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. Introduction

Let (T*Rn,mRn) be the phase space for the free particle
(cf. [1]) with the Hamiltonian function H(x,p) = %([pl2-1).
Let the smooth hypersurface ic;Rn, representing an obstacle in
the Euclidean space, be described by the smooth function F: R"
—~+ R. The corresponding two hypersurfaces of (T*Rn,mmn) : Y=
{(x,p); H(x,p) = 0} and 2 = {{(x,p); F(x,p)=F(x)=0} , define
the sphere bundle W = YN Z over Z. Let us denote by M the sym-
plectic space 6f all integral curves (oriented lines) of the Ha-
miltonian system defined by H. Let w:Y — M be its canonical
characteristic projection. The critical points of "lw are given
by = {(x,p)€ Wg {H,F} =0 }. Q forms the set of all versors
in R" tangent to Z and = = 1(Q)C M is the hypersurface of all
lines tangent to 7.

In the generic case there exist only three normal forms for
W, which in the appropriate Darboux coordinates are described
as follows (see [3], Theorem 3 )

* 2
Wi= {(q,p) € TR; pJ + py= 0, q,= O} ,

W,= {(q,p)E€ T'R"; pg+p1po+q1= 0, q,= 0} ,
Wy= {(q,p) € T'R®; pi+p,p2+a,p +p,= 0, q = O} .

In the variational obstacle problem (cf.[6], [14], see alsc
Remark 5.9 and Figqure 2) the geodesic flow y on 7 is defined by
the mutual position of the source of radiation and the obstacle
itself. The flow y corresponds to the Hamiltonian flow on the
hypersurface = of M. The generic geodesic flows on the obstacle
are classified by the corresponding Hamiltonian flows for the

hypersurfaces Ei= n(wi)C.M, i=1,2,3. The most singular case,

i=3, was precisely described by Arnold 3 . Arnold wrote down



explicitely the corresponding geodesic trajectories on 53 and

showed that the typical lagrangian variety in C Rd, correspon-

-3

ding to the generic system of gliding rays in the biasymptotic

point of the obstacle, is symplectomorphic to that one given by

the following local model

{(q1:q2:P1fpz)E M; %15+ %p113¥ %q2A2+pZA+ %q1 has a root of
multiplicity > 3},

(cf. Remark 5.9).

It appeared (see [5], (6], [14] ) that the above singulari-
ties of wave fronts in the presence of an obstacle are also
classified by the reflection groups as in the standard A, D, E
case (see {6}, [13]). The analogous system of rays on the plane
gliding along the curve having an inflection point is determi-
ned by the reflection group of symmetries of the icosahedron
(cf. [5] p. 28 ).

The aim of this paper is to investigate the combinatorial
aspects of the singularities considered above and to give the
precise description of the analytical structure of these singu-
larities in the general setting of symplectic geometry and in-
variant theory of binary forms. We prove that where the obstacle
singularities appear, the natural symplectic structures of the
spaces are coming, by the symplectic reduction process, (cf.[18])
from the unique Slz(m)-invariant symplectic structure which
appears as a unique tensor invariant of degree two on the space
of binary forms of odd degree. 1In order to-prove that fact, in
Section 2 we formulate the corresponding umbral approach to the

general investigations of the spaces of invariants of binary

forms (cf. [12], [15], [16]) and prove the useful polynomial identi-



ties appearing in the stabilized hierarchy of polynomial‘:spaces
with the fixed root comultiplicity. 1In Section 3 we construct
an umbral approach in order to classify explicitely the tensor
invariants of binary forms of degree n (cf. [16]). Following[12]
we prove the fundamental theorems concerning the umbral, bracket
representation of tensor invariants. In Section 4 we show the
existence and uniqueness of the Slz(M)—invariant symplectic struc-
ture on the space of binary forms of odd degree and we write down
its explicit normal form. The momentum mapping for the symplectic
action of Slz(K) in the symplectic space of binary forms is deri-
ved and the classical theorems of the theory of polynomial invar-
iants of binary forms (Cayley, Sylvester) is reformulated using
the canonical Poisson brackets. In an analogous way the Slz(m)
-invariant contact structure of the p;bjective space RP" of all
zero-dimensional submanifolds of degree n in the projective line
is indicated. Section 5 is devoted to the generalization of the
notion of open swallowtail in all dimensions and to extending
the notion of Hamiltonian system generated by translations to the
general swquence of coisotropic submanifolds defined by the so-
-called apolar subspaces of binary forms. The generating one-
-parameter families for open swallowtails are written down ex-
plicitely and their usefulness in the investigation of oscila=
ting integrals in the presence of an obstacle is shown.

I would like to thank H. Kn8rrer for many stimulating
discussions and to N. Buchdahl for his help in preparing the
manuscript. I wish also to thank the Max-Planck-Institut

fir Mathematik in-Bonn for its exceptional hospitality.



2. Polynomial invariants of binary forms

Let M**!

be the space of binary forms of degree n. A bi-
nary form f(x,y) of degree n in the variables x and y is a homo-

geneous polynomial of degree n in x and y (cf.{16]). Thus we

denote
n
(2.1) P L LRI Lo ENE S
' X=0

Let us consider the standard action V of Glz(m) on Mn+1'

A nonconstant polynomial I€ K{ao,...a 'X,y] is said to be a co=

n
variant of index g of binary forms of degree n if for all h ¢

Glz(m) we have
*

h
where V is the canonical extension of V to Mn+1x mz. A poly-

(2.2) V. I = (deth)9r,

nomial function I defined only on Mn+1and invariant with res-
pect to v , according to the formula (2.2), is said to be an in-
variant of binary forms. We assume that the coefficients of £
belong to a field K of characteristic zero and the action v of
Glz(m) is induced by the following transformations of variables
x and y:

X = CyqX + CooY

11
(2.3) Y=oy E+e,T .
A very effective method for indicating the polynomial co-
variants of binary forms tomes from the so-called combinatorial
umbral calculus (see [12][15]). We recall now some of the basic
properties of the umbral calculus applied in the invariant theo-
ry of binary forms. Using the umbrél methods we can reduce com-
putations with binary forms to the special case of binary forms
of type f(x,y)=(a1x+a2y)n and obtain the uniform theory of co-

variants. The aim of this paper is to enrich this theory with



respect to the invariant (covariant) differential forms defined
on the appropriate spaces of binary forms.

