The Number of Rational Points on Some Kummer Surfaces

Andrey N. Todorov

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

THE NUMBER OF RATIONAL POINTS ON SOME KUMMER SURFACES. AND́REY N. TOD́OROV

INTRODUCTION.

In this article I am going to consider a curve of ginus 2 given by $y^{2}=\left(x-q_{1}\right) \ldots\left(x-q_{6}\right)$, where $q_{i} \in Q$. Let $J(C)$ be its jacobian and $K(C)$ is the Kummer surface, i.e. $K(C)$ is the minimal nonsingular model of $J(C) / \pm$ id. It is a well known fact that $K(C) \subset \mathrm{CP}^{5}$. So this embedding defines in the usual way the Weil function H, i.e. a height function.
Namely if $x=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{C P}{ }^{n}(\mathbb{Q}), x_{i} \in \mathbb{Z}$ and g.c.d. $\left(x_{0}, \ldots, x_{n}\right)=1$, then
$H(x):=\max _{i}\left|x_{i}\right|$. For the definition and the elementary properties of the Weil function see [L]. It is a well know fact that $\#\left\{x \in C P^{n}(Q) \mid H(x) \leq h\right\}<\infty$.(See[L].) The aim of this note is to prove the following theorem:

THEOREM.

We have with respect to the Weil function on $K(C)$ defined from the embedding $K(C)(\mathbf{Q}) \subset \operatorname{CP}^{5}(\mathbf{Q})$ the following estimate for big enouph h :

$$
\#\left\{x \in K(C) \subset C P^{n}(Q) \mid H(x) \leq h\right\} \leq c(\operatorname{logh})^{\frac{1}{2}} h^{\frac{1}{2}}
$$

where c is a positive constant.

The proof of this theorem is based on the observation that $K(C)$ has an elliptic fibration structure, i.e. there exists a map $\pi: K(C) \rightarrow C P^{1}$ such that the "generic" fibres are non-singular elliptic curves. More over we prove that there exist two sections σ_{0} and σ_{1} of this elliptic fibrations defined over \mathbf{Q} which are "independent", i.e. the rank of the "Weil-Mordell" group has rank 1 over $\mathbf{C}(\mathrm{t}))(\mathbf{C}(\mathrm{t})$ is the field of the rational functions over C$)$. From these facts our estimates follows almost directly.

We know that $\mathrm{J}(\mathrm{C}) / \pm$ id can be embedded in CP^{3} and moreover the equation:

$$
\begin{equation*}
\mathrm{A}\left(\mathrm{x}^{4}+\mathrm{y}^{4}+\mathrm{z}^{4}+\mathrm{t}^{4}\right)+\mathrm{B}\left(\mathrm{x}^{2} \mathrm{y}^{2}+\mathrm{z}^{2} \mathrm{t}^{2}\right)+\mathrm{C}\left(\mathrm{x}^{2} z^{2}+\mathrm{y}^{2} \mathrm{t}^{2}\right)+\mathrm{D}\left(\mathrm{x}^{2} \mathrm{t}^{2}+\mathrm{y}^{2} z^{2}\right)+\mathrm{Fxyz} t=0 \tag{*}
\end{equation*}
$$

with the condition $R(A, B, C, D, F)=0$, where R is the resultant, defines $J(C) / \pm i d$. So we can state the following result: If the 16 double points on the surface defined in CP^{3} by (*) has rational coordinates then (*) has an infinite number 'of rational solutions.

Here one should mentioned that Elkies and D. Zagier have proved that the equation $x^{4}+y^{4}+z^{4}+t^{4}=0$ has infinite number of rational solutions. See [E] and [Z].

This note was inspired from conversations with Yu. Tschinkel at MPI Bonn, who explain me the lectures of Yu. I. Manin given at MIT and the joint work of Tschinkel, Franke and Manin. In his MIT lectures Manin stated some very interesting conjectures and problems, relating the asymptotic behaviour of the counting function with respect to a fixed height function with the geometry of the variety. Lang was the frst who pointed out the importance of studing the following problem; Let H be a height fnction on some algebraic manifold X defined over a number field K try to find the asymptotic behaviour of the $\#\{x \in X(K) \mid H(x) \leq h\}$. (See [Sch].) This is an analogue to the Weyl problem, "can one hear the shape of the drum" in the formulation of L. Bers. Another very beautiful book, part of which is devoted to the above problem is Serre's book "Lectures ón the Mordell-Weil Theorem".

