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Twisting of quantuIn (super)algebras.
Connection of Drinfeld '8 and Cartan-Weyl

realizations for quantuIn affine algebras

S.M. Khoroshkin*) and V.N. Tolstoy**}
Max-Planck Istitut .für Mathematik,

Bonn, Germany

Abstract

We show that some factors of the universal R-matrix generate a family of twist­
ings for a Hopf structure of any quantized eontragredient Lie (super)algebra of finite
growth. As an applieation we prove that any two isomorphie superalgebras with
the different Cartan matriees have isomorphie q-deformations (as assoeiative 811­

peralgebras) and their standard eomultiplieations are connected by such twisting.
We present also an explicit relation between the generators from second Drinfeld '8

realization and Cartan-Weyl generators of quantized affine nontwisted I(ac-Moody
algebras. We show that Drinfeld 'a formula of comultiplieation for the second realiza.­
tion is a twisting of standard comultiplication by a factor of the universal R-matrix.
Properties of the Drinfeld's eomultiplieation are discussed .

.) Permanent address: Institute ofNew Technologies, Kirovogradskaya 11, 113587, Moscow,
Russia.
..) Permanent address: Institute of Nuclear Physics, Moscow State UniversitYl 119899
Moscow, Russia.
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1 Introduction

A number of applications of quantum algebras is based on the fact that quantized en­
veloping algebras have nontrivial algebraic and coalgebraic structures as Hopf algebras.
In addition this gives a possibility to use for their study not only the auto1l1orphislTIS
of algebras but also the twistings of coalgebraic structure (which ean not to change the
structure of multiplication at all). More generally, the notion of twisting for quasi-Hopf
algebras was introduced and successfully applied in classification theorems by V. Drinfeld
[Dl]. N. Reshetikhin remarked [R] -that one can use, analogously to [Dl], a twO-tensor
F E Uq(g) ~ Uq(g) as a twisting operator and obtain as a result a new Hopf algebra
(without 'quasi' prefix) if F satisfies sorne natural conditions. He showed also that lTIulti­
parameter deformations of the quantum enveloping algebra Uq(g) of siluple Lie algebra 9
can be defined via twisting whieh depends on Cartan subalgebra of Uq(g). Such type of
twisting was used by Va. Soibelman [S] for quantization of Lie-Poisson structure in COlTI­

pact Lie groups. The other type of twisting was considered by B. Enriques [E]. He showed
that the usual (non-deformed) enveloping algebra U(g) of a simple Lie algebra 9 cau be
done noncocommutative by a twisting while the algebraic structure is not changed. Such
adeformation of coalgebraie seetor ean be also defined for some non-semisin1ple algebras.
For instance it was shown in [LNRT] that universal enveloping algebra of the classical
Poincare algebra admits a family of twistings of coalgebraie sector without changing of
algebraie seetoL

We consider here the twistings of quantized contragredient Lie (super)algebras offinite
growth. (These (super)algebras are q-analogs of ~l finite-dimensional simple Lie algebras,
classical superalgebras and of all infiriite-dimensional affine Kac-11oody (super)algebras).
All these quantum (super)algebras Uq(g) are quasitriagular, i.e. they have the universal
R-matrix. Explicit formula for the universal R-matrix looks like a product of factors over
positive root system of a Lie (super)algebra. We show that the faetors of the universal
R-matrix define a family of twistings for Uq(g) and demonstrate their connection with
twistings by means of Lusztig automorphisms [DeCK]. This is known in mathematical
folklore for Drinfeld-Jimbo deformations of simple finite-dimensional Lie algebras. In
other cases we prove as consequenees the following important results.

First we exhibit a connection between Drinfeld-Jimbo quantizations (see [KTl]) of two
isomorphie eontragredient Lie superalgebras 9 and g'. More precisely, we show that their
exists an isomorphism w : Uq(g') H- Uq(g) of algebras (a superanalog of Lusztig auto­
morphism [L], [DeCK]), and the standard comultiplications of Uq(g) and Uq(g') COllllllute
with w modulo twisting by corresponding factors of the universal R-matrix for Uq(g) 01'

Uq(g').

Next, we present a detailed study of the second Drinfeld's realization [D2] of quan­
tum affine algebra Uq(g) from viewpoints of Cartan-Weyl bases and of twistings. We
write down an explicit relation between generators from second Drinfeld's realization and
Cartan-Weyl generators for quantized affine nontwisted Kac-Moody algebl'as (see also
[DF] for gIn case). We show that Drinfeld's formula of comultiplieation for the second
realization is a twisting of the standard eomultiplication by a faetor of the universal R­
matrix. This twisting is eorrectly defined for appropriate completion of Uq(g) ® Uq(g)
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and corresponds to a "virtual" longest element Wo of affine q-Weyl group. The origin
one can see on quasiclassical level where Wo does not act on' the elements of Lie algebra
hut interchange Manin tripies which are responsible for two different quantizations of a
current algebra.

We discuss also the properties of natural comuItiplication in the second realization of
quantum affine algebras [D3). Unfortunately, this comuItiplication is still out of comillon
interest. We demonstrate the meaning of quasitriangularity conditions for this COlllUI­
tiplicatioll, present the universal R-matrix and show that for concrete representations
this universal R-matrix produces the solution of Yang-Baxter equation with entries being
generalized functions of spectral parameter.

The paper is organized as follows. In Section 2 we remind the definition of any quan­
tized finite-dimensional contragredient Lie (super)algebra 9 (or a quantum (super)algebra
Uq(g)) in terms of Chevalley generators and q-(super)commutator and also in tenns of
the adjoint action.

In Section 3 we present a procedure of tbe construction of the quantum Cartan-Weyl baBis
and define sorne extensions of Uq(g) and Uq(g) 0 Uq(g) which we need for the definition of
twistings and of the universal R-matrix. The explicit formula for the universal R-nlatrix
is presented in tbe Section 4.

In Section 5 we discuss at first sorne general properties of twistings for an arbitrary
Hopf (super)algebra, then we consider twistigs hy factors of the universal R-Inatrix. The
Sections 6-8 are devoted to the second Drinfeld 's realizatioD of quantized affine algebras.
In Appendices A,B one can find the details of the considerations for the case of Uq(;l2)'

2 Quantized Lie (super)algebras of finite growth

Let g(A, i) be any contragredient Lie (super)algebra of finite growth with synlnletriz­
ahle Cartan matrix A (A'vm = (a;r) is a corresponcling symmetrical matrix) and let
rr := {UI, ... ,ur} be a system of simple roots for g(A, T) I. The quantized (super)algebra
9 := g(A, T) is an unital associative (super)algebra Uq(g) with Cbevalley generators
e±cr;, k-;/ = q±ha

;, (i E I := {I, 2, ... ,r}), and the defining relations [T1,KT1,KT2)

(2.1 )

(2.2)

( -cl )n o +1 0a q,e±Oi ') e±Oj =

cleg(koJ = deg(e±cr) = Ö

deg(e±cri) = I

für i # j, q' = q, q-I ,

für i EI, j rt T ,

for i Eie I ,

(2.3)

(2.4)

IThese (super)algebras are aH finite-dimensionalsimple Lie (super)algebras and aH infinite-dimensional
affine Kac-Moody (super)algebras [Kl]
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where

{

0 if a~~m = a~J!m = 0.. ') ,
1 .f .l/m 0 .ym -1. 0

nij = 1 aii = ,aij ,. ,
.l/m .l/ffl • "l/m-2(a.. Ja.. ) If a·· -I. 0') u .. T •

Moreover, there are the following additional tripie relations [KTl]

(2.5)

for q' = q, q-I , (2.6)

if the three simple roots ai, Oj, 0'1 E II satisfy the condition

(2.7)

Here the bracket [".] is an usual supercommutator, ad q, and [', ']q denote a defonned
supercommutator (q-supercommutator) in Uq(g) :

(2.8)

where (0', ß) is a scalar product of the roots 0' and ß: (ai,O'j) = ati. In the fOrIllUla
(2.8) and below we use the short notation

fJ(1') := 8(e,.,) == deg( e-y) . (2.9)

Remarks. (i) The tripie relations (2.6) may appear only in supercase for the following
situation in the Dynkin diagram:

0'.
J

---0---
0'/

(2.10)

where aj is a grey root and the roots O'i and 0'1 are not connected and they can be of any
color: white, grey Of dark.

