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,. Introduc·tion

11;: nLet (T ~ ,wRn) be the phase space for the free particle

(cf. [,J) with the Hamiltonian function H(x,p) = !(!p\2_,).

- nLet the smooth hypersurface ZC~ , representing an obstacle in

the Euclidean space, be deseribed by the smooth funetion F: Rn

~ R. The corresponding two hypersurfaees of (T*Rn,w~n) y =

{(x,p)J H(x,p) = Ol and Z = {(x,p); F(x,p)=F(X)=O} , define

-the sphere bundle W = Y (\ Z over Z. Let us denote by M the sym-

pleetic space of all integral eurves (oriented lines),of the Ha-

miltonian system defined by H. Let ~:y -. M be its eanonical

eharacteristic projeetion. The eritical points of ~lw are given

by n= {(x,p) E W~\ {H,F} =0 }. n forms the set of all versorg

in ~n tangent to Z and M = n(n)C M i8 the hypersurface of all

lines tangent to Z.
In the generic case there exist only three normal forms for

W, which in the appropriate Darboux coordinates are described

as follows (see [':i) , Theorem 3

W = '* n 2 + 0, q = O}, {(q,p)E T IR ; Po p,= 0
,

W - 1c' n 3 0, O}{(q,p) E T IR ; Po+P'Po+q,= q = ,2- 0

W =
,.. n 4 2 O}{ (q, p) E T IR ; Po+P,Po+q2Po+P2= 0, q = .3 0

In the variational obstacle problem (cf. (6), (14), see also

Remark 5.9 and Figure 2) the geodesic flow y on Z1s defined by

the mutual position of the source of radiation and the obstacle

itself. The flow y corresponds to the Ham1ltonlan flow on the

hypersurface M of M. The generic geodesie flows on the obstaele

are classified by the eorresponding Hamiltonian flows for the

hypersurfaces 31= n(wi ) CM, 1=',2,3. The most singular ease,

1=3, was precisely deseribed by Arnold 3. Arnold wrote down
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explicitely the corresponding geodesie trajector1es on 33 and

showed that the typical lagrangian variety in ~3C ~4, correspon­

ding to the generie system of gliding rays in the biasymptotic

has a root of1
~1

point of the obstacle, 1s symplectomorphic to that one given by

the following loeal model

{(Q1,Q2,P1,P2) E M; tA5 + ~P1A3+ ~2A2+P2A+

multiplicity ~ 3},

(cf. Remark 5.9).

It appeared (see 151, [6], (141 ) that the above s1ngulari-

t1es of wave fronts in the presence of an obstacle are also

classified by the reflection groups as in the standard A, D, E

case (see [6J, [13J). The analogous system of rays on the plane

gliding along the curve having an inflection point is determi­

ned by--the reflection group of symrnetries of the icosahedron

(cf. [5] p. 28 ).

The aim of this paper 1s to invest1gate the combinatorlal

aspects of the singularities considered above and to g1ve the

precise description of the analytical structure of these singu-

larities in the general setting of symplectic geometry and in-

variant theory of binary forms. We prove that where the obstacle

singularities appear, the natural symplectic structures of the

spaces are coming, by the symplectic reduction process, (cf. [18])

from the unique S12(~)-invariant symplectic structure which

appears as a uniQue tensor invariant of degree two on the space

of blnary forms of odd degree. In order tO'~prove that fact, in

Section 2 we formulate the corresponding umbral approach to the

general investigations of the spaces of invariants of binary

forms (cf. [12J , [15), [16]) and prove the useful polynomial identi-
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ties appearing in the stabillzed hierarchy of polynomial'.'spaces

with the fixed root comultiplicity. In Section 3 we construct

an umbral approach in order to classify explicitely the tensor

invariants of binary forms of degree n (cf. (16) ). Following (12)

we prove the fundamental theorems concerning the umbral, bracket

representation of tensor invariants. In Section 4 we show the

existence and uniqueness of the S12(~)-invariant symplectic struc­

ture on the space of binary forms of odd degree and we write down

its explicit normal form. The momentum mapping for the symplectic

action of S12(~) in the symplectlc space of binary forms is deri­

ved and the clasaical theorems of the theory of polynomial invar-

iants of binary forms (Cayley, Sylvester) i9 reformulated u9ing

the canonical Poiason brackets. In an analogous way the S12(~)

-invariant contact structure of the projective space RPn of all

zero-dimensional submanifolds of degree n in the projective line

is indicated. Section 5 19 devoted to the generalizat10n of the

notion of open swallowtail in all dimensions and to extending

the notion of Hamiltonian system generated by translations to the

general swquence of coisotropic submanifolds defined by the 80-

-calied apolar subspaces of binary forms. The generating one-

-parameter families for open swallowtails are wrltten down ex-

plicitely and their usefulness in the investigation of oscila~

ting integrals in the presence of an obstacle is shown.

I would like to thank H. Knörrer for many stimulating

discusslons and to N. Buchdahl for his help in preparing the

manuscript. I wish also to thank the Max-Planck-Institut

für MathematiX 1n~~onn for its exceptional hospitality.
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2. Polynornial invariants of binary forms

n+1
Let M be the space of binary forms of degree n. A bi-

nary form f(x,y) of degree n in the variables x and y is a homo-

geneous polynomial of degree n in x and y (cf. l16j). Thus we

denote

n+1 n n k n-k
( 2 • 1 ) M:3 f (x , y ) Cl 1: (k ) ak x y •

k=O

Let U8 consider the standard action ~~ of G12(~) on Mn+1 •

A nonconstant polynomial IE ~[ao, ..• an'x,y] i8 said to be a COM

variant of index 9 of binary forms of degree n if for all h ~

Gl
2

(1K) we have

(2.2) V~I ~ (deth)gI,

where ~'ls the canonical extension of v to Mn+1~ ~2. A poly­

n+1nomial function I defined only on M and invariant with res-

pect to v , according to the formula (2.2), ls sald to be an in-

variant of binary forms. We assume that the coefficients of f

belang to a field K of characteristic zero and the action v of

Gl2(~) is induced by the following transformations of variables

x and y:

(2.3)

x c c 11 x + c 12Y

y = c 21 x + c 22Y

A very effective method for indicating the polynomial co-

variants of binary forms ~omes from the so-called carnbinatorial

umbral calculus (see (12) [15]). We recall now same of the basic

properties of the umbral calculus applied in the invariant theo-

ry of binary ferms. Using the umbra! methods we can reduce eom-

putations with binary forms to the special case of binary forms

nef type f-(x,y)c(a
1

x+a
2
y) and obtain the uniform theory of co-

variants. The aim of this paper i8 to enrieh this theory with
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respect to the invariant (covariant) differential forms defined

on the appropriate spaces of binary forms.