Let P = {a,f,...,w,u} be an alphabet consisting of an
infinite (finite for some special constructions) supply of Greek
letters followed by the single Roman letter u. To each Greek
letter, say , and the Roman letter u, we associate two variab-
les Gqr 0o and u,, u, resp. The ring of polynomials in these
variables (possibly infinite dimensioconal) is a vector space
called the standard umbral space (I. With every space of binary
forms we associate a linear operator, say U(f) (generally also
denoted by U), defined from the umbral space U to the space of
polynomials K [ao,...,an,x,y] in the following way. We define
the aetion of U(f) on the corresponding monomials of U =K [a1,

azr---'ll-l,uz] H

(2.4) <u()[aXad > =2, <vif)lodak > = 0 1f j4k £ o’
for any Greek umbral letter «,
() [uf> = (9%, <o) ]uf > = XK

and the multiplicative rule:

kaly

(2.5)  <u(f)|alads¥al. . wPud > = <uce)olads<u(r) |8Kal> ...

172 172

<U(£) [ub><u(s) [ud> .

These rules uniquely define, by linearity, the umbral operator
U(f) on :the umbral space U .

Every polynomial I(ao,...,an,x,y) can be written as
<U(f)|Q(a1,a2,...,u1,u2)> for some polynomial Qell . The poly-
nomial Q is called an umbral representation for the polynomial I
and I is called the umbral evaluation of Q. It is easy to see

d d dn e, e2

that, for the monomial I = a %a 1...a X Yy we have

o 1 n



e, e
1,.,n-1 1 _n-1 1 2

I = <U(f)|0102...Y1Y?, 6‘162 0008132— I'OCI(-u1 )u2 >

d

do times times

1
Usually the umbral representation of a polynomial I is far from
unique.

The v-action of Glz(M) on the space of binary forms im-
plies the corresponding action of Glz(K) on the umbral space U
Let (cij) be defined as in (2.3). Then the corresponding change
of umbral variables (see [12]), say for some Greek letter:)a, is
defined as follows
(2.6) a;= [8 ¢c] , a,=(adl,
where @ = (8,,8,), © = (-C,y,,Cq4), 4 = (=cy,,cy,) and the bra-
1 Y1
2 Y2
By that notation we can easily express the umbral represen-

L v
cket ([vw] = det(v ) for two vectors v=(v1,v2), w=(w1,w2).

tation of any polynomial 1(30,...,3 ,X,¥) 1in terms of the umbral

n
representation of I(ao,...,an,x,y), némely (see e.q. [12], p.33),
let I€ K [ao,...,an,x,y] , I = <U(f)|P(a1,a2,...,u1,u2)> . Then
we have

(2.7)  I(ag,...,a ,X,y)= <U(E)|P(a1,a .u1.u )> = <U(f)|P(

c o dl, .., - fuwcl [u al
e el r o l (c al’ fe a] >

2'00-

where f(x,y) is the binary form obtained from f(x,y) by the
change of variables (2.3).
By (2.7) we easily have the following explicit expression

for the representation v (cf. [12]),

a = <U(f) | (o e)¥[a a]?7* > =
- mi“(m'k)(k) nk) o g kefonskomed
il lm-1] ©11%12 €29 S22 m

m=0 i=m-n+k

We see that the bracket monomials, say[a 8], [a u}, etc.



are covarlants of index 1, i.e. [a 8]= [c d]lia B], [a ul=

[c d][@ @]. Thus we can consider, in the umbral space U , the
subspace of bracket polynomials defined as the linear combinations
of bracket monomials ; l.e. the nonconstant polynomials in U
which can be written as a product of brackets, say [a gl La &81...
[w ul.

| The fundamental theorem of invariant theory of binary

forms in the umbral approach can be formulated as follows

Theorem 2.1. (cf. [12]). A). The umbral evaluation <U|P> of

a bracket polynomial P, for which in every bracket monomial M
the number of brackets in M containing only Greek letters is con-
stant and equal to g¢ N, 1s a covariant of index g.
B). Let I be a covarlant of index g of binary forms of degree
n. Then there exists a bracket polynomial P of index g (i.e.
with the same number of brackets containing only Greek letters
in each monomials involved in P) such that I = <U|P> .

For the proof of this theorem as well as for the exhaustive
account of its applications one can see [12] . |

Example 2.2. Using the bracket representatfons we can easily

calculate, by the appropriate algorithm (cf.[12]), the respective
basic invariants for binary quadric, binary cubic and binary quar-
tic, namely
1. Binary quadric:

D= <U(f)|[a B >
2. Binary cubic:

A= <u(f)|le 81%a y] [8 8] [y 61% >

3. Binary quartic

I = <U(f)]la B]4> '

I = <u(f)|ta 81%ta v1208 ¥1% > .



In order to express, more precisely, the evaluations of
covariants on the space of binary forms with multiple linear
factors we have to introduce the so-called apolar covariant
(cf. [12],[16]). We show its convenience in the next sections.
Let us consider two binary forms, say f(x,y), g(x,y), where £
is of degree n, g is of degree m, m ¢ n. They can be written
umbrally £ = <U{{[a u]n> , g = <UJB u]m > . Their apolar covar-
iant <f|g> 1is the binary form of degree n-m defined umbrally
by
(2.9) <f|g> = <U|[a B]m[a ™M s

By the straightforward calculations using the explicit
formula for (2.9) we obtain an another expression of polynomial
identities mentioned in [9] (Theorem 2), (cf. also [5]).

Proposition 2.3. a) Let n be even. Then the apolar covariant

<f|f> 1is an invariant for the binary forms of degree n. It can

be expressed by
o't an;fk - 1 0" (R)aany -
Ix~ ax k=0

Hh

(2.10 £le> = -1 ] (K
10 <E|B = 11" ] (-1

b) Let n be odd, say n=2j+1. Then the second apolar covariant

<fk%§> can be expressed by

k n-k
k=0 IX X
n=1 e T
= { ("1‘) Tl — ) a - (xa +ya )
K20 (Q,k 1] "n=k k+1 k

Corollary 2.4. Let n be even and f have a linear factor of degree

greather than 3 . Then <f|f> = O.

s

Let n=2j+1 and f have a linear factor greather than j+1. Then

<f[%§ >= 0.