(ii) The outer q-supercommutator in (2.6) is actually a usual one since (O'i+O'j, O'j+at) = o.
(iii) The tripie relations have evident classical counterpart.

The quantum (super)algebra Uq(g) is a Hopf (super)algebra with respect to a COIlIUI­

tiplication ß q" an antipode Sq' and a counit e defined as

ß q,(ea ;) = eCl ; 0 1 + k:. ® eai ,

ß q,(e_a ;} = e_Clj ® k~~1 +1 ® e_aj ,

Sq,(k:J = k~~l ,

Sql(ea;} = -k~~·leai , Sq,(e_a ;} = -e-aik~i '

(2.11)

(2.12)

(2.13)

(2.14)

e(l) = 1 , (2.15)

4



where k~ = clha and cl may be chosen as cl = q or q' = q-I .

We may rewrite the defining relation by means of an adjoint action of Uq(g) on itself.
For this aim we introduce new Chevalley generators e±Oj by the following forlllulas

.. '-I k'oe-o , = q e_o , 0" •
I I I

(2.16)

In this basis the relations (2.2), (2.3), (2.6) take the following form [KT3]

1 - kf2

(adqleo,)e_Oj = [eon e-Oj]ql = dij 1 _; , (2.17)

(adq1e±o,)nij e±aj = 0 , (i i= j) , (2.18)

[(adq1e±o,)e±Oj'(adq1e±aJe±a,] = 0 . (2.19)

The last relation holds for the condition (2.7). Here adql is an adjoint action (see details
in (KT3]) defined by

(2.20)

for a11 homogeneous elements a, x E Uq(9), where the operation 0 is defined by the rule

(a '9 b) 0 x = (_1)8(b)8(r)axb . (2.21 )

Below we denote by a symbol ("') an anti-involution in Uq(g), defined as (ku;)"' = k;/,
(e±oit = e=foj) (qt = q-I. We also use the standard notations Uq(K) and Uq(b±) for the
Cartan and Borel subalgebras, generated by k-;/ and e±Oj, kai' k;/ correspondingly. We
write also

x 2 x n x"
expq(x):= 1+ x + -(2)1+'" +-() 1+'" = L -() I '

q' n q' n~O n q'
(2.22)

qB -1
(a)q := l'q-

(2.23)

Now we proceed to a description of the Cartan-Weyl basis for the quantU111 (su­
per)algebras Uq(g).

3 Cartan-Weyl basis für Uq(g)

Let .6+ be the system of a11 positive roots for g(A, i) with respect to TI. We denote by
.6+ the reduced root system which is obtained from .6+ by removing such odd roots 0 for
which 0/2 are roots.

Our procedure of a construction of the quantum Cartan-Weyl basis for Uq(g) js in
agreement with a choice of normal ordering in .6+. We remind the definition of nonnal
ordering in .6+ [AST,T2,T3].

We say that the system .6+ is in normal ordering if each composite root I = a + ß E .6+,
where a i= )..ß, 0, ß E .6+, is written between its components 0 and ß.
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It should be noted that for any finite-dimensional simple Lie algebra there is one-to-one
correspondence between normal orderings and a reduced decompositions of the longest
element of the Weyl group [Z] (see Section 5). We have na such correspondence for Lie
superalgebras and affine Lie algebras because the superalgebras have uo "good" Weyl
group and the affine algebras have not any longest element of the Weyl group.

We shall say that Cl' < ß i/ Cl' is located on the le/t side 0/ß in the nornlal ordering system

6.+.

The quantum Cartan-Weyl basis is being constructed by using the fo11owing inductive
algorithm [Tl,KTl,KT2,TK].

Algorithm 3.1 We fix some normal ordering in ß+ and put by induction

(3.1 )

i/, = 0 + ß, Cl' < I < ß, and [0; ß] is a minimal segment including " i.e. lhe seglnenl
has not another such roots 0' and ß' /or which a' + ß' = ,. Moreover' we pul

r

k .- IIk'i'Y .- 0i'

i=l
(3.2)

i/ I = Ei=lliCl'i, (ai EIl).

By this procedure one can construct the total quantum Cartan-Weyl basis for a11 finite­
dimensional contragredient simple (super)algebras. In a case of infinite-dimensional affine
Lie (super)algebras we use an additional constraint. Namely, we construct at first all root
vectors by our procedure and then we redefine the root vectors of imaginary l'oots so that
new imaginary root vectors commute if they are not conjugated. That is, e.g., let e/~~~8
be root vectors of imaginary roots ±n8 ~, constructed by the procedure. It turns out that

k n k-n

[
,(i) ,U) ]...J. r ( ) 0 - 0

e no' e -mo r Om,-naij n q _ q-l

We introduce new vectors e~~o:

(i) (,U) ,( i) tU) )
e±no = p e ±o, e ±~o , ... , e ±no

which will satisfy the relation

(3.3)

(3.4)

(3.5)

This relation agrees with its classical counterpart.

The quantum Cartan-Weyl generators constructed by tbe procedure are chal'acterized
by the following basic properties.

:2In the case of a quantum affine algebra Uq (9) the root VectOTS of imaginary roots / = ±nd have to be

labeled by an additional index i: e'~~6' i =1, 2, ... I m ult I where m ult ia a mul tiplici ty of the imagi nary ,
root ±no.
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Theorem 3.1 The root veetors e±...,. E Uq(g) and the Cartan elements ky E Uq(g) for (LU
, E ß+ satis/y the Jollowing relations:

(3.6)

(3.7)

(3.8)

for et, ß E ß+, where Lj nrYj = Q' +ßJ and the coefficients C ... are rational Junetions 0/
q and ones do not depend on the Cartan elements kOi' i = 1,2, ... r. Moreover

(3.9)

where the SUffi is taken on 11, . .. "m, I~" .. , I: and nt, ... , nm, n~, . .. ,ni such that

ß ' I11 < ... < Im < Q' < < 11 < ... < 1I ,

E(njlj - nj/j) = ß - Q' ,

j

and the coefficients C:.. are rational /unctions 0/ q and k;1 or ki 1. The rrwnomia.ls
e~: e~ ... e~: and e~~l e~~ ... e~~m' ('1 < 12 < ... < Im), generale (as a linea7' space
over Uq(K)) subalgebras Uq(b+) and Uq(b_) correspondingly. The monomials

(3.10)

where ,1 < ,2 < ... < 1m and I~ < ,~ < ... < I;)' generate Uq(g) over Uq(I-',).

Ifthere are imaginary root vectors in the relations (3.6)-(3.9) then we should use additional
index for such vectors. For example, the relation (3.7) for , = ±nJ has the form (3.5).