Let P = {a,ß, ••. ,w,u} be an alphabet consisting of an

infinite (finite for some special ccnstructions) supply cf Greek

letters follcwed by the single Roman letter u. Tc each Greek

letter, say , and the Roman letter u, we associate two variab-

les a" a 2 and u" u 2 resp. The ring of polynomials in these

variables (possibly infinite dimensional) is a vector space

called the standard umbral space U. With every space of binary

forms we associate a linear operator, say U(f) (generally also

denoted by U), defined from the umbral space U to the space of

polynomials ~ [ao, •.. ,an,x,y] in the following way. We define

the action of U (f) on the corresponding monornials of U = IK [ (1, ,
Q2'···'u"u2 ]

(2.4) <U(f)la~a~-k> = ak , <u(f)la~a~ > = 0 if j+k ~ n:

for any Greek umbral letter a,

I k k I k k<U(f) u,> = (-y), <U(f) u 2 > = x

and the multiplicative rule:

(2.5) <u(f)lata~B~ß~••• U~U~ > = <u(f)la~«~><u(f)Iß~ß~>

<U(f) IU~><U(f) Iu~>

These rules uniquely define, by linearity, the umbral operator

U(f) on jthe umbral space U •

Every polynomial 1(a , •.. ,a ,x,y) can be written aso n

<U(f)IQ(a"a 2 , •.. ,u"u2 » for same polynornial Q€U The poly-

nomial Q i8 called an umbral representation for the polynornial I

and I 18 called the umbral evaluation of Q. 1t 18 easy to see
do ~1 dn e, e 2that, fer the menamial I = ao a, .•. a n x y we have
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l a n a n 1 n-' 1 n-1 (e, e 2I = <U(f) ~,a2 ••• Y'Y7.' 6,6 2 ••• E,E 2 , ••• , -u, )u2 >
"..-.- .. '4 ~

da times d, times

UsuaIIy the umbral representation of a polynornial I is far from

unique.

The v-action of GI2(~) on the space of binary forms irn­

plies the corresponding action of Gl2(~) on the umbral spaee U

Let (Cij ) be defined as in (2.3). Then the eorresponding change

of umbral variables (see ['2]), say for same Greek Ietter'~'a, is

defined as follows

(2.6) a,= ra c], a 2
c [ij d)· ,

where ä = (ä1 ,ä2 ), C = (-c21 ,c11 ), d = (-e22 ,c12 ) and the bra-

cket

By that notation we can easily express the umbral represen­

tation of any polynornial I(äo, ••• ,än,x,y) in terms of the umbral

representation of l(a , •.. ,a ,x,y), namely (see e.g. (121, p.33),
o n

1e t I E I{ [ a0' • • • , an ' x , y ], I = <U ( f) IP (a 1 ' a 2 ' • • • , u 1 ' u 2 ) >; Then

we have

(2.7)

=

--
c C , in d}~ .-u~J ,(\1 cl) )> ,

(e d) [c d)

where f(x,y) 18 the binary form abtained fram f(x,y) by the

change of variables (2.3).

By (2.7) we easily have the following explicit expression

for the representation v (cf. (121),

äk= <U(f) I [a c]k Ca d]n-k > =

~ rni~(m,k)(k)(n_k) i rn-i k-i n-k-rn+i
L (L i rn-i c 11 c 12 c 21 c 22 )amm=O l=m-n+k

We see that the bracket rnonomlals, aay[a S], [a u), etc.
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are eovar1ants of index 1, i.e. [a 8]= [e dJ Lä ß), [a u)=

[c d][ä üJ. Thus we can consider, in the umbral space U , the

subspace of bracket polynomials defined as the linear comb1nations

of bracket monomials ; 1.e. the nonconstant polynomials in U

which can be written as a product of brackets, say [a 81 La 61 ...
[w u).

The fundamental theorem of invariant theory of binary

forms in the umbral approach can be formulated as follows

Theorem 2.1. (cf. [12J). A). The umbral evaluation <UIP> of

a bracket polynom1a1 P, for whieh in every bracket monomia1 M

the number of brackets in M containing only Greek letters i8 con-

stant and equal to 9E~, 1s a covariant of index g.

B). Let I be a covariant of index 9 of binary forms of degree

n. Then there exists a bracket polynom1al P of index g (i.e.

wlth the same number of brackets eontaining only Greek letters

in each monomia1s involved in P) such that I = <Ulp> •

For the proof of this theorem as weIl as for the exhaustive

account of its applicatlons one can see [12J •

Example 2.2. Us1ng the bracket representattons we can eas11y

calculate, by the appropriate algorithm (cf.[12]), the respectlve

basic invariants for binary quadric, binary cubic and binary quar-

tic, name1y

1. Binary quadric:

D = <U(f) I[a ~2 >

2. Binary cubic:

A =
2 2<U (f) I [a B] [a y] [B ö] [y ö) >

3. Binary quartie:

I = <U(f) I [a 8]4> ,

J = <U(f) I Ca ß) 2(a y]2[ß y]2 > •
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In order to express, more precisely, the evaluations of

covariants on the space of binary forms with multiple linear

factors we have to introduce the so-called apolar covariant

(cf. [12] ,[16]). We show its convenience in the next sections.

Let us consider two binary forms, say f(x,y), g(x,y), where f

i8 of degree n, g 15 of degree m, m ~ n. They can be written

umbrally f = <Ul[a u]n> , g = <U\[ß u]m >. Their apolar covar­

1ant <f!g> 1s the b1nary form of degree n-m def1ned umbrally

by

(2.9)

By the straightforward calculat10ns using the e~plicit

formula for (2.9) we obtain an another expression of polynomial

identities ment10ned in [9] (Theorem 2), (cf. also [5J).

