
number tN of Q. For N equal to a prime p its precise dimension can be deduced
from [Gro87, Cor. 13.6], the first instance where the dimension is smaller than tp
being p = 389 [Gro87, p. 181].

Theorem 4.4. Let O be a maximal order of the definite quaternion algebra Q
over Q, and let l be a prime at which Q does not ramify. Then

T (l)θO =
∑
O′ 6=O
lO′⊆O

θO′ ,

where the sum is over all maximal orders O′ 6= O of Q such that lO′ ⊆ O.

The number of maximal orders O′ 6= O of Q such that lO′ ⊆ O is finite. In fact,
it equals l + 1 (see Prop. 6.3 below). For the special case of a definite quaternion
algebra ramified at only one prime number q a formula for the action of T (l) (l 6= q)
on the θO is given (in terms of Brandt matrices) in [Kra86, Part I, §2, Satz 2]. It
is not difficult to show that both formulas coincide in this case.

Proof of Theorem 4.4. We have, for any negative discriminant −D, that

CT (l)θO (D) = cO(l2n, lr) +

(
−D
l

)
cO(n, r) + lcO(n/l2, r/l),

where r and n is any solution of D := 4n− r2 ≥ 0. If −D/l2 is a discriminant we
assume that n and r are chosen so that l2 | n and l | r, and we set cO(n/l2, r/l) = 0
otherwise. We have obviously cO(n/l2, r/l) = clO(n, r). Moreover, cO(l2n, lr) =
cO(l)(n, r), where

O(l) := {x ∈ Q : x integral and lx ∈ O} .

Therefore we have to prove

cO(l)(n, r) =
∑
O′ 6=O
lO′⊆O

cO′(n, r)−
(
−D
l

)
cO(n, r)− lclO(n, r).

For this we need to study O(l). By Proposition 6.4 (1) below we know that
O(l) is the union of all maximal orders O′ such that lO′ is contained in O. From
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Prop. 6.3 (1) and (4) (in Section 6) we deduce

O(l) = O t
⊔

lO′⊆O

[
O′ \ (O′ ∩ O)],

where t stands for disjoint union, and where O′ runs over all maximal orders such
that lO′ is contained in O. As a consequence we have

cO(l)(n, r) =
∑
lO′⊆O

cO′(n, r)−
∑
O′ 6=O
lO′⊆O

cO′∩O(n, r).

Let S denote the second sum on the right.
For analyzing S, let for an x in O satisfying x2 + xr + n = 0, denote ν(x)

the number of O′ 6= O in the sum defining S such that O′ contains x, so that
S =

∑
x ν(x). The formula for ν(x) from Proposition 6.4 (2) implies S = cO(n, r)+(−D

l

)
cO(n, r)+ lclO(n, r) (note that

(−D
l

)
6= 0, i.e. l - r2−4n, implies clO(n, r) = 0).

This proves the theorem. �

The group Q×/Q× acts on Q via conjugation. By Skolem-Noether’s theorem
(e.g. [Vig80, Ch. 1, §2, Thm. 2.1]) this action yields an isomorphism of Q×/Q×
with the group of automorphisms of Q. We see in particular that the group Aut(O)
of ring automorphisms of an order O of Q equals {xQ× ∈ Q×/Q× : xOx−1 = O}.
Since conjugation leaves the reduced norm invariant we also recognize that Aut(O),
as group of isometries of the lattice O with respect to the norm form, is finite if Q
is definite.

Proposition 4.5. Let Q be a definite quaternion algebra over Q, let Oµ (µ =
1, 2, . . . , t) be a complete set of representatives for the maximal orders of Q mod-
ulo Q×-conjugation. Then

ΘQ :=

t∑
µ=1

1

card (Aut(Oµ))
θOµ ,

is a eigenform in J2,1(N) for each T (l) with eigenvalue l+ 1, where l is a prime at
which Q does not ramify.