We can transform the root vectors e±-y in new ones such that the coefficients C... and
C~.. in (3.8) and (3.9) will not depend on the Cartan elements 's. For this goal we extend
a notation of normal ordering for ß+ to "circular" normal ordering for the reclucecl systelTI
of all roots, ß := ß+ U (-ß+ ).

Let 11,/2, ... "N be anormal ordering in~ then a circular normal ordering in ß Ineans
that the roots of ß are located on a circular by the following way (see [KT3])

,1, 12,· .. , IN, -,1, -;2,· .. , -1N, 11 (3.11)

We shall say that Q' < ß, where et,ß E ~ ij the circular normal ordering segm,ent [et,ßl
0/ (9.1) does not contain the opposite roofs -et and -ß.
We introduce two type of the circular root vectors ~ and e...,. by the following formlIlas

e...,. := e-, ,

7
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and
e'"'f := -e'"'f~ , e_'"'f := e_.., , V'I E ~+ . (3.13)

In terms of these circular generators the relations (3.8) and (3.9) are rewritten in the
united form

[ " "] '"' C "nI "n2 "nmec,", eß q = L.J nj,'"'fJ,e'"'fl e1"J ••• e"Ym '

O<'"'fl <· ..<"Ym<ß

if Q:' E ß+ and Cl' < ß in a sense of circular normal ordering. We have also

[" ,,] '"' C' "mi "m2 "mn
eo , eß q = L.J mj,'"'fje"'l e1"J ••• e'"'fn '

O<"Yl <".<'"'fn<ß

(3.14)

(3.15)

if -0: E ~+ and 0: < ß in a sense of circular normal ordering. The coefficients C... and
C:.. in (3.14) and (3.15) are rational functions of q and do not depend on the elenlents k"Y'

It should be noted that we can construct the circular root vectors e±"Y (up to scalar factors)
applying q-commutator algorithm to the Cheva11ey elements e±Oj'

Now we want to consider some extensions of Uq(g), Uq(b+) 0 Uq(b_), Uq(g) 0 Uq(g)
since, for example, the universal R-matrix is element of two last extensions.

Let Fract (Uq(K)) be a field of fractions over Uq(K), i.e. Fract (Uq(n:)) is an associative
algebra of rat ional functions of the elements k;i1 , (i = 1, 2, ... , r). Let us cons truct a
formal Taylor series on the fo11owing monomials

(3.16)

with coefficients from Fract (Uq(K)), where Q < I < ... < ß in a sense of the fixed
normal ordering in ß+ and nonnegative integers nß,' .. , n o , mo , .•• , mß are subjected to
the constraints

I :L (na - mo)cja) I~ const,
aEAt

i = 1,2, ... ,7', (3.17)

where c~a) are coefficients in a decomposition of the root a with respect to the systenl n
of simple roots. Let Tq(g) be a linear space of all such formal series, then this space is
an associative algebra with respect to a multiplication of formal series anel it is called the
Taylor extension of Uq(g) (see KT2]).

Let Fract (Uq(K 0 K)) be a field of fractions generated by the following eleluents 1 0 kai'
kai 0 1 and qhai0haj, (i,j = 1,2, ... , r). Let us consider a formal Taylor series of the
following monomials

(3.18)

with coefficients from Fract (Uq(K 0 K)), where Cl' < 'I < ... < ß in a sense of the fixed
normal ordering in ~+ and nonnegative integers nß," ., no , mal' .. ,nlß are subjecteel to
the constraint (3.17). Let Tq(b+ 0 b_) be a linear space of a11 such forulal series. Then
this space is an associative algebra with respect to a multiplication of fornlal series anel
it is ca11ed the Taylor extension of Uq(b+) 0 Uq(b_) (see [KT2]).

At last we take a formal Taylor series of the following monomials

n n..- m n' n' n' , m' m'
e fJ ••• e·· 1 e"a ema em-y ••• eßt::>. e fJ ••• e .., e a emQ p_. -y ••• e fJ-ß -"Y -0 a '"'f ß I()I -ß -"Y -a a .....-, ß

8
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with coefficients from Fract (Uq(K ® K)), where er < I < ... < ß in a sense of the fixed
normal ordering in~ and nonnegative integers nß," ., n a , m a , . .. , mß and TLß,... ,n~,
m~, . .. ,mß are subjected to the constraints

I E (na + n~ - m a - m~)c~a) I~ const,
aE.6.+

t = 1,2,' .. ,7'. (3.20)

Let Tq(g ® g) be a linear space of all such formal ser~es, then this space is an associative
algebra with respect to a multiplication offormal series and it is called the Taylor extension
of Uq(g) &; Uq(g) (see [KT2]).

The following embedding holds [KT2]

Tq(g ® g) :> Tq(b+ ® b_),

Tq(g ® g) :> Tq(g) ® Tq(g) :> ~ql(Tq(g)). (3.21 )

Now we introduce a natural topology on the space Tq(g &; g), where basic open neigh­
borhoods of zero, n1, are defined as linear spans of such the series generated the nlononlials
(3.19) with the additional constraint

r

L: L: (na +m a +n~ +m~)c~a) 2:: 1 .
i=1 aE.6.+

(3.22)

Such topology will be called the formal series (FS) topology.

For the goals of Section 8 we introduce also two other topologies in Uq(g) 0Uq(g). Naluely,
let nt and !li be linear spans of monomials from Uq(9) &; Uq(g) (3.19) with the additional
constraints .

r

L: L (na+ma-n~-m~)c~a) 2: l, and
i=1 aE~

r

E E (-na-ma+n~+m~)c~a) ~ I (3.23)
i=1 aEA-t

correspondingly. Then nt and ni generated two different topologies in Uq(g) ® Uq(9). We
denote their formal completions (or, equivalently, their closures in Tq(g(6)g) by T

q
+(g0g)

and Tq-(g (6) g).

4 Universal R-matrix

Any quantum (super)algebra Uq(g) is a non-cocommutative Hopf (super)algebra which
has an intertwining operator called the universal R-matrix.

By definition [D4], the universal R-matrix for the Hopf (super)algebra Uq (9) is an
invertible element R of the Taylor extension Tq(b+ &; b_), satisfying the equatiolls

~ -1
~q-l (a) = R~q-l (a)R, TI a E Uq(g) ,

(~q-l '9 id)R = R13 R23
, (id 0 ~q-l)R = R13 Rl2

,

9
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(4.3)

where iS.ql is an opposite comultiplication: .6ql = aßql, a(a 0 b) = (_l)degadcgbb ® (L

for all homogeneous elements a, b E Uq(g). In (4.2) we use standard notation R12 =
= L ai ~ bi 0 id, R13 = Lai 0 id 0 bi , R23 = L: id 0 ai 0 bi if R has a fonn R = L: (Li 0 bio

Fix some normal ordering in ~, and let f a be the corresponding Cartan-Weyl gen­
erators constructed by our procedure. The following statement holds for any quantized
contragredient Lie (super)algebra of finite growth (see [KT2]).

Theorem 4.1 The equation (4.1) has a unique (up to a multiplicative constant) invertible
solution in the space Tq(b+ 0 b_) and this solution (for a certain value of the constant)
has the form

-+
R = ( II Ra)' K ,

aE~

where the order in the product coincides with the chosen normal ordering of ß+ lLntI the
elements Ra and Kare defined by the formulae:

for any real root 0 E ß+ and

mult

Rn5 = exp{ (-1 )9(n5)(q - q-l) E Ci; (n)(e~10 e~~o))
i,;

for any imaginary root ntS E ß+ and

(4.4)

(4.5)

(4.6)

where a(o) is a factor from the relation (9.7) and (Ci;{n)) is an inverse to the matrix
(ai; (n)) with the elements determined from the relation (9.5), and di; is an inve1'se nuLtrix
for a symmetrical Cartan matrix (a:;) if (a:ym) is not degenerated. (In a case o[ a
degenerated (a:r) we extend it up to a non-degenerated matrix (a:%m) and take an inve1'se
to this extended matrix (see [KTl,TK])). Moreover the solution (4.9) is the universal R­
matrix, i.e. it satisfies the equations (4.B) also.

