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realizations for quantum affine algebras
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Abstract

We show that some factors of the universal R-matrix generate a family of twist-
ings for a Hopf structure of any quantized contragredient Lie (super)algebra of finite
growth. As an application we prove that any two isomorphic superalgebras with
the different Cartan matrices have isomorphic g-deformations (as associative su-
peralgebras) and their standard comultiplications are connected by such twisting.
We present also an explicit relation between the generators from second Drinfeld’s
realization and Cartan-Weyl generators of quantized affine nontwisted Kac-Moody
algebras. We show that Drinfeld’s formula of comultiplication for the second realiza-
tion is a twisting of standard comultiplication by a factor of the universal R-matrix.
Properties of the Drinfeld’s comultiplication are discussed.

*) Permanent address: Institute of New Technologies, Kirovogradskaya 11, 113587, Moscow,
Russia.

**) Permanent address: Institute of Nuclear Physics, Moscow State University, 119899
Moscow, Russia.



1 Introduction

A number of applications of quantum algebras is based on the fact that quantized en-
veloping algebras have nontrivial algebraic and coalgebraic structures as Hopf algebras.
In addition this gives a possibility to use for their study not only the automorphisms
of algebras but also the twistings of coalgebraic structure (which can not to change the
structure of multiplication at all). More generally, the notion of twisting for quasi-Hopf
algebras was introduced and successfully applied in classification theorems by V. Drinfeld
[D1]. N. Reshetikhin remarked [R] that one can use, analogously to [D1], a two-tensor
F € Uyg) @ Uy(g) as a twisting operator and obtain as a result a new Hopf algebra
(without ’quasi’ prefix) if F' satisfies some natural conditions. He showed also that multi-
parameter deformations of the quantum enveloping algebra U,(g) of simple Lie algebra g
can be defined via twisting which depends on Cartan subalgebra of U,(g). Such type of
twisting was used by Ya. Soibelman [S] for quantization of Lie-Poisson structure in com-
pact Lie groups. The other type of twisting was considered by B. Enriques [E|. He showed
that the usual (non-deformed) enveloping algebra U(g) of a simple Lie algebra g can be
done noncocommutative by a twisting while the algebraic structure is not changed. Such
a deformation of coalgebraic sector can be also defined for some non-semisimple algebras.
For instance it was shown in [LNRT] that universal enveloping algebra of the classical
Poincare algebra admits a family of twistings of coalgebraic sector without changing of
algebraic sector.

We consider here the twistings of quantized contragredient Lie (super)algebras of finite
growth. (These (super)algebras are g-analogs of all finite-dimensional simple Lie algebras,
classical superalgebras and of all infinite-dimensional affine Kac-Moody (super)algebras).
All these quantum (super)algebras U,(g) are quasitriagular, i.e. they have the universal
R-matrix. Explicit formula for the universal R-matrix looks like a product of factors over
positive root system of a Lie (super)algebra. We show that the factors of the universal
R-matrix define a family of twistings for U,(g) and demonstrate their connection with
twistings by means of Lusztig automorphisms [DeCK]. This is known in mathematical
folklore for Drinfeld-Jimbo deformations of simple finite-dimensional Lie algebras. In
other cases we prove as consequences the following important results.

First we exhibit a connection between Drinfeld-Jimbo quantizations (see [KT1]) of two
isomorphic contragredient Lie superalgebras g and ¢g’. More precisely, we show that their
exists an isomorphism w : U,(g') — U,(g) of algebras (a superanalog of Lusztig auto-
morphism [L], [DeCK]), and the standard comultiplications of U,;(g) and U,(¢') commute
with w modulo twisting by corresponding factors of the universal R-matrix for U,(g) or
Us(9')-

Next, we present a detailed study of the second Drinfeld’s realization [D2] of quan-
tum affine algebra U,(g) from viewpoints of Cartan-Weyl bases and of twistings. We
write down an explicit relation between generators from second Drinfeld’s realization and
Cartan-Weyl generators for quantized affine nontwisted Kac-Moody algebras (see also
[DF] for gl case). We show that Drinfeld’s formula of comultiplication for the second
realization is a twisting of the standard comultiplication by a factor of the universal R-
matrix. This twisting is correctly defined for appropriate completion of U,(§) ® U,(§)



and corresponds to a ”virtual” longest element wy of affine ¢-Weyl group. The origin
one can see on quasiclassical level where wy does not act on the elements of Lie algebra
but interchange Manin triples which are responsible for two different quantizations of a
current algebra.

We discuss also the properties of natural comultiplication in the second realization of
quantum affine algebras [D3]. Unfortunately, this comultiplication is still out of common
interest. We demonstrate the meaning of quasitriangularity conditions for this comul-
tiplication, present the universal R-matrix and show that for concrete representations
this universal R-matrix produces the solution of Yang-Baxter equation with entries being
generalized functions of spectral parameter.

The paper is organized as follows. In Section 2 we remind the definition of any quan-
tized finite-dimensional contragredient Lie (super)algebra g (or a quantum (super)algebra
U,(g)) in terms of Chevalley generators and q-(super)commutator and also in terms of
the adjoint action.

In Section 3 we present a procedure of the construction of the quantum Cartan-Weyl basis
and define some extensions of U,(g) and U,(g) ® U;(g) which we need for the definition of
twistings and of the universal R-matrix. The explicit formula for the universal R-matrix
is presented in the Section 4.

In Section 5 we discuss at first some general properties of twistings for an arbitrary
Hopf (super)algebra, then we consider twistigs by factors of the universal R-matrix. The
Sections 6-8 are devoted to the second Drinfeld’s realization of quantized affine algebras.
In Appendices A,B one can find the details of the considerations for the case of U,(sl;).

2 Quantized Lie (super)algebras of finite growth

Let g(A,Y) be any contragredient Lie (super)algebra of finite growth with symmetriz-
able Cartan matrix A (A" = (¢;}") is a corresponding symmetrical matrix) and let
II:={ai,...,a,} be a system of simple roots for g(A, T) !. The quantized (super)algebra
g = g(A,T) is an unital associative (super)algebra U,(g) with Chevalley generators
€ta;, kL' = qthei, (1€ 1:={1,2,...,r}), and the defining relations [T1,KT1,KT2]

[kil.l,k:'.jl] =0 s ka;e:l:aj = qi(a"&j)e:!:ajka;a (21)
ko, — k!
[€a;r €-aj] = 5:';"'5—_'—;:1‘ , (2.2)
(adgresa; )™ esa; =0 for i#3, ¢ =q¢q", (2.3)
deg(kq,;) = deg(exa,;) =0 for i€l, j€T,
deg(esa;) =1 for ieTCI, (2.4)

"These (super)algebras are all finite-dimensional simple Lie (super)algebras and all infinite-dimensional
affine Kac-Moody (super)algebras [K1]



where

1 ifa?™ =0, al™ #£0, (2.5)
—2(a¥™ faf™) fal™ #0.