Proof. Fix a prime l at which Q does not ramify. For each Oµ let Iµ,ν the set of
integral Oµ left ideals of norm l whose right order is Q×-conjugate to Oν , and let
iµ,ν = card (Iµ,ν). Then T (l)θOµ =

∑
ν iµ,νθOν by Prop. 6.3 (2). By (1) of the

same lemma, we know
∑
ν iµ,ν = l + 1 for every µ. In other words, Me = (l + 1)e,

where M = (iµ,ν)µ,ν and e denotes the column vector of length h whose entries are

all 1.
We want to determine the left-eigenvector of M for the eigenvalue l+ 1. For this

let

aµ = card
(
{x ∈ Q× : xOµ = Oµx}/Q×

)
= card (Aut(Oµ)) ,

and let A be the diagonal matrix with 1/a1, 1/a2, . . . as diagonal elements. We
shall show in a moment that AMA−1 = M ′ (where ′ denotes transposition).

From this and Me = (l + 1)e and we deduce (l + 1)e′ = e′M ′ = e′AMA−1,
i.e. that e′A is left eigenvector of M with eigenvalue l + 1. This implies then that∑
µ

1
aµ
θOµ is indeed eigenvector of T (l) with eigenvalue l + 1.

For proving MA−1 = A−1M ′, i.e. iµ,νaν = iν,µaµ, let Ĩµ,ν , for every µ, ν, denote
the set of pairs (a, x), where a is in Iµ,ν and x in Q such that xOνx−1 is the right

order of a. Note that card
(
Ĩµ,ν

)
= iµ,νaν . We need therefore bijections between

Ĩµ,ν and Ĩν,µ.



COUNTING ZEROS IN QUATERNION ALGEBRAS USING JACOBI FORMS 13

For each µ, ν, a bijection αµ,ν : Ĩµ,ν → Ĩν,µ is given by the application (a, x) 7→
(x−1la−1x, x−1), respectively. Note that x−1la−1x is indeed integral, i.e. b :=
la−1 ⊆ O′ := xOµx−1, since lO ⊂ a (see the beginning of the proof of Prop. 6.3),
hence b ⊆ O, so that bb ⊂ b which implies that b is part of the left order O′ of
b. These maps are bijective since αµ,ν and αν,µ are inverse to each other. This
concludes the proof of the proposition. �

5. Proof of the main theorem

If the space J2,1(N) is one dimensional, we obtain directly from the fact that
ΘQ = ΘQN and E2,1,N are elements of J2,1(N) (Proposition 4.1 and Theorem 3.7),
i.e. without any reference to Hecke theory, that ΘQ and E2,1,N are equal up to
multiplication by a constant. Note that J2,1(N) is one dimensional if and only if
N is in {2, 3, 5, 7, 13} as follows from the dimension formulas in [Sko06, Thm. 3].
As we saw in Section 1 these are the primes where the class number and the type
number of QN coincide. In other words, J2,1(N) is one dimensional if and only if
QN contains only one maximal order, say, O, up to Q×N -conjugacy. If the reader
likes he can check directly without invocation of Eichler’s mass formula that the
number 2/ card (O×) equals H(N)(0) = (N − 1)/12. (One can use e.g. [S+13] to
obtain a bases for O and to find the units).

In the general case we know that ΘQN is a eigenform for T (l) with eigenvalue
l + 1 for all l - N (Prop. 4.5) and hence, by the decomposition (10) the sum of
an Eisenstein series plus a cusp form which is eigenform for T (l) with eigenvalue
l + 1 for all l - N . But the latter must be 0 by Prop. 2.4. It follows that ΘQN

is an Eisenstein series. By Prop. 4.3 it is a member of the subspace S(N). We
show in a moment that E2,1,N is the only Eisenstein series in S(N). Therefore
ΘQN is a multiple of E2,1,N , and comparing the constant terms of their Fourier
development proves the theorem. So let E :=

∑
t|N, 1<t<N c(t)E2,1,t be a member

of S(N). Note that CE(D) = 0 for any D such that
(−D
p

)
= +1 for some p | N .