The proof of this theorem was given in [KT2] for all quantized contragredient Lie algebras
of finite-dimensional growth. The explicit formula for the universal R-matrix was obtained
in [Ro,KR,LS] for the case of quantized simple Lie algebras and in [KTl] for the supercase,
and in [TK,KT2] for the affine case.

5 Twisting of the Hopf structure for Uq(g)

In this section we consider at first same general properties of twisting for an arbitrary
Hopf (super)algebra and then return to the quantum (super)algebra Uq(g) again.
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(i) Twisting by Two-Tensor.
Let HA := (A,.6, S, e) be a (super)algebra Hopf with comultiplieation .6 , antipode S allel
eounit f. Let F be an invertible even element of some extension T(A ® A) of A 0 A, such
that tbe formula

.6(F)(a) := F.6(a)F-1
, Va E A,

determine a new comultiplieation, i.e. .6. (F) satisfies tbe coassociativity

(.6.(F) ~"jd)ß (F) = (id~ ß (F) ) ß (F) •

(5.1)

(5.2)

Then the eomuItiplication ß(F) is ealled the twisted coproduct. One can prove the fol­
lowing simple proposition (see [R]).

Proposition 5.1 If a invertible even element F = Li fi 0 fi E T(A 0 A) satisfies the
condition

(F 0 id)(ß 0 id)F = (id 0 F)(id 0 .6.)F, (5.3)

then the element u := «id 0 S)F) 0 1 = Li /iS(fi) is invertible und the set

(A, .6. (F) , S(F) , e) (5.4)

is a new Hopf algebra 1-1..<':), where

.6.(F)(a) := Fß(a)F- 1
,

for any a E A.

(5.5)

(In (5.3) the comultiplication ß acts on components of F).
The Hopf (super)algebra A(F) is ealled the twisted one by the two-tensor F (or twisting
of the type I). One should stress that for such twisting the algebraie sector A of 'HA is
not ~banged but the coalgebraie seetor of 1-l,A. is changed.

(ii) Twisting by Automorphism.
We can obtain a twisting of caalgebraie sectar a Hopf (super)algebra HA = (A, ß , S, f)
by using any automorphism in algebraic sector A. Namely, let w : A 1-7 A be an even
automorphism of a linear and muItiplicative strueture, i.e.

w(xa +yb) = xwa + ywb l w(ab) = (wa)(wb) (5.6)

for any a, b E A and any X, y E C. The following simple proposition holds.

Proposition 5.2 Let ß(w) : A 1-7 A 0 A and S(w) : A 1-7 A be defined as follo1Us

(5.7)

for any a E A. Then H<;) := (A ,ß(w), S(w), e) is a new Hopf (s'Upe1~aIgebra isornorphic

to HA = (A, ß , S, f). If HA. is qllasitriangular with an universal R-711a17'ix R theu Hr)
is also qllasitriangular with the universal R-matrix R(w):

R(W) = (w 0 w) R .

11
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The Hopf (super)algebra 1-lr) is called the twisted Hopf (super)algebra by aut011101Vhislll
w (ar twisting of the type 11). Note that the algebra structure for the twisting of the type
11 does not change also.

(iii) Twisting for Uq(g) by some Factors of the Universal R­
matrix.
Now we want to show how the factors of the universal R-matrix generate a family of
twistings for Uq(g).

For a fixed normal ordering in ß+ and for any 1 E ß+ we put

and

F .- II R21
'Y .- 01

0l<'Y

F~ := (rr R~l )I(
'Y<0l

(5.9)

(5.10)

where Ra are the factors of the universal R-matrix (4.3) and the product in (5.9) (and
(5.10)) is taken over all roots a which are less (more) 1 in a sense of the normal ordering.
The following theorem is valid.

Theorem 5.1 For any roofs 'I E~ the two sets

(U () A (F..,) S(F..,)) d (U () A (F~) S(F~) )
q 9 ,Uq-l, q-I, € ,an q 9 ,Uq_I , q-I, € (5.11 )

(F ) (F ) (F' ) (F' )
are two Hopf algebras, where ßq-i , Bq-i , and ß q-1 ,Bq-i are deterrnined by lhe fOr1nulas

(5.12)

and
6.~~1)(a) := (F;)ßq-l (F;)-l, s~~i)(a) = U;Sq-l (a)(U;)-l . (5.13)

for any a E Uq(g). (Here in (5.1E) and (5.19) the elements U"Y und u; are detennined by
the formulas similar to "u" in the Proposition 5.1).

Proof By using the Proposition 8.3 of [KTl], which is valid indeed for any quantized

contragredient Lie (super)algebra of finite growth, we prove at first that ß (~1) anel ~(~i)
q q

satisfy the coassociativity (5.3) after that we apply Proposition 5.1.

Now we would like to show that for the case of a quantized simple finite-diInensional
Lie algebra 9 the twisting by the two-tensor F'Y coincides with the twisting by the Lusztig
automorphism of Uq(g). First we remind that there is one-to-one correspondence between
the set of all normal orderings of ß+ and the set of reduced decompositions of tlte longest
element Wo of the Weyl group W(g). Namely, the following proposition is valid (see [Zn.

Proposition 5.3 Let Sau (i = 1,2, ... ,r), be the elementary refiections of W(g), C01Te­

sponding to the simple roots 0i and let

(5.14)

12



be some fixed normal ordering in~ , then alt roots 0/ the chain

-1 -1 -1 ( ) -1 -1 -1 ( )O'i n = SOl" ••• SOl" SOl" "'In, .•. ,00iN = SOl" • •• 8 01 " SO', IN
"n-l ''1 "1 "N_l ''1 'I

(5.15)

are simple, and Wo = sail sai'1 ••• saiN is a reduced decomposition of Wo'

Gn the contrary, for any reduced decomposition 0/Wo, Wo = sail SO'i'1 ••• saiN' the sequence

is anormal ordering in ß+,

SOl' SOl" (0'3), ... ,Sol' ... SOl" SOl" ("'VN)
''1 'I 'N-I ''1 'I f

(5.16)

(It should be noted that there are identical simple foots in (5.14) because r < N).

For every root "'In, (n = 1,2, ... , N), of the normal ordering (5.14) we put into cone­
spondence the element W'"Yn of the Weyl group W(g), which is an initial seglllent of the
corresponding reduced decomposition of Wo, i. e.

(5.17)

Following [L], [DeCK], we define an action of a braid group W(g) in Uq(g) by n1eans
of the Lusztig automorphisms (see (2.3))

... (k±l) - k=f 1
SOli ai - OIi ,

(5.18)

SOi(e±Oj) = Nijt(adqe±a;)nije±o)', (i =J j) ,

where tbe positive integer nij are determined by the formula (2.5) (the last line for this
case); tbe normalizing factors Nij can be determined from results of the work [KT1] and
they have the form

(5.19)

For tbe element W'"Yn (5.17) we put

(5.20)

The following statement (known in quantum group folklore) bolds.