Proof. The first part follows from the fact that £, having a

multiple linear factor of degree greather than or equal to [%]+1,



is the so-called Hilbert zero-form (cf. [19]). We see that on

one side <f|%§> has a multiple linear factor of degree at least
k

two (because of k £ j in differential factors 3—% ). However
X

from the right hand side of (2.11) <f|§f> is a linear form,

which gives us a contradiction unless <f|%§> is zero.

Remark 2.5. Instead of binary forms we can consider polynomials

f(x,1). Let us denote by Ek(n) the set of all polynomials of
degree n having at least one root of comultiplicity (= n - multi-
plicity) less than or equal to k. We:see that differentiation
of polynomials preserves the comultiplicity of roots and defines
the mapping ¢, (n): I, (n+1) — gk(n). Using Proposition 2.3

and Corollary 2.4 it can be proved (see e.qg. [9], p.14) that if

k £ n;1’ then ¢k is a diffeomorphism of affine algebraic varie-

ties. In th&s paper we use the umbral methods to prove the fun-
damental results concerning the symplectic geometry of polyno-
mials, some of them already mentioned in [4],[6], and to show

the effective directions for further generalizations.

3. Umbral derivation of tensor invariants of binary forms.

Let U be the elementary umbral space with one umbral

letter . un(a) denotes the subspace of U o0f all homogeneous

polynomials of degree n. By Dn(a) we denote the vector space

of all differential symbols a1(u)da1+ az(a)da2 with coefficients

a,, a, belonging to Un_1(a). The corresponding action, say u ,

of Glz(Kyton Dn(a) is canonically induced from the standard

Glz(m)-action on Kz, namely
€14 °12)

€21 ©22

a [a c]\ 0,C..—0,C
aq) — ([u d]f: (a"c”-azcm)E K,
2 1712 72722

(3.1) 612(M)xm2 3(
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(cf. (2.6)).

Let En(u)c_Dn(a) be the subspace of exact differential
1-forms. En(a) is generated by the following linearly inde-
pendent elements: {d(a?ag-k)}z=o . Let Kn(a) denote the subspa-
ce of D _(a) generated by {afag-r-zta da]}g;g , where a da 1is

an ordinary bracket with da= (da1,da2).

Proposition 3.1. There exists a uniquely defined Glz(m)-equi-

variant projection IP: Dn(a) —> En(a), KerP = Kn(a).

"Proof. En(a), Kn(a) are Glz(m)-invariant subspaces of Dn(a),
dimEn(u) = n+1, dimKn(u)=n-1, dimDn(a) = 2n. Let us choose the

following basis in Dn(a),

e p n-p-1da

p'i_ p=0'no.'n_1' i=1'2o

1'
Then the corresponding generators for En(a) and Kn(a) can be

expressed as

k_n-k, _ _ . _
d(010.2 ) - kek_1'1+ (n k)ek’z ’ k-o,-.-'n
and
r n-r-2
ajo, (e da] = € 41,2” 17 T = O,...,n=2
respectively.

The associated 2(n-1)x 2{(n-1) matrix

1~ Of{n-1 O

0 n-1 "
n

(0] “* n

n-1
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Thus Dn(a) = En(a) ® Kn(q). The actionAp restricted to En(a)
and Kn(a) 1s 1irreducible, which implies the uniqueness of the
projection P.

Now we can define the umbral operator U: into the space
of differential 1-forms over the space of binary forms Mn+1.
Let U be the standard umbral operator (see Section 2) defined
on U = K[a1,a2] . Let U' be the restriction of U to the space
t (a). Now we introduce an operator U defined only on E,(a)
Dn(a) and satisfying the following commutation relation
(3.2) deU' = Ued.

Thus for the elements of the basis of En(a) we have

(3.3) <Ola(a¥e)™®)> = da,, k=0,...,n.

Definition 3.2. The linear operator

n+t . *

¥ = ﬁ"P: Dn(a) e V‘n+1 = (M ) ’

(3.4) Ua

1

defined from the umbral space Dn(a) to the space Vn+ of differen-

tial 1-forms on Mn+1, is called the elementary umbral: operator
for the space of binary forms of degree n.

:

Proposition 3.3. Ua is a Glz(m)-equivariant linear operator,

Proof. On the basis of Proposition 3.1, P is Glz(m)-equivariant
so we have to prove that U is also Glzlm)fequivariant. In fact,
using the bracket notation (3.1) we have (cf.[12]) that for any
polynomial Ie¢ R[ ao,...,an] and its umbral representation P €
K[ a1,a2,...,81,82] the change of variables (c,d) is expressed
(by the formula (2.7)) as follows:
I(ag,...,a ) = <U(E)[P(aj,0,,c.0/BqsBy)> =

= <U(f)|P({a ¢},[{a d],...,[B c1,[B dl)> .

Thus for the operator U we have (see (3.2)),
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(D) |acla 1% a1 %> = a< U (H) |fa c1¥[a a177%s

= a<u' (F) |ofad™> = a3, , k=0,...,n ;
(T ¥ /ny= .ck-n-k
where by f(x,y)= 2 (k)akx Y we denote the transformed bina-

k=0
ry forms in the new variables, and U(f), U(f) denote the corres-

ponding umbral operator U written using these two types of varia-
bles. This completes the proof.
By the extension of U: to the tensor product of p factors,

say Wn p= Dn(a)o...GDn(B), we obtain the partial umbral operator
r
for representing the corresponding tensor invariants of degree p:

*
YareeesB)?

* * »
Ula,...,B) W1 (2)0...0w (B)> = <Ua|w1(a)>8...®<UB[wp(B)> .

D_(a)®...® D_(B) — Byt
(3.5)

The formula computing the effect of a change of variables
in the standard umbral representations of polynomial invariants
(c£.[12],[16]) as well as Proposition 3.3, suggest a subspace
of the umbral space wn'P whose umbral evaluations are obvio-
usly invariants. Let us define the bracket monomials, say feor
two umbral letters:

la Bl= a8, = 0,8,
(3.6) [a dB] = a4dB,= a,dB,

-[da®dg] = da,®dg,~ da,®dR, .