For a given prime q | N choose a discriminant −D < 0 such that
(−D
q

)
= −1

and
(−D
p

)
= +1 for all p | N , p 6= q. Then 0 = CE(D) = c(q)H(q)(D), whence

c(q) = 0. Next, for a given pair of primes q 6= r dividing N , choose a discriminant
−D < 0 such that

(−D
q

)
=
(−D
r

)
= −1 and

(−D
p

)
= +1 for all p | N , p 6= q, r.

Again 0 = CE(D) = c(qr)H(qr)(D), whence c(qr) = 0. Continuing in this way we
eventually find c(t) = 0 for all t. This completes the proof of the theorem.

6. Appendix: Some lemmas on quaternion algebras

In this section we recall briefly the basics of the theory of quaternion algebras
over Q, and we prove some facts concerning the arithmetic in quaternion algebras
which we needed for the proof of Theorem 4.4.

For a given field F of characteristic 0 and elements a, b in F×, we use
(
a,b
F

)
for

the F -algebra which possesses a basis 1, i, j, k = ij = −ji with i2 = a and j2 = b.
These are the quaternion algebras over F . For the field of p-adic numbers Qp or of
real numbers Q∞, there are up to isomorphism only two such equivalence classes,
namely the class of the algebra M2(Qp) of 2 × 2-matrices over Qp, and the class
containing the skew-fields [Vig80, Ch.I, Cor. 2.4, Ch.II, Thm. 1.1]. If one identifies

these classes with +1 and −1, respectively, then the class of
(
a,b
Qp

)
is the usual p-adic

Hilbert symbol (a, b)p [Vig80, Ch.II, Cor. 1.2]. In the case of a quaternion algebra

over Q the algebras
(
a,b
Q
)

and
(
a′,b′

Q
)

are isomorphic if and only if (a, b)p = (a′, b′)p
for all p (including ∞) [Vig80, Ch.III, Thm. 3.1]. A quaternion algebra Q over Q
ramifies at p if Qp⊗Q is a skew-field. If it ramifies at∞ it is called definite. By what
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we have said, Q ramifies only at finitely many primes; in fact, this number is always
even (by the product formula for the p-adic Hilbert symbols). Vice versa, given a
set R of an even number of primes, we can find a, b in Q× such that (a, b)p = −1

exactly for p in S, and then
(
a,b
Q
)

is a (up to isomorphism, the) quaternion algebra

which ramifies exactly at the primes in R.
For any element a of quaternion algebra Q, we can consider its characteristic

polynomial x2 − tx + n = 0 when we view a as endomorphism of the Q-vector
space Q via left multiplication. The numbers t and n are called the reduced trace
t(a) and reduced norm n(a) of a. The map a 7→ a := a − t(a) defines an anti-
involution of Q. Obviously, t(a) = a+ a and n(a) = a · a.

Assume that F is Q or Qp with finite p and Q a quaternion algebra over F .
An element a is called integral if t(a) and n(a) are integral. A maximal order is a
maximal subring of Q consisting of integral elements only. In the algebra M2(Qp)
the maximal orders are the rings xM2(Zp)x−1 (n(x) = det(x) 6= 0), and if Q is
a skew-field over Qp the integral elements form an order, and so Q has only one
maximal order in this case. If F = Q the number of maximal orders of Q modulo
conjugation with elements from Q× is finite [Vig80, Ch.III, Cor. 5.4]. This is the
type number of Q.

A fractional ideal a of Q is a submodule of rank 4 over the ring of integers of F
such that its left order {a ∈ Q : aa ⊆ a} and its right order {a ∈ Q : aa ⊆ a} are
maximal orders. (If one of both is maximal the other is too [Vig80, p. 86]). An
ideal is called integral if it is contained in its left order (it is then also contained
in its right order and vice versa [Vig80, Ch. I, Lemme 4.3 (2)]). The fractional
ideals form a groupoid: If the right order of a equals the left order of b then ab
(the module of finite sums

∑
ajbj with aj in a and bj in b) is again a fractional

ideal, and a−1 := {x ∈ Q : axa ⊆ a} is a fractional ideal and aa−1 and a−1a equals
the left and right order of a, respectively. Let O be a maximal order of Q. For
F = Qp all O-left ideals are principal, i.e. of the form Ox (x ∈ Q×). For F = Q the
number of O-left ideals modulo multiplication with elements of Q× from the right
is finite [Vig80, Ch.III, Thm. 5.4]. This number does not depend on the choice of O
and is the class number of Q.