Proposition 5.4 For any normal ordering (5.14) 0/ any simple Lie algebra 9 tlte twisting
0/ a Hopf algebra strueture 0/ the quantum algebra Uq(g) by the two·tensor F'"Yn (see (5.9),
(5.12)) coincides with the twisting by the Lusztig automorphism w'"Yn (5.19).

13



Proof. We prove the statement for a root In of (5.14) QY induction on n. For n = 2 we
have that 1I = 0'1 is a simple root, F"'tl = eXPq-l ((q - q-l)(e_ cq ~ e-01 ), anel li}-n is the

Ql

Lusztig automorphism, corresponding to the simple reflection SOl' It is deal' froll1 the
definitions that

ß~~"?)(eoJ = ß~~~)(eoJ = eOj 0 1 +k;/ 0 eOi , (5.21)

ß~~"?\e_oJ = ß~~~}(e_oJ = e-a • ® kai +1 ® e-Oi , (5.22)

for any simple root O'i such that (0'1, O'i) = O. Now let O'i be a silnple root such that
(0'1, O'i) =f:. 0 then ßi := WOI (0';) is a positive root and one can choose a nonnal ordering

(5.23)

such that 1~ = 0'1, 1~ = ßi. Using the Proposition 8.3 fro1l1 (KT1] we have

A(F"l"J)( ) A(W-r.t}() k 1
U q-l e_ßj = L.lq-l e_ßj = e_ßj ® ßi + ® e-ßi ,

The equations (5.21), (5.22) and (5.24), (5.25) are sufficient to condude that

ß (F"l"J) - 6 (tÜ"l"J)
q-l - q-l •

(5.24)

(5.25)

(5.26)

For n > 2 the statement follows immediately from the llluitiplieative structUl'e of tU,n
taking in mind that

F"fn = F,n_1 R:;:-1 = F,n_1 (tu-Yn_1 0 w"Yn-l) eXPq;;~_l ((q - q-l)( e-On_l 0 e_oll_J) (5.27)

in the notations of (5.17).

An analog of Proposition 5.4 is also valid for quantized superalgebras. In this case the
Lusztig automorphisms should be considered as isomorphisms between different quantized
superalgebras. Let us consider this in detail.

Let g(A, T) and g(A', T') be two isomorphie finite-dimensional contragredient Lie super­
algebra. We consider non-trivial case when the superalgebras have non-equivalent Cartan
matrices A and A', i. e. A' f. BDAB- 1 for any nonsingular matrix B anel any diagonal
matrix D. Such superalgebras have the same reduced system of a11 roots and different
redueed system of positive roots.

Let TI := {O'I, 0'2, ... , O'r} and II' := {O'~, O'~, ••• , o~} be systems of siInple roots for g(A, T)
anel g(A', T') eorrespondingly. Fo11owing Serganova (see [LSS]) one ean elefine an "ele­
mentary refleetion" SOj for any O'i E II as follows

(i f. j) . (5.28)

The fo11owing theorem is valid (see [LSS]).
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Theorem 5.2 (V.Serganova). (i) Let II be a system 0/ simple roots. Then the set SUi(TI)
may be eonsidered as a system 0/ simple roots, moreover SOi (TI) is not equivaleut to TI iff
the root Cl'i is grey.

(ii) For any two isomorphie superalgebras g(A, T) and g(A' ,T') with non.equivalent GlU'·

tan matriees A and A' there exist a sequenee 0/ simple root systems TI1,II1 , ... , ITn and
roots Cl'(i) E TI i such thal So(i>(TI i ) = TI i+I , and moreover fI l = TI, TIn = TI'.

Remark. It should be noted that in a general case the system of all roots is not invariant
with respect to the "elementary reflection" ,sOiJ i. e. SOi{~) is a root system which :;hould
not coincide with ~ (see, for example, the root system of the superalgebra D(2, 1; Cl')

[K2]). (This is why the words "elementary reflection" are putted in quotation lnarks).
Therefore it is better to consider "elementary reflection" as change of variables or as a.
map from one linear space to another. An accurate formulation leads to a notation vVeyl
grouppoid instead of a Weyl group.

Let simple root systems TI and 11' are connected by one "elementary reflection" BOi ouly,
i.e. so;{II) = II', and let {e±Oj' k;jl} and {e~o:' k:~l}, (i = 1,2, ... ,1') be the Chevalley
generators of the quantum algebras Uq{g(A, T)) and Uq(g(A', T')) corresponclingly. We
define Lusztig isomorphism So; as isomorphism SOi : Uq(g(A', T')) t-1 Uq(g{A, T)) by the
relations analogous to (5.16):

... (k'±l) k=t=lSO· 1 = I,• o· o·
I I

... (') k- l
SO/i e_o'. = - 0i eOi ,, (5.29)

S .(e' I) = ((_l)B(n;joi)B(aj)N··)-t(a-d e± .)nij e±. (i-i- J') ,o. ±a j I) q 0, 0) , r

where the normalizing factors N ij are given by the formula (5.19).

If ~q-l and ~~-l are the standard comultiplications of Uq(g(A, T)) and Uq(g(A', T')) (see
(2.11)-(2.13)) then just as in a even case using the Proposition 8.3 from [KT1) we have

(SOi e> SoJ~~-l (a') = (S·Oi e> .5oJ~q-l (S;ila) = F;/ ~q-I (a)FOi

for any a E Uq{g(A, T)), where

FOi = R~~ := expq;;}{(q - q-I)(e_Oi ® e-On_I)) .

(5.30)

(5.31)

Now let TI and TI' be an arbitrary non-equivalent systems of isomorphie superalgebras
Uq(g(A, T)) and Uq(g(A', T')) correspondingly. Then according to the Sel'gallova's theo­
rem there is a chain W := So(l),so(~) ••• So(n) of the elementary reflections (5.28), such that
Cl'~ = w(Cl'd, (i = 1,2, ... ,r). (Here we da not distinguish systems of simple roots which
differ an enumeration of roats). We define Lusztig isomarphism w Uq(g(A', T')) t-1

Uq(g(A, T)) as

The relation (5.30) turns to

(w0w)~~-da')= (w0W)~q-l(w-la) = F,:l~q-I{(L)Fw
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far any a E Uq(g(A, T)), where the twisting two-tensor Fw is definecl by the fonl1ula

(5.34)

It should be noted that the factors ((Sa(l) ••• Sa(l-l) ®Sa{l) ••• Sa{l-i) )Fa(f)), (l = 1,2, ... , n),
belong to Tq(g(A, T) ~ g(A, T) and are composed from factors of the universal R-nla.trix
of Uq(g(A, T)).

We can summarize our considerations as the theorem.

Theorem 5.3 Let g(A, T) and g(A', T') be two isomorphie finite-dimensional eontragre­
dient Lie superalgebras. Then there exists an isomorphism of algebras, tU : Uq(g( A', T')) I--t

Uq(g(A, T)), such that a comultiplication .6 (~)1 0/ Uq(g(A, T)) induced front ~~-I of

Uq(g(A', T')) by the isomorphism w differs Jrom the initial comultiplication .6. q-1 with a
twisting by some factors of the universal R·matrix for Uq(g(A, T)).

6 Drinfeld's realization of quantum affine algebras

In this and last sections we consider quantized nontwisted affine algebras only.

Let 9 be nontwisted affine Lie algebra and TI = {ao, 0'1, ••• , O'r} be a systelll of Sill1ple
roots for g. We assurne that the roots TIo = {al, 0'2, ... ,O'r} generate the systenl .6.+ (g)
of positive roots of the corresponding finite-dimensional Lie algebra g.

