Topological Entropy Versus
 Geodesic Entropy

Gabriel P. Paternain * Miguel Paternain **

IMERL-Facultad de Ingenieria
Julio Herrera y Reissig 565
Montevideo
Uruguay
Max-Planck-Institut für Mathematik
Gottfried-Claren-Strake 26
53225 Bonn
Germany

Topological Entropy Versus Geodesic Entropy

Gabriel P. Paternain* Miguel Paternain †

Abstract

We show that for a compact Riemannian manifold M, the geodesic entropy -defined as the exponential growth rate of the average number of geodesic segments between two points- is \leq than the topological entropy of the geodesic flow of M. We also show that if M is simply comected and $N \subset M$ is a compact simply connected submanifold, then the exponential growth rate of the sequence given by the Betti mumbers of the space of paths starting in N and ending in a fixed point of M, is bounded above by the topological entropy of the geodesic flow on the normal sphere bundle of N.

1 Introduction

Let M be a compact oriented C^{∞} Riemannian manifold and let $N \subset M$ be a compact oriented submanifold. Fix $p \in M$ and $\lambda>0$. Denote by $n_{N}(p, \lambda)$ the number of geodesic segments leaving orthogonally from N and terminating at p with length $\leq \lambda$. If p is not a focal point of N one can see that $n_{N}(p, \lambda)$ is finite. Define

$$
I_{N}(\lambda)=\int_{M} n_{N}(p, \lambda) d \mu(p)
$$

where μ is the measure induced by the Riemannian structure. Integrals of this sort were already considered in [1] when N is a point and in [4] when N is a totally-geodesic hypersurface. We define σ_{N} to be the number:

$$
\begin{equation*}
\sigma_{N}=\limsup \lambda_{\lambda \rightarrow+\infty} \frac{1}{\lambda} \log I_{N}(\lambda) \tag{1}
\end{equation*}
$$

All these numbers are Riemamian invariants and somehow measure the complexity of the geometry of geodesics leaving orthogonally from a submanifold. In Section 2 we will prove using Yomdin's Theorem [8] that, all these invariants are bounded above by the topological entropy $h_{\text {top }}$ of the geodesic flow. Such a bound was already obtained

[^0]in [7] and implicitly used in [2, Section 2.7] when N is a point. As an application of this generalization we will show the following: let $n(p, q, \lambda)$ denote the number of geodesic segments between p and q with length $\leq \lambda$, then
$$
\limsup _{\lambda \rightarrow+\infty} \frac{1}{\lambda} \log \int_{M \times M} n(p, q, \lambda) d \mu(p) d \mu(q) \stackrel{\text { def }}{=} h_{\text {geod }} \leq h_{\text {top }} .
$$

The number $h_{g e o d}$ can be regarded as the geodesic entropy of the Riemannian metric. Recently Mañé [6] proved that also one has $h_{\text {geod }} \geq h_{\text {top }}$.

In Section 3, we will show that if M and N are simply connected there exists a constant $C>0$ depending only on the geometry of M and N such that if $\Omega(p, N)$ denotes the Hilbert manifold of paths from N to p then for $k \geq 1$

$$
\sum_{i=1}^{k} b_{i}(\Omega(p, N)) \leq \frac{1}{\operatorname{Vol}(M)} I_{N}(C k)
$$

where $b_{i}(\Omega(p, N))$ are the Betti numbers over a fixed field. This was proved in [3] when N reduces to a point. Finally, as a corollary, we relate the exponential growth rate of the sequence $b_{i}(\Omega(p, N))$ with the topological entropy of the geodesic flow on the normal sphere bundle of N.

We would like to thank D. Gromoll and M. Sebastiani for useful comments and suggestions.

2 An upper bound for the geodesic entropy

Let M be a compact oriented Riemamian manifold and let $N \subset M$ be a compact oriented submanifold. We will denote by $T N^{\perp}$ the normal bundle of N and by $S N^{\perp}$ the (unit) normal sphere bundle. Set $D N_{\lambda}^{\perp}=\left\{v \in T N^{\perp}:\|v\| \leq \lambda\right\}$ and $S N_{t}^{\perp}=\left\{v \in T N^{\perp}:\|v\|=t\right\}$.

If $T M$ denotes the tangent bundle of M and $\pi: T M \rightarrow M$ denotes the canonical projection, then the exponential map is $e x p=\pi \circ \phi_{1}$ where $\phi_{t}: T M \rightarrow T M$ is the geodesic flow. Finally $\exp { }^{\perp}: T N^{\perp} \rightarrow M$ will denote the restriction of \exp to $T N^{\perp}$.