The norm n(a) of a fractional ideal is defined as the fractional ideal in F generated
by the reduced norms of the elements of a. The norm is multiplicative [Vig80, p.24]).
Moreover, the norm function on integral ideals is strictly decreasing. This means
that for any two integral O-left-ideals a, b the inclusion a ( b implies n(b) | n(a),
n(b) 6= n(a) (as follows e.g. from [Vig80, Ch. I, §4, Lemme 4.4]).

LetQ be a quaternion algebra andX a fixed lattice ofQ (i.e. a Z-module of rank 4
in Q). The Z-lattices L in Q are in one to one correspondence with the families
{Lp}p (p a prime number) of Zp-lattices Lp in Qp ⊗Q Q such that Lp = Zp ⊗ X
for almost all p. The correspondence is given by L 7→ {Zp ⊗Z L}p in one and
{Lp} 7→

⋂
p (Q ∩ Lp) in the other direction [Vig80, Ch. III, §5, Thm. 5.1]. Under

this correspondence maximal orders correspond to maximal orders and fractional
ideals to fractional ideals. In particular, one has for any fractional ideal a of Q, a =⋂
p Z(p)⊗a, the indices taken over all prime numbers, where Z(p) is the localization

of Z at p (the ring of rational numbers whose denominator in shortest terms is not
divisible by p).

Proposition 6.1. Let O be a maximal order of the definite quaternion algebra Q.
Then

card (Aut(O)) =
2e card (O×)

2m(O)
,

where m(O) denotes the number of O-left ideal classes containing a two-sided ideal,
and where e denotes the number of primes at which Q ramifies.
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Lemma 6.2. Let the notations be as in the preceding proposition.

(1) The number of two-sided O-ideals modulo multiplication by Q× equals 2e.
(2) The number of two-sided principal O-ideals modulo multiplication by Q×

equals 2e/m(O).

Proof. For (1) we use that the group I(O) of two-sided ideals of O is generated
by the ideals with norm p, were p runs through the set R of primes at which Q
is ramified, and the subgroup of ideals Oq where q is in Q× [Vig80, p. 86]. The

norm map induces therefore an injection I(O)/Q× → Q×/Q×2
whose image is the

subgroup generated by the classes pQ×2
(p ∈ R).

For (2) let P(O) denote the group of two-sided ideals of O. It is clear that

m(O) = card (I(O)/P(O)) =
card (I(O)/Q×)

card (P(O)/Q×)

(For the first equality note that, for any two-sided ideals a and b, one has a = bx
for some x in Q× if and only if Ox is two-sided.) The claimed formula follows now
from (1). �

Proof of Proposition 6.1. Note, first of all, that x 7→ Ox induces a surjective ho-
momorphism Aut(O)→ P(O)/Q×, where P(O) is the group of nonzero two-sided
principal ideals of O. The kernel of this map equals O×Q×/Q× ∼= O×/{±1}.
Therefore

card (Aut(O)) =
1

2
card

(
O×
)
· card

(
P(O)/Q×

)
.

The claimed formula follows now with Lemma 6.2 (2). �

Proposition 6.3. Let Q be a (not necessarily definite) quaternion algebra over Q,
let O be a any maximal order of Q′ and l a prime at which Q does not ramify.

(1) O possesses exactly l + 1 integral ideals of norm l.
(2) The application a 7→ right order of a defines a bijection between the integral
O-left ideals of norm l and the maximal orders O′ 6= O such that lO′ ⊆ O.