1

0 ifaf™ =ali"=0
ni =

i

Moreover, there are the following additional triple relations [KT1]
[[e:ha.': e:i:aj]qn [e:!:ajse:l:m]q:]q, =0 ’ for q’ = 4q, q-l ’ (26)
if the three simple roots «;, a;, a; € II satisfy the condition
(aj,05) = (i, 1) = (aj, 00+ 1) = 0 . (2.7)

Here the bracket [-,-] is an usual supercommutator, ad, and [,:], denote a deformed
supercommutator (g-supercommutator) in U(g):

(adgea)ep = [ea, €], = eatp — (—1)7R)g @ Plepe, (2.8)

sym

where (o, 8) is a scalar product of the roots a and 8: (a;, ;) = aff™. In the formula

(2.8) and below we use the short notation

0(7) = 0(ey) = deg(e,) . (2.9)

Remarks. (i) The triple relations (2.6) may appear only in supercase for the following
situation in the Dynkin diagram:

o a; Qi

® . (2.10)

where o; is a grey root and the roots a; and o are not connected and they can be of any
color: white, grey or dark.

(i) The outer ¢g-supercommutator in (2.6) is actually a usual one since (a;+a;, o;+a¢) = 0.
(iii) The triple relations have evident classical counterpart.

The quantum (super)algebra U,(g)is a Hopf (super)algebra with respect to a comul-
tiplication Ay, an antipode Sy and a counit € defined as

Aglka;) = ka; ® ko (2.11)
Aglea;) = €a; @1+ K, ®eq , (2.12)
Aple—a;) =€o; QKT +1® €, , (2.13)

SQ"(k:::,') = k’—l ’

oy

Sg(ea;) = “"k:x_.-'lea; ) Sele-a;) = _e-a;k;x.- ) (2.14)

s(ka.') = e(eai) = 5(8—0.’) =0, 5(1) =1, (2'15)



where k!, = ¢’** and ¢’ may be chosen as ¢ = qor ¢ =¢q~' .

We may rewrite the defining relation by means of an adjoint action of Uy{g)on itself.
For this aim we introduce new Chevalley generators €4, by the following formulas

a.

a; = €ays ey = q’“le_a;k;i . (2.16)

In this basis the relations (2.2), (2.3), (2.6) take the following form [KT3]

L\ ., 1— k2
(adq’ea;)e—c_'j = [ecxia e—a,‘]qr = Jij 1 — qn ) (217)
(a‘dQ'éiai)nUéia; =0, (t :Ié .7) ) (218)
[(adq'éia;)éia,-, (adqaéia).)éia,] =0. (219)

The last relation holds for the condition (2.7). Here ad, is an adjoint action (see details
in [KT3]) defined by
(adg a)z := ((1d @ Sy )Ay(a)) oz (2.20)

for all homogeneous elements a,z € U,(g), where the operation o is defined by the rule

(a®b)oxz = (—1)!®@gzp (2.21)

Below we denote by a symbol (*) an anti-involution in U,(g), defined as (k)" = k7!,
(e4a;)” = €xaiy (g)* = q~'. We also use the standard notations Uy(x) and U,(bs) for the
Cartan and Bore! subalgebras, generated by k%! and esq;, ka;, k5! correspondingly. We

write also

2 n

T T z"
exp,(z) =1+ + + .ot +...= , 2.22
pol2) DT Tl T T Ly (2:22)
q*—1 ¢ —q " o) (o .
(a)g := -1 la], == F ; Qo = (—1)8( Yl (2.23)

Now we proceed to a description of the Cartan-Weyl basis for the quantum (su-
per)algebras U,(g).

3 Cartan-Weyl basis for U,(g)

Let A, be the system of all positive roots for g(A, T) with respect to I1. We denote by
A, the reduced root system which is obtained from Ay by removing such odd roots « for
which a/2 are roots.

Our procedure of a construction of the quantum Cartan-Weyl basis for U,(g) is in
agreement with a choice of normal ordering in A,. We remind the definition of normal
ordering in A, [AST,T2,T3].

We say that the system A, is in normal ordering if each composite rooty=a+ € A,
where a # Af, a, B € A, is written between its components a and f.



It should be noted that for any finite-dimensional simple Lie algebra there is one-to-one
correspondence between normal orderings and a reduced decompositions of the longest
element of the Weyl group [Z] (see Section 5). We have no such correspondence for Lie
superalgebras and affine Lie algebras because the superalgebras have no "good” Weyl
group and the affine algebras have not any longest element of the Weyl group.

We shall say that a < § if a is located on the left side of 3 in the normal ordering system
A,.

The quantum Cartan-Weyl basis is being constructed by using the following inductive
algorithm [T1,KT1,KT2,TK].

Algorithm 3.1 We fiz some normal ordering in A, and put by induction

ey 1= [earep]q ey = [e—p, e—a]q—l (3.1)

ify=a+f, a <y <pB, and [a; 3] is a minimal segment including «, i.e. the segment
has not another such roots o' and 8' for which o' + ' = ~v. Moreover we put

k‘Y = Hk{g.’! (3'2)
=1

zf7 = E:":l liaij (Oi,‘ S H)-
By this procedure one can construct the total quantum Cartan-Weyl basis for all finite-

dimensional contragredient simple (super)algebras. In a case of infinite-dimensional affine
Lie (super)algebras we use an additional constraint. Namely, we construct at first all root
vectors by our procedure and then we redefine the root vectors of imaginary roots so that
new imagj t i j i \ i)
ginary root vectors commute if they are not conjugated. That is, e.g., let €'}, 5

be root vectors of imaginary roots +né ?, constructed by the procedure. It turns out that

s Ik} kp — kg™
e, €] # b -naii(m) 5 (3.3)
We introduce new vectors ‘35315:
efI:ZuS = P(C,g:,);, 6’2;5 3ty 6’2216) (34)
which will satisfy the relation
IRE kP — k3" ‘
lesd €%0g) = Jm,_na;,'(n)q_—q_‘sl : (3.5)

This relation agrees with its classical counterpart.

The quantum Cartan-Weyl generators constructed by the procedure are characterized
by the following basic properties.

?In the case of a quantum affine algebra U;(g) the root vectors of imaginary roots ¥ = £nd have to be
labeled by an additional index i: 3’5;:2-5' i=1,2,..., mull, where mult is a multiplicity of the imaginary"
root £nd.



Theorem 3.1 The root vectors ex, € Uy(g) and the Cartan elements k, € U,(g) for all
v € A, satisfy the following relations:

(e:h‘v)* = €3y k;kle'v = q:t(an)e’yki:l ) (36)

By — k!

[evs -] = a(v)— q—q-!

[e‘” eﬁ]q = Z C"J Y e‘n e"n ) e:: ? (3'8)
ol <. <m<P

fora,f € Ay, where T;n;v; = a + B, and the coefficients C are rational functions of
q and ones do not depend on the Cartan elements k,,, t =1,2,...7. Moreover

, (3.7)

— ! n na ., n 2
[eﬁ’ €-a] = Z Cn,‘rvj;n;-.'r,e—*n €m " € 61’ €y e, ,' (3.9)
where the sum is taken on Yi,...,YmyY1y---> 7V @nd ny,. .., nm, 0}, ..., 0] such that

N<...<m<a<f<y<...<y,
(i —nim)=pf-a,
k)

and the coe_ﬂicients C' are rational functions of q and k' or kg’. The monomials

Tenz ., en na . near
ehtel?---elm and ell e - eln (1 < 72 < --+ < V), generate (as a linear space

over Uy(r)) subalgebras Uy(by) and U,(b-) correspondingly. The monomials

nl . nm l "'2 .. n.l
—‘ne—'n U Cam €y Ey T Cy (3-10)

where 11 < 72 < -+ < Y and 4] < 73 < -+ < 4)), generate Uy(g) over Uy(x).