In the paper" A new realization of Yangians and quantized affine algebras" (02] V.G.
Drinfeld suggested another realization of the nontwisted affine algebra Uq ([;). In this
description the algebra Uq(g) is generated by the elements:

(for i = 1, 2, ... , r j l E Z) , (6.1 )

with the defining relations (we modify them a Httle for technical convenience):

[kc , everything] = 0 , X · t* = q±(aj,aj)t* x'
I,O~J,m I:o.J,m 1,0, (6.2)

where
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(6.4)

(6.5)

(6.6)

(6.7)
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the elements 4>i,p, tPi,p are defined from the relations:

~ ./.. -p _ -1 (( -1) ""' . -P)L,.; 'f"t,pU - Xi,O exp q - q L,.; XI,pU ,
p p>O

E 4>i,pu-P = Xi,O exp((q - q-l) E Xi,pU-P ) ,

p p<O

the q-binomial coefficients C~ (q) are determined by the formula

C~( ) [n]q!
n q = [ ] t[ _ ] 1 '

S q' n S q'

(6.9)

(6.10)

(6.11 )

the symbol "Sym" in (6.7) denotes a symmetrization on ll, l'2,"" lnjj' anel n~j := 1 ­
(ai,aj).

Drinfeld has shown that the elements xto and eto are connecteel with the Chevalley
generators eaj , haj in the following way

(6.12)

(for i = 1,2, ... , r), and there are more complicated formulas for eao anel hai which we
do not write down here (see [D2]). Drinfeld suggested also another formulas of comulti­
plication for Uq(g), which have the following form [D3]

for I > 0, anel

ß(D)(Xi,l) = Xi,1 G?J 1 +k;l G?J Xi,1 1

ß(D)(Xi,_I) = Xi,-l ® ki' + 10 Xi,-I

ß(D)(et,) = etl0 1 + E kr;4>i,m ® et'+m ,
m~O

Ä(D)(~;,) = 1 0 e;, + E ~;'-m ® tPi,m k'; ,
m~O

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

for any l E Z.

Now we want to show how the generators kc , Xi," et, can be expressed via the Cartan­
Weyl generators constructed by our procedure, and in the Section 8 we show how to
obtain the formulas (6.14)-(6.17) by a twisting of the standard comultiplication (2.11)­
(2.13) using some factor of the universal R-matrix.

7 Connection of the Drinfeld's realization with the
Cartan-Weyl basis for Uq(g)

We fix sorne special normal ordering in ß+(.g) := 6.+, which satisfies the following addi­
tional constraint:

lJ +ai < (m +1)6 < (n + l)J - Oj)

17
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for any simple roots Oi,Oj E ~+(g), and 1, m, n ~ O. Here 0 is a mininlal positive
imaginary root. For given normal ordering we apply our procedure for construction of the
Cartan-Weyl generators for Uq(g). Furthermore we put

en6+ai = (-l)n([(ai, oi)]q)-n(;d e~i})neai 1

e(n+l}6-a i = ([(ai, ai)]q)-n(ad e~i)ne6_ai ,

,(i) [ ]
e (n+t)6 = en6+ai' e6-ai q ,

(7.2)

(7.3)

(7.4)

(7.5)

(for n > 0), where (ad x)y = (x, y] is a usual commutator. The inlaginary root vectors

e'~~6 do not satisfy the relation (3.5). We introduce new vectors e~~6 by the following
(Schur) relations:

( -t)LPi-t
,(i) _ ~ q - q ( (i})Pi ... ( (i)pn

e n6 - LJ I . . • I e6 en6'
Pi +:lP2+ ...+npn=n PI· Pn'

In terms of the generating functions

E;(z) = (q_q-t) L e'~}5Zm
m~t

and
,Ei(Z) = (q - q-t) E e~~zm

m~t

the relation (7.6) may be rewritten in the form

E;(z) = -1 + exp Ei(z)

or
Ei(z) = In(1 + E;(z)) .

l.From this we have the inverse formula to (7.6)

( -t )LPi-1(",n 1)1(i) _ ~ q - q L...ti=l Pi - . ( ,(i)PI ... ( ,(i))pn
en6 - LJ I.. . I e 5 e n6 .

PI +:lP41+...+npn=n Pt. pn'

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

The rest of the real root vectors we construct in accordance with the Algorithnl 3.1 using
the root vectors e n6+a;, e(n+l}6-a i' ~~~+1)6' (i = 1,2, ... ,r; n E Z+). The root vectors of
negative roots are obtained by the Cartan involution (*):

(7.12)

for, E ß+ (g). Using the explieit relations (7.2)-(7.5), (7.11) and (7.12) we can prove the
following proposition.
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Proposition 7.1 The root vectors e~il, eno- oj and en5+a; satis/y the lollowing Telations

kn k-n
[ (i) (j) ] ( )no' .r ( ) 8 - 5eno ' em5 = -1 IJ On -mai)' n 1

I q_ q_ (7.13)

lor n, m =1= 0,
[e~1,e(m+l)6-ai] = (-1)Mjiaij(n)e(n+m+l)5_o; , (7.14)

. [e~il,em6+oi] = _(_I)n5iiaij(n)e(n+m)5+ai (7.15)

lor n, m > 0, where the matrix elements ajj(n) are de/ined by tlle fonnulu {6.8} und k5
is a central element 0/ Uq(g).

It should be noted that the matrix (aij(n)) with the elements (6.8) may be cOllsidered as
a q-analog of a "level n" for the matrix Cartan (a:Jm).

The following theorem states the connection between the Cartan-Weyl anel Drillfeld's
generators for the quantum nontwisted affine algebra Uq(g).

Theorem 7.1 Let some lunction 'Ir: {al, 0'2 ... ,ar} 1--1- {O, I} be chosen such thai rr (O'i) ::f
rr(O'j) i/ (ai, O'j) =1= 0 and let the root veetors e±-y and e±,. 01 the real roofs 1 E ~+U)) be

the circular Cartan- Weyl generators (9.12), (9.19) and e~l be imaginary Toot veeto'l's 01
Uq(g). Then fhe elements

X
. .- e(i)
I,±n'- ±n5.,

Xi,O := kai'

C± A

~i,n = Ti,n en5±ai ,

C± ._ eA
l:.i,O·- ±ai'

t± y

I:.i -n = Ti,n en5±ai ,,

(7.16)

(7.17)

where Ti,n = (_1)n1f(a il and n > 0, satisly the relations (6.2)-{6.7), i.e. the elem,ents
(7.16) and (7.17) are the generators 01 the Drinleld's realization 01 Uq(g).

Remark. In terms of the Cartan-Weyl generators the relations (6.2)-(6.7) can be intel'­
preted as follows:

(i) The "Serre" relations (6.7) are equivalent to the following corollary of Proposition 3.1:

(7.18)

if the roots 0' and ß are neighboring and 0' < ß in a sense of fixed Donnal ordering of the
root system ~+.

(ii) The defining relations (7.2)-(7.5) may be easily generalized to the identities

(7.19)

for n, mEZ where c is a constant. The relations (7.19) rewritten by means of (7.6) in

terms of generators e}~~Oj give us (6.6).

(iii) The formulas (6.5) define quadratic relations between vectors eno+Oj or between en5-ai'

(i = 1,2, ... , r). We write down them explicitly for Uq(;l2) in Appendix A (see (A.10)­
(A.21)).