Let me mentioned that in very few cases we have detailed knowledge of the asymptotic behaviour of the counting function with respect to some height. Schanuel gave an answer to that problem for $\boldsymbol{P}^{\mathrm{n}}$. (See [S].) Tschinkel, Franke and Manin gave very presice and beautiful answer in the case of G / P, where G is a semisimple algebraic group and P is a parabolic group. (See [FMT].) Very interesting and beautiful results are stated in the article [BM].

The author want to thanks Max-Plank Institute für Mathematik for financial support and extremely stimulating atmosphere during the preparation of this article. I want to thank Batyrev, Tchinkel, Lang and Konzevich for the stimulating discussion during the preparation of this note. I want to thanks D. Zagier for giving me his unpublished maniscript.
\#1. Elliptic fibrations of $\mathrm{K}(\mathrm{C})$.

Proposition 1.

The linear system $|2 C|$ on $J(C)$ gives a two to one map $\phi_{|2 C|}: J(C) \rightarrow C P^{3}$. $\phi_{|2 C|}(J(C))$ is a hypersurface of degree 4 which has exactly 16 double rational points.

PROOF: See [G\&H] chapter 6.

> Q.E.D.

Cor. 1.1. If we blow up the 16 double points on $\phi_{|2 C|}(\mathrm{J}(\mathrm{C}))$ we will get $\mathrm{K}(\mathrm{C})$.
PROOF: See [G\&H] chapter 6.
Q.E.D.

Proposition 2.

Let A_{1} and A_{2} are two of the double points on $\phi_{|2 C|}(J(C))$. Let $\left\{\mathrm{H}_{t}\right\}$ be the pencil of hyperplanes in $C P^{3}$ passing through A_{1} and A_{2}^{\prime}. Let $\left\{\tilde{E}_{t}\right\}$ be the pencil of curves, where $\tilde{E}_{\mathrm{t}}:=\mathrm{H}_{\mathrm{t}} \cap \phi_{|2 \mathrm{C}|}(\mathrm{J}(\mathrm{C}))$. Let $\left\{\mathrm{E}_{\mathrm{t}}\right\}$ be the pencil of crves on the $\mathrm{K}(\mathrm{C})$, where $K(\mathrm{C})$ is obtained from $\phi_{|2 C|}(J(C))$ by blowing up the sixteen double rational points C_{t} is the proper praimage of \tilde{E}_{t}. Then
a) There exists a map $\pi: \dot{K}(\mathrm{C}) \rightarrow \mathrm{CP}^{1}$ such that $\pi^{-1}(\mathrm{t})=\mathrm{E}_{\mathrm{t}}$ and for generic $\mathrm{t} \mathrm{E}_{\mathrm{t}}$ is a nonsingular elliptic curvè, i.e. $\pi: K(C) \rightarrow C P^{1}$ defines an elliptic fibration on $K(C)$.
b) The singular fibres of the elliptic fibration are of the following types; 6 singular fibres of type I_{2} and two singular fibres of type I_{0}^{*}.
c) There exists two sections σ_{0} and σ_{1} of the above defined elliptic fibrartion of $K(C)$ which are independent over $C P^{1}$, i.e. they generate the Mordell-Weil group of $K(C)$, if we consider $\mathrm{K}(\mathrm{C})$ as an elliptic curve over $\mathbf{C P}{ }^{1}$. In other words the rank Mordell-Weil group of $K(C)$ over $C(t)$.

Proof of Proposition 2.a.:

Let $\tilde{E}_{\mathrm{t}}:=\phi_{|2 \mathrm{C}|}(\mathrm{J}(\mathrm{C})) \cap \mathrm{H}_{\mathrm{t}}$, where H_{t} is a generic plane in CP^{3}. Then Bertinni theorem implies that generic \tilde{E}_{t} is plane curve of degree 4 with two ordinary singular point, so its normalization will be an elliptic curve. This follows directly from the fact that the genus of a non-singular curve of degree 4 is 3 . From here it is trivial to see that we get a regular map π : $K(C) \rightarrow C P^{1}$. So we get an elliptic fibration.