If there are imaginary root vectors in the relations (3.6)-(3.9) then we should use additional
index for such vectors. For example, the relation (3.7) for ¥ = *né has the form (3.5).

We can transform the root vectors ey, in new ones such that the coefficients C  and
C’ in (3.8) and (3.9) will not depend on the Cartan elements k,. For this goal we extend
a notation of normal ordering for A, to "circular” normal ordering for the reduced system
of all roots, A=A, U(-A,).

Let v1,72,...,7~ be a normal ordering in A, then a circular normal ordering in A means
that the roots of A are located on a circular by the following way (see [I{T3])

Y172 s ANy~ TH ™2y -y —IN: N (311)

We shall say that o < 3, where a,8 € A, if the circular normal ordering segment [a, ]
of (8.1) does not contain the opposite roots —a and —f3.

We introduce two type of the circular root vectors é, and &, by the following formulas

€y =€y, ey i=—kIle_,, YyeA, , (3.12)



and
by 1= —eyky €y i= €y, VyeA, . (3.13)
In terms of these circular generators the relations (3.8) and (3.9) are rewritten in the
united form
easeol, = 30 Conénél---&n, (3.14)
a<ly <. <Tm <8

if @ € A, and a < f in a sense of circular normal ordering. We have also

[earésl, = X Cpyyéntenr-épr (3.15)

myY 2 T ?
a<n <..<m <0

if —a € A, and a < B in a sense of circular normal ordering. The coefficients C . and
C’ in (3.14) and (3.15) are rational functions of ¢ and do not depend on the elements ..

It should be noted that we can construct the circular root vectors é4., (up to scalar factors)
applying g-commutator algorithm to the Chevalley elements é4,;.

Now we want to consider some extensions of U,(g), U,(b3) ® Uy(b-), U,(g) ® U,{g)
since, for example, the universal R-matrix is element of two last extensions.

Let Fract (U,(k)) be a field of fractions over U,(x), i.e. Fract(U,(x)) is an associative
algebra of rational functions of the elements k%!, (i = 1,2,...,r). Let us construct a
formal Taylor series on the following monomials

et elnele eleerT e’ (3.16)
with coefficients from Fract (U,(k)), where a < v < --- < f in a sense of the fixed
normal ordering in A, and nonnegative integers ng,...,ny, Ma, ..., mg are subjected to
the constraints

| 3 (na — ma)el® |< const, i=1,2,,r, (3.17)
aeé,’_

where c( *) are coefficients in a decomposition of the root @ with respect to the system II
of simple roots. Let T,(g) be a linear space of all such formal series, then this space is

an associative algebra with respect to a multiplication of formal series and it is called the
Taylor extension of U,(g) (see KT2]).

Let Fract (U,(k ® )) be a field of fractions generated by the following elements 1 ® kg,
ko, ® 1 and gtei®hes, (1,7 = 1,2,...,7). Let us consider a formal Taylor series of the
following monomials

ey -elel @erelT - ep” (3.18)
with coeflicients from Fract (U,(k @ k)), where @ < v < --- < f in a sense of the fixed
normal ordering in A, and nonnegative integers ng, ..., %4, Mq,...,mg are subjected to

the constraint (3.17). Let T,(by ® b_) be a linear space of all such formal series. Then
this space is an associative algebra with respect to a multiplication of formal series and

it is called the Taylor extension of Uy(b}) ® U,(b-) (see [KT2)).

At last we take a formal Taylor series of the following monomials
-: "a ma

n'
ey elletnener - eg? @e e el el e/, eg (3.19)
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with coefficients from Fract (U,(x ® &)), where @ < v < .-+ < 3 in a sense of the fixed

normal ordering in A, and nonnegative integers ng,...,nq, Ma,...,mp and nj,...,n,,
!

my,, ..., mg are subjected to the constraints
| Y (na+nh —ma — m;)cfa) |< const, 1=1,2,---,1 (3.20)
aclAy

Let T,(g ® g) be a linear space of all such formal series, then this space is an associative
algebra with respect to a multiplication of formal series and it is called the Taylor extension

of Uy(g) ® Uy(g) (see [KT2))
The following embedding holds [KT2]

Tq(g ®g) ) Tq(b+ ® b-)1

To(9® 9) D To(9) ® Tolg) D Ap(Ty(9))- (3.21)

Now we introduce a natural topology on the space T;(g ® g), where basic open neigh-
borhoods of zero, €, are defined as linear spans of such the series generated the monomials
(3.19) with the additional constraint

S S (Ratmatnl+ml)e 21 (3.22)
1=1 a€Ay
Such topology will be called the formal series (FS) topology.

For the goals of Section 8 we introduce also two other topologies in U,(g) ® U,(g). Namely,
let QF and §; be linear spans of monomials from U,(g) ® U,(g) (3.19) with the additional
constraints )

Z Z (na-i-ma—n:,—m;)c,(“) >, and Z > (—na—ma+n;+m;)c§°) >1 (3.23)

i=l a€A, i=1a€A,

correspondingly. Then Q;f and )] generated two different topologies in U,(¢)@U,{gy). We
denote their formal completions (or, equivalently, their closures in Ty(¢®g)) by T,;} (9@ 9)
and 7,7 (9 ® g)-

4 TUniversal R-matrix

Any quantum (super)algebra U,(g) is a non-cocommutative Hopf (super)algebra which
has an intertwining operator called the universal R-matrix.

By definition [D4], the universal R-matrix for the Hopf (super)algebra U,(g) is an
invertible element R of the Taylor extension T,(by ® b_), satisfying the equations

A,-1(a) = RA-1 (a)R7Y, VaeUl), (4.1)

(A~ ®id)R = RPR® | (id® Ap-1)R = RPR', (4.2)



where A, is an opposite comultiplication: Ay = 0A,, o(a @ b) = (~1)dsedel) @ o
for all homogeneous elements a, b € Uy(g). In (4.2) we use standard notation R'? =

=3a;®b;®1d, RP°=Y0a;01d®b;, R°=71d®a; ®b; if Rhasaform R =Y, a; @ b;.

Fix some normal ordering in A, and let e, be the corresponding Cartan-Weyl gen-
erators constructed by our procedure. The following statement holds for any quantized
contragredient Lie (super)algebra of finite growth (see [KT2]).

Theorem 4.1 The equation (4.1) has a unique (up to a multiplicative constant) invertible
solution in the space Ty(by ® b_) and this solution (for a certain value of the constant)
has the form

R=(ﬁ R K, (4.3)

o€l

where the order in the product coincides with the chosen normal ordering of A, und the
elements R, and K are defined by the formulae:

R, = expz (1)) (g — ¢7)(a(e)) " (ea ® €—a)) (4.4)
for any real root « € A, and

mult

Ras = exp((=1)""Nq = ¢7) 3 cij(n)(el) @ eB))) (4.5)
ij
for any imaginary root né € A, and
K = un dij(ha;®haj) (4.6)

where a(a) is a factor from the relation (8.7) and (cij(n)) is an inverse to the matriz
(ai;(n)) with the elements determined from the relation (8.5), and di; is an inverse matriz
for a symmetrical Cartan matriz (a;f™) if (a;}™) is not degenerated. (In a case of a
degenerated (ai!™) we extend it up to a non-degenerated matriz (a¥™) and take an inverse
to this eztended matriz (see [KT1,TK])). Moreover the solution (4.8) is the universal R-

matriz, i.e. it satisfies the equations (4.2) also.
The proof of this theorem was given in [KT2] for all quantized contragredient Lie algebras
of finite-dimensional growth. The explicit formula for the universal R-matrix was obtained

in [Ro,KR,LS] for the case of quantized simple Lie algebras and in [KT1] for the supercase,
and in (TK,KT?2] for the affine case.