Definition 3.4. A bracket monomial qe Wn p is a nonconstant
’

polynomial in W p which can be written as an appropriate product

r

of brackets (3.6). A bracket polynomial is a linear combination

of bracket monomials. The linear subspace of Wn p formed by the

’

bracket polynomials is denoted by Bn p*
r

The total umbral space is defined as W_ =6 W and



- 13 -

the corresponding umbral operator u* is defined as the respecti-
ve direct sum of the partial umbral operators. Let ge€éN., A

P
nonconstant polynomial Q € & & Vn+1 is said to be an invariant
peN

of index g 1if for all binary forms f(x,y) of degree n and for
all linear changes of variables (c,d) the following identity
holds:

a = [c d)%.
The aim of this section is to provide the methods for determi-
ning as explicitely as possible all the tensor invariants of
binary forms.

The index of a bracket monomial qeawn is the number of
brackets in gq. The bracket polynomials in Wn which are linear
combinations of bracket. monomials all of the same index g, are
called bracket polynomials of index g.

Theorem 3.5. Let UX be the umbral operator into the

(@,...,B)

tensor space 8 Vn+1. Let ¢£§Bn p be the bracket polynomial

r

of index g. Then the umbral evaluation of ¢ , <UTa B'j'-|¢> ,
'...'

is an invariant of index g.

Proof. Let q be a bracket monomial of index g. Let us change

the umbral variables, 1i.e.

_ . [a c] [8 cJ)_
(& 8] det([a g s 4 =[c a] [« 8]
a c} [a8 c]

[
[0 ag]= det([a o [as d]>=[c d] [a 48]

[da c] [d@8 c]

[da®dB] = det ax o] [as 4]

)= [c a] [doeds].

Thus, for any binary form f(x,y) and for any change of variables

(c,d), we have on the basis of Proposition 3.3,

»*

<u™
(Q'OOO'B

(ar...,p) (B)la@> = <v

v

.
)(f)l[c d]gq> =[c d]g.:U.(.a 8) (f)|q>,

FAC RN ]
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which implies that <U
(dreeesB

)|¢> is a tensor invariant of index
g and degree p.
The converse of this theorem is also true.

Theorem 3.6. Let Q be a tensor invariant of index g and degree

p for binary forms of degree n. Then there exists a bracket
polynomial ¢eBn p of index g such that
’
*
= > .
Q <U(G,---;B)|¢

Proof. 1In order to prove this theorem we must first study the
combinatorics of bracket polynomials (cf.{12]). Let us order

the umbral alphabet in such a way that -~a < B <T;;? da < df8 < ... .
Let q be a bracket monomial. Thus q is a product, say [a B][a v]...
[s dd]e[de@dp] of s brackets. Using the notation introduced

in [12] we rewrite q as a tableau of height s:

LaB ]
a Y
: = [a B][a v]...[s as]e[deddp]
& as
lde dp.

We will call such a tableau ordered if the letters in each row
are increasing from left to right, and the letters in each column
are nondecreasing from top down.
We easily see, using the syzygy relations

[a 6](8 v] = [a v][8 6] - [a 8] [y 6]

[y 6] [de®dg]=[da Y]®[dR 8]- [da &]efdB ¥]

[y 61 [da 8]={da vy][B &]-[da &][B ¥]
and antisymmetry

(e 8]= -[8 ]

[dx@dg]= -[apeda]= do,®dB,- da,8dB,

that the ordered bracket monomials form a basis for the vector
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space of all bracket polynomials. 1In fact, treating the
differentials combinatorially as ordered symbolgs and assuming
the existence of the nontrivial linear dependence relation
between ordered bracket monomials with smallest number of dis-
tinct symbols and smallest height of bracket monomials, we
come easily to a contradiction setting two highest symbols to
be equal (cf£.[12], p. 37).

Let Q be a tensor invariant of index g and degree p, let
Ptiwn'p be its umbral representation. As Q is an invariant,

we have for any change of variables (c,d)

T&,...'B)IP([a cl,[a d],...,(8 c],[B d])> .

This identity is true as a polynomial identity in the variables

(1) @={c d]% = <u

cyr C,r 4y, d,. Using this fact we can prove that P([a c],

[a d},--..[8 c],[B d]) =[c d]R(a,sa,,.-./B,,B,). , where R¢ B, p
We can easily see that the polynomial P may be so chosen that

the letter c, as well as the letter d, occurs exactly g times in
each of the ordered monomials qy contained in the expansion of
P([a c],[a d],...) as a linear combination of ordered bracket
monomials. Here the new alphabet {c¢, d, a, 8,+..,da, dB,..., de
is ordered as follows: c < d-< a+< 8 ...< de. In fact, repla-

cing <, and <, by rc, and rc,, we obtain the polynomial identity

>y

I‘g[C d]gQ = <U*(‘d.;..-,8)| E ber(k)

N
where c(k) is the number of occurences of ¢ in the bracket mono-
mial 9 - Equating coefficients of r9 we see that the bracket
monomials with c(k) # g can be omitted in P. Let 9 be a bracket

monomial in this improved expansion of P as a linear combination

of ordered bracket monomials. Let s(k) be the number of brackets

}
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[c d] occuring in 9y - Let s be the minimum of these integers
s(k). We see that s € g. If s = g we can simply cancel [c d]g
from both sides of (i). Let us suppose s < g, writting q =

e d]sqi we can cancel [c d]s from both sides of (i) to obtain

*

g=8,., _
(11) gc al®Fa = <uiy gl

! b g >
L By

Treating (ii) as a polynomial identity in the variables Cqr Cor

d,, d,, we can therefore set ¢.,= d,, c¢,= d,. This yields the
1 2 1 1 2 2

identity:

*
(ii1) <u

(@,....8) 1 B> =0,

k
where &k is obtained from qi by setting ¢ = d.

As we know the ordered bracket monomials qi as well as &k are
"

linearly independent. Because 2 bkak € Ker U(a
F B ]

k
&k are linearly independent, each monomial qk can be written as

B) and

a tableau
o x ]
o)
*
(1v) X
e de
ER ,

where c occurs in the first 2(g-s) rows and an asterisk ..stands
for the rest of letters. By inspection of (iv) we can deduce
the corresponding elements qi . They can be written in the form

- -

C #

0 0
*...

de

™

* % |
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where ¢ occurs as the first letter in the first g-s rows and
d occurs as the first letter in the next g-s rows with the
additional bracket [e de] standing also in (iv). Thus we

have that

»

) bkqi € Ker U(a,...,B)

k
and we can cancel in the original polynomial P all terms giving
the smallest number s of brackets [c d] occuring in qy - Repea-
ting this procedure we obtain the result of Theorem 3.6.
Corollary 3.7. On the space of binary forms of odd degree the
odd degree tensor invariants do not exist.