The best way to study the degenerate fibres is to project $\phi_{|2 C|}(\mathrm{J}(\mathrm{C}))$ from the point say A_{1} onto $\mathbf{C P}^{2}$. It is not difficult to prove that the degree of this projection is two. The projection just described we will denote by $\mathrm{P}_{\mathrm{A}_{1}}$-From here one can obtain that the remification divisor is a union of six lines which we will denote by $\mathrm{L}_{\mathrm{i}}, \mathrm{i}=1, . .6$. All these lines intersect in 15 points. For the proof of these facts see $[G \& H]$ chapter 6 . Let us denote again by A_{2} the image of $\mathrm{P}_{\mathrm{A}_{1}}\left(\mathrm{~A}_{2}\right)$. It is clear that if we blow up the singular points A_{1} and A_{2} on $\phi_{\mid 2 \mathrm{C}}(\mathrm{J}(\mathrm{C})$) and denote the -2 curves which we obtain after those two blows up by P_{1} and P_{2}, then P_{1} and P_{2} will be two sections of the elliptic fibration obtained in Proposition 2.a.. It is clear that the praimages of the two lines in $\mathbf{C P}^{2}$ that pass through A_{2} will be a conic on $\phi_{|2 \mathrm{C}|}(\mathrm{J}(\mathrm{C})$) which contain exactly 6 double points. After the blows up we get on the aboved described elliptic fibration of $K(C)$ two degenerate fibres of type I_{0}^{*}. The other degenerate fibres we will obtain from the hyperplanes that passes through $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and any of the rest of the double points on $\phi_{|2 C|}(J(C))$, i.e. those double points that do not lie niether on P_{1} nor on P_{2}. It is easy to see that we have exactly 6 double points that do not lie niether on P_{1} nor on P_{2}. So from here we obtain 6 singular fibres of type I_{2}. From the formula of the Euler characteristics of $K(C)$, i.e.

$$
24=\chi(\mathrm{K}(\mathrm{C}))=\sum \chi(\text { singular fibres })
$$

we get that these are all singular fibres of the elliptic fibration described above. For the proof of the above mentioned formula see [G\&H] chapter 4.

Proof of Proposition 2.c.:

Construction of sections of the elliptic fibration.
Let us denote by $\mathrm{C}_{1}, \ldots, \mathrm{C}_{16}$ the translates of C in $\mathrm{J}(\mathrm{C})$ by the points of order 2 , which we will denote by $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{16}$. It is easy to prove that
FACT1. Each C_{i} contains exactly 6 two torsion points
FACT2. a. Any two different C_{i} and C_{j} intersects in two different points of order two on $J(C)$ b. Through two different A_{i} and A_{j} pass'exāctly two different C_{k} and C_{l}.
c. On the union of two different $\mathrm{C}_{\mathrm{i}}^{\prime}$ and C_{j} there are exactly 10 points of order 2 .

For the proves of these two facts see [GH] chapter 6.
FACT3. $\phi_{|2 \mathrm{C}|}\left(\mathrm{C}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, 16$ is a plane nonsingular conic on $\mathrm{J}(\mathrm{C}) / \pm$ id which contains exactly 6 double rational points.

PROOF OF FACT3:

From the way we defined C_{i} we see that each of the curve C_{i} is invarian under the involution $\mathrm{x} \rightarrow-\mathrm{x}$, whose fixed points are exctly the two-torsion points on $\mathrm{J}(\mathrm{C})$. This is the canonical
involution of the hyper-elliptic curves C_{i} :"From here and the fact that the linear system $|2 \mathrm{C}|$ define a map $\mathrm{J}(\mathrm{C}) \rightarrow \mathrm{J}(\mathrm{C}) / \pm \mathrm{id}^{\prime} \mathrm{FACT} 3$ follows directly.
Q.E.D.

FACT4. From the way we defined the elliptic pencil on $\phi_{12 \mathrm{C} \mid}(\mathrm{J}(\mathrm{C}))$ and FACT2 it follows that the two singular fibres of the type I_{o}^{*} are obtain from the images of the two say C_{1} and C_{2} that intersect each other in \dot{A}_{1} and A_{2} and the rest of the 8 blown up points that lie on C_{1} and C_{2}.