5 Twisting of the Hopf structure for U,(g)

In this section we consider at first some general properties of twisting for an arbitrary
Hopf (super)algebra and then return to the quantum (super)algebra U,(g) again.

10



(i) Twisting by Two-Tensor.

Let H4 := (A, A, S,€) be a (super)algebra Hopf with comultiplication A, antipode S and
counit €. Let F be an invertible even element of some extension T(A® A) of A® A, such
that the formula

AP (a) := FA(a)F, Vac A, (5.1)
determine a new comultiplication, i.e. A satisfies the coassociativity
(AP @id)AF) = (id @ AFHAP), (5.2)

Then the comultiplication AF) is called the twisted coproduct. One can prove the fol-
lowing simple proposition (see [R]).

Proposition 5.1 If a invertible even element F = ¥, fi ® f* € T(A® A) satisfies the

condition

(FRid)(AQid)F =(1d® F)(id® A)F, (5.3)
then the element u:= ((id ® S)F)o 1 =5; fiS(f*) is invertible and the set
(A4, AP, 5P ¢) (5.4)

is a new Hopf algebra ’H.(AF), where
AP (a) := FA(a)F!, 5F)(a) := uS(a)u™! (5.5)
for any a € A.

(In (5.3) the comultiplication A acts on components of F).

The Hopf (super)algebra AF) is called the twisted one by the two-tensor F' (or twisting
of the type I). One should stress that for such twisting the algebraic sector A of Hy4 is
not changed but the coalgebraic sector of H4 is changed.

(ii) Twisting by Automorphism.

We can obtain a twisting of coalgebraic sector a Hopf (super)algebra H4 = (A, A, S,¢)

by using any automorphism in algebraic sector A. Namely, let w : A = A be an even
automorphism of a linear and multiplicative structure, i.e.

w(za + yb) = rwa + ywb , w(ab) = (wa)(wd) (5.6)
for any a,b € A and any z,y € C. The following simple proposition holds.
Proposition 5.2 Let Al : 4 A® A and S : A A be defined as follows

A“(g) := (w Q@ w)A(w™'a) §@)(a) ;= wS(w'da) (5.7)

for anya € A. Then 'Hfr) = (A ,A™), S ) is a new Hopf (super)algebra isomorphic
to Ha = (A, A,S,€). If Ha is quasitriangular with an universal R-matriz R then 'HS:‘)
is also quasitriangular with the universal R-matriz R():

R® = (w®w)R . (5.8)

11



The Hopf (super)algebra ’Hfr) is called the twisted Hopf (super)algebra by automorphism
w (or twisting of the type II). Note that the algebra structure for the twisting of the type
II does not change also.

(iii) Twisting for U;(g) by some Factors of the Universal R-
matrix.

Now we want to show how the factors of the universal R-matrix generate a family of
twistings for U(g).

For a fixed normal ordering in A, and for any v € A, we put

=[] rR¥ (5.9)

o<y
and
F =(]] RAHK (5.10)
y<a

where R, are the factors of the universal R-matrix (4.3) and the product in (5.9) (and
(5.10)) is taken over all roots o which are less (more) 4 in a sense of the normal ordering.
The following theorem is valid.

Theorem 5.1 For any roots vy € A, the two sets

(Unlg) , AP, 85D ), and (Uglg) , A% 817 ) (5.11)
are two Hopf algebras, where Aﬁf}), S(f}' , and Agf"{), S:f':’) are determined by the formulas
AP)(a) = (B) ' A1 (a) Fy SE (@) = uySymi (@) (uy) ™, (5.12)

and (FY) (F2)
A (a) := (F.;)Aq-—l(F.;)—l, St (a) = ufYSq—l(a)(ufY)". (5.13)

for any a € U,(g). (Here in (5.12) and (5.18) the elements u., and u!, are determined by
the formulas similar to "u” in the Proposition 5.1).

Proof. By using the Proposition 8.3 of [KT1], which is valid indeed for any qua.utized
contragredient Lie (super)algebra of finite growth, we prove at first that A(_, and A(
satisfy the coassociativity (5.3) after that we apply Proposition 5.1.

Now we would like to show that for the case of a quantized simple finite-dimensional
Lie algebra g the twisting by the two-tensor F., coincides with the twisting by the Lusztig
automorphism of U,(g). First we remind that there is one-to-one correspondence between
the set of all normal orderings of A, and the set of reduced decompositions of the longest
element w, of the Weyl group W(g). Namely, the following proposition is valid (see [Z]).

Proposition 5.3 Let so;, (1 = 1,2,...,r), be the elementary reflections of W(g), corre-
sponding to the stmple roots a; and let

Y1, V2 Y3y -+ Yny o0y IN (514)
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be some fired normal ordering in A, , then all roots of the chain
A, =M, O, =S, (7‘2) ayy = 3;.-1,3;.-11 (73): cer

Qip =550 oesgusal () - ey =3l cesglsal () (5.15)

are simple, and w, = Saiy Saiy """ Saiy ts a reduced decomposition of w,.

On the contrary, for any reduced decomposition of w,, Wo = Sa; Su;, - Saqy, s the sequence
@iy Say, (az), Saiy Sai, (as), ... ySaiy_, " SaiySa) (7v) (5.16)

is a normal ordering in Ay,

(Tt should be noted that there are identical simple roots in (5.14) because r < N).

For every root v,, (n = 1,2,..., N), of the normal ordering (5.14) we put into corre-
spondence the element w.,, of the Weyl group W(g), which is an initial segment of the
corresponding reduced decomposition of w,, i. e.

Wy,

n

= Sai:sa-"z T S‘:"'n—l ! (w’fn(ain) = 7“) . (517)

Following [L], [DeCK], we define an action of a braid group W(g) in U,(g) by means
of the Lusztig automorphisms (see (2.3))

SAai(kcf;l) = kr::.'l ) '§a.'(k:::-hjl) = kff,lkf"" (1 # 7))
S$ail€ai) = —€-aika; , Sa;(€-a;) = “k;.-lea.' ) (5.18)

Sai(esa,) = N (8dgesa)ena, (7 3)
where the positive integer n;; are determined by the formula (2.5) (the last line for this

case); the normalizing factors V;; can be determined from results of the work [{T1} and
they have the form

n_,—l
i + o, 800 + aj)l, ,
Ny = (o .Ou) o, o Sa 21 J 519
2 q ( J)]'iI '_]:[1 [( s-—l)a,+a,,sa,+a,)] ( )
For the element w.,, (5.17) we put .
Wy, 1= 8; Sai, " Sy _, - (5.20)