Let us recall that a point p is called a focal point of N if it is a singular value of exp ${ }^{1}$. By Sard's Theorem the set of focal points $F(N)$ has measure zero in M. Recall the definition of $I_{N}(\lambda)$ from the Introduction. Now we will prove:

Proposition $2.1 I_{N}(\lambda) \leq \int_{0}^{\lambda} \operatorname{Vol}\left(\phi_{t}\left(S N^{\perp}\right)\right) d t$, where $\operatorname{Vol}\left(\phi_{t}\left(S N^{\perp}\right)\right)$ stands for the Riemannian volume of $\phi_{t}\left(S^{\prime} N^{\perp}\right)$ with respect of the canonical metric of $T M$.

Proof: Let ω denote the Riemamian volume element and let (exp $\left.{ }^{\perp}\right)^{*} \omega$ denote the pull-back of ω under the map exp ${ }^{\perp}$. The same arguments as in [1, 4] show that if $p \notin F(N)$ then $n_{N}(p, \lambda)$ is funite, $I_{N}(\lambda)$ is well defmed and

$$
I_{N}(\lambda) \leq \int_{D N_{\lambda}^{\perp}}\left|\left(e x p^{\perp}\right)^{*} \omega\right|,
$$

or in other words

$$
\left.I_{N}(\lambda) \leq \int_{D N_{\lambda}^{\perp}} \mid \operatorname{det} d\left(e x p^{\perp}\right)_{v}\right) \mid d v
$$

Using Fubini's Theorem and the Gauss Lemma we obtain:

$$
\begin{gathered}
\int_{D N_{\lambda}^{\perp}}\left|\operatorname{det} d\left(e x p^{\perp}\right)_{v}\right| d v=\int_{0}^{\lambda} d t \int_{S N_{t}^{\perp}}\left|\operatorname{det} d\left(e x p^{\perp}\right)_{v}\right|_{T_{v}\left(S N_{t}^{\perp}\right)} \mid d v= \\
\int_{0}^{\lambda} d t \int_{S N^{\perp}}\left|d e t d \pi_{\phi_{t}(v)}\right|\left|\operatorname{det}\left(d \phi_{t}\right)_{v}\right| T_{v}\left(S N^{\perp}\right) \mid d v \leq \\
\int_{0}^{\lambda} d t \int_{S N^{\perp}}\left|\operatorname{det}\left(d \phi_{t}\right)_{v}\right|_{T_{v}\left(S N^{\perp}\right)} \mid d v,
\end{gathered}
$$

which yields the desired inequality.

Let $h_{\text {top }}(Y)$ denote the topological entropy of the geodesic flow with respect to the set $Y \subset S M ; h_{\text {top }}$ will always stand for $h_{\text {top }}(S M)$. Recall the definition of σ_{N} in (1).

Corollary $2.2 \sigma_{N} \leq h_{t t_{p}}\left(S N^{\perp}\right)$.
Proof: Yomdin's Theorem gives (cl. [2, 8]):

$$
\limsup _{t \rightarrow+\infty} \frac{1}{t} \log \operatorname{Vol}\left(\phi_{t}\left(S N^{\perp}\right)\right) \leq h_{t o p}\left(S N^{\perp}\right)
$$

so the corollary follows directly from the last proposition.

Corollary $2.3 h_{\text {geod }} \leq h_{\text {top }}$.
Proof: Let Δ denote the diagonal in $M \times M$ and consider in $M \times M$ the product metric. Then if $x=(p, q) \in M \times M$ one has that $n(p, q, \lambda)=n_{\Delta}\left(x, \frac{\lambda}{\sqrt{2}}\right)$ since a geodesic segment between p and q with length L corresponds to a geodesic in $M \times M$ leaving orthogonally from Δ and terminating at x with length $\frac{1}{\sqrt{2}} L$. Thus from the definitions it follows that

$$
\begin{equation*}
h_{\text {yeood }}=\frac{1}{\sqrt{2}} \sigma_{\Delta} . \tag{2}
\end{equation*}
$$

Now consider the map $f: S(M \times M) \rightarrow S^{1}$ given by $f\left(v_{1}, v_{2}\right)=\left(\left\|v_{1}\right\|,\left\|v_{2}\right\|\right)$. Since f is a first integral of the geodesic flow on $S(M \times M)$ it follows that $h_{\text {top }}(S(M \times M))=$ $\sup _{c \in S^{1}} h_{\text {top }}\left(f^{-1}(c)\right)$. But if we write $c=(x, y)$ then $h_{\text {top }}\left(f^{-1}(c)\right)=(x+y) h_{\text {top }}$ and thus the topological entropy of the geodesic flow of $M \times M$ equals $\sqrt{2} h_{\text {top }}$. Now the corollary follows by combining the equation (2) with Corollary 2.2 .