Proof. On the basis of Theorem 3.6, for the tensor invariant Q
of degree p and index g we can write

6= <}, gIR(a el e dl,... > = [od%,

where R is the corresponding bracket polynomial. On the other
hand, taking the new parameters ¢ — tc, d — td we'obtain

the following equality (polynomial in t):

¥*

tnpku(a B)'R([a cl,fe dl,... )> = tZg[c dlqQ.

Thus we see that for odd numbers n only for even number p the

integer g canxﬁki;ts._

4, Invariant symplectic structure on the space of binary forms

Let us give now the complete classification of the tensor
invariants of degree two, i.e. we assume p=2.

Theorem 4.1. There exists only one (up to constant multiples)

tensor invariant of degree two on the space of binary forms.

Proof. Let n be the degree of binary forms. is generated

Bn,2

by the following basis of'ordered bracket monomials: v, =
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= e 8]™ ' [aueds], v,= [a 81" [u da]®[B dB] . We see that the
third admissible bracket monomial w = [a B]n-z[e da]@[a 48],

by the appropriate syzygy, can be written as follows

w = [a B]nnzt[u do]®[g dag]-[o g] [da€dB]) = v, - v . We see

also that vze Ker U? Thus

asB8) °

*
dim( Jn,2 = Im U( )y =1,

I
aIB) Bn,z
which completes the proof.

Now we are asking for the normal forms of the correspon-
ding tensor invariants.

Proposition 4.2. All temsor invariants of degree two on the

space of binary forms of degree n are proportional to the follo-
wing basic invariant:

n-1

— n-1 ,_ j+1‘ _qyD
(4.1) Q= jzo( 3 ) =13 (=1 day,,@da s .+ da i,

i.e. Jn,2 = {Q} .

edaj+1),

Proof. On the basis of Theorem 4.1, as a generator of Jn 2 we
!

can take the following invariant:
n-1

= <u* 2 n-1 . 2 n-1 ,_.,n=j=1
(1) 0= <Ul, o In°[a 61" [doedg]>=<U ) In ijo ( ; Y1) (

®

®5,1%8n-3-1,2 7 ©3,2%%-4-1,1)> ¢

where we denoted

= P n-p-1 x = pPgn~pP-1 = 1. 4=
eP:i aq0, dai, ep,i 8182 dBi' p=0,...,n-1; 1i=1,2.
Recalling (3.5) we obtain the action of UTG 8) on the basic ele-

ments:

* = —
Uig,p) ek, 188,,97 = (1/p2)da ,eda .,

.'_'* . _
By 8) ek, 198, 2> = (1/,2)da,, 0da_,
»

<U(arﬂ) Iekr zeepl1

> = (1/n2)dak@dap+1,
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*
<U(a,s)lek,29ép,2> = (1/n2)dakedap , 0 ¢ p.k g n-1.

Applying these formulae to (i) we obtain the desired invariant
Q of the proposition.

From the formula (4.1) we see that Q is a symmetric ten-
sor on the space of binary forms of even degree and antisymmet-
ric if n 1s odd. Thus we have
Corollary 4.3. On the space of binary forms of odd degree
there exists only one (up to constant multiples) Slz(m)—invar-
iant symplectic structure.

Proof, Taking n=2k+3 in (4.1), after straightforward calcula-

tions we obtain

k+1
(4.2) Q= 1}

r=

’

n r+1
. (r)( N da_nda___

which is a closed, nondegenerate, SlZ(K)—invariant two~-form.

Remark 4.4. On the basis of (4.2) we can choose the symplectic

form on Mn+1 as follows
(4.3) = 1(-1)"'1k+1 n)(-1)r+1d nd
. w = n ¥ (r a_ a _. -
r=0
Choosing the new coordinates
- h! v _ f_aryk-r nl! _
(4.4) 4,.= F18h-p¢ Pr= (-1) To-tni8rr T Os... k+1.

on Mn+1, we can write (4.3) in the following Darboux form

(cf. [1],[18])

k§1
w = dp. Adg, ,
j=o 3 J

where the elements of Mn+1 can be written as follows

2k+3 k+2 k+1 k+1

+1 _ % X _ X k+2
MU £ (x,y)= e N P T S R TR TN P+1 (Re) T T

(4.5)
2k+3

+

This is exactely the Slz(K)-invariant'symplectic structure men-
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tioned only in [9] in the context of the generalized Newton
equation as well as in the obstacle problem [5].
Slz(K) acts symplectically on (Mp+1.w). Thus we have

Proposition 4.5. The momentum mapping corresponding to the

standard Slz(M)-action on (Mn+1,w) is the Ad*-equivariant quad-
ratic momentum mapping (cf.[2]). 1In the coordinates of (4.5)

1t can be written as follows:

3: ¥ — s ) 3B = (m,, H, Hq) (B) , where
_ k+1 1 2
Hy(p) = r£1 Prdr-1* 29%+1’
- k 1 2.2
(4.6) H_(p) = r£0(2k+3-r)(r+1)prqr+1— 5 (k+1) “py 47
_ k+1
Hy(p) = r£012r—2k-3)qrpr.

and {4, H_} Hy » n = 2k+3.

Proof. Taking the standard decomposition of Slz(m) onto the

three one-parameter subgroups (cf[19])

1 o« 1 0 alo
(4.7) A: ; A_: 3 D: + o,B,d €K ,
o 1 B 1 o 4|

we obtain the three corresponding Hamiltonian vector fields,
say A, A_, D, with the corresponding Hamiltonians H_, H_, Hy
Thus, after straightforward calculations, the momentum mapping
follows immediately (cf. [1],[2]).

Remark 4.6. Taking into account the relation {H_, H_} = H

d
we can reformulate the fundamental theorem (Cayley, Sylvester

[16]) of the theory of invariants of binary forms of odd degree,

i.e. we have: A polynomial ¢(g,p) on the space of binary

1

forms M™! is Slz(m)—invariant if and only if the followling iden-

tities are fulfilled: {H+,¢} = 0, '{Hd,¢} = 0. Thus we easily
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see that the algebra of polynomial Slz(K) invariants of binary
forms is endowed with the canonical Poisson structure (cf.[18]).
In the obvious way, by the multiplicative rule, we can
extend the umbral operator U* (see §3) to have an umbral repre-
sentation of tensor invariants with polynomial coefficients.