Proposition 2.3. a) Let n be even. Then the apolar covariant

<flf> i8 an invariant for the binary forms of degree n. It can

be expressed by

(2.10) 1 n k ~kf ~n-kf n n-k(n.)
<flf> = n'i"(-1)n L (-1) ~ 0 -k = ~ (-1) k aka -k •

k=O ax axn k=O n

b) Let n be odd, say n=2j+1. Then the second apolar covariant

<f ~.: ~ ;> can be expres sed by

af 1 j k akf än~~f
( 2 • 11 ) <f 1-> = n! t ;' (-1) (n- 2k ) k n- k =

ax k=O 3x äx

= ni
1
(-1)·k~(~~·~_1) a n- k (xak +1+yak )

k=O '

Corollary 2.4. Let n be even and f have a linear factor of degree

greather than ~. Then <flf> c O.

Let n=2j+1 and f have a linear factor greather than j+1. Then

<fl~; >= o.

Proof. The first part follows from the fact that f, having a

multiple linear factor of degree greather than or equal to [~1+1,
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i8 the so-called Hilbert zero-form (cf. ['9J). We see that on

two (because of k ~ j in differential factors

from the right hand side of (2.") <fl~> 1s

which gives us a contradiction unless <fl~>

one aide has a multiple linear factor of degree at least
akf
~ ). However
ax
a linear form,

18 zero.

Remark 2.5. Instead of b1nary forms we can consider polynornials

fex,'). Let us denote by Lk(n) the set of all polynomials of

degree n having at least one root of comultiplicity (= n - multi-

plicity) less than or equal to k. We~see that differentiation

of polynomials preserves the comultiplicity of roots and defines

the rnapping 4l k (n) : Lk(n+') ........ ~k (n) • Using Proposition 2.3

and Corollary 2.4 it can be proved (see e.g. [9], p.'4) that if

k ~
n-' then ef'k i8 a diffeomorphism of affine algebraic varie--2-'

ties. In thls paper we use the umbral methods to prove the fun-

damental results concerning the sy~plectic geometry of polyno­

mials, some of them already mentioned in [4] ,[6J, and to show

the effective directions for further generalizations.

3. Umbral derivation of -tensor invariants of· bi,nary forms.

Let U be the elernentary umbral space with one umbral

letter Un(a) denotes the subspace of U of all homogeneous

polynomials of degree n. By Dn(a) we denote the vector space

of all differential symbols a, (a)da,+ a 2 (a)da2 with coefficients

a" a 2 belonging to Un_, (a). The corresponding action, say ~ ,

of Gl2(~);on Dn(Q) 15 canonically induced from the standard

2
Gl2(~)-action on ~ , narnely

(3. , ) GI (Il< ),x1l<2 3 (( c" c, 2) ,(a,)) ----+ ([[aa cdJ] \).~:= (" a, c, ,-a2C 2,) t 11<2 ,
2 C2, c 22 Q2 a,c'2-a 2c 22
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(cf. (2.6».

Let En(a) C Dn(a) be the subspace of exact differential

1-forms. En(a) is generated by the following linearly inde-

- k n-k npenoent elements: {d(a 1a 2 )}k=O. Let Kn(a) denote the subspa-

r n-r-2 n-2
ce of Dn(a) generated by {a 1

Q 2 [a da]}r=o ' where a da is

an ordinary bracket with da= (da
1

,da 2 ).

Proposition 3.1. There exlsts a unlquely deflned Gl2(~)-equi­

variant projection~: D (a) -+ E (a), KerP = Kn(a).
n n

'Proof. En(a), Kn(a) are Gl2(~)-lnvarlant subspaces of Dn(a),

dimE (a) = n+1, dlmK (a)=n-1, dimD (a) = 2n. Let us choose the
n n n

following basis in D (a),
n

e p n-p-1 d p = 0 n 1 i 1 2p,i= Q1 a 2 a i , , ••• , -, =,.

Then the corresponding generators for E (a) and K (a) can be
n n

expressed as

and

r n-r-2( d"']a 1a 2 a ~ = e - e ·r+1 ,2 r, 1 '

respectively.

The assoclated 2(n-1)x 2(n-1) matrix

1 0 n-1 0

o 1 0 1

-1 0 1 0

o -1 0 1

k=O, ... , n

r = O, ••• ,n-2

has the same rank as the following matrix:

1 0 n-1 0
•..

o n-1 0 1

n
• •o · n

n-1
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Thus Dn(a) = E (a) e K (a). The action ~ restricted to E (a)n n . n

and K (a) 1s irreducible, which implies the uniqueness of then

projection IP.

"*Now we can define the umbral operator U into the space
a

n+1of differential 1-forms ovar the space of binary forms M .

Let U be the standard umbral operator (see Section 2) defined

Let U I be the restrietion of U to the space

Un(a). Now we Introduce an operator Ü defined only on En(a)

Dn(a) and satisfying the following commutation relation

(3.2) d 0 U I = Ü 0 d.

Thus for the elements of the basis of E (a) we have
n

(3.3) - k n-k<U\d(a1a 2 » = dak , k=O, ..• ,n.

Definition 3.2. The linear operator

(3.4) U* := üo!P: D (cd -.. V1+1 = (Mn+1)· ,
a n

n+1defined from the umbral space D (a) to the space V of differen-
. n

tial 1-forms on ~+1, i8 called the elementary umbral~operator

for the space of binary forms of degree n.

Proposition 3.3. U: is a G12(~)-equivariant linear operator.

Proof. On the basis of Proposition 3.1, P i8 G12(~)-equivariant

so we have to prove that Ü i5 also G1 2'(lK)-equivariant. In fact,

using the bracket notation (3.1) we have (cf.[12]) that for any

polynomial I E lK [ a , ••• , a J and i ts umbral representation P Eo n·

~[a1,a2, .•• ,ß1,ß2] the change of variables (e,d) is expressed

(by the formula (2.7» as follows:

I(äo,···,an ) = <U(f)]P(a1 ,a2 ,···,ß 1 ,ß 2 » =

:: <U(f)IP([a c],[a d], ... ,[ß c],(ß d]»

Thus for the operator U we have (see (3.2»,
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<U(f)ld([a c1 k [a d]n-k» = d< U' (f)ICa c]k[a d]n-k> =

= d<u'(f)la~a~-k> = däk , k=O, ... ,n

where by f(x,y)= r (~)akXkyn-k we denote the transformed bina­
k=O

ry forms in the new variables, and U(f), U(t) denote the corres-

ponding umbral operator U written using these two types of varla-

bles. This completes the proof.