The following statement (known in quantum group folklore) holds.
Proposition 5.4 For any normal ordering (5.14) of any simple Lie algebra g the twisting

of a Hopf algebra structure of the quantum algebra U,(g) by the two-tensor F,, (see (5.9),
(5.12)) coincides with the twisting by the Lusztig automorphism w., (5.19).
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Proof. We prove the statement for a root v, of (5.14) by induction on n. For n = 2 we
have that v = a; is a simple root, F.,, = equ;lx((q — ¢ N)(e-q, ® €-a,), and 1., is the
Lusztig automorphism, corresponding to the simple reflection s,,. It is clear from the
definitions that X

AT (ea) = AP (eor) = 0, @ 1+ 57! @ e, (5.21)

A(Fn)( -an) - A(""‘m)(e_a‘_) = e—a.' ® ka.‘ + 1 ® e-a; 3 (522)

for any simple root a; such that (e, ;) = 0. Now let &; be a simple root such that
(a1, ;) # 0 then f; := 4, () is a positive root and one can choose a normal ordering

M V2> Var -or IN (5.23)

such that 4] = ay, ¥4 = fBi. Using the Proposition 8.3 from [KT1} we have
w7 (en) = DS (en) = €5, @ 1+ k5! ®ep, (5.24)

( -1 )(e ) = Ac()fn)(e-—ﬁ.') =epg®ks +1®e_p , (5.25)

‘2

The equations (5.21), (5.22) and (5.24), (5.25) are sufficient to conclude that
A(FT:) = A(WYJ) ) (526)

For n > 2 the statement follows immediately from the multiplicative structure of .,
taking in mind that

F F'Yn-— ,._] = Tne1 (tb')'n—l ® tb’?‘n-—l ) equ‘:':—l ((q - q-l)(e-an-l ® e-C'u-l )) (527)

in the notations of (5.17).

An analog of Proposition 5.4 is also valid for quantized superalgebras. In this case the
Lusztig automorphisms should be considered as isomorphisms between different quantized
superalgebras. Let us consider this in detail.

Let g(A, T) and g(A’, T') be two isomorphic finite-dimensional contragredient Lie super-
algebra. We consider non-trivial case when the superalgebras have non-equivalent Cartan
matrices A and A’,i. e. A’ # BDAB™! for any nonsingular matrix B and any diagonal
matrix D. Such superalgebras have the same reduced system of all roots and different
reduced system of positive roots.

Let I := {ay, @q,. .., } and II' := {a}, a},.. ., al} be systems of simple roots for g(A, T)
and g(A’, T') correspondingly. Following Serganova (see [LSS]} one can define an "ele-
mentary reflection” s,,; for any «; € II as follows

Sai@i) 1= o) = —ai sa;(a;) 1= of = aj — nyja, (i # 7). (5.28)

The following theorem is valid (see [LSS]).
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Theorem 5.2 (V.Serganova). (i) Let II be a system of simple roots. Then the set s,,(I1)
may be considered as a system of simple roots, moreover s4,(11) is not equivalent to I iff
the root «; is grey.

(i) For any two isomorphic superalgebras g(A, T) and g(A’, Y') with non-equivalent Car-
tan matrices A and A’ there exist a sequence of simple root systems I1y,11,, ..., 11, and
roots o} € Tl; such that s, (I1;) = My, and moreover I, =11, TI,, = IT".

Remark. It should be noted that in a general case the system of all roots is not invariant
with respect to the ”elementary reflection” s, i. €. s4;(A) is a root system which should
not coincide with A (see, for example, the root system of the superalgebra D(2,1;a)
[K2]). (This is why the words "elementary reflection” are putted in quotation marks).
Therefore it is better to consider "elementary reflection” as change of variables or as a
map from one linear space to another. An accurate formulation leads to a notation Weyl
grouppoid instead of a Weyl group.

Let simple root systems Il and II’ are connected by one "elementary reflection” s, only,
i.e. so,(IT) = I, and let {esq;, k3'} and {€sar, k£, (1 =1,2,...,7) be the Chevalley
generators of the quantum algebras U,(g(A, T)) and U,(¢9(A’, T'}) correspondingly. We
define Lusztig isomorphism §,; as isomorphism 34, : U,(g(A’, T')) — U,(g{A, T)) by the
relations analogous to (5.16):

8o (k") = KT, So(KEY) = KIRTM,  (i#74),
§a.(el) = —e—uika; Sq,(€lp) = —k;‘_lea‘ , (5.29)

‘§06(e:i:u;-) = ((_UB(nua;)ﬂ(M)N‘.j)'%(a.aqeiai)n.‘je__haj , (1’ # _7) ,
where the normalizing factors N;; are given by the formula (5.19).

If Ag-1 and A, are the standard comultiplications of Uy(g(A, T)) and U, (g(A’, T')} (see
(2.11)-(2.13)) then just as in a even case using the Proposition 8.3 from [KT1] we have

(8 ® 3a,) Al (0') = (30 ® $a,)Dg-1(851a) = FI1A -1 (a) Fo, (5.30)
for any a € Uy(g(A, T}), where
Fo, = fol. = equ;‘l((q - q'l)(e_c,.. ® €-a,_,)) - (5°31)

Now let IT and TI' be an arbitrary non-equivalent systems of isomorphic superalgebras
U,(9(A, T)) and U,(g(A’, T")) correspondingly. Then according to the Serganova’s theo-
rem there is a chain w := s,(1)8,0) - - - 8, of the elementary reflections (5.28), such that
o = w(e), (1 =1,2,...,r). (Here we do not distinguish systems of simple roots which
differ an enumeration of roots). We define Lusztig isomorphism w : Uy(g(A’,T')) —
Uy(9(4, ) as

Y

w = 50(1)30,(:) v 50(.1) . (5.32)

The relation (5.30) turns to

(10 @ W)A}-1(a') = (b @ W)Ag-1 (W' a) = F ' Ag-1(a) (5.33)
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for any a € U,(g(A, T)), where the twisting two-tensor F,, is defined by the formula

Fu=F,00((5,00 @ 8a0)Fam ) -+ (841 ** * Satn=1 & 8501+ + $tn-1) ) Fgm ) - (5.34)

It should be noted that the factors ((8,0) « * * §40-0 @S, « - - So0-0) Fom), (1 = 1,2,...,n),
belong to T,(9(A, T) ® g(A, T) and are composed from factors of the umversal R-matrix
of Uy(g(4,T)).

We can summarize our considerations as the theorem.

Theorem 5.3 Let g(A,T) and g(A’, T') be two isomorphic finite-dimensional contragre-
dient Lie superalgebras. Then there ezists an isomorphism of algebras, w : Uy(g(A', T')) —

Uy(g(A,T)), such that a comultiplication A of Uy(9(A,T)) induced from Al . of
Us(g(A', X)) by the isomorphism w differs }rom the initial comultiplication A -1 with a
twisting by some factors of the universal R-matriz for U,(g(A, T)).

6 Drinfeld’s realization of quantum affine algebras

In this and last sections we consider quantized nontwisted affine algebras only.

Let § be nontwisted affine Lie algebra and II = {aq, ay, ..., .} be a system of simple
roots for §. We assume that the roots Ilp = {ay,as,..., 0.} generate the system A, (g)
of positive roots of the corresponding finite-dimensional Lie algebra g.

