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Abstract

We estimate the complexity of a general problem for interpolating real algebraic

functions given by a black box for their evaluations, extending the results of (GKS 90b,

GKS 9Ib] on interpolation of sparse rational functions.





1 Introduction

We start by defining what we mean by a t-sparse real algebraic function.

Definition: 1. Y(XI , •.. , X n ) is a t-sparse real algebraic (multivalued) function if

its graph fy c (m+)n+l projects surjectively onto the positive axis m+ and lies in the

variety {f = O} n (lll+)n+l where f is a t-sparse fractional-power polynomial

f = t ,(i)X;~i) ... X~~)yß<i)
i;l

where a)i), ß(i) E Q, ,(i) E m and the exponent vectors (a~i), ... ,a~), ß(i)) are pairwise

distinct. By {f = O} we denote a set of points x satisfying f(i) = O. Moreover, let Jl be

a common denominator of all the rational numbers a)i), ß(i). Changing the coordinates

Xi -t Xi
1

/
IJ

, Y ---+ yl/JL (note that this is a diffeomorphism of m~+l) we get that

J(Xl, .. . ,Xn , Y) = f(Xi, . .. , X::, YIJ) is a polynomial in Xl, . .. ,Xn , Y. By this change

of the coordinates we obtain a new algebraic function Y and its graph r y. In addition

we suppose that r y is an irreducible (in the Zariski topology over lll, see [BCR 87])

component of the algebraic variety {! = O} n m~+l.

We caU f a t-sparse representation of Y. Ir t is the least possible we call f a minimal

t-sparse representation.

2. We are also given a black box that for each (Xl'.'.' X n) E (m+)n gives the set of

all values of Y at this point together with the partial derivatives up to order t (if they

exist; if not it gives the value 00).

When we say that we are given a t-sparse real algebraic function we mean that we

are given such a black box together with the integer t for a function as described in 1.

Unlike the case of rational functions [GKS 90b, GKS 9Ib] the values of Y at rational

points cau be irrational, thus we need a different (from the rational case) computational

model. Moreover, together with the values of Y we need the values of its several partial

derivatives. Also we need a zero-test for the arithmetic expressions of the values.

One computational model could be the following. An algorithm is given which for

any rational point x E Q +. provides an algorithm which outputs a sequence {7Jm E

Q }05mE~ such that 2~ 7Jm = Y(i) and the speed of convergency is uniform in some

cube (i - 8, i + 8) (but the speed itself and 8 could be unknown). Then one cau get

similar algorithms converging (also locally uniformly) to the successive derivatives. For

this model we need an assumption of the existence of a zero-test (namely, a test to
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determine if such a sequence converges to zero).

If we suppose the coefficients ,(i) E Q of f to be rational then the values in rational

(even algebraic) points are algebraic and it is reasonable to represent each of the values

of Y and its derivatives by its minimal polynomial and an interval in which the minimal

polynomial has a unique root (see e.g. [GV88)), or by the means of Thom's lemma (see

e.g. [HRS 90)), i.e. by the minimal polynomial and a succession of signs of derivatives of

the minimal polynomial.

The third approach could be to consider the values in an abstract way (see e.g.

[BSS 88]) and to treat them as the symbols for real numbers.

Anyway, independent of the way of representation, we assume that carrying out

one arithmetic operation involving the outputs of black boxes has a unit cost, similarly

to what is usually adopted in interpolation problems for black boxes (see e.g. [BT 88,

GKS 90a, GKS 90b]).

We design an algorithm for finding the exponent vectors of all minimal (normalized)

trsparse representations of a t-sparse (so t} ::; t) real algebraic function Y (see the

theorem at the end of the paper). It extends the interpolation algorithms for polynomials

([BT 88], [GKS 90a)) and for rational functions ([GKS 90b, GKS 9Ib)).

We indicate briefly the further contents of the paper:

In §2 we present a zero-test for t-sparse real algebraic functions. Namely, we prove that

a set of points {I, ... 1 B}n plays a role of a zero-test set and give abound on B. The

proof invokes the bounds from [K 91] on the sum of Betti numbers of areal algebraic

variety given by a sparse polynomial.

In §3 we prove that any minimal t-sparse representation of an algebraic function has

rational exponents. This implies (as is shown in §4), that there are a finite number of

the minimal t-sparse representations.