By the extension of U· to the tensor product of p factors,
a

(3.5)

say

for

W = D (a)~ ••• 8D (ß), we obtain the partial umbral operatorn,p n n

representing the corresponding tensor invariants of degree p:

• P_Jl+1
U ( ß): D ( Cl ) €I. • • 8 Dn eß) ~ -fOv ,a, ... , n

.. -1·1<U(a, .•• ,6) IW 1 ea)~ ...~p(ß» :: <Ua w1 (a»8 .•. 8<U6 wpeß» •

The formula computing the effect of a change of variables

in the standard umbral representations of polynomial invariants

ecf.[12],[16]) as weIl as Proposition 3.3, suggest a subspace

of the umbral space W whose umbral evaluations are obvlo-n,p

usly invariants. Let us define the bracket monomials, say for

two umbral letters:

(3.6) [a dß]= a 1d 6 2 - a2dß1

"[daedßl:: da1~dß2- da 28dß 1 ·

Definition 3.4. A bracket monomial q E W is a nonconstantn,p

polynomial in W whlch can be written as an appropriate productn,p

of brackets (3.6). A bracket polynomial is a linear comblnatlon

of bracket monomlais. The linear subspace of W formed by' then,p

bracket polynomials i8 denoted by Bn,p

The total umbral space 19 def1ned as W = e w andn pE:IN n,p
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)I
the corresponding umbral operator U i8 defined as the respecti-

ve direct sum of the partial umbral operators. Let 9 EIN. A

nonconstant polynomial Q E e ~ ~+1 i9 said to be an invariant
pEIN

of index 9 if for all binary forms f(x,y) of degree n and for

all linear changes of variables (c,d) the following identity

holds:

The aim of this sect10n i9 to provide the methods for determi-

ning as explicitely as possible all the tensor invariants of

binary forms.

The index of a bracket monomial q E. W i8 the number of
n

brackets in q. The bracket polynomials in Wn which are linear

cornbinations of bracket·-, monomials all of the same index g, are

called bracket

be the umbral operator into the

index g.polynomials of

Let U·
(a, ••. ,ß)

~ vn+1 • Let 4> EBbe the bracket polynom1aln,p

Then the umbral evaluation of <fl , <U*( ß')'-·I4» ,a, •.. ,of index g.

tensor space

Theorem 3.5.

18 an invariant of index g.

Proof. Let q be a bracket monomial of index g. Let us change

the umbral variables, i.e.

[ä eJ c det I [Cl c] [e C]) = Cc d] [a.-.gJ
\ [a dJ [ß dJ

(
[a c]- [dß cJ)

[a dß]= det - c[c dJ [a dß]
[a dJ [dß dJ

(
[da c] [dB CJ)

[daSdß] = det = [c dJ [da8dß].
[da dJ [dß dJ

Thus,for any binary form f(x,y) and for any change of variables

(e,d), we have on the basis of Proposition 3.3,

<u7a, ... ,ß)(f)lq> c <u7a, ... ,ß)(f)l[c a]gq> =[c dJg<u7~,... ,ß)(f)lq>,
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*which implies that <U(a, ... ,ß)I~> is a tensor invariant of index

9 and degree p.

The converse of this theorem i9 also true.

Theorem 3.6. Let Q be a tensor invariant of index 9 and degree

p for binary forms of degree n. Then there exists a bracket

polynomial ~EB of index 9 such thatn,p ..
Q = <U ( 6) I~>a , ... ,

Proof. In order to prove this theorem we must first study the

combinatorics of bracket polynomials (cf.('2]). Let us order

the umbral alphabet in such a way that-·.. a < 8 < .~~-••< da < d6 < ... .

= [a ß] [a yJ ... [ö dö]~[dE:8dpJ

Let q be a bracket monomia1. Thus q is a product, say [a ß][a y] ...

[ö dö] e [dE:8dpJ of 9 brackets. Using the notation introduced

in [12J we rewrite q as a tableau of height S:

'.: a 6
a y

We will call such a tableau ordered if the letters in each row

are increasing from 1eft to right, and the letters in each co1umn

are nondecreasing from top down.

We easily see, using the syzygy relations

[a ö] [8 yJ = [a yJ [6 ö] - [a s] [y ö]

[y ö] [da8d6]=[da y]to[d6 ö]- [da ö]Sfd6 yJ

[y ö] [da 6J ~Cda yJ [ß ö] - [da öJ [6 yJ

and antisymmetry

[a ßJ= -[ß a]

[da8dSJ= -[dß8da]= da,Sdß 2- da2~ß1

that the ordered bracket monomia1s form a basis for the vector
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space of all bracket polynomials. In fact, treating the

differentials combinatorially as ordered symbols· and assuming

the existence of the nontrivial linear dependence relation

between ordered bracket monomlals with smallest number of dis-

tinct symbols and smallest height of bracket rnonomials, we

come easily to a contradiction setting two highest symbols to

be equal (cf.['2], p. 37).

Let Q be a tensor invariant of index g and degree p, let

P E W be i ts umbral representation. As Q i5 an invariant,n,p

we have for any change of variables (c,d)

(i) - g * -Q= [c d] Q = <U«(J', ••• , 6) IP ( [a cJ, [a d], ... , [6 cJ ' [6 dJ )>

This identity 1s true as a polynomial identity in the variables

c" c 2 , d" d 2 • Us1ng this fact we can prove that P([a cJ,

[a d], .•• , [6 cJ, [6 d]) =[e d] gR(a, ,a 2 , ••• ,8, ,ß2)~~ , where R t Bn,p

We can easily see that the polynomial P may be so chosen that

the letter c, as weIl as the letter d, oceurs exactly g times in

eaeh of the ordered monomials qk eontained in the expansion of

p ( [a cJ, [a d], ... ) aa a linear eomb1nat1on of ordered bracket

monomials. Here the new alphabet {e, d, a, ß, ... ,da, de, •.• , dE}

18 ordered as follows: e < d~~ ~~< e ••• < dE. In fact, repla-

cing c, and c 2 by rc, and rc2 , we obta1n the polynorn1al 1dentity

rg[c d]gO = <U· I)' bkrC(k)qk >,
(a, ••• ,8) k

where c(k) 1s the number of occurenees of c in the bracket mono­

roial qk. Equati~q coefficients of r g we see that the bracket

monomials with eCk) ~ g ean be omitted in P. Let qk be a bracket

rnonom1al in this lrnproved expansion of P as a linear combination

of ordered bracket monomials. Let s(k) be the number of brackets



- '6 -

[e dJ oeeuring in qk. Let s be the minimum of these integers

s(k). We see that s ~ g. If s = 9 we ean s1mply caneel [e dJg

from both sides of (i). Let us suppose s < g, writt1ng q =
k

we can caneel [c dJs from both sides of (1) to obtain

[ ] g~s • I \
t-?cd' Q = <U «(l, • • • , ß ) ~ b k qk > •

Treating (ii) as a polynomial identity in the variables c" c
2

,

d" d 2 , we can therefore set c,= d" c 2= d 2 • This yields the

identity:

(lii) < u· I L b q > = 0,
(a, ••• ,ß) k k k

I

where '" is obtained from qk by setting d.qk c =

As we know the ordered bracket monomials q' weIl '"
k as as qk are

L bkqk E •linearly in~ependent. Because Ker U and
k

(a, ••. ,B)

'"qk are linearly independent, each monomial 4k can ~e written as

a tableau

c *

(iv)

c •

* *.
E dE

where e oecurs ln the first 2 (g-s) rows and an asterisk ,,-_,stands

for the rest of letters. By inspection of (iv) we can deduce

the corresponding elements qk. They can be written in the form

c •

c ..
d ti

..
d •...
€ dE....
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where c occurs as the first letter in the first g-s rows and

d occurs as the first letter in the next g-s rows with the

additional bracket [E dEJ standing also in (iv). Thus we

have that

L bkqk' E Ker u·k (a, .•• ,B)

and we can cancel in the original polynomial P all terms giving

the smallest number s of brackets [c d] occuring in qk. Repea­

ting this procedure we obtain the result of Theorem 3.6.

Corollary 3.7. On the spac~ of blnary forms of odd degree the

odd degree tensor invariants do not exist.

Proof. On the basis of Theorem 3.6, for the tensor invariant 0

of degree p and index 9 we can write

Ö::: <u7a, ••• ,B)!R([a c],[a d], ... » = [c d]gQ,

where R i8 the corresponding bracket polynomial. On the other

hand, taking the new parameters c -. tc, d -. td we obtain

the following equality (polynomial in t):

t
nP.<u7a, ... ,B) IR([a c], [a d] , ... » ::: t

2g [c dJO.

Thus we see that for odd numbers n only for even number p the
1~ _.........-

integer 9 can-,~x1:sts •.

4 • Invariant syrnplect'ic structure on -the 'space of- 'bin'ary ·forms

Let us give now the complete classification of the tensor

invariants of degree two, i.e. we assume p=2.

Theorem 4.1. There exists only one (up to constant multiples)

tensor invariant of degree two on the space of binary forms.

Proof. Let n be the degree of binary forms. B i8 generatedn,2

by the following basis of ordered bracket monomials: v 1=
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= [a B]n-1[da€ldß], v 2= [a BJ n - 2 [a da]S[ß dß] We see that the

third admissible bracket monomial w = [a ßJn-2[ß daJ9[a dß],

by the appropriate syzygy, can be written as follows

w = [a 6J n-2 ([a da] ~[ß dß] - [a ß] [dafM6]) ::: v 2 - v 1 • We see

•also that V2 E Ker U(a:6) . Thus

Jf
dim( J 2 = Im U( 6)l B ) = 1,

n, a, n,2

which cornpletes the proof.

Now we are asking for the normal forms of the correspon-

ding tensor invariants.

Proposition 4.2. All tensor invarlants of degree two on the

space of binary forms of degree n are proportional to the follo-

wing basic invariant:

(4 • 1 ) Q =
n-1
L (n -, ') ( ) j + , .n d d d)-1 «-') da '+1 e a ,,+ a n - j - 1" a J'+1 'j=O J J n-J-

i.e.

Proof.

J 2 = {Ql •n,

On the basis of Theorem 4.1, as a generator of J 2 wen,

can take the following invariant:

- 2 [ n 1 .. 2 n-1 (n ') n J' 1
(i) Q = <U1a,ß) In Cl ß] - [dCledß] >=<U(a,ß) In --jl

o
; (-1) - - (

where we denoted

p n-p-1 _ _ p n-p-'
e p ,l= cx 1a 2 da1 , e p ,l- 6,6 2 dß i , p=O, ••• ,n-1; 1=',2.

Recalling (3.5) we obtain the action of U(a,S) on the baslc ele­

ments:

(1/n 2 ) dak +, Sdap '

(1/n2) d~Sdap+' ,
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Applylng these formulae to (1) we obtaln the desired invariant

Q of the proposition.

From the formula (4.1) we see that Q is asymmetrie ten-

sor on the space of binary forms of even degree and antisymmet-

ric if n is odd. Thus we have

Corollary 4.3. On the space of binary forms of odd degree

there exists only one (up to constan~ multiples) S12(~)-invar­

iant sympleetic structure.

Proof. Taking n=2k+3 in (4.1), after straightforward calcula-

tions we obtain

(4.2)
k+1 r+1

Q = \ (n) (-1) da 1\ da ,L
O

r r n-r
r=

wh1ch 18 a closed, nondegenerate, Sl2(R)-invar1ant two-form.

Remark 4.4. On the basis of (4.2) we can choose the symplect1c

form on Mn+1 as follows

k-1
k

+1(n) r+1(4.3) w = nl (-1) L
o

r (-1) dar" dan_r ·
r=

Choos1ng the new coordinates

(4.4) q - nl a 'p = (_1)k-r nl a r = 0 k+1
r - r I n-r' . r (n-r) Ir' , • · · , •

on Mn+1, we can wr1te (4.3) in the following Darboux form

(cf. [1J,[18J)
k+1

w = L dp]. 1\ dqj ,
j=O

where the elements of Mn+1 can be written as follows

_~+1 2k+3 k+2 k+1 xk+1Yk+2
M 3 f (x,y)= qo72k+3) 1+·· ·+qk+1 x Ck+})! - Pk+1 (k+1)! +

(4 .5)
'+(_1)k+2 2k+3
~.. poy·

This 1s exactely the S12(K)-1nvariant' symplectlc structure men-
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tioned only in [9J in the context of the generalized Newton

equation as weIl as in the obstacle problem [5] •

.-ll+1
S12(~) acts sympiectically on (M ,w). Thus we have

Proposition 4.5. The momentum mapping corresponding to the

n+1 ~standard Sl2(~)-action on (M ,w) is the Ad -equivariant quad-

ratic momentum mapping (cf. [2]). In the coordinates of (4.5)~

it can be written as follows:

J: ~+1

(4.6)

---flo sl2(1K)* ; J(p) = (H+, H_, Ha) (p) , where

k+1 1 2
H+(p) C L PrQ r-1+ ~k+1'

r c 1

k 1 2 2
H (p) = r~(2k+3-r) (r+1)PrQr+1- 2(k+1) Pk+1'

k+1
Hd(p) = I l2r-2k-)q p ,

r=O r r

Proof. Taking the standard decomposition of S12(~) onto the

three one-parameter subgroups (cf[19])

(4.7)

we obtain the three corcespondlng Hamiltonian vector fields,

- - -say A+, A_, D , with the corresponding Hamiltonians H+, H_, Hd .