In the paper ”A new realization of Yangians and quantized affine algebras” [D2] V.G.
Drinfeld suggested another realization of the nontwisted affine algebra U,(g). In this
description the algebra U,(§) is generated by the elements:

ke, xit Eﬁ, (for i=1,2,...,7; l€Z), (6.1)

with the defining relations (we modify them a little for technical convenience):

[k., everything] =0 , Xi of_,'m = qi(a"a’){ mXi0 (6.2)
k! — k! X
[Xl i XJ.m] = 51 -mau(l) q— q_l ’ (63)
(it Eim] = Fai(DETHD 8 (6.4)
fa:'h,H-l ;'l,:m :l:(a. a,){ |l+) = qi(a“a,)&l s+l éj,m+l£?,:! ) (65)
- id+mk ({b. mk l
[ ?‘-[-,EJ" 6 ‘w A+ q q—l i+ , (66)

=0

Sym (i( 1) C’ (q(a.,a,))&h E:h §l F AT Eil : ) =0 for z_-,n.‘. .7 1 (67)

where Haa I
q (aloaj) —_ q— (allaj)

g—gq")
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the elements ¢ ,, ¥, are defined from the relations:

E 1’[)‘4’“ - X! 0 exp Z Xi pu ] (6-9)

p p>0
Z¢iuPu P=xioexp((g— ¢ thpu "), (6.10)

P p<0

the g-binomial coefficients C?2(q) are determined by the formula
[n],!
Cild) = =737 (6.11)
D= G o1

the symbol “Sym” in (6.7) denotes a symmetrization on Iy, ly,..., ln;, and nj; =1 —

(i, ;).
Drinfeld has shown that the elements Xfo and .ffo are connected with the Chevalley
generators eq;, ho; in the following way

ha; = Xio, exa; = €1 (6.12)

(for ¢ = 1,2,...,r), and there are more complicated formulas for e, and h,, which we
do not write down here (see [D2]). Drinfeld suggested also another formulas of comulti-
plication for U,(g), which have the following form [D3]

AP (k) =k . QK. , (6.13)
AP xi) = X @1+ k' @ xiy (6.14)
A(D)(Xi.-z) = Xi-1 @ ks" +1® xi,-1 (6.15)
for / > 0, and

A(D)(g;t") = ?,-l ® 1 + Z: k::nél',m ® E;’Tl-}-m ? (616)

m>0
AP = 1@+ X o ® PimkT (6.17)

m>0

for any [ € Z.

Now we want to show how the generators k., xi, f,i, can be expressed via the Cartan-
Weyl generators constructed by our procedure, and in the Section 8 we show how to
obtain the formulas (6.14)-(6.17) by a twisting of the standard comultiplication {2.11)-
(2.13) using some factor of the universal R-matrix.

7 Connection of the Drinfeld’s realization with the
Cartan-Weyl basis for U,(g)

We fix some special normal ordering in A,(g) := A4, which satisfies the following addi-
tional constraint:

+o<(m+1)<(n+1)d—a) (7.1)
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for any simple roots a;,a; € Ay(g), and I, m,n > 0. Here § is a minimal positive
imaginary root. For given normal ordering we apply our procedure for construction of the
Cartan-Weyl generators for U;(g). Furthermore we put

et(sf) = [ea.':e5—a.']q ) (7-2)

ensta; = (—1)"([(iy @i)]g) ™ (ad €Y ea, (7.3)
et 1)i-o; = ([(@i, 03)]g) "(ad ) es-a; , (7.4)
6'5?4»1)5 = [eﬂH-aneJ—a;]q y (7.5)

(for n > 0), where (adz)y = [z,y] is a usual commutator. The imaginary root vectors
6'&;2‘5 do not satisfy the relation (3.5). We introduce new vectors e:(;LJ by the following
(Schur) relations:

(=g ="

(el - (™. (7.6)

M- ¥

looop !
p142p2+.dnpa=n P17 Pn

In terms of the generating functions

E(z)=(g—q¢ ") Y ezm (7.7)
m>1
and .
E(2)=(qg—-q ") T el (7.8)
m21

the relation (7.6) may be rewritten in the form

El(z) = —1 + exp Ei(z) (7.9)
or
Ei(z) =1n(1 + E{(2)) . (7.10)
i From this we have the inverse formula to (7.6)
. e BRI i N R . -
D Dt e UL AT T G

!.. 1
p1+2p2+...4npa=n 4 Pn:

The rest of the real root vectors we construct in accordance with the Algorithm 3.1 using
the root vectors €nsia;, €(n+1)-ais eé(:‘)ﬂ)s, (t=1,2,...,r; n € Z;). The root vectors of
negative roots are obtained by the Cartan involution (*):

ey = (e)" (7.12)

for v € A, (g). Using the explicit relations (7.2)-(7.5), (7.11) and (7.12) we can prove the
following proposition.
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Proposition 7.1 The root vectors ef:g, Ens—a; ONd Ensio; satisfy the following relations

a (s . kP — k™
[€4), eW}] = (—1)™ 8 —matij(n) =t (7.13)
q—9q
forn, m#£0, .
[eff}, e(m+1)5-a,~] = (—l)ﬁ‘jﬂij(ﬂ)e{n+m+1)5-a.~ ) (7-14)
: [es:.s)remﬁ-i-aj] = _("l)ﬂsijaij(")e(n+m)6+a.‘ (7~15)

for n, m > 0, where the matriz elements a;;(n) are defined by the formule (6.8) and ks
is a central element of U,(§).

It should be noted that the matrix (a;j(n)) with the elements (6.8) may be considered as
a q-analog of a "level n” for the matrix Cartan (ai™).

The following theorem states the connection between the Cartan-Weyl and Drinfeld’s
generators for the quantum nontwisted affine algebra Uy(g).

Theorem 7.1 Let some functionmw: {a;,a; ...,a.} — {0,1} be chosen such that m{c;) #
m(a;) if (ai,a;) # 0 and let the root vectors éyy and éx., of the real roots vy € AL(§) be

the circular Cartan-Weyl generators (8.12), (3.18) and eg} be imaginary root vectors of
Uq,(§). Then the elements

kc = kJ 3 Xio = ka.' ’ E:{:O = é:ta.’ ) (7’16)
Xixn = eg:)ns-a f-in = Tin€nsxa; 6?.:-11 = Tin€néta; (7.17)

where 7;, = (—=1)"@) and n > 0, satisfy the relations (6.2)-(6.7), i.e. the elements
(7.16) and (7.17) are the generators of the Drinfeld’s realization of U,(g).

Remark. In terms of the Cartan-Weyl generators the relations (6.2)-(6.7) can be inter-
preted as follows:

(1) The ”Serre” relations (6.7) are equivalent to the following corollary of Proposition 3.1:
[eas el =0 (7.18)
if the roots a and f are neighboring and & < 3 in a sense of fixed normal ordering of the

root system A,.
(i) The defining relations (7.2)-(7.5) may be easily generalized to the identities

[Endtais e(m+1)5-ai] = C.Jf.ie’ga)+m+1)6 (7.19)

for n,m € Z where c is a constant. The relations (7.19) rewritten by means of (7.6) in
terms of generators eg)ia'_ give us (6.6).

(iii) The formulas (6.5) define quadratic relations between vectors ensq; O between e,5-q;,
(t=1,2,...,7). We write down them explicitly for U;(sl;} in Appendix A (see (A.10)-
(A.21)).
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8 The second Drinfeld’s realization as twisting of
Hopf structure in U,(g)

The second Drinfeld’s realization of the quantum affine algebra U,(g) was originally ob-
tained as a quantization of Lie bialgebra structure in affine Lie algebra g, which is equiv-
alent to presentation of § @ x (where « is the Cartan subalgebra of g =n; G« G n_) as
a classical double of the current algebra fiy := ni[t,17!] @ «[t] @ Cd. It turned out that
multiplicative structure of this quantization is isomorphic to U,(§)} but no any evident
connection of comultiplication structures was found. Here we make clear this connection.