In §4 we describe an algorithm which finds the exponent vectors of all the minimal

t-sparse representations of areal algebraic function (interpolation algorithm). It uses

a Wronskian formulation of linear dependence (see e.g. [K 73]) which appeared to be

helpful also for sparse rational function interpolation ([GKS 90b, GKS 91a, GKS 9Ib])

and which allows to describe the family of exponent vectors as a solution of a system

(over m) of a polynomial equations. The complexity estimates of this algorithm are

stated in the Theorem at the end of §4.

Acknowledgments. The authors thank N. Ivanov, M. Kontsevich and N. Yorob-

jov (jr.) for useful discussions.
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2 Zero-test

Let 9 be a T-sparse fractional-power polynomial in the variables X}, ... l X n , Y with

the same denominator J.I. of the exponents of f (cL defini tion 1). We describe a test to

determine whether 9 vanishes on f y . Observe that this is equivalent to testing whether

the dimension of {g = O} n f y is n since f y is irreducible (g is defined similar to j).
Our zero-test relies on the results of Khovanskii. For our purposes we need the following

Proposition 1. (see Corollary 5, p. 92 and Theorem, p. 1 [K 91])

Let h E m[XI, ... , X n ] be a t-sparse polynomial such that {h = O} c mn is a nonsingu-
• ,2

lar hypersurface. Then the sum of Bett! numbers of {h = O} does not exceed 2TnO(n).

Note that in the above proposition, the i-th Betti number bi ({ h = O}) is defined

as the rank of i-th cohomology group H i ({h = O}, m) with real coefficients, see e.g.

[ES 52], [D 80], [BCR 87]). A similar bound is true if we change the hypothesis above

to consider singular varieties that are compact.

Corollary 2. Let h E mn be a t-sparse polynomial such that {h = O} c mn
IS

compact. Then the sum 01 Betti numbers 0/ {h = O} does not exceed 2(O(tn)2).

Praof. We follow closely the arguments in Theorem 2 [M 64] or Proposition 11.5.4
n

[BCR 87]. Assume that {h = O} lies in a ball of radius R. Let J« f, 0) = {f2 +f2( L x;) ~
i:;:l

n
02} C mn and let 8]«f,0) = {f2 + f2( L x;) = 02} . For sufficiently small fand almost

i=l
all 0, 8I( (f, 0) is a nonsingular hypersurface. Apply proposition 1, we have that the surn

of the Betti numbers of 8I«f, 0) is at most 2(O(tn)2).

Let H· be the sum of the cohomology groups. Alexander duality (see e.g. [D 80])

implies that rank H*(]«(fi,Oi)) = ~ rank H·(8I«fi,oi))'

Let f.i approach 0 monotonically and select Oi so that odfi approaches R mono­

tonieally. We then have ]«fi,Oi) ::> ]«fi+l,Oi+d and nI«fi,Oi) = ](. Therefore
i

H· (]() is the di rect limit (see e.g. [ES 52]) of the groups H*]( (fi, Oi) and so rank

H·(]() = lim(rank H* ]«(fi, Oi)). This proves the corollary. 0

\Ve now formulate the main result of this section.

Lemma 3.

11 dime {g = O} n f y) :::; n -1 (e.g. if9 t 0 on f y ) then for at least one 0/ the values

Xl = 1,2, ... , B :::; 2(tT)O(n) we have dime {g = O} n f y n {Xl = Xl}) :::; n - 2.
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Before proceeding to the proof of lemma 3 we describe a zero-test based on lemma 3.

Continuing to apply lemma 3 one shows by induction on the dimension that th~re exists

a point (XI, ... , Xn) E {I, 2, ... 1 B}n such that for each point (Xl,".' Xn, y) E f y (recall

that Y is defined everywhere on m~) g( XI, ... , Xn, y) :j:. 0 (thus the zero-test considers all

these points {XI, ..• , Xn} E {I, ... 1 B}n). Notice that we supposed that f y is irreducible,

this was used only to reformulate the condition that 9 does not vanish on fy as dim( {g =

O} n ry) ::; n - 1 and just this inequality on the dimension is used as an inductive

hypothesis. Observe also that at each step of the induction we obtain the same bound B

for the nurnber of values of the current coordinate Xi since at each step we deal with a

substitution of some values Xl, ••• , Xi-l instead of Xl, ... ,Xi- l into the power-fractional

polynomials f, 9 that does not increase their sparsity.