Thus, after straightforward calculatlons, the momentum rnapping

follows immedlately (cf. [1],[2]).

Remark 4.6. Taking into account the relation'{H+, H_} = Hd

we can reformulate the fundamental theorem (Cayley, Sylvester

[16J) of the theory of invariants of binary forms of odd degree,

i.e. we have: A polynomial ~(q,p) on the space of binary

forms Mn+1 is' 512 (IK) -invariant if and only if the following iden­

tities are fulfilled: {H+,~} = 0, . {Hd'~} = O. Thus we easily
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see that the algebra of polynomial Sl2(~) invariants of binary

forms is endowed with the canonical PoisBon structure (cf.[1S]).

In the obvious way, by the multiplicative rule, we can

extend the umbral operator u~ (see §3) to have an umbral repre-

sentation of tensor invariants with polynomial coefficients.

In fact we define

Wn = ~ W p9~Ks[Y' ... 'ö],
p,sElN n,

where"s" is a number of umbral letters y, ••• ,ö • Thus the res-
.• -w

pective extension of> U, say U , on the hornogeneous elements of

Wn i8 defined as follows

<Ü~I~9Yty~••• ö~ö;> = <U·I~><UIY~Y~> ••• <Ulö~ö~>

After straightforward reforrnulations we immediately obtain

the fundamental classification theorems, analogous to Theorem 3.5

and Theorem 3.6 of §3. As a simple exarnple, we apply these

theorems to classify all tensor invariants of degree one with

coefficients being the linear polynomials in variables ao, ... ,an •

Proposition 4.7. All tensor invariants of degree one with

linear polynomial coefficients on the space of binary forms of

degree n are proportional to the following basic invariant:

(4.8)
I =

n
L (-1 )n-j-1 (n) d. a j a.] n- ]j=O

Proof. Let us take the relations between elementary umbral

monomials (cf. Proposition 3.1):

1
e k ,1 = n(wk+ 1- (n-k-1)gk)

1
e k ,2 = n(wk + k9k-1)' k = 0, .•. , n-1,

where
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It is easy to see that the space of irredundant bracket poly-

nomials in Dn (a)9Un (ß) is spanned by the>bracket monomial

nCa ßJn-1[a da]. Thus we have:

Corollary 4.8. Let n c 2k+3. Then the corresponding S12(K)

(4 .9)

invariant one-form on the space of binary forms of degree n, in

Darboux coordinates has the following form
k+1

a c jlo'Pjdqj - dpjqj>'

Remark 4.9. We know (cf. [4] ,p.306) that the projective

space RPn of all zero-dimensional submanifolds of degree n in

the projective line is endoWed with the natural S12(R)-invariant

contact structure (cf.['J ,[6J). Indeed we see that the appro­

priate S12(R)-invariant field of hyperplanes in ~n 18 defined
n

by the S12,1R)-invariant 1-form V...JCl1 • where V C iloai ~ai

i8 Sl2(R)-invariant and w is given in Corollary 4.3. In the

affine part of ~n formed by the zero-dimensional submanifolds,
of mP , which do not contain the point in infinity y=O, this

contact structure i8 given by (see Corollary 4.8)

k+1
81 _, = L (p.dq.- q.dp.) - dp •

qo- je' J J J J 0

This io~·the canonical contact structure on the space of poly-

nomials
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Thus all the results concerning the symplectic geometry of

polynomial spaces have a direet reformulation in terms of

the above introdueed eontact geometry (ef.[4]). The more pre-

eise analysis of this ease we leave to a fortheoming paper.

5. The hierarehy of apolar coisot·ropie man!:folds and gene­

rali-zed open swallowtails ~."

Two binary forms f(x,y) and g(x,y) are said to be apolar

if their apolar eovariant <flg> (cf. §2) 1s the identieally

zero form. The apolarity notion i8 very eonvenient in deseri-

bing the varieties of binary forms w1th multiple linear fae-

tors. The main elassieal result which allows us to assoeiate

the apolar eovariants with the basic sympleetie geometry of

binary forms (Sylve8ter ' 8 theorem, see e. g • [ 12J, p. 64) i8

following: Let <f Ig> = 0, where f i8 a binary form,· of degree

n=2j+1 and g i8 a nonzero form of degree m=j+1. Then, f(x,y)=

m
-V

P
y ) P i5 a factorization of g into p dist1nct linear forms.

Let (M,w) be a sympleetlc manifold. The new sympleetic

structures associated to (M,w) are provided by the so-called

eo1sotropie submanifolds in M (cf.[1),[18J). We recall that

a submanifold C ~ M i8 coisotropic lf at each x E C we have

(TxC) §:::{VETxM; <V" u,w>=O, for every u f TxC } t; TxC.

The distribution f= l-l (TxC)§ 1s the eharacteristic dis tri­
XEC

bution of wlc. Let B be the space of charaeteri8tics of it and

p:C -+ B be its eanonieal projeetion. It i8 known (cf.[18J)

that if B admits a differentiable structure and ~is a submersion,
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then there 1s a un1que symplect1c structure ß on B such that..
p ß=wl c • The symplectic manifold (B,ß) assoc1ated in this way

with the trip1et (M,w,C) is called the reduced symplect1c ma-

nifold (cf. [1J).

n+1Let (M ,w) be the symplectic space of binary forms

(see §4). The canonical subspaces in Mn+1, say c(l),

n-1o ~ 1 ~ --2- of all binary forms apolar to its I-derivatives

with respect to x are called the canonical apolar subspaces.