PROOF OF FACT 4:

This follows directly from the description of the fibres of type I_{O}^{*} we gave above and the fact that $|2 \mathrm{C}|$ gives the caonical map $\mathrm{J}(\mathrm{C}) \rightarrow \mathrm{J}(\mathrm{C}) / \pm \mathrm{id} \subset \mathrm{CP}^{3}$.

Q.E.D.

DEFINITION.
Let us denote the points of order two that lie on C_{1} and C_{2} by $A_{1}, A_{2}, \ldots, A_{10}$. Let C_{1} contains $\mathrm{A}_{1}, \mathrm{~A}_{2}, . ., \mathrm{A}_{6}$.

Now we are ready to construct 8 sections from C_{1}, \ldots, C_{16}. Namely an easy calculation show that there are exactly 8 curves among $C_{1}, . ., C_{16}$ say $C_{i_{1}}, \ldots, C_{i_{8}}$ with the following property:
(**) Each of the curve $C_{i_{j}}$ passes through either A_{1} or A_{2} and contains A_{k}, where $k=3,4,5,6$.

SUBLEMMA 1. Each of the curve $C_{i_{j}}$ defined by (**) is a section of our elliptic fibration.

PROOF OF THE SUBLEMMA 1:

From FACT4 it follows that the proper image of each of $\mathrm{C}_{\mathrm{i}_{k}}$ for $k=1, . ., 8$ intersect one of the
singular fibre of type I_{o}^{*} in one point, this point is obtained in the following way: Let $\mathrm{C}_{1} \cap \mathrm{C}_{\mathrm{i}_{k}}=\mathrm{A}_{1} \cup \mathrm{~A}_{3}$. Clearly that after we blow up the image of the point A_{3} in $\phi_{|2 \mathrm{C}|}(\mathrm{J}(\mathrm{C}))$ then $C_{l_{k}}$ will intersect transversally the curve that is obtain after the blow up exactly in one point. Since blow up of A_{1} is a two section of our elliptic fibration we get that each of the $C_{i_{k}}$
is a section of our fibration.

> Q.E.D.

REMARK. From all this discussion it follows that we can consider $K(C)$ as an elliptic curve over the file ld of rational functions over C with one variable $C(T)$ since we can fix one of the section as the zero point on ' ${ }^{\prime} \mathrm{K}\left({ }^{\prime}\right.$ ' C).

SUBLEMMA 2. The rank of the Mordell-Weil group of $K(C)$ is equal to one.

PROOF OF THE SUBLEMMA 2:

In order to prove Sublemma we need to use the following formula of Shioda-Tate for elliptic surfaces:

$$
\rho=\mathrm{r}+2+\sum_{\mathrm{v} \in \mathrm{~S}}\left(\mathrm{~m}_{\mathrm{v}}-1\right)
$$

where ρ is the Picard number of the elliptic surface, r is the rank of the Mordell-Weil group and m_{v} is the number of the irreducible components of the singular fibres. (See [Sh].)

Notice that ρ of $K(C)$ is 17 and simple calculations show that $\sum_{v \in S}\left(m_{v}-1\right)=14$. So plugging these numbers in the Shioda-Tate formula we ge that $r=1$.

> Q.E.D.

So Proposition 2. is proved.
Q.E.D.
\#2. THE PROOF OF THE THEOREM.

1

From [G\&H] chapter 6 we know that the linear system

$$
\left|4 C-\sum_{i=1}^{16} E_{i}\right|
$$

on $\hat{\mathbf{J}}(\mathrm{C})$, where $\hat{\mathbf{J}}(\mathrm{C})$ is obtained from $\mathrm{J}(\mathrm{C})$ by blowing up the 16 2-torsion points on $\mathrm{J}(\mathrm{C})$ gives a regular two to one map of $\hat{J}(C) \rightarrow K(C) \subset C P^{5}$.

THEOREM.

Let C be a curve of genus 2 given by $y^{2}=\left(x-q_{1}\right) \ldots\left(x-q_{6}\right)$, where $q_{i} \in Q$. Let $K(C)$ be the Summer surface defined in the introduction. We know that we have an embedding $K(C)(\mathbb{Q}) \subset C^{5}(\mathbf{Q})$. We have with respect to the Veil function on $K(C)$ defined from the embedding $\mathrm{K}(\mathrm{C})(\mathbf{Q}) \subset \mathbf{C P}^{5}(\mathbf{Q})$ the following inequality:

$$
\#\left\{x \in K(C) \subset C P^{n}(Q) \mid \mathrm{H}(x) \leq h\right\} \leq c(\log h)^{\frac{1}{2}} h^{\frac{1}{2}}
$$

where c is a positive constant.