Now we proceed to the proof of lemma 3. We start with adefinition. For each point

x of f(i) = 0 we define the multiplicity mj(x) of i on f as the minimal number k

such that same partial derivative of f of order k does not vanish at x. If we have a

polynomial and write f = L fi where each fi is homogeneous of degree i in (X - x)
where X = (XI, ... , X n ), then mj(x) is the smallest i such that fi t= o. Note if f = g. h,

then mj(x) = mg(i) + mh(i).

Lemma 4. (cL [GKO 91])

// f t= 0 is t-sparse, then for each x E (m+)n, mJ(x) :S t - 1.

t .......
Proof. Let f = L Cixa i where iii = (O'li, ... , O'nd. Let ä = (ab".' an) be a vector

i=l
t

such that ä . ~ :j:. ä· O'j if i :j:. j and let D = L aiXi 8~.' It is enough to show that if
i=l I

x E (m+)n and f(i) = D(f)(x) = ... = Dt(f)(x) = 0 then f == O. We have

1 1 CIXO'-ol f(i)
ä·O'-; ä· 0'2 ä· ät C2X0'2 (D j)(i)

(.... .... )t (.... .... )t ( .... -o)t CtxO'-ot Dt(f)(i)a . 0'1 a . 0'2 ... a . O't

Since the first matrix is a vandermonde matrix and x E (m+)n, we have the conclu-

sion of lemma 4. 0

Note that in Lemma 4 it is enough to assume that no coordinate of x is zero.

Let h E m[X1 , ... , X n , Y) be a polynomial and let Vi c mn +l be an irreducible

(over m) cornponent in the Zariski topology of the variety {h = O} such that dirn Vl (=
dimm Vi) = n. Let h = nh't i be a factorization of h where hi E m[Xll ... , X n , Y)
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are irreducible over IR. Denote by Vi c (; n+l the c10sure of VI in the Zariski topology,

then dirnQj V. = n and tI; is efined and irreducible over IR. Then the generator h E

IR[Xll . .. , X n , Y] such that iIJ. = {h = O} (; n+l is irreducible and h I h since h vanishes

on ltl and thereby on tI;. Let h = h. for definiteness and we say that the polynomial hl

corresponds to ltl, observe that VI = {h l = O}.

Let for sorne Xl > 0, dirn(ry n {g = O} n {Xl = Xl}) = n -1. Let U be an irreducible

cornponent of the variety r y n {g = O} n {Xl = Xl} of the dimension dirn(U) = n - 1.

Suppose that V1, ... ,~ are all the irreducible components of the variety {g = O} such

that U C Vj, then S ~ 1. Observe that for each 1 ~ i ~ 8 either dirn Vi = n or

dirn Vi = n - 1. In the latter case Vi = U since a linear function Xl - Xl vanishes on

a subvariety of the irreducible variety Vi of the complete dimension n - 1. Thus either

dirn Vi = n for all 1 ~ i ~ 8 or 8 = 1 and in this case VI = U. Suppose that ~+1l'" , ~l

are all the irreducible components of {j = O} such that U c Vj, then 81 - S ~ 1. The

same observation concerns V,+l, ... , V,l' Consider j9 = nh'ri a factorization over IR.
To each ~, 1 ~ j ~ SI with the dimension dirn ~ = n corresponds some hij as above.

For almost an the points y E Vi, ffih•. (y) = 1 (since almost an (in the sense of Zariski
J

topology) points of Vj and also of iIj are nonsingular, that is the gradient of hij does not

vanish) therefore for almost all the points y E Yj, m j 9(y) = ffii j"

Define M = max{mij + I} where the maximum is taken over an the polynomials h ij

which correspond to the irreducible components ViI" .. ,Vjq among Vj, 1 ~ j ~ 81 with

dimension n (in the case q = 0, when there are no such components we set M = 1).