(3) For a maximal order O′ the inclusions lO′ ⊆ O and lO ⊆ O′ are equivalent.
(4) For any two different right orders O′ and O′′ with lO′, lO′′ ⊆ O one has
O′ ∩ O′′ ⊆ O.

Proof. We show, first of all, that an integral O left-ideal a has norm l if and only
if lO ( a ( O. Indeed, let a be integral with norm l. As ideal a contains with
an element x also n(x) = x(2 t(x)− x), and therefore also the gcd of the norms of
its elements, i.e. l. The inequalities hold true since lO and O have norm l2 and 1,
respectively. The inverse implication follows from the fact that the norm function
on integral O-left ideals is strictly decreasing.

For (1) we note that O/lO is isomorphic to M2(Fl) (since it is isomorphic to
(Zl ⊗ O)/l(Zl ⊗ O) and Zl ⊗ O is isomorphic to M2(Zl)), and so the proper left-
ideals of O containing but not equal to lO are in one to one correspondence with the
proper left ideals of M2(Zl). These in turn are the ideals M2(Fl)R, where R runs
through a complete set of representatives for the l+ 1 cosets in GL(2,Fl)\M2(Fl)0

different from {0}, where M2(Fl)0 denotes the set of matrices in M2(Fl) with deter-
minant 0. Note that M2(Fl)0 is the only proper two-sided ideal of M2(Fl), so that,
in particular, none of the left-ideals M2(Fl)R is two-sided.

For (2) let a be an integral O-left ideal of norm l. Then the right-order of a
is maximal (since its left-order is maximal [Vig80, p. 86]). Since l ∈ a we have
lO′ ⊆ aO′ ⊆ a ⊆ O. We have O′ 6= O since a/lO is not a two-sided ideal of O/lO
as we saw in the preceding paragraph.

The application is surjective. Namely, if lO′ ⊆ O for a maximal O′ 6= O then
a := lOO′ is an O left-ideal which has O′ as its right-order and contains l. Clearly,



16 HATİCE BOYLAN, NILS-PETER SKORUPPA, AND HAIGANG ZHOU

a ⊆ O, and a 6= O (since lOO′ = O would imply that O and O′ are both right-
orders of a, both in contradiction to the assumption O′ 6= O and their maximality
as orders). Also lO 6= a since lO = lOO′ would imply lO ⊇ lO′ in contradiction
with the maximality of O′ 6= O. Hence a has norm l.

Finally, the application is injective. If a is an integral O left-ideal of norm l
having right order O′, then lO ( lOO′ ⊆ a, the latter inclusion being true since
lO ⊆ a, and the former inequality being true since lO = lOO′ would imply that
O and O′ were both right orders of lOO′, and hence by maximality were equal. It
follows a = lOO′.

For (3) let O′ be a maximal order with lO′ ⊆ O. Let a be the O-left ideal
with right order O′. But then la−1 is an integral O′-left ideal of norm l with right
order O, and hence lO ⊆ O′. Exchanging the roles of O and O′ in the preceding
argument, we see that inversely lO ⊆ O′ implies lO′ ⊆ O.

For (4) we can suppose that O′ and O′′ are both different from O. Let a and b
be the O-left-ideals with right-orders O′ and O′′, respectively. Both ideals are
different, so that lO ⊆ a ∩ b ( a, and hence a ∩ b = lO. Since a ∩ b is invariant
under right-multiplication by O′ ∩O′′, so is then O. In particular, 1 · O′ ∩O′′ ⊆ O,
which is the claim. �

Proposition 6.4. Let O be an order of the (not necessarily definite) quaternion
algebra Q and l a prime at which Q does not ramify.

(1) One has {x ∈ Q : x integral and lx ∈ O} =
⋃
lO′⊆OO′ .

(2) For a given x in O with trace r and norm n the number ν(x) of maximal
orders O′ 6= O with lO′ ⊆ O containing x equals

ν(x) =

{
1 +

(−D
l

)
if x 6∈ lO,

1 + l if x ∈ lO,

where −D = r2 = 4n.