PROOF OF THE THEOREM:

The proof of this theorem is based on the following Lemma.
LEMMA. Let C be defined as follows:

$$
y^{2}=\left(x-q_{1}\right)\left(x-q_{2}\right) \ldots\left(x-q_{6}\right), \text { where } q_{i} \in \mathbf{Q}
$$

Let $K(C)$ be the Kummer surface associated with C. We know from proposition 2 that $K(C)$ is an elliptic curve over $\mathrm{C}(\mathrm{T})$ and its Model -Veil group has rank 1 . Let σ_{o} be the zero element and σ_{1} be the generator of the Mordell-Weil group. Then for any k let $\sigma_{\mathrm{k}}=\mathrm{k} \sigma_{1}$. We know that σ_{k} are sections of the elliptic fibration $\pi: K(C) \rightarrow C \mathbf{P}^{1}$. Then all σ_{k} are defined over \mathbb{Q} and more over each σ_{k} contains an infinite number of rational points.

PROOF OF THE LEMMA:

From Proposition 2 we know that $\mathrm{K}(\mathrm{C})$ is an elliptic fibration over CP^{1} which have sections constructed in Proposition 2. Here we will make a very important remark, namely
since C is defined as follows:

$$
y^{2}=\left(x-q_{1}\right)\left(x-q_{2}\right) \ldots\left(x-q_{6}\right), \text { where } q_{i} \in \mathbb{Q}
$$

and since the images of C_{i} on $K(C)$ are plane curves of dgree 2 whic contain six rational points, so all these conics are defined over \mathbf{Q} and contain infinite number of rational points. From here we get that the sections σ_{k} aredefined over \mathbf{Q} and contain an infinite number of rational points. So any section which we obtain 'using the group law of the elliptic curve $K(C)$ over $C(T)$ are rational curves defined over Q and contain infinite number of rational points.

> Q.E.D.

REMARK. The arguments, which will be used later are based on this lemma. Before starting the proof we will remind the reader the following facts:

FACT 1.

Let A be an abelian variety defined over global field F. From the Mordell-Weil Theorem and a refined Neron-Tate height H one deduce that:

$$
\#\{x \in A(F) \mid H(x) \leq h\} \sim c(\log h)^{\frac{r}{2}}
$$

where r is the rank of $A(F)$ and c is a canstant that can be expressed throughcard $(A(F))_{\text {tor }}$ and the volume of the ellipsoid $\hat{H} \leq 1$. See [FMT].

FACT 2.

For \mathbf{P}^{n} Schanuel proved:

$$
\#\left\{x \in \mathbb{P}^{\mathrm{n}}(\mathbf{Q}) \mid \mathrm{H}(\mathrm{x}) \leq \mathrm{h}\right\} \sim \operatorname{ch}^{\mathrm{n}+1}
$$

For the proof of this fact see $[\mathrm{Sc}]$.
We proved that the rank of Mordell-Weil group of $K(C)$ over $C(T)$ is one. Since Pic $C^{1}=\mathbf{Z}$, from a theorem proved by Silvermann we know that for all points of $\mathbf{C P}^{\mathbf{l}}$ over which the elliptic curves E_{t} are defined over \mathbb{Q} except finite number of them the rank of Mordell-Weil group of these elliptic curves will be the same as of $\pi: K(C) \rightarrow C P^{1}$, i.e. 1. For the proof of this

Theorem of Silvermann see chapter IX of [L]. Let me fix a generic elliptic curve $E(\mathbb{Q})$ of this fibration with Mordell-Weil rank 1. Let x_{1}, \ldots, x_{n} be all points on $E(\mathbb{Q}) / \operatorname{Tor} E(\mathbb{Q})$ with the property that $H\left(x_{i}\right)<h$. From the LEMMA proved above it follows that all of them are generated by the two sections σ_{O} and σ_{1} of $K(C) \rightarrow \mathbf{C P}^{1}$. On the other hand we know that
(a)

$$
\mathrm{n} \sim \mathrm{c}_{1}(\log \mathrm{~h})^{\frac{1}{2}}
$$

(See [FMT].)