Consider the real algebraic variety {; = {;M C {jg = O} C mn+1 consisting of an

the points y with the multiplicity mjg(Y) ~ M. Let us show that (j ::> U. Namely, for

every point i E U, mjg(i) ~ miil + ... + mijq and in the case when q ~ 2 obviously

mjg(i) ~ M. If q = 1 then the families Vi, ... ,V, and v,+1l"" V,1 cannot consist both

of the same single irreducible variety of dimension n, since otherwise this variety would

be a subvariety of f y (notice that here we do not make use of irreducibility of r y), but

dim(fy n {g = O}) ~ n - 1 by the hypothesis of lemma 3. Thus in the case q = 1,

one of two families VI, ... ,~ and V,+l,"" V,1 consists of a single irreducible variety

of dimension n and another family consists of a single variety coinciding with U. Then

mjg(i) = mj(i)+mg(x) ~ mit + 1 = M. In the case q = 0, mjg(i) ~ 1 = M is obvious,

which shows (; :J U.

Therefore, for each Vi, 1 ~ j ~ 81 we have dim(Vi n U) = n - 1. Observe that

lemma 4 implies L: mij ~ mjg(i) ~ tT - 1 since ig is tT-sparse. Hence (; is defined
l'::;p'::;q P

by tTeT-:+n) ~ «tT)n+l)-sparse polynomial, since the relations defining {; involve the
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derivatives of jg of orders less than tT.

Let (; = U [;(1) be a decornposition into irreducible (over m) components. Each
1.9:$r

fjU) is a subvariety of one of the irreducible components of {j = O} or {g = O}. If fj(l)

is contained in sorne component V of {j = O} or {g = O} which differs frorn VI, . .. , v,t
then dim(f)(l) n U) ~ dirn(V n U) ~ n - 2. If f)(l) C Yj for one of 1 ~ j ~ SI then

dirn f)(l) :::; n - 1 (see above) and either [;(1) :J U or dirn( (;(1) n U) ::; n - 2. If [;(1) :J U

then DU) = U since a linear function Xl -Xl vanishes on the subvariety U of the complete

dimension n - 1 of the irreducible variety (;(1) (cf. above). Observe that there exists 0(1)

such that U(l) :> U (since fJ :> U), therefore U is an irreducible cornponent of U.

Now we can summarize what was proved above in the following.

Lemma 5. For each Xl > 0 such that dim(ry n {g = O} n {Xl = Xl}) = n - 1

and /or each irreducible (over m) component U with dirn U = n - 1 0/ the variety

r y n {g = O} n {Xl = Xl} there is an index 1 ~ i ~ tT such that U is an irreducible

component 0/ the varietyeh consisting 0/ the points x with multiplicity mjg(i) "2: i. The

variety [;i can be defined by an (tT)O(n)-sparse polynomial.

Th~s, let Ü = [h = U [;(1) be defined by a polynomial h E m[XI , . .. , X n , Y], let
l<l<r

hlx1 =Xt = nhjj be the d~c~rnpositionof the polynomial hlxt =xl into its irreducible (over

m) factors hj E m[XZl ••• ,Xn , Y]. As was proved earlier there is a factor of hl x1 =Xl (let it

be hl for defini teness) such that U = {h l = O} n{Xl = Xl} since dirn( U) = n -1 and U is

an irreducible component of the variety Ün {Xl = Xl} = {hl x 1 =Xl } n {Xl = Xl}' Almost

all the points of U are nonsingular (in the hyperplane {Xl = Xl} (in this context we

sometimes say nonsingular omitting to mention a hyperplane)). By the implicit function

theorem, hl takes both positive and negative values in a neighborhood in {Xl = Xl} of

any nonsingular point.

Represent Ü = Üi = U (;(1) U U (;(1) where U(l), ... , u(r 1 ) are all the ir-
1<l<rt rl +1 <l<r

reducible components amo~g-0(1), . .. , u(r) ;atisfying lemma 5 (so they include U), in

particular each of them has the dimension n - 1 and lies in a hyperplane of the form

{Xl = X;}. Fix some R > 0 wi th the property that the closed ball BR with the radius R
contains at least one nonsingular point from any irreducible component [;(1), ... , [;(r t )

for all the varieties Üi, 1 ~ i ~ tT (cf. lemma 5).

Add a coordinate X o and consider the restriction of the polynomials ]g and h to the

sphere sn+l of the radius R in the space m,n+2 with the coordinates Xo, Xl, ... , X n, Y.