Proof. We use O for the set of maximal ordersO′ such that lO′ ⊆ O. For a primem,
let Z(m) denote the localization of Z at m (i.e. the ring of rational numbers whose
denominator in lowest terms does not contain m). If m 6= l then Z(m) ⊗ O′ =
Z(m) ⊗O for all O′ in O since l is invertible in Z(m).

If m = l then Ql ⊗ Q is isomorphic to the algebra M2(Ql) of 2 × 2-matrices
with entries from Ql. The reduced trace and norm are the usual determinant and
trace of matrices. The subring o := M2(Zl) of 2× 2-matrices with entries from Zl
is a maximal order, and every maximal order is conjugate to o. The left-ideals of
norm l are oρ, where ρ runs through a set of representatives R for SL(2,Zl)\ol and
ol denotes the set of elements in o of determinant l. For R one can take the set of
l + 1 matrices

[
1 u
0 l

]
with u running through a complete set of residues modulo l,

and
[
l 0
0 1

]
. The right order of oρ is ρ−1oρ. Since lρ−1 has entries in Zl we see that

lρ−1oρ ⊆ o. (For a proof of these facts see [Vig80, Chap. II, §2, Thm. 2.3].)
For proving (1) let x be an integral element in Q such that lx is in O. Clearly, x

is in Z(m)⊗O = Z(m)⊗O′ for all O′ in O and all primes m 6= l. Fix an isomorphism
of Ql-algebras Ql ⊗Q ≈ M2(Ql) which takes Zl ⊗O onto o, and let ξ be the image
of x under this isomorphism. Then ξ has trace and determinant in Zl and lξ is
in o. If ξ is not in o we can find a ρ in R such that ρξρ−1 is in o (i.e. ξ is in ρ−1oρ).
Namely, let lξ =

[
a b
c d

]
, so that r := a+ d ≡ 0 mod l and n := ad− bc ≡ 0 mod l2.

If c is divisible by l2 we can choose ρ in SL(2,Z)
[
l 0
0 1

]
. If l is exact divisor of c then

l divides also a, d, b (as follows from l | r and l2 | n), and hence ξ is in o. If c is not
divisible by l we choose ρ in SL(2,Z)

[
1 u
0 l

]
with a u such that

(11)
[

1 u
0 l

][
a b
c d

][ 1 −u/l
0 1/l

]
=
[
a+uc X/l
lc d−uc

]
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has entries in lZl. Since

X = −cu2 + (d− a)u+ b = −c
(
u− d− a

2c

)2

+
r2 − 4n

4c
,

so that we can take u ≡ d−a
2c mod l for odd l and u ≡ d/c mod 4 if l = 2.

We conclude that x is in one of the orders Zl ⊗ O′ for a suitable O′ in O, and
since it is also in Q we conclude that x is in fact contained in Z(l) ⊗ O′. As we
saw x is also contained in Z(m) ⊗ O′ for all m 6= l. But the intersection of all
Z(m) ⊗O′ equals O′, which proves that x is in O′, i.e. in the right hand side of the
claimed identity in (1). That the right hand side of this identity is contained in O
is obvious.

For (2) let again x in O and ξ =
[
a b
c d

]
in o the image of x as before. We want to

count the number ν(x) of O′ in O, O′ 6= O, such that x is in O′, or, equivalently,
such that x is in Z(m)⊗O′ for all primes m. Since Z(m)⊗O′ = Z(m)⊗O we see that

ν(x) equals the number of ρ in R such that ξ is contained in ρ−1oρ, i.e. such that
ρxρ−1 is in o. In view of (11) this number equals l + 1 if ξ is in lo, and otherwise

1 +
(
r2−4n
l

)
(this is immediate if c is not divisible by l, but holds also for l | c,

the verification of which we leave to the reader). This completes the proof of the
lemma. �

7. Appendix: Tables and examples

For a squarefree integer N with an odd number of primes let QN denote the def-
inite quaternion algebra which ramifies exactly at the prime divisors of N . Its type
number equals 1 if and only if N is one of the nine values 2, 3, 5, 7, 13, 30, 42, 70, 78
as can be seen from Table 1. For a rigorous proof note that the type number t of

Table 1. Type and class numbers t and h of definite quaternion
algebras ramified at the prime divisors of a given integer N .