The algebra i, may be considered as an image of Borel subalgebra b, under a action
of a limiting longest element wp of the Weyl group W(§) of §. This limiting element wq
does not act on vectors in the Cartan subalgebra or on the root vectors in g, nevertheless
the twisting of a Hopf structure in U,(g) by wp is well defined as a limit of twistings by
finite elements of Weyl group W(§) in the FS topology of T,(§ ® ) (just as in T;¥(§ ® ),
see the Section 3). We prove that Drinfeld’s comultiplication in his second realization can
be obtained as a twisting by wp of a standard comultiplication in U;(§). Analogously to
the Theorem 5.1 we state also that this twisting can be presented as conjugation by an
infinite product of factors of the universal R-matrix.

Theorem 8.1 (i) For any fized element x € Uy(§) an expression
AP (a) = ([[ B A (X [[ BY) . VaeU(d), (8.1)

¥<$§ ¥<8

is well defined element of Ty(§ ® §) (just as in T,H(§® §)).
)= T, (g®g)) is homomorphism

(ii) A map AD): Uy(g) = T(§®7) (just as AP): Uy(§
and it satisfies all the azioms of the Hopf algebra.
(iii) Ezplicit formulas for AP look as follows:

A(D)(ea_.) =€q, @1+ ko, ®ea, —(qg—q") Z e'gznsku,- ® emsta; (8.2)
m>1
A(D)(e—ai) =€-0; ® k;;l +1Q e, — (q - q_l) E €mé-a; @ e'ii)lskc_r;l ) (8'3)
m2>1
A(D)( ()) = e ® 1+ k" ® ens , A(D)(eﬂa) = eﬂs kI +1® eﬂs. (8.4)

In terms of Drinfeld generators the comultiplication AP has the form (6.14)-(6.17).

We shall give a complete proof of this theorem for the case of Uq(szg) in Appendix B. The
general case has no essential changes. The crucial idea is to look to twistings by powers of
the Lusztig automorphisms that correspond to translations in the affine Weyl group. It is
possible to control the main terms of twisted coproduct and see what is left in topological
limit.

Remarks. (1) We can also obtain the explicit expression of the right part of (8.1) by some
direct application of g-analogs of H’Adamard identities (see {[KT1]). Note that only linear
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terms (or one-step g-commutators) in H'Adamard identities give nonzero contribution in
the formula (8.1) and corresponding terms appear with a constant (¢ — ¢~') proportional
to a ”Planck constant” h. In this sense the comultiplication AP has quasiclassical nature.

(ii) The technique developed here allows to obtain the connection between two comulti-

plications only in one direction. We cannot invert the procedure and obtain A, -1 in Uy(§)
from AP),

Let U{P)(3) denote the second Drinfeld realization of the quantum algebra U, (§) with
the comultiplication A®): U,(§) — T,(§ ® §). A natural question arises whether this
Hopf algebra is quasitriangular and what is the formula for the universal R-matrix for
U{PYg). Let us at first remind what is going on with standard Hopf algebra structure in
U,(g). This Hopf algebra is quasitriangular and for given normal ordering satisfying (7.1)
the universal R-matrix can be presented in a form (see (4.3)-(4.6)):

R=R.RoR_K (8.5)
where
Ry=]] Ra, R.=]]R., (8.6)
ald >a
mult R .
Ro=exp((g—¢) L 3 eis(n)(el) @ e¥y)) (8.7)
n>0 1,3

The products in (8.6) are taken over all real roots located only on the left side and only
on the right one of imaginary roots in the normal ordering of A,.

By using (8.1) and (4.1) we have that
AP)(a) = (RPHYTAD) () RD), YaeUld), (8.8)
where
R® = RyR_KRY (8.9)
and R{®) may be considered as universal R-matrix for U{?}(g).

Unfortunately, an interpretation of the equality (8.8) in concrete representations is not
so simple. Indeed, let V' be a finite-dimensional representation of U,(g), V;, and V;, be
corresponding two representations of U, () shifted by z; and 2; (see [FR] for definitions).
Then the expressions AlP)(a)(v,, ® v.,), RoR-K(v;, ® v;,) (where v;, € V;,, v., € V)
are regular for | z; |<| z3 | and singular for | z; |>| 22 |, and vice versa the expressions
AP)(a)(vy, ® vs,), R (v,, @ vs,) are regular for | z; |>| z; | and singular for | z; |<| 22 |.

We can rewrite the equality (8.8) as the follows
(R (AP)(a)(RY) ™ (v5 ® vs) = (RoR-K) ' APNa)RoR-K (vs, ®vs,)  (8.10)

with the left side being originally defined for | z; |<| z; | and the right side for | z; [>] 22 |.
(The point is that now both sides of (8.10) have no singularities only on diagonal z; = z;
and the equality (8.10) has rigorous sense).

Thus we see that there is no definite sense for the representations of T, (§®§) in Vi, @ V,.
On the other hand, the algebra T;¥(¢ ® §) acts on V,, @ V;, for | 2, [<| 22 | and the
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algebra T (¢ ® §) acts on V;, ® Vi, for | z; |>| 22 |. In this context one can consider
the comultiplication AP as a map U,(§) = T;}(§ ® §) and the opposite comultiplication
A®) as a map Uy(§) = T;(§ ® §) and the universal R-matrix R(”) as the operator:
T,(4®§) = TS (g ®3). In terms of V;, ® V,, the operator RP) has entries being
generalized functions of z = ol
For illustration we consider concrete example g = sl;. Let p be a two-dimensional
representation, then modulo scalar function (see {[KT2]) we have the following formulas

(P2 @ P )Ry =101+ (X 2")(e12 @ €21) (8.11)
n>0

(P2 @ pay ) Ro = €11 @ €11 + €22 @ €32+

n _ 1 1-— -2n
+ (exp E 1 2")(en @ ex) + (exp Z q 2")(e2 ® en1) , (8.12)
n>0 n n>»0 n
(P ®P)R- =101+ (3 2")(en ® en2) (8.13)
n20
(pn ®pz)K = q%(eu ® e1 + €2, @ €22) + q_%(eu ®exn+en®en), (8.14)
(P2 ®P23)R21 =1Q®1+ (Z 27")(en ® e12) , (8.19)
n>0
and also
1—2
(psy ® Pzz)R(D) = (q’}(eu ® €1 + €2 @ €n) + —1-"—2(611 ® eg)+
g3 (1 - ¢%2)
1—q 2z
+ T——(en®e) (1 ®1+68(2)(e ® e12)) (8.16)
qi(t - 2)
where z := 2, §(z) := T, 2"
Appendices.

In this section we exhibit the construction of Cartan-Weyl basis and give the complete list
of commutation relations between Cartan-Weyl generators for U,(sl;). We also demon-
strate here the proof of the Theorem 8.1 for this case.

A.The Cartan-Weyl basis of U,(sl,).