Each of the varieties considered above, e.g. [; = Ui is transformed to a subvariety Ü(sn+l)
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of the sphere sn+l given by the same polynomial h. It is clear how to describe U(sn+l)

geometrically. Let 1f+ be a homeomophism of the ball BR onto the upper half of the

sphere sn+t, similar define 1f_. Then U(5"+I) = 1r+(BR n U) U 1f_ (BR n U). Similarly one
gets [r(I)(sn+ 1

).

Denote the sphere sn = sn+l n{Xl = Xl}' Then U(5"+I) C sn is (n - 1)-dimensional

variety and U(sn+
1

) = sn n {h l = O}. As it was shown above hl takes both positive and

negative values on sn, hence the complement sn \ U(5"+1) has at least two connected

components, in other words the reduced homology group Ho(sn \ U(5"+I») is nontrivial

(in fact it is a free m-module with the rank one less than the number of connected

components). The Alexander duality principle (see [D 80]) implies Ho(sn \ U(sn+l») =
Hn-l ( U(sn+1»), in particular the latter group is nontrivial, thus bn - l ( U(sn+1») 2:: 1.

Applying the Mayer-Vietoris formula (see [ES 52]) we obtain the inequality for Betti

numbers

bn - l (U(S"+I») 2:: I: bn - l (Ü(l)(sn+l») + bn - 1 ( U (U(l) )(S"+I»)
l::;l::;rt rl +19$r

taking into account that the dimension of the variety

(U(l)(sn+1) n ( U U(l)(sn+l) U U (;(I)(S"+I»))

191::;rl,11:t=' rl+1::;I::;r

for 1 ::;: 1 ::;: rl does not exceed n - 2, and so (n -l)-th cohomology group of this variety

is trivial. Let us surn these inequalities for all the varieties [; = Ui , 1 ::;: i ::;: tT. Because

of the proved above bn _dU{sn+
1
») 2:: rI' By the corollary 2

(tT)2{tT)O(n) 2: L: b
n

-
l
(U

i
(sn+1»)

l::;i$tT

and the fight side of the latter inequality bounds from above (cf. lemma 5) the number

of hyperplanes of the form {Xl = Xl} such that dim(fy n {g = O} n {Xl = Xl}) = n -1,

this completes the proof of lemma 3. 0

3 Rationality of the exponents of a normalized

minimal sparse representation

As in (GKS 90b, GKS gIb], we extend the notion of sparsity and say that a

real algebraic function Y (see the introduction) 1S t-quasisparse if Q = 1 +
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( .) a(i) ( i) b( i) ( i) ( .) ( .) ( .)L c I XII ... X~n Y = 0 for suitable reaIs a l , ... , a,: , b ' ,eiE m where the
I~i~t-l

exponent vectors (a~i), . .. , a~), b(i)) are pairwise distinct and distinct from O. Allowing

real exponents, we call Q a normalized t-quasisparse representation. In fact, one could

consider quasisparse representations of not only algebraic functions, but we do not need

it here.

We prove in this section that if Q is a minimal t-quasisparse representation, then

actually all a;-), bei) E Q. We start with the case n = 1.

Lemma 6. If areal algebraic function Y : m+ ~ m+ is minimal t-quasisparse and
( .) (i) b(i) ( .) ( .)satisfies 1 + L: Cl X a y = 0 then a I ,b I E Q unless t = 2 (the latter means

I <i<t-I

that Y equals to- a monomial in X).

Proof. We cau consider continuation of Y on l{; (and get fy C Qj 2) and also get an

algebraic function ( satisfying the same polynomial relation). We can also analytically

continue the relation Q. As usually in the neighborhood of a point of f y where X = 0

or Y = 0 (so the function xa(i) or ybCi) have singularities), one should understand the

relation Q to hold in a neighborhood with a branch cut deleted (i.e. having a curve

starting from the singular point deleted).