N h t N h t N h t N h t N h t

2 1 1 66 4 2 130 4 2 191 17 15 258 8 3
3 1 1 67 6 4 131 12 11 193 16 9 263 23 18
5 1 1 70 2 1 137 12 8 195 8 3 266 10 3
7 1 1 71 7 7 138 6 3 197 17 11 269 23 17

11 2 2 73 6 4 139 12 9 199 17 13 271 23 17
13 1 1 78 2 1 149 13 10 211 18 12 273 12 5
17 2 2 79 7 6 151 13 10 222 6 2 277 23 13
19 2 2 83 8 7 154 6 3 223 19 13 281 24 17
23 3 3 89 8 7 157 13 8 227 20 15 282 10 4
29 3 3 97 8 5 163 14 8 229 19 12 283 24 15
30 2 1 101 9 8 165 8 4 230 10 3 285 12 3
31 3 3 102 4 2 167 15 13 231 12 3 286 10 3
37 3 2 103 9 7 170 8 3 233 20 13 290 12 4
41 4 4 105 4 2 173 15 11 238 8 2 293 25 17
42 2 1 107 10 8 174 6 2 239 21 18 307 26 16
43 4 3 109 9 6 179 16 13 241 20 13 310 10 4
47 5 5 110 6 2 181 15 10 246 8 3 311 27 23
53 5 4 113 10 7 182 6 2 251 22 18 313 26 15
59 6 6 114 4 2 186 6 2 255 12 4 317 27 16
61 5 4 127 11 8 190 6 2 257 22 15 318 10 3

QN is greater or equal to h/2e, where h is the class number of QN and e the number
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of prime divisors of N , and that h/2e ≥ 1
12

∏
p|N

p−1
2 (cf. the formulas for h and t

in the second corollary to the main theorem). Therefore one has to check the table
only for those N such that νN :=

∏
p|N

p−1
2 ≤ 12, and an easy estimate shows that

this implies e ≤ 3 (since, for e ≥ 5, one has νN ≥ 2−1
2

3−1
2

5−1
2

7−1
2

11−1
2 = 15 > 12)

and that the largest prime divisor of N is obviously less or equal to 23, and then
N ≤ 2 · 7 · 17 = 238, which is the maximum of all integers which are primes or
products of 3 primes all of which are ≤ 23.

Table 2 lists the first Fourier coefficients H(N)(D) of the series 2
card(Aut(O)) θO

for those QN with type number one (where O is any maximal order of QN ).

Table 2. The first coefficients H(N)(D) for all definite quaternion
algebras with type number one.

D\N 2 3 5 7 13 30 42 70 78

0 1/12 1/6 1/3 1/2 1 2/3 1 2 2
3 2/3 1/3 2/3 0 0 4/3 0 0 0
4 1/2 1 0 1 0 0 2 0 0
7 0 2 2 1 2 0 0 0 0
8 1 0 2 2 2 0 0 4 0

11 2 0 0 2 2 0 0 0 0
12 2/3 4/3 8/3 0 0 4/3 0 0 0
15 0 2 2 4 4 0 0 0 0
16 1/2 3 0 3 0 0 2 0 0
19 2 2 0 0 2 0 0 0 8
20 2 0 2 0 4 0 0 0 0
23 0 0 6 6 0 0 0 0 0
24 2 2 0 0 4 0 0 0 4
27 8/3 1/3 8/3 0 0 4/3 0 0 0
28 0 4 4 2 4 0 0 0 0
31 0 6 0 0 6 0 0 0 0
32 1 0 6 6 6 0 0 4 0
35 4 0 2 2 0 0 0 4 0
36 5/2 1 0 5 0 0 2 0 0
39 0 4 0 8 4 0 0 0 0
40 2 4 2 0 0 4 0 0 0
43 2 2 2 2 0 8 8 8 0
44 2 0 0 8 8 0 0 0 0
47 0 0 10 0 10 0 0 0 0
48 2/3 10/3 20/3 0 0 4/3 0 0 0