3 The path space $\Omega(p, N)$

Suppose now that M is a compact simply comected manifold and $N \subset M$ a compact simply connected submanifold. Choose a triangulation of M addapted to N and let $\Delta_{k}(M)$ and $\Delta_{k}(N)$ denote the k-skeleton of M and N respectively.

Take a point $p \in M$ and consider $\Omega(p, N)$, the Hilbert manifold pf paths starting from a point in N and ending in p. Denote by $\tilde{\Omega}(p, N)$ the subspace of $\Omega(p, N)$ given by all piece-wise linear paths respect to the chosen triangulation. Following Gromov ([3]) we observe that $\tilde{\Omega}(p, N)$ has a natural cell-decomposition as follows. A path $\gamma \in \tilde{\Omega}(p, N)$ can be identified with the sequence of simplices $\sigma_{1}, \ldots, \sigma_{\tau}$ that it touches on its way from N to p; in this fashion a cell in $\tilde{\Omega}(p, N)$ can be thought as the cartesian product $\sigma_{1} \times \ldots \times \sigma_{r}$ where two consecutive simplices σ_{i}, σ_{i+1} are faces of one simplex. Note that $\operatorname{dim} \sigma_{i}$ can be any value between 0 and $\operatorname{dim} M$.

We will now show that the arguments in [3] extend to the case of the path space $\Omega(p, N)$. Since M and N are simply connected the inclusion map

$$
\left(\Delta_{1}(M), \Delta_{1}(N)\right) \hookrightarrow(M, N)
$$

is homotopic to a constant map $(q, q) \in(M, N)$ with homotopy

$$
g_{t}:\left(\Delta_{1}(M), \Delta_{1}(N)\right) \rightarrow(M, N) .
$$

By the homotopy extension lemma (relative version, cf. [5, Corollary 4-10]) g_{t} can be extended to a homotopy

$$
G_{t}:(M, N) \rightarrow(M, N)
$$

so that G_{0} is the identity map and $\alpha \stackrel{\text { der }}{=} G_{1}$ contracts the 1 -skeleton of M to a point $q \in N$. Moreover, G_{t} can be chosen smootlı.

Suppose now M has a Riemamian metric and let $L: \Omega(p, N) \rightarrow \mathbf{R}$ be the length functional. Note that a smooth map $f:(M, N) \rightarrow(M, N)$ induces a map $\hat{f}: \tilde{\Omega}(p, N) \rightarrow \Omega(f(p), N)$. We will prove:

Lemma 3.1 There exists a constant $C>0$, depending only on M and N such that the natural map

$$
H_{i}\left(L^{-1}[0, C k]\right) \rightarrow H_{i}(\Omega(p, N))
$$

is surjective for $i \leq k$ and all $k \geq 1$ and any $p \in M$.
Proof: First observe that $\tilde{\Omega}(p, N)$ has the same homotopy type as $\Omega(p, N)$ and it is independent of the point $p \in M$. Hence the lemma is a consequence of the following claim: there exists a constant, $C>0$ depending only on M and N so that

$$
\hat{\alpha}(k-\text { skeleton }) \subset L^{-1}[0, C k]
$$

for all $k \geq 0$, where $\hat{\alpha}$ is the induced map by α.

Consider a cell $\sigma_{1} \times \ldots \times \sigma_{r}$ in $\tilde{\Omega}(p, N)$ with $\operatorname{dim}\left(\sigma_{1} \times \ldots \times \sigma_{r}\right) \leq k$. Take a path γ in this cell. Since α sends the 1 -skeleton to a point we observe that

$$
L(\hat{\alpha}(\gamma)) \leq K\left(L(\gamma)-L\left(\left.\gamma\right|_{1-\text { skeleton }}\right)\right)
$$

for some constant $K>0$. Call d the maximum of the diameter of all positive dimensional simplices in the triangulation. Then clearly

$$
L(\gamma)-L\left(\left.\gamma\right|_{1-s k e l e t o n}\right) \leq d \#\left\{\sigma_{i}: \operatorname{dim} \sigma_{i}>0\right\} \leq d k
$$

Thus $L(\hat{\alpha}(\gamma)) \leq K d k$. If we set $C=K d$ we obtain the claim.

Corollary 3.2 If $p \notin F(N)$ then $\sum_{i=1}^{k} b_{i}(\Omega(p, N)) \leq n_{N}(p, C k)$ for all $k \geq 1$, where $C>0$ is the constant from the previons lemma and the Betti numbers $b_{i}(\Omega(p, N))$ are taken over a fixed field.