Since the Newton polygon process and Puiseux series can be generalized to take into

account fractional-power polynomials, we let Y = cXa +L /iXi/v be the Puiseux series

of an algebraic function Y(X) in a neighborhood of X = O. Let the leading term be

cxa and v be a common denominator of the (rational) exponents (including a). If we let
v YI X h Y; . fi h l' (.) b(i)X Ci)+bCi ) vbCi) ..11 = ca, t en I sabs es t e re aboTI 1 + L c I C a a .1 1 = 0 and Yi IS

I <i<t-I

also minimally t-quasisparse. Setting X = XI/v~ t-hen YI is analytical in a neighborhood

of 0 a.s a function of X and Y1 (0) = I, therefore ~b is also analytical in a neighborhood

of 0 for each b E IR. Hence the equality

1 + E c(i)CbCi ) xv(aCi)+bCi)a) . V/Ci) = 0
l$i$t-l

can be reduced to an equality

1 + E C(i) cbCi)xv(a(i)+b(i)a) ylb(i) = 0

v(a(i)+b<i)a)E .7Z

where the summation ranges over all v(a(i) + b(i)a) E 7Z. Thus, because of minimal

t-quasisparsity of Y1 we get that a(i) + b(i)a E Q for all 1 :::; i :::; t - 1. Since Yi 1= const

(otherwise Y is a monomial in X which is equivalent to t = 2) one can change the roles

of X, Yi and consider X as an algebraic function of Yi. Let Cl ~b be the first term of
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1+

the Puiseux series expansion of X in the neighborhood of }J. = 0, denote Xl = X/Cl ~b,

then bE Q and Xl (0) = 1. We get

1 + '"' (i) b<i) a(i)+b<i)axa(i)+b(i)avb<i)+b(a(i)+b(i)a) - 0
L..t C C Cl 1 J 1 - .

l:$i:$t-l

As above one proves that b(i) +b(a(i) + b(i)a) E Q , hence bei) E Q , finaIly one concludes

that a(i) E Q , that proves lemma 6. 0

Observe that the statement of the lemma holds also for an algebraic function Y over

a field k(X) where k Ce. Now we treat algebraic functions in many variables.

Corollary 7. Let k C 4j be a field and Y be minimal t-quasisparse and algebraic

over k(XI, . .. ,Xn ). Assume Y is not a monomial. If Q(XI, . .. , X n , Y) = 0, then all the

exponents a~i), b(i) E Q .

Proof. We argue by induction on n.

For n = 1, this follows from lemma 6 and the observation after it. Assume for some i,

y = X.fY where Y is algebraic over k(XI , . .. ,Xj-l, X j +l , ... ,Xn ). This implies a is

rational. We then have

L (i) aii
) a}i)+b(i)a ahi ) - bei) -_ 0

C Xl . ··X· . ··X YJ n
l:$i:$t-l

Since Y does not depend on Xi and Y is minimally t-quasisparse, we have that a~i) +
b(i)a = O.

By induction each b(i) E Q, so a~i) E Q . The induction hypothesis implies that all other

exponents are rational as weIl.

Now assume that for all j, Y f:. XjY for any Y algebraic over

k(XI, .. . , X j - l , X j +l , . .. , X n ). Apply lemma 6 to Y considered as an algebraic function

in Xj over k(X., .. . , Xi-I, X i+l , . .. , X n ) (without loss of generality we can suppose that

k is finitely generated over Q ,so oue can consider the field k(XI, . .. , X j _., Xi+I, . .. , X n )

as a subfield of C ). This implies that a~i), b(i) E Q. The CoroIlary is therefore proved.

o

4 Finding the exponents of minimal t-sparse rep­

resentations

Assurne (as in the introduction) that Y is minimally t-sparse and let /(XI , . .. , X n , Y) =

(
.) a(i) (i) [3<.i)

1 + L: ,l XII ... X~n Y = 0 be a normalized t-sparse representation of Y. In­
l:$i:$t-l

9



=

troduce variables a~i), ... ,a~), b(i) , 1 ~ i ~ t - 1 that take their values in m and define

operators D l . = Xl d~l' 1 ~ I ~ n. For any choice of the operators VI, ... , V t - I such

that Vj = Dfi ... D~n where 1 ~ ord(Vj) = jI +... + jn ~ t - 1, denote the generalized

Wronskian

(1)+ + (t-l) (1) (t-l)
X~l ... 0 1 ••• X~n + ...+On • y~l)+ ...+b(t-1)-(t-I)2

'77 [ (1) (1) b(I) (t-I) (t-I) b(t-I) {VY} ]E LLJ a l )"" an' , ... , a l , ••• , an' , 0 :s ord(V) :s t - 1

observe that

dego~l)....,~t-l) ( Wvt. ,'Dt _ 1 ) < t - 1

degy(W'Dt. ,vt _ l ) < (t - 1)2

deg{vy} d (Wvt. ,vt_1) < t - 1
I:sor ('0)9-1

o(i) (i) (i)
From [K 73], p. 83, it follows that 1 + L: CiXI 1

•.• X~n yb = 0 (so the exponents
l<i<t-I

a~i), ... , a~i), b(i) provide a normalized t~s~arse representation) for suitable Ci E m iff

WVI •... ,Vt _ I = 0 for all choices of V Il ... , V t - I where 1 ~ ord(Vj ) ~ t -I, 1 ~ j ~ t - 1.