In fact we define

W =06 w_ &K [y,...,8],
n p,SeN n,pKs

where"s" 1s a number of umbral letters v¥,...,§ . Thus the res-
pective extension of UY say 0%, on the homogeneous elements of

ﬁn is defined as follows

k
1

k

15%> (cf. (2.5),§2).

<ﬁ*|¢@Y%Y%...6 6%> = <U“|¢><U|Y%Y%> «e. <UlS

After stralghtforward reformulations we immediately obtain
the fundamental classification theorems, analogous to Theorem 3.5
and Theorem 3.6 of §3. As a simplé example, we apply these
theorems to classify all tensor invariants of degree one with
coefficients being the linear polynomials in variables Agreeerdp.

n
Proposition 4.7. All tensor invariants of degree one with

linear polynomial coefficients on the space of binary forms of

degree n are proportional to the following basic invariant:

(4.8) _ T ,_4yn=3-1 (n
I= jzo( 1) (j)an_jdaj

Proof. Let us take the relations between elementary umbral

monomials (cf. Proposition 3.1):
1
e 1 = nlWeyq (n-k=1)gp)

1 = -
ek'2=5(wk+kgk-1), k-o,---;n1'

|
where
n-k-1 k n-k *
2 da, , w= d(aja, V), gy € KerU .
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It is easy to see that the space of irredundant bracket poly-
nomials in Dn(a)eun(B) is spanned by the bracket monomial

n{a B]n_1[8 da]. Thus we have:

-~

* 1 1 1 -

<U(u:8)|n[a 81" '[8 aJ>=n jIO( -7 3= (nj )<U |e ><U|B? jeg>
- n n§1 (_1)]'1'—:.]"’1 n-1) <U*| ><U|Bn =13+ 1) .
j=0 ( J a ej 62 o

Corollary 4.8. Let n=2k+3. Then the corresponding Slz(R)

invariant one-form on the space of binary forms of degree n, in

Darboux coordinates has the following form
k+1

(4.9) 9 = { (pjdqj - dquj)

Remark 4.9. We know (cf. [4],p.306) that the projective

space RP" of all zero-dimensional submanifolds of degree n in
the projective line is endowed with the natural SIZ(R)-invariant
contact structure (cf.[1],[6]). Indeed we see that the appro-

priate Slz(R)—invariant field of hyperplanes in RP" is defined
n
3

by the Slz(m)-invariant 1-form VJdw , where V = a, 3a

1=0 i
is Slz(R)-invariant and w is given in Corollary 4.3. In the
affine part of RP" formed by the zero-dimensional submanifolds
of mP1, which do not contain the point in infinity y=0, this
contact structure is given by (see Corollary 4.8)

k+1

0 = .dq.- q.dp.) - dp_.
|q0= 1 j£1(pJ 45~ 939py) P,

This ie-the canonical contact structure on the space of poly-

nomials

x2k+3 2k+2 k+2 k+1

X+2
TR T M

X X
AR oy il SR s D U RERELA G N,
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Thus all the results concerning the symplectic geometry of
polynomial spaces have a direct reformulation in terms of
the above introduced contact geometry (cf.[4]). The more pre-

cise analysis of this case we leave to a forthcoming paper.

5. The hierarchy of apolar coisotropic manifolds and gene-

ralized open swallowtails .

2 Two binary forms f(x,y) and g(x,y) are said to be apolar
if theilr apolar covariant <f|g> (cf. §2) is the identically
zero form. The apolarity notion is very convenient in descri-
bing the varieties of binary forms with multiple linear fac-
tors. The main classical result which allows us to associate
the apolar covariants with the basic symplectic geometry of
binary forms (Sylvester’s theorem, see e.g. [12], p.64) is
following: Let <f|g> = O, where f is a binary form of degree

n=2j+1 and g is a nonzero form of degree m=j+1. Then, f(x,y)=
n-m,+1 m

§ hy (%,y) (uyx -v,y) YL tf gy = (4 %=vq¥) o x-
1=1 P
m
—vpy) P 1s a factorization of g into p distinct linear forms.
Let (M,w) be a symplectic manifold. The new symplectic
structures associated to (M,w) are provided by the so-called
coisotropic submanifolds in M (cf.[1],[18]). We recall that
a submanifold C € M is coisotropic if at each xe€ C we have

(TxC)§={veTxM; <v Au,w>=0, for every ueTxC } c TxC‘

The distribution T= | | (Txc)§ is the characteristic distri-
XeC

bution of mlc. Let B be the space of characteristics of it and

p:C — B be its canonical projection. It is known (cf.[18])

that 1f B admits a differentiable structure and ?is a submersion,
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then there is a unique symplectic structure 8 on B such that
p*8=m|c . The symplectic manifold (B,B) associated in this way
with the triplet (M,w,C) is called the reduced symplectic ma-

nifold (cf. [1]).

n+1

Let (M ;w) be the symplectic space of binary forms

(see §4). The canonical subspaces in Mn+1, say C(l),

01l E%l of all binary forms apolar to its l-derivatives

with respect to x are called the canonical apolar subspaces.

(l)'

Proposition 5.1. The canonical apolar subspaces C (0O <1

RS E%l) form the coisotropic varieties ef'(Mn+1,m).

Proof. We see that C‘1) ¥ described by the following system

of 1+1 equations:

Pél)=(n51)anao' (n;l)an-1a1+"'*(2:i 318p-1 = ©

n-1

P(l)=(P_H 4" (n;“ an-fla2+"°i(n—l)alan‘l+1 =0

1 0]

P{l)=(éal)ana1_ (nql)an—1a1+1+'°'i(g:i)alan =0 .

After straightforward calculations we find that

Crpfl) p(1) g -
{py™" Py }lctl) o,

where {¢,y} is the appropriate Poisson bracket (cf.[1]);

K+1 -t
1 k-1 n T 36 Ay _
lorv)= H!izo (=1) 1 ‘%3, %a_, "%, aai)' n = 2k+3.

Thus the system of equations P{l)(ao,...,an)=0, 1 =0,...,1

( <f|fil)> = Q) form the coisotropic subvariety of (Mn+1,m).