Proposition 5.1. The canonical apolar subspaces c(l), (0 ~ I

n-1
~ -2-)

Proof.

f . .~+1arm the coisotropic varieties af (M ,w).

We see that C(l) ri described by the fo1lowing system

of 1+1 equations:

After straightforward ca1culations we find that

. (1) (1) I"{Pi ' P j } ~(l) c 0,

where {~,~} is the appropriate Poissen bracket (cf.[1]);

{ ~ tlJ} 1 k +L 1 (-1) k - i n - 't. (!1 ~ _ l1 ~)
, C -nI i ~ ~ Cl ~,aai aa a aai=O n-i n-i i

(1)Thus the system of equations Pi (a , .•• ,a )=0, ie n

n = 2k+3.

= 0, ... ,1

<flf(1» = 0) form the coisotropic subvariety of (Mn+1 ,w).x

Now we pay more attention to the particular case I = 1.

Coro11ary 5.2. Let 1=1, then the second apolar co1sotropic
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variety C(1) can be expressed as follows:

c (1 ) = {f E Mn+ 1 ; <flf~> n(p(1)y+ P (1 ) x) k+11
= =,~,( - 1 ) ni (yHd +

0 1

2H+x) :: 0 }
_~~___ r~

x,y
,

where

{P ~ 1 ) , P (1 ) } ::: _'_(-1 )k+1 p (1) and {H+, Hd }= H+.0 nn! 1

Proof. Immediate, on the basis of (4.6), Proposition 5.1

and simple but tedious calculations (see Proposition 2.3. See

also Example 2 in [S]p. 45).

To the space of binary forms of degree none can easily

associate the corresponding spaces of polynomials of one varia-

ble putting y=1 in (2.1). In order to have the polynomial

syrnplectic spaces adapted to the invostigations of singulari­

ties in the variational obstacle problem (see [5J, [6], [14], [3J)
n+1 "-

we associate to every symplectic space (M ,w) the canonically

n-1reduced symplectic space Q of polynomials of degree n-1

where leading term has constant coefficient 1
(n-1)I •

n-1
Q

, where 11 '\.I 11 1s given

nla = 1 ).
n

with the space of derivatives

to Co' namely

by the coisotrop1c submanifold

n-1Q is ident1fied canonically

d . .n+1di (f (x, 1 » , f € M belonging

2k+2 2k+' k+1x x x
= (2k+2)1+q1 (2k+1) 1+···+qk+1~(k~+~1~)1-

k+1••• + (-1) P1

endowed with the reduced symplectic structure

k+1
w' = . L dp. 1\ dq ..

J=1 J J

Proposition 5.3.
(1) n-1

The apolar subspaces C (1 = 1, ••• , --2-)

of (Mn+, ,w) induce the corresponding coisotropic subspaces of
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n-1 -(1) (1-1 _. n-1
(Q , w I ), say C -, ,"., •. '. '-2-)' described by

C(1) ={4> E On-1 ; P~ 1 ) Cq , p) = 0, s = 1, ••• , l}, 1 c 1, •.. , k + 1 ,

where
k k-s+1 -1 k+1

PCl) = J.::.l.l I (n-1) (n) q p + _1 L (_1 ) i (n-1) il (n-
s nl ~.1 i i i i n1 2 i=k-s+2 i

C- 1 ) k n-1 (n-1)
s-i) IQi q i+ ----2 I i il(n-s-i)lp i Q i + a

n-s- nl i=k+2 n- n-s- s

Proof. Let us observe that (pCl»-1 CO)("\C is transversal
o 0

to the characteristic,distribution r of Co. Thus does

n-1not give any constraint on the reduced space Q • It is easy

to see also that the functions pell I (1 ~ 5 ~ 1) are constant
5 Co

a10ng the integral manifolds of distribution r. Thus we obtain

the new coisotropic constraints defined by these functions on

n-1Q , which after straightforward calculations are expressed

in the form (5.1).

Now we investigate the properties of the symplectic space

induced by the coisotropic submanifold CCr) in (Qn-1 ,w'), n=2k+3.

Proposition 5.4. The reduced syrnplectic space corresponding

to the triplet (On-1,w', c(1» i9 identified wi~h the follo-

wing space of polynomials

2k+1 2k-1
{
XX

(5.2) Z = (2k+1) I+Q1 (2k-1) 1+·· ·+qk

endowed with the reduced syrnp1ectic form w

Proof. The function p~1) aa well aa the Hamiltonian H+ (see

Corollary 5.2) corresponding to the one-parameter subgroup A+

(cf. (4.7» generates translations along variable x. Thus the

space of characteristics of the coisotropic submanifold C(1)

can be irnrnediate1y identified with the derivatives of polyno-
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rnials;

(5.3)

with an additional condition that the suro of all roots i8

equal to zero (cf. [6],[11J). This completes the proof.

As a polynomial parametrisation of characteristics of c(1),

described in Proposition 5.4, we can write the following identi­

fication (cf. [11J,[10J, and (5.3) above),

(x_t)2k+1 _ (x_t)2k _ (x-t)k - (x_t)k-1 k-
(2k+1)1 +<.l..-1(2k)1 +···+qk+1 kl -Pk+1 (k-1)! + •.• +(-1) P2 =
2k+1 2k-1 k k-1 kx x x x

(2k+1 ) 1+q 1 (2k-1 ) 1+. • · +qkk 1 -Pk (k-1 ) 1+ • • •+ (-1) p 1 •

Thus we immediately have

Corollary 5.5. Let m ~ [~] . Then the sets of polynomials

(n)of Z having a root of multiplicity m, say Lm- 1 , form the isotro-

pie '~.ee [18J) varieties in (Z, w) • The maximal isotropie varie-

ty, i.e. m = [~J ' is a lagrangian variety (cf. [11J) symplecto-

morphic, in the ease of n = 7, to the system of rays on the

obstacle, with the highest generie singularity, so-called open

swallowtail singularity (cf. [5], [6]and Figure 1)below)

Fig. 1.
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Remark 5.6. Let us notice that the open swallowtail singu-

larities in (Z,@) are connected with the structure of the space

of the Hilbert's zero-forms (cf. [16J,[19J), and are quite

except1onal. We can eas1ly see that the variety V ef pelyno-

mials in (Z,w) w1th maximal possible number of double reets

1s not lagrangian ,_(cf. [5J ,p.37,~where 1t was claimed that it

i81agrangian). One can easily check th1s for k=2. In fact we

have

and the correspond1ng immersion of the smooth strata of V 15

following

1 3
q2= 30(wZ + z ),

1 2 2
P2 z:::: 120 (4wz - w ) ,

1 2
q1 = 20(2w-3z ),

1 2
P1 = 6Öw z

where z = a+ß, W = aß, 2a+2ß+y= o.