19



8 The second Drinfeld's realization as twisting of
Hopf structure in Uq(g)

The second Drinfeld's realization of the quantum affine algebra Uq(g) was ol'igina,lly ob­
tained as a quantization of Lie bialgebra structure in affine Lie algebra 9l which is equiv­
alent to presentation of !J EB K, (where I\, is the Cartan subalgebra of 9 = n+ EB f\, EB n_) as
a classical double of the current algebra n+ := n+[t, t-1] EB K[t) EB Cd. It turned out that
multiplicative structure of this quantization is isomorphie to Uq(g) hut 00 any evident
connection of comultiplication structures was found. Here we make clear this connection.

The algebra rl+ may be considered as an image of Borel subalgebra b+ under a action
of a limiting longest element Wo of the Weyl group Weg) of g. This limiting elelnent Wo

does not act on vectors in the Cartan subalgebra or on the root vectors in g, nevel'theless
the twisting of a Hopf structure in Uq(g) by Wo is weH defined as a lilllit of twistings by
finite elements of Weyl group W(g) in the FS topology of Tq(g @g) (just as in T/(g @ 9),
see the Section 3). We prove that Drinfeld's comultiplication in his second realization cau
be obtained as a twisting by Wo of a standard comultiplication in Uq(g). Analogously to
the Theorem 5.1 we state also that this twisting can be presented as conjuga,tion by an
infinite product of factors of the universal R-matrix.

Theorem 8.1 (i) Por any fixed element x E Uq(g) an expression

ß(D)(a) = (II R~l)-lßq-l(a)(II R~l) ,
~<5 ~<5

(8.1 )

is weil defin ed element 0/ Tq(f; @ g) (just as in T/ (g 0 g)) .

(ii) A map ß(D): Uq(g) -+ Tq(gt.&g) (just as ß(D): Uq(g) -+ Tq+(g@g)) is homon2orphis1n
and it satisfies all the axioms 0/ the Hop/ algebra.

(iii) Explicit formulas /or ß D look as /ollows:

A (D)( ) - 1 k (-1) '" t(i) ku eo , - eOj @ + 0; 0 eo , - q - q L.J e -m5 0, 0 e m 5+0i l

m~l

A (D)( ) _ 101 k- 1 +1 101 ( -1) '" 101 ,(i) k-1
L.1. e-aj - e-Oj '61 0i '61 eOj - q - q L.J e-mD"-a; '61 e mD" 'ai l

m~l

(8.2)

(8.3)

ß(D)(e~l) = e~l @ 1 + kin @ e~l , ß(D)(e~~D") = e~~5 ® k; + 1 0 e~~5' (8.4)

In terms 0/ Drin/eid generators the comu/tiplication ß(D) has the form, (6.14)-(6.17).

We shaH give a complete proof of this theorem for the case of Uq (s12) in Appendix B. The
general case has no essential changes. The crucial idea is to look to twistings by powers of
the Lusztig automorphisms that correspond to translations in the affine Weyl group. It is
possible to control the main terms of twisted coproduct and see what is Ieft in topological
limit.

Remarks. (i) We can also obtain the explicit expression of the right part of (8.1) by some
direct application of q-analogs of H'Adamard identities (see [KT1)). Note that only linear
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terms (or one-step q-commutators) in H'Adamard identities give nonzero contl'ibution in
the formula (8.1) and corresponding terms appear with a constant (q - q-l) proportional
to a "Planck constant" h. In tbis sense the comultiplication ~(D) bas quasiclassical nature.

(ii) The tecbnique developed here allows to obtain the connection between two COlllulti­
plications only in one direction. We cannot invert the procedure anel obtain ßq-l in Uq ([;)

from ß(D).

Let UJD)(g) denote tbe second Drinfeld realization of the quantum algebra Uq(g) with
tbe comultiplication ~(D): Uq(g) .-.+ Tq(g 0 g). A natural question arises whether tbis
Hopf algebra is quasitriangular and what is the formula for the universal R-Inatrix for
UJD)(g). Let us at first remind what is going on with standard Hopf algebra structure in
Uq(g). This Hopf algebra is quasitriangular and for given normal ordering satisfying (7.1)
the universal R-matrix can be presented in a form (see (4.3)-(4.6)):

(8.5)

where
(8.6)

mult

~ = exp((q - q-l) L L Cij(n)(e~l ® e~~6))
n>O i,i

(8.7)

The products in (8.6) are taken over all real roots located only on the Ieft siele anel only
on the right one of imaginary roots in the normal ordering of ß+.

By using (8.1) and (4.1) we have that

Li(D)(a) = (R(D))-l~(D)(a)R(D), Va E Uq(g) , (8.8)

where
R(D) = R{JR_KR~l (8.9)

and R(D) may be considered as universal R-matrix for UJD)(g).

Unfortunately, an interpretation of the equality (8.8) in concrete representations is not
so simple. Indeed, let V be a finite-dimensional representation of Uq(9), Y:, anel Vz. be
corresponding two representations of Uq(9) shifted by Zl and Z2 (see [FR] for definitions).
Then the expressions ~(D)(a)(vzi 0 VZ2 )' ~R_K(vZl ® vz.) (where VZt E Vz !' Vz• E Y:..)
are regular for 1Zl I<1z~ 1and singular for 1Zl 1>1 Z2 I, and vice versa the expressions
Li(D)(a)(vzl ® vz.), Rt1(vz1 ® V Z2 ) are regular for I Zl 1>1 Z2 I and singular for 1Zl 1<1 Z2 I·
We can rewrite the equality (8.8) as the follows

(8.10)

with the left side being originally defined for 1Zl 1<1 Z2 1and the right side for I Zl 1>1 Z2 I·
(Tbe point is that now both sides of (8.10) have no singularities only on diagonal Zl = Z'J

and the equality (8.10) has rigorous sense).

Thus we see that there is no definite sense for the representations of Tq(q®fJ) in \lz1 0 Y:2 •

On the other hand, the algebra Tq+(q 0 g) acts on VZ1 ® ~~ for I Zl 1<1 Z2 land the
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algebra Tq-(q 0 g) acts on ~l ® ~2 for 1Zl 1>1 Z2 I. In this context Olle can consider
the comultiplication ß(D) as a map Uq(g) ;. Tq+(g (8) g) and the opposite comultiplication

Li(D) as a map Uq(g) ;. Tq-(g (8) g) and the universal R-matrix R(D) as the operator:

Tq-(q ® g) ;. Tq+(g (8) g). In terms of Y:1 (8) V"2 the operator R(D) bas entries being
generalized functions of Z = !l.

%2

For illustration we consider concrete example 9 = S12. Let P be a two-dinlensional
representation, then modulo scalar function (see [KT2)) we bave tbe following fornlulas

(PZl ® PZ2)R+ = 1 ® 1 + (E Zn)(eI2 ® e2d ,
n~O

(PZI (8) p.r2)Ro = eIl 0 eIl + e22 (8) e22+
q2n _ 1 1 _ q-2n

+ (exp L Zn)(ell ® e22) + (exp L Zn)(e22 @ ell) ,
n>O n n>O n

(P.rl ® PZ2)R- = 1 0 1+(L: Zn)(e21 0 e12) ,
n~O

(PZI (8) Pz,JK = qt(ell ® ell + e22 ® e22) + q-!(ell (8) e22 + e22 (8) ell) ,

(PZ I ® PZ2 )R~l = 1 (8) 1+(E z-n)( e21 (8) e12) ,
n~O

and also

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

Appendices.
In this section we exhibit tbe construction of Cartan-Weyl basis and give the cOIllplete list
of commutation relations between Cartan-Weyl generators for Uq (;[2)' We also deillon­
strate here the proof of the Theorem 8.1 for this case.