Now we pay more attention to the particular case 1 = 1.

Corollary 5.2. Let 1=1, then the second apolar coisotropic
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(1

variety C can be expressed as follows:
(1) _ N+ _ (1) (1) ,y — . (1 k+11
C = {fEM : <f|f;> = n(Po y+ Py x) =x(~1) H!(de+
2H+x) x;-':'y o1} ., N
where

(1) (1) 1
{p 'PO }=n_

{ (_1)k+1p(1)

1 1 and {H+, Hd}= H

+°
Proof. Immediate, on the basis of (4.6), Proposition 5.1

and simple but tedious calculations (see Proposition 2.3. See
also Example 2 in [S5]p. 45).

To the space of binary forms of degree n one can easily
associate the corresponding spaées of polynomials of one varia-
ble putting y=1 in (2.1). In order to have the polynomial
symplectic spaces adapted to the investigations of singulari-
ties in the variational obstacle problem (see [5],[6].[14].,[3])

1

we assoclate to every symplectic space (Mn+ ;,w) the canonically

reduced symplectic space Qn"1 of polynomials of degree n-1

where leading term has constant cbefficient TﬁéTT! . Qn-1

Coﬁv » where "~ " is given by the coisotropic submanifold

cO := {f€ Mn+1; n!an =1 }. Qn_1 is identified canonically

with the space of derivatives %;(f(x,1)) , £ € Mn+1 belonging

to Co’ namely
o L 2k+2 2K+ k1 X
Q3 ¢ ) = Tt TEeE ke TeF LT Pretkn e

et (-1KF,

1

endowed with the reduced symplectic structure

k§1
w' = dp. A dq..
529 3 3
(1) - n-1
Proposition 5.3. The apolar subspaces C (1=1,..., 5

of (Mn+1,w) induce the corresponding coisotropic subspaces of
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@ ",uty, say €M) (1=1,70.,85) | gescribed by
~(1 -1 ~(1
C( )={¢EQn ; Pé )(q'p) =0,S=1,...,1} r l=1p...,k+1,
where
BV ST ) (1) e Ly ] en (Y e
‘1= n!c i=k-s+2
k n-1
(-1) n-1
s-i)lq,q____.+ ( it(n-s-i)!p_ _,gq __, + a
i*n-s-1 n!2 {=Kk+2 i ) n-1i“*n-s-i S
Proof. Let us observe that (Pél))-1(0)r\co is transversal

to the characteristic distribution T of Co' Thus Pél) does

not give any constraint on the reduced space Qn_1. It is easy

to see also that the functions Ps(l)|C (1 > s > 1) are constant
along the integral manifolds of distrigution ' . Thus we obtain
the new coisotropic constraints defined by these functions on
Qn-1, which after straightforward calculations are expressed

in the form (5.1).

Now we investigate the properties of the symplectic space

induced by the coisotropic submanifold 6(1) in (Qn—1,m'), n=2k+3.

Proposition 5.4. The reduced symplectic space corresponding

n-1 .
I

to the triplet (Q w', 6(1)) is identified with the follo-

wing space of polynomials

«2k+1 x2k=1 xk xk—1 K
5.2 2 = Tyttt kPR et 01y
k

endowed with the reduced symplectic form & = § dp, ~da, .
i=1

Proof. The function §{1)

as well as the Hamiltonian H, (see
Corollary 5.2) corresponding to the one-parameter subgroup A,
(cf. (4.7)) generates translations along variable x. Thus the
space of characteristics of the coisotropic submanifold 6(1)

can be immediately identified with the derivatives of polyno-
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mials;
2k+2 2k+1 K+1 k
X = X - X = X _1yKk+1=
-3 GrEn taTTRE ke T'RFI L Pretir Tt 01T Ty

with an additional condition that the sum of all roots is
equal to zero (cf. [6],[1{]). This completes the proof.

As a polynomial parametrisation of characteristics of 6(1),
described in Proposition 5.4, we can write the following identi-

fication (cf. [11],[10], and (5.3) above),

(x_t)2k+1+a (x-t) 2%, . (x_t)k_ﬁ (x-t)% ks, -
2R+t e r T 9%kt Prer eyt T 2
2K+ 2k ko k=1

X PRY.
R T N TR %k TPk et ey

Thus we immediately have

Corollary 5.5. Let m > [ﬂ] . Then the sets of polynomials

2
of Z having a root of multiplicity m, say Léf%,

pic (see [18]) varieties in (Z,®). The maximal isotropic varie-

form the isotro-

ty, f.e. m = [%], is a lagrangian variety (cf.[11]) symplecto-
morphic, in the case of n = 7, to the system of rays on the
obstacle, with the highest generic singularity, so-called open

swallowtail singularity (cf.[5], [6]and Figure 1,below)

L{
g /

Fig. 1.
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Remark 5.6. Let us notice that the open swallowtail singu-

larities in (Z,3) are connected with the structure of the space
of the Hilbert’s zero-forms (cf. [16],[19]), and are quite
exceptional. We can easily see that the variety V of polyno-
mials in (2,%) with maximal possible number of double roots

is not lagrangian .(cf. [5],p.37,2>where it was claimed that it
is lagrangian). One can easily check this for k=2. In fact we
have

1 .5 1 .3 1.2 e ) e 2 a2 (e
¥+ Qg3 X7+ Q3% - pyxX 4Py = g, (xma) T (x=8) " (x-y)

and the corresponding immersion of the smooth strata of V is

following
1 a2 1 3
q1 = '2—0(2w 3z7), C.(2- 30(""2 + z7),
=1 .2 = 2_
Py =go¥ 2+ Py = q3pldwz - w)) ,

where 2z = q+R, W = aB, 2a+2f+y= 0.
By straightforward calculations we obtain

o 1.2, 232 1
@|y= dpy~ day+ dpy ~dayly =0 7559+ T856¥% ~ 306

24)dZI\dw # 0.

Following the theory of generating families for the germs
of lagrangian varieties presented in[11] one can describe the

analytical structure of open swallowtails, i.e. Lén)

. using the
polynomial functions. Let us recall that the function F:

Q*RS-F+ R 1is a generating family (with s-parameters) for the
germ of lagrangilan variety IJE(T*Q,wQ) if L can be locally written
in the following way (cf.[18])

(5.4) L= {(ap e I, s, i@ N=p, §ia,N) =0} .