By straightforward calculations we obta1n

- 1 2 23 2 1 4wl V= dP1" dq1+ dP2" dq21 V =( 450w + 1800wZ - 300z )dz" dw F O.

Following the theory of generat1ng fam11ies for the germs

of lagrang1an var1et1es presented in[11] one can descr1be the

analyt1cal structure of open swallowtails, 1.e. ~n), using the

polynomial functions. Let us recall that the function F:
s .

O~R -+ R is a generating family (with s-parameters) for the

germ of lagrangian var1ety L~ (T*O,W
O

) if L can be locally written

in the following way (cf. [18J)

(5.4) aF aF
aq(q,A)=P, ar(q,A) = ol ·

ture,

We see that (Z,w) has a canonical cotangent bundle struc­

- ..
(Z,w)~(T Q,w

O
). Thus we are ahle to calculate the global
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generating families for the general open swallowtails ~n).

Proposition 5.7. An open k-dimensional swallowtail ~n) ~

(Z,w) is represented, in the form (5.4), by the following

where

(k)
~A2k+3
2k+3

k+1 (_1)j-s
D(k)= (_1)k-r ~
r,s L (J'-s)l(n-J'-r)!'

j=s

(k) k-r· 1 k+1 (-1)j(j-1)
L = (-1) (n r I - ) j lj I ) , 1 ~ r, s ~ k+1

and the numbers ~ are given by the following recurrential

formulae

A = 1,o

k
k C L 1 (_1)i+1 k •
--k i=1 i 1 --k-i

Proof. On the basis of Proposition 4.2 in [11J and the formulae

for the characteristic curves of C(1). After straightforward

calculations we obtain the corresponding generating one-parame-

ter families for the open swallowtails in all dimensions.
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Let 'k=1,2, then the corresponding generating

families for the cusp singularity (one-dimensional open swallow­

tail) and the standard (two-dimensional[3}) open swallowtail

singularity of lagrangian varieties can be written directly,

b~-proposlt~on 5.7, in the followlng way

cusp:

(5.5)

open swallowtail:

(5.6)

Remark 5.9. (singularities in the obstacle geometry [6J) •
. ~ 3 • 3

Let Q be a hypersurface in ~. T R is the phase space of free

particle. We take the hypersurface Y; Y = {(x,p) fT*R3 ; H(x,p)=

1 22(lpl -1} = O} Let M denote the syrnplectic rnanifold of inte-

gral curves of the characteristic distribution of H. n:Y -+ M

i9 the canonical p~ojection along the integral curves. M i8 a

syrnplectic manlfold of oriented lines in R3 , M;: T*S2 (cf. [6]).

Let y be a geodesie flow on Q (deterrnined by the poi~t source

of light in the space) [14]). Let L ~ Y be the submanifold formed

by versors tangent to the geodesics of y along the surface Q.

Propos-ltion. (cf. [3], [1 4J ). A). L=7T (L) is a lagrangian sub:'"

variety of (M,w). L is singular in~the asymptotic points of y

(i.e. the corresponding line of L is also an asymptotic direc-

tlon on Q) in a hyperbo11c region of Q. Typically the asyrnpto-

tic points of y form a curve, say I. So Q.

B). Let Po E I. be such that the correspond1ng geodesie of y

going through Po 1s tangent to 1 in po. Then the correspon­

ding germ of l~grangian variety (7T(L},Wo ) is the open swallow-
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tail singularity (cf. [3]) symplectomorphie to L~7) deseribed

in Corollary 5.5. (the corresponding variety of .·"~ray.s gliding

along the obstacle on the plane with the inflection point,

is illustrated in Figure 2, below).

source
obstacle

gliding rays

Figure 2.

Using the Huyghens principle (cf. [7] ,[8]) one ean express the

asympto~ic intensity of radiation in the presence of an obstacle

by the appropriate rapidly oscilating integrals with singular

stationary varieties represented by: the corresponding phase

functions (optical distances), say

(5.7) J eiT~(X,A)a(x,A,T)dA

IRn

,I, T --'00.

For the open swallowtail singularities the phase functions

(families) are indieated, by Proposition 5.7, in the follow1ng

way:

Let us take the produet symplectic manifold

(see [11]).

We know that graph~ ~ E 1s a lagrangian submanifold of Then

there exists 1ts loeal Morse faml1y (cf. [18J', say K :R3xxx~~-. R
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(x,q,~) --. K(x,q,~), where TMX 18 an appropr1ate Ioeal eo-

tangent bundie 8trueture on M (see[1J). Let Gk(q,A) be the

generating family for ~n) g1ven in Proposition 5.7. Then

the eorresponding phase family in (5.7) i8 a generating fami-

ly for the puliback (ef.["])

(graph ~)t(~n».

Thu8 the corresponding optical distance (time), say ~k(x), is

described by the following equations:

(5.8)

Examp1eS. 10 .

1JJ k (x) = Stat \ (Gk(q,A) - K(x,q,~».
q,~ ,/\

Now we exaetely caieulate the planar case "',:k=1 •

In this case the Ioeal Morse family for graph ~ is following

K(X, ,x2 ,q) = x 2q - X1~' q ~1 ..·.•

Thus taking the generating family (5.5) for L~7) we obtain

the eorresponding family of optical distance functions (cf. (5.7»

<P Ix, \, ~)= - ~OA~- iA~A1- ~A2A~- X 2 A1- xl;;'-Ar

and the graph of phase function $, (x), 1.:, ={ 1lJ, (xJ~t = O} ....

. (see Figure 3, beIow),

Figure 3.
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By the straightforward calculations, using this family, we

obtain the corresponding family of wave fronts parametrized

by the optical time t;

x c: ( -'1-1
5- t) I, - .111

4
I

"0 4

X = .1'1 3_ .11l 2 ( -'11 5_ t)2 3~ 2~ 'O~ , (see Figure 4, below)

which are exactely the level-sets of the phase function ~,(x)

in the planar obstacle problem (see Figure 2) with inflection

point [5J.

\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\ ,

Figure 4.
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