We know that each $\mathrm{x}_{\mathrm{k}}=\sigma_{\mathrm{k}} \cap \mathrm{E}(\mathbf{Q})$, where σ_{k} is a section equal to $\mathrm{k}_{1} \sigma_{1}$ for some $\mathrm{k}_{1} \in \mathbf{Z}$ in the sence of group law of the elliptic curve $K(C)$ over $C(T)$. On each σ_{k} we have by the theorem of Schanuel:
(**) \#\{x $\left.\quad \# \sigma_{k} \mid \mathrm{H}(\mathrm{x})<\mathrm{h}\right\} \sim \mathrm{c}_{2} \mathrm{~h} \cdot \stackrel{\frac{2}{\operatorname{deg} \sigma_{k}}}{\because}$, where $\operatorname{deg} \sigma_{\mathrm{k}}=\left(\sigma_{\mathrm{k}}, \mathrm{L}\right)$ L is the hyperplane in $\mathrm{CP}{ }^{5}$ (See [L]).

So from (*) and (**) we get:
$(* * *) \quad \#\{x \in K(C) \mid H(x) \leq h\} \sim \#$ (torsion points of $K(C) / C(T)) \sum_{k=1}^{n} c_{2} h^{\frac{1}{\operatorname{deg} \sigma_{k}}}$, where $n \sim c_{1} \operatorname{logh}$.

So from (***) we get the following estimate:
$(* * *) \quad \#\{x \in K(C) \mid H(x) \leq h\} \leq \#\left(\right.$ torsion points of $K(C) / C(T) c_{1} c_{2}(\operatorname{logh})^{\frac{1}{2}} h^{\frac{1}{m_{k}} \frac{1}{n d e g \sigma_{k}}}$

From Proposition 2 it follows immediately that

$$
\min _{\mathrm{k}} \operatorname{deg} \sigma_{\mathrm{k}}=2
$$

i.e. it is achieved on the images of C_{i} under the map of the linear system $\left|4 C-\sum E_{i}\right|$. So our theorem is proved.

Q.E.D.

SOME REMARKS

a. Mukai and Mori proved that if X is any algebraic $K 3$ surface, then after blowing up certain amount of points on X, then we have an elliptic fibration $\pi: \tilde{X} \rightarrow \mathbb{C} P^{1}$, even more they constructed a section σ of π. So we have bascally the same situation as in the case of the Kummer surface, that was treated in this article. But it is impossible for me to see if this section is defined over \mathbf{Q}. So one should expect the same estimates as we obtained for the Kummer surface.
b. It will be interesring to chèck the Bogomolon's conjecure, namely that any rational point on a K3 surface lie on a rational curve for $K(C)$.

BIBLIOGRAPHY.

[BM] V. BATYREV, Yu. MANIN, "SUR LE NOMBRE DES POINTS RATIONNELS DE HAUTER BORNE DES VARIETES ALGEBRIQUES", Math. Ann. 286, 27-43 (1990).
[E] ELKIES,

"6n $A^{4}+B^{4}+C^{4}=D^{44}$, Math. of Computation 51 (1988) 825.937

[FMT] J. FRANKE, Yu. MANIN, Yu. Tschinkel "RATIONAL POINTS OF BOUNDED HEIGHT ON FANO VARIETIES", Invent. Math., vol. 95, 421-435(1989)
[GH] Ph. GRIFFITHS and J. HARRIS "PRINCIPLES OF ALGEBRAIC GEOMETRY".
[L] S. LANG, "DIOPHANT GEOMETRY", Russian edition, "Mup" 1984.
[M] Yu. I. MANIN, MIT LECTURES, 1990.
[S] S. H. SCHANUEL, "HEIGHTS IN NUMBER FIELDS", Bull. Soc. Math. France 107, 433449(1979).
[SH] T. SHIODA, "ON ELLIPTIC MODULAR CURVES.", J. Math. Soc., Japan, vol. 24, No1, 1972.
[Z] D. ZAGIER, UNPUBLISHED MANUSCRIPT.