We see that (2Z,w) has a canonical cotangent bundle struc-

ture, (Z,G)u(T*Q,mQ). Thus we are able to calculate the global
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generating families for the general open swallowtails Lén).

Proposition 5.7. An open k-dimensional swallowtail Lﬁn) C

(2,n) is represented, in the form (5.4), by the following

cne-parameter generating family Gk: Q X R — R;
k-2 k-i-1 s

- (k) u u-1,
Gk(q'A)- i£-1 siz u£2 I Dk -1,s s-uAk -i-r (qu 1 +(=1) ul )(

k=2 k-1 k-1

r-1.r,,.n-u-r, 1 (k)
+(-1)F LIy + = A
9r-1 Tl 2 Lo by pEo k-t k-1PR-t-uPk-tor
k-2 k-1
u u-1,u r r-1,r,,n-u-r (k)
Qu-q+ (- 0k BT RS P RA A - R R + 1£o ron By oiPxog-r
k+1 k+1
_4yE r=1.r. .n- (k)
Gt -0 T EI T a0 Ly PerogPenr (Byogt
K+1
_4y1 i-1.4 r r-1,ry,yn-i-r (k)
S WAL S AL (R * Byl izzAk+1-i(qi—1+
1 Eék) 2k+3
i-1.1,,n-1 k+
D7 =P T - st '
where
USRI (-1)I78
r,s {j=s)!(n-j-r)! ’

j=s

k+1 j,.
(K)_ (_qyk—r, __1 - (=1)-(3-1)
Br = ODT 0 T L, T

£ r,s £ k+1

and the numbers Ak are given by the following recurrential

formulae

_ - 1 _4,i¥

e~ %

i=1

Proof. On the basis of Proposition 4.2 in [11] and the formulae
for the characteristic curves of C(1). After straightforward
calculations we obtain the corresponding generating one-parame-

ter families for the open swallowtalls in all dimensions.
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Example 5.8. Let k¥=1,2, then the corresponding generating

families for the cusp singularity (one-dimensional open swallow-
tail) and the standard (two-dimensional[3]) open swallowtail
singularity of lagrangian varieties can be written directly,

by. Proposition 5.7, in the following way

cusp:

= - 1,50 5,35 - K2
(5.5) G, (q,A)= =~ gz27- gi’a - FAq”,

open swallowtail:

1 .,7_1

5
(5.6) G2(q1,q2,l)= - ?’TG—A - %A

1,3 2 1

1.4 2 1.2
PRy G Pl Chll T O Pl 1

2Aq2.

Remark 5.9. (singularities in the obstacle geometry [6]).

Let Q be a hypersurface in R3. T*R3 is the phase space of free
particle. We take the hypersurface Y; Y = {(x,p)!&T*R3; H(x,p)=
%(|p|2-1) = 0} . Let M denote the symplectic manifold of inte-

gral curves of the characteristic distribution of H. w:¥Y — M

is the canonical projection along the integral curves. M is a
symplectic manifold of oriented lines in R>, M3 T*s? (cf. [6]).
Let y be a geodesic flow on Q (determined by the point source

of 1ight in the space,[14]). Let L ¢ Y be the submanifold formed

by versors tangent to the geodesics of y along the surface Q.

Propostition. (cf. [3],[14]). A). L=m(L) is a lagrangian sub-

variety of (M,u). L is singular in:-the asymptotic points of y
(i.e. the corresponding line of L is also an asymptotic direc-
tion on Q) in a hyperbolic region of Q. Typically the asympto-
tic points of vy form a curve, say £ £Q.

B). Let pofgz be such that the corresponding geodesic of vy
going through Po is tangent to 2 in Po- Then the correspon-

ding germ of lagrangian variety (w(ﬂ),wo) is the open swallow-
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tail singularity (cf.[3]) symplectomorphic to L§7) described
in Corollary 5.5. (the corresponding variety of “rays gliding
along the obstacle on the plane with the inflection point,

is illustrated in Figure 2, below).

N\

* gliding rays

obstacle
source

Figure 2,

Using the Huyghens principle (cf. [7],[8]) one can express the
asymptotic intensity of radiation in the presence of an obstacle
by the appropriate rapidly oscilating integrals with singular
stationary varieties represented by the corresponding phase
functions (optical distances), say
(5.7) i) eiT¢(x'A)a(x,k,T)d% iy, T —» oo,

R"
For the open swallowtail singularities the phase functions
(families) are indicated, by Proposition 5.7, in the following
way:

Let us take the product symplectic manifold

2= T*R3X‘M,&emm3), (see [11]).
We know that graphm € £ is a lagrangian submanifold of =. Then
there exists its local Morse family (cf. [18]), say K :R3xxxR"— R
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(x,q,H) —» K(x,q,u), where T*x is an appropriate local co-
tangent bundle structure on M (see[1]). Let G, (q,1) be the
generating family for Lén) given in Proposition 5.7. Then
the corresponding phase family in (5.7) is a generating fami-
ly for the pullback (cf.[11])

(graph ﬂ)t(Lén)).

Thus the corresponding optical distance (time), say ¢k(x), is

described by the following equations:

(5.8) wk(x) = Statq'u 5 (Gk(qt)t) - K(x,q,u}).

Example 5.10. Now we exactely calculate the planar case -k=1.

In this case the local Morse family for graph r is following

K(x1,x2,q) = X,q - x1u/1~-q2 ’ q #1.-.

Thus taking the generating family (5.5) for L§7) we obtain

the corresponding family of optical distance functions (cf. (5.7))
- _ 1,513, _1 2_ A 2'

O xe Ay )= - gEiam AT AT Xphym XY

and the graph of phase function y,(x}, Z1={ Py (Y=t = 0}~

. (see Figure 3, below),

Figure 3.
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By the straightforward calculations, using this family, we

obtain the corresponding family of wave fronts parametrized

by the optical time t;

1 5 14
X,= ( ToH ~ t)vy 1- Y ’

5

_13.12 1.5
10"

x2— L t), (see Figure 4, below)

which are exactely the level-sets of the phase function ¢1(x)

in the planar obstacle problem (see Figure 2) with inflection

point [5].

\
\ N, .513 6
\ (Tgk~ rgu7)+0(1”)

Figure 4.
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