A.The Cartan-Weyl basis of Uq(;l2).
Let 0 and ß := 0- 0 are simple roots for the affine algebra ;[2 then 0 = 0'+ ß is a lllininlal
imaginary root. We fix the following normal ordering in ß+:

0',0+0', ... ,000+0',0,20, ... ,000,000-0, ... ,20-0,0-0'. (A.1)

The another normal ordering is an inverse to (A.1):

0-0', 20 - 0', ... ,000 - 0', 0, 20, ... ,000, 000 + 0', .. . ,0 + 0', Q' • (A.2)
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In accordance with our procedure for construction of the Cartan-Weyl basis we put (n =
1,2, ... )

en5+a = (_1)n ([(0', O')]q)-n (ad e5)nea ,

e(n+l)5-a = ([(0', a)]q)-n (ad e5)n e5_a ,

e(n+l)5 = [en5+a, e5-a]q

and then we redefine the imaginary roots e~ by means of the Schur polynomials:

(A.3)

(AA)

(A.5)

(A.6)

,
en 5 =

Pt +2P2+...+npn=n
(A.7)

(A.8)

(A.9)

(A.I0)

(A.ll)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

n, mlO,

n, m > 0,

n~m>O,

m2::n>O,

,I n<5 ,

n 2:: 0, nl, > 0 ,

n>m~O,

n>m >0,

n ~ 0, m> 0,

" " E ß+ ,

[en5+o, em5-o]q = e(n+m)5 ,

[ ] ' k-m k- 1
en5+a, e-m5-a = -e (n-m)5 5 ° ,

[en5-o, e-m5+o] = kr k;l e'(n_m)5 ,

[en5+o, em 5] = a(m)e(n+m)5+a ,

[en5, em5-a] = a(n)e(n+m)5-a ,

[en5+o, e-m5] = a(n)e(n-m)5+ak; ,

[e-n5, em5-a] = a(n)e(m_n)5_aki n ,

We take also e_"Y = e;, (, E ~+).

The following formulas are a total list of the relations for the Cartan-Weyl generators ern
(, E ß+):

m-l

[en5+a, e(n+2m-l)5+o)q = (q; - 1) E q;le(n+l)5+oe(n+2m-l-l)5+0' ,
1=1

[en 5+o, e(n+2m)5+o)q = (qo - 1)qi
m

-
1

)e(n+m)5-o +

m-l

+(q~ - 1) E q;le(n+I)5+o e(n+2m_l)5+o ,
1=1

(A.18)

(A.19)

for any n ~ 0, m > 0

rn-I

[e(n+2m-l)5-o, e(n5-oJq = (q~ - 1) L q;le(n+2m-l-I)5-o e(n+l)5-o ,
1=1

(A.20)
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(A.21)
m-l

+(q~ - 1) E q;'e(n+l)6+O'e(n+2m-l)6+O' ,
1=1

for any n, m > O. Here in (A.I0), (A.14)-(A.17) the coefficient a(n) is detennined by the
formula (6.8) with ai = Gj = a.

In order to obtain the rest of the relations between root vectors we have to extend the
relations (A.ll)-(A.21) to arbitrary values of n. This can be done if we use the circular
generators e±'y and e±-y (see (3.12), (3.13)). More precisely, let

v k- 1kn
e(n+l)6-O' = -e(n+l)6-O' 0' 6,

(A.22)

(A.23)

Then the relations (A.ll)-(A.21) transform to the same fonnulas where en 5+a replaced
everywhere by en6+O', en6-O' replaced by e(n+l)6-O' with the only restriction n ~ O. Now
we have after conjugation by Cartan involution (",) the cOlnplete list of the relations for
Cartan-WeyI generators.

Remark. We can observe that the relations (A.14)-(A.17) may be rewritten in quadratic
form if we rewrite the relations in terms of e'n6, for instance,

The Drinfeld's generators in the case of Uq(sl'J) have the form:

(A.24)

t+ "
~n = en6+0 , (A.25)

for any n E Z and

A.. ( -1)k-l I
ty-n = q - q 0' e-n6 (A.26)

for n > O.

B. The connection between two comultiplicatiüns für Uq (s12).
The proof of the Theorem 8.1.
Let SO' and S6-0 are tbe elementary reflections of the Weyl group of ;[2' The explicit
formulas for the Lusztig automorphisms SO' aud S6-O' in Uq (;l2) look as follows:

SO'(eO' ) = -e-O'kO' , S6-O'(e6-O') = -e-6+O'kS-a ,

Sa(e- O' ) = -k;;l eO' , S6-O'(e-6+O') = -ki~aes-a ,

SO'(t~n6±O') = en 6=fo , S6-O'(e(n:r1)6±0) = e(n±1)6+a ,

sO'(en6) = en6 , 86-O'(en 6) = en6 ,
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(B.I)

(B.2)

(B.3)

(BA)

(B.5)

(B.G)



(B.7)

(B.S)

(B.9)

(B.IO)

(B.11 )

for any integers n =I O. Here in (B.5) and (B.6) the root vectors e"'Y are constructed in
accordance with the normal ordering (A.l) and the root vectors e"'Y in accordance with
the inverse normal ordering (A.2).

If we put i26 := sasß (t26 is a translation in the Weyl group) then we have from
(B.l)-(B.4) the relations

A 2 '" -2t26(ka) = kak6 , t26(kß) = kßk6 ,

i 26 (k6) = k6 , i26(en6) = en6 ,

t26( e6-a) = -e_6-akok6 , t26( e-6+cr) = k;;1 k'i 1e-6-a ,
A "'-1
t26(e26-o) = -e_oko , t26(e-26+o) = ka e_ cr ,

t26(e(n=F1 )6±a) = e(n±1)6±a ,

(for any integers n =I 0).

Using general arguments of the Section 8 we have

An An "'-n ( 21 )-1 (21)-1 21 21(t 26 ® t26)ßq-d26 (a) = R(2n-l)6+a ... Ra ßq-I (a)Ro ... R(2n-l)J+o (B.12)

for any a E Uq (8[2)' Now we want to investigate the limits of both sides of (B.12) when
n -t 00. For case a = e6 we have

and
(i~J ® i~66.q-l (i2t (e6)) =

= es ® 1 + k'i1 ® e6 + (qa - q;1 )e(_2n+l)6_ak;1 ® e2n6+a .

The last summand tends to zero in the FS topology so we have

liI11n-+oo(i~6 0i~6)Llq-l(i2t(e6))= ß(D)(es) = e6 01 +ki 1 0 e6

(B.13)

(B.14)

(B.15)

and analogously for other imaginary root vectors.

Now let us consider the real root vectors, for example, a = ea . We have i2t(ea ) =
-koki2ne_2n6+a and have to investigate behavior of the element 6.q-1 (e-2n6+cr) for large
n. By induction we see that Llq-l (e-2n6+a) consists of the following 111onomials e-2n5+cr 0
ko ki2n , and

with coefficients from Frac(Uq(1'\: <9 1'\:)) (see Section 3), where m ~ n. Further we have

(in ,0.. tAn )( ,0.. b) _ 10 bm PI e'Jm tO>. li f;rn26 'CI 26 a'CI - e-2n6-a ... e_2(m+n)6-a e-6'" -2m6 'CI e(2n-l)6+o ... e 2(n-m)J"+o

l.From weight analysis it is clear that the only nonvanishing terms in the FS topology (
or for topology in T+(g 0 g)) for Ll(D)(eo ) are

and (m 2:: 0) ,

with coefficients from Frac(Uq(K 0 K)). After inductive calculation of these coefficients we
have (8.2) and the statement of the theorem.
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