Denote

W = L W~t. ....Vt_l •

I~ord(vj)9-I.I~j~t-I

Consider a minimal I< such that a fractional-power polynomial :;1< does not van­

ish identically on f y . Such I< exists and moreover I< ~ t - 1. Indeed, rewrite f =
L: y'1(.) fll where fll are fractional-power polynomials in Xl, ... , Xn , if Ur, .. .,:~~~~

I<,,<t
v"in1sh on f y then by lemma 4 every /" also vanishes on f y which is impossible since Y

is defined on m+. Then

d aK - I f
0= dX, ßyK-I

ßKf ßKf dY
= aX1ßyK-I + (ßYK)dX, .

Continuing applying the operators D1 we get by induction on j that VjY can be expressed

in the form h/(;;k )2j-I where hcan be considered as a polynomial in t monomials

(1) (1) ( ) (t-l) (t-l) ()
M = {V, X~l ... X:n . yß 1 -t-j l"" X~I ... X:n . yß t-I -t-j}

of the degree t +O(j).

Substituting these expreSSIons In W we obtain an expressIon W of the form

h/( ;;* )2t
2

where

10



of degree 0(t2 ) in the monomials from M.

... dK J 2 ... dKkApply lemma 3 taking as 9 = W . Cdyx?t +1 = h(dY ). Then one can bound the

sparsity T of 9 a.s follows: T ~ tO(t). Lemma 3 implies that there is a point (Xl, ... ,Xn ) E

{I, ... , Bl}n. where BI ~ 2t
O(nt) such that g( XI, .•. , Xn, y) =1= 0 for any value y of the

function Y in the point (XI, ... , Xn), provided that 9 does not vanish identically on

f y . Since (;;t: )(xt, .. . ,xn ) =1= 0 all the derivatives (Diy)(xI,' .. , Xn) are defined, thus

W(Xl" .. , Xn) is defined and W(Xl" .. , Xn) =f:. O. Thus, we obtain the following

Lemma 8. ail), ... , a~l), b(1), ... , ait
-

l ), ... , a~t-l), b(t-l) are the exponents 01 some

normalized t-sparse representation 01 Y il and only il the vectors (ali), ... , a~i), b(i») are

pairwise distinet and distinet Irom the zero veetor (we eali this the nontriviality eondition

on ap), ... , b(1») and the lollowing system holds:

W(X) = 0 , X E :J (1)

where :J is the set 01 points x E {I, ... , Bl}n where BI ~ 2t
O{nt) for whieh (DY)( x) are

defined lor all the operators D 01 the orders at most t - 1.

Remark that W (x) E m[aP) 1 ••• , b( t-l)] and we get this polynomial of degree at ~ost

O(t) in O(nt) variables by plugging for (DY)(x) the black-box values, provided that they

are defined.

Corollary 7 implies that all the solutions ap), ... ,b(t-l) of a system of polynomial

inequalities (1) (under the nontriviality condition) are rationals, therefore (1) has only

a finite number of solutions. The algorithm solves the system (1) (with nontriviality

condition) using [GV88] in Br· tO(nt) ~ 2tO(nt) arithmetic operations with the depth tO(nt)

([HRS 90]). Observe also that [GV88] entails that (1) (with nontriviality condition) has

at most tO(nt) solutions, thus the normalized t-sparse representations of Y.

If it is only known that Y is t-sparse, then the algorithm tests successively t l =

1,2, ... ~ t for minimal tl-sparsity.

Summarizing we formulate the main result of the paper:

Theorem. For t-sparse real algebraie function Y one ean find t l ~ t and the expo­

nent vectors 0/ all its (normalized) minimal tl-sparse (tl::; t) representations with 2t
O(nl)

arithmetie operations and with the depth tO(nt). The number 0/ all minimal normalized

sparse representations does not exeeed tO(nt) .

11
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