Proof: If $p \notin F(N)$, then the length functional L is a Morse function on $\Omega(p, N)$. The critical points of L are precisely the geodesics leaving orthogonally from N and ending in p. Hence $n_{N}(p, \lambda)$ is nothing but the number of critical points of L with length $\leq \lambda$. If we set, as it is usual, $\Omega^{\lambda}(p, N)=L^{-1}[0, \lambda]$, the Morse inequalities imply:

$$
\sum_{i=1}^{r} b_{i}\left(\Omega^{\lambda}(p, N)\right) \leq u_{N}(p, \lambda)
$$

where r is such that $b_{i}\left(\Omega^{\lambda}(p, N)\right)=0$ for $i>r$.
But from Lemma 3.1 we know that $b_{i}(\Omega(p, N)) \leq b_{i}\left(\Omega^{C k}(p, N)\right)$ for $i \leq k$ and the corollary follows.

Define now r_{N} as:

$$
r_{N}=\limsup k_{k-+\infty} \frac{1}{k} \log \sum_{i=1}^{k} b_{i}(\Omega(p, N)) .
$$

Corollary 3.3 For all $k \geq 1$ we have that

$$
\sum_{i=1}^{k} b_{i}(\Omega(p, N)) \leq \frac{1}{V o l(M)} I_{N}(C k) \leq \frac{1}{\operatorname{Vol}(M)} \int_{0}^{C k} \operatorname{Vol}\left(\phi_{t}\left(S N^{\perp}\right)\right) d t
$$

where $C>0$ is the constant from Lemma 3.1. Moreover,

$$
r_{N} \leq C h_{\text {top }}\left(S N^{\perp}\right)
$$

Proof: It follows directly by integration from the previous corollary, Proposition 2.1 and Corollary 2.2.

Remark 3.4 The number r_{N} can thought as a measure of the "complexity" of the embedding $N \hookrightarrow M$. If this embedding is complicated, i.e. if $r_{N}>0$, then Corollary 3.3 says that the topological entropy of the geodesic flow over the set $S N^{\perp}$ is positive. In this way Corollary 3.3 could be regarded as follows: the "complexity" of the embedding is bounded by the dymamics of the geodesic flow on the normal sphere bundle.

Finally note that Corollary 3.3 has the following interesting application. Let M be a simply connected compact manifold and $N \subset M$ a simply comnected compact submanifold. Then if every geodesic leaving orthogonally from N returns orthogonally to N at constant time, then $\sum_{i=1}^{k} b_{i}(\Omega(p, N))$ grows at most, like k. Indeed since there exists $T>0$ so that $\phi_{T}\left(S N^{\perp}\right)=S N^{\perp}$, it follows that. $\operatorname{Vol}\left(\phi_{t}\left(S N^{\perp}\right)\right)$ is bounded which implies the claim via Corollary 3.3.

References

[1] M. Berger, R. Bott, Sur les variétés à courbure strictement positive, Topology 1 (1962) 302-311.
[2] M. Gromov, Entropy, homology and semialgebraic Geometry, Séminarie Bourbaki 38éme année, 1985-86 $n^{\circ} 663,225-240$.
[3] M. Gromov, Homotopical effects of dilatation, J. Diff. Geom. 13 (1978) 303-310.
[4] N. Grossman, The topology of taut Riemannian manifolds with positive Risec pinching, J. Diff. Geom. 3 (1969) 393-410.
[5] P.J. Hilton, An introduction to homotopy theory, Cambridge Univ. Press 1953.
[6] R. Mané, On the topological entropy of geodesic flows, preprint
[7] G P. Paternain, On the topology of manifolds with completely integrable geodesic flows, Ergod. Th. and Dyn. Syst. 12 (1992), 109-121.
[8] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), 287-300.

Gabriel P. Paternain
Max-Planck-Institut für Matillematik
Gottfried-Claren-Strasse 26
5300 Bonn 3, Germany
E-mail: gabriel@mpim-bonn.mpg.de

Miguel Paternain
IMERL-Facultad de Ingenieria
Julio Herrera y Reissig 565
Montevideo-Uruguay
E-mail: miguel@cmat.edu.uy

[^0]: *Supported by the Max-Planck-lustitut. fiur Mathematik and by a travel grant from CDE. On leave from : IMERL-Facultad de Ingenieria, Julio Herrera y Reissig 565, Montevideo-Uruguay
 ${ }^{\dagger}$ partially supported by Centro de Matemática, Montevideo-Uruguay