We finally illustrate the main theorem by choosing an N such that QN has type
number 2. This ensures that the space spanned by the corresponding θO possesses
exactly one cusp form (if the space does not happen to be one-dimensional), which
has then rational Fourier coefficients and eigenvalues. This cups form is given by

SN =
1

2
(θO1

− θO2
) ,

where O1 and O2 are orders representing the two types of QN , respectively. Table 1
shows that QN has type number 2 exactly for each of the 16 values

11, 17, 19, 37, 66, 102, 105, 110, 114, 130, 174, 182, 186, 190, 222, 238.

We pick the first composite number, which is N = 66. The class number of Q66 is 4.
The two inequivalent maximal orders have groups of units of order 4 and 6. (Recall
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that the unit group of a maximal order in a definite quaternion algebra over Q
different from Q2 and Q3 is always isomorphic to the group of units of order 2, 4
or 6 [Hey29, p. 43]. Hence Eichler’s mass formula reads a+ b

2 + c
3 = 1

12

∏
p|N (p−1),

where a, b and c denote the number the right orders of a complete set of ideal classes
of a given order which have unit groups of order 2, 4 or 6, respectively. Thus, for
N = 66, we have a+ b+ c = 4 and a+ b

2 + c
3 = 5

3 , which has as only solution a = 0,
b = c = 2).

We can take Q66 =
(−1,−33

Q
)
, i.e. Q66 has a basis 1, i, j, k = ij = −ji with i2 = −1

and j2 = −33. Maximal orders are O4 which has 1, i, j, (1 + i+ j + k)/2 as Z-basis
and O×4 = 〈i〉, and the order O6 which has (5+ i+3j+13k)/10, (i+3j+13k)/5, j+
4k, 5k as Z-basis and O×6 = 〈t〉 with t = (5 + 3i − j − k)/10 as 6th root of unity.
Tables 3 and 4 list the first non-zero Fourier coefficients of E2,1,66 and S66 (recall

that the Dth coefficients of these forms are 0 if
(−D
p

)
= 1 for any p ∈ {2, 3, 11}).

The first Hecke eigenvalues λ(l) of S11 are λ(5) = −4, λ(7) = −2, λ(13) = 4,
λ(17) = −2, λ(19) = 0. These are the eigenvalues of the newform of weight 2 on
Γ0(66) whose L-series equals the L-series of the elliptic curve y2+xy = x3−45x+81.

Table 3. The first coefficients CE2,1,66
(D) of E2,1,66.

D C(D) D C(D) D C(D) D C(D) D C(D)

0 5/12 3 1/3 4 1/2 12 1/3 16 1/2
27 1/3 36 1/2 48 1/3 64 1/2 67 2
75 7/3 88 1 91 4 100 5/2 108 1/3

115 4 132 1 136 4 144 1/2 147 7/3
148 2 163 2 168 2 187 2 192 1/3
196 9/2 232 2 235 4 243 1/3 256 1/2
264 2 267 2 268 2 276 4 280 4
291 4 300 7/3 312 2 324 1/2 328 4
331 6 339 6 352 1 355 8 363 1/3
364 4 372 2 379 6 388 4 400 5/2

Table 4. The first coefficients CS66
(D) of S66.

D C(D) D C(D) D C(D) D C(D) D C(D)

3 −1 4 1 12 −1 16 1 27 −1
36 1 48 −1 64 1 67 4 75 3
88 −3 91 −2 100 −5 108 −1 115 −2

132 2 136 −2 144 1 147 3 148 4
163 −6 168 4 187 4 192 −1 196 −1
232 4 235 −2 243 −1 256 1 264 −1
267 −6 268 4 276 −2 280 −2 291 −2
300 3 312 −6 324 1 328 8 331 2
339 2 352 −3 355 6 363 −1 364 −2
372 −6 379 2 388 −2 400 −5 408 4
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