Let a and 8 := § — a are simple roots for the affine algebra sl then § = o+ is a minimal
imaginary root. We fix the following normal ordering in A,:

a, d+«,...,006 +a, 6, 26,...,008, 06 —a,...,20 —a, §—a . (A.1)
The another normal ordering is an inverse to (A.1):

§—a,28—a,...,008—q, § 26,...,000, 006+ a,..., 0+, a. (A.2)
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In accordance with our procedure for construction of the Cartan-Weyl basis we put (n =

1,2,..)
€5 = [ecx; eﬁ—a]q )

enra = (=1 ([(@ o)™ (ad es)"ea
E(n+1)d-a = ([(a’a)]q)_" (a'd 65)n65—a )

}
Cnt1)s = [eﬂ5+m66-—a]q

and then we redefine the imaginary roots e/; by means of the Schur polynomials:

31.5 = E

1 |
P1+2p2+. A NPn=n P Pn:

We take also e_y = €2, (v € Ay).

(A7)

The following formulas are a total list of the relations for the Cartan-Weyl generators €4,

(Y€ Ay):
Eewy = *0Mesik,, 7o €A,
-1
el = 252 s,

(608, €mi] = Jn,_ma(n)% . mm#0,
[€ns+asEmi—als = 6'(,.+m)5 ) n>20,m>0,
[enstar E—mb—a) = —€(n-m)sks "k, n>m>0,
[€ns=ar €—méta) = ki k ' € (nom)s n>m >0,
[enstar ems] = a(Mm)e(nim)sta » n>0,m>0,
(ens, emé-a] = a(n)e(ntm)s-a , n,m>0,
[€nstar €-ms] = a(n)e(nm)s+ak] , n>m>0,
[€-ns) Ems—a) = G(R)E(m-n)s—aks™ , m>n>0,

m=—1

[emH-cn e(n+‘1m-l)5+cx]q = (q‘i - 1) z qc_,le(n+l)5+ae(n+2m—1—l)6+a ’

=1

[en5+a; e(n+‘3m)5+a]q = (qq - l)qgm-l)e%n+rn)6-a+

m-—1

+(qgr - 1) E qc:le(ﬂ+l)5+ae(n+2m—l)6+a ’
=1

foranyn>0, m >0

m-—1

[e(n+2m—l)5-—avc(n5-—a]q = (‘12 - 1) Z q;le(ﬂ.-l-Qm—l-I)E—ae(n-H)rS—cr )

i=1

[e(n+2m6—a’ en3+a]q = (Qa - l)qc(rm—l)e?n-i-m):s—a-'-
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m-1

+(Qc2r - 1) z qg’e(n+l)5+ae(n+2m—l)5+a ) (A21)
=1

for any n, m > 0. Here in (A.10), (A.14)-(A.17) the coefficient a(n) is determined by the
formula (6.8) with a; = a; = .

In order to obtain the rest of the relations between root vectors we have to extend the
relations (A.11)-(A.21) to arbitrary values of n. This can be done if we use the circular
generators €4, and €4, (see (3.12), (3.13)). More precisely, let

nbta = €néta » é—{n+1)8+or = —kaka_ne—né-{-a: n2>0, (A22)

E(nt1)i—a = —€(nt1)s—aky K} é-ns—a = €_pf—a, N 20. (A.23)

Then the relations (A.11)-(A.21) transform to the same formulas where e,54, replaced
everywhere by €n54a, €ns—o replaced by &my)s-o with the only restriction n > 0. Now
we have after conjugation by Cartan involution (*) the complete list of the relations for
Cartan-Weyl generators.

Remark. We can observe that the relations (A.14)-(A.17) may be rewritten in quadratic
form if we rewrite the relations in terms of €’,5, for instance,

n=1

[€nstar €'ms] = 45 Ve(nimisra + (62 = 1) D 7' éntt)sraim-ns (A.24)
.

The Drinfeld’s generators in the case of U,(sl3) have the form:
& = énsta £ = éns-a bo=k;', (A.25)
for any n € Z and
= (g — g7 katns, bn = (g~ ¢ ")k e s (A.26)

for n > 0.

B. The connection between two comultiplications for U,(sly).
The proof of the Theorem 8.1.

Let s, and s;_o are the elementary reflections of the Weyl group of sly. The explicit
formulas for the Lusztig automorphisms §, and 85—, in U,(sl3) look as follows:

Salka) = k", 3s5-alks—a) = k5o (B.1)
Salksa) = kaks | S5—a(ka) = kaks , (B.2)
Sa(es) = —e_oka , S5—a(sea) = —€_syaks—u , (B.3)
Sale—a) = —k'eq , 35—a(€bra) = —ki €50 , (B.4)
$a(€nsta) = EnsTa 85—a(E(nF1)sta) = E(nt1)ita » (B.5)
Sa(Ens) = €ns , 85-alens) = €ns , (B.6)
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for any integers n # 0. Here in (B.5) and (B.6) the root vectors e, are constructed in
accordance with the normal ordering (A.1) and the root vectors &, in accordance with
the inverse normal ordering (A.2).

If we put fo5 := 8,85 (t35 is a translation in the Weyl group) then we have from
(B.1)-(B.4) the relations

t2s(ka) = kak} f2s(ks) = kok;? (B.7)

tas(ks) = ks , tas(ens) = ens (B.8)

fg;(eg_a) = —e_s-akaks , fgg(e_3+c,) =k'k;'essu , (B.9)

£26(e26—a) = —e_aka , £25(e—25+a) =kle_,, (B.10)

tas(e(np1)bta) = E(nt1)ita » (B.11)

(for any integers n # 0).

Using general arguments of the Section 8 we have
R s - -1 -1
(i3 ® )8 E57(a) = (Ripnoina) + (BY) T A (QRE - Ritciiye (B12)

for any a € Uq(Sig). Now we want to investigate the limits of both sides of (B.12) when
n — 0o. For case a = e we have

Ag-ies) = es @1+ k5! @ es+ (qa — 45 )esks' @ eq (B.13)
and
(i35 ® 1358 (13 (e5)) =
=es®@1+ki' @es+ (o — 67" )e(-2nt1)6-aks’ ® E2nsta - (B.14)
The last summand tends to zero in the FS topology so we have
limpseo(f55 ® £55) A1 ({37 (€5)) = AP (es) = €5 @ 1 + k5" ® €5 (B.15)

and analogously for other imaginary root vectors.

Now let us consider the real root vectors, for example, a = e,. We have {3}'(es) =
—kok;*e_3ns4o and have to investigate behavior of the element A -1(e_2n544) for large

n. By induction we see that A,-1(e_2n54+q) consists of the following monomials e_3,540 ®
kok;?" and

— plo LN f2 P1 P2m i LS
a®b=clels €20 5 e el @€l e s

with coefficients from Frac(U,(x ® )) (see Section 3), where m > n. Further we have
in o ! lam ™ g 30n
( ,215 ® t?&)(a ® b) = 6—02715—0' T e—zﬂ(m+n)5-aeilts e 6]-?21115 ® e(lﬂn—l)5+a e e;(n_m)ts-l*a

;From weight analysis it is clear that the only nonvanishing terms in the FS topology (
or for topology in T+(§ ® §)) for AP)(e,) are

ea ® 1 and €-ms ® Emstas (m=0),

with coefficients from Frac(U,(x @ x)). After inductive calculation of these coefficients we
have (8.2) and the statement of the theorem.
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