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INTRODUCTION,

In this article I am going to consider a curve of ginus 2 given by y2=(X—Q1)-«-(X—q6)- where
q; €Q. Let J(C) be its jacobian and K(C) is the Kummer surface, i.e. I{(C) is the minimal non-
singular model of J(C)/+id. It is a well known fact that K(C)CC[PS. So this embedding defines
in the usual way the Weil function H, i.e. a height function.

Namely if x=(Xg,-..,xn ) ECP*(Q), X, €Z and g.c.d.(xg,...,x )=1, then

H(x):=max|x;]|. For the definition and the elementary properties of the Weil function see {L].
1

It is a well know fact that #{ xeCP"(Q)| H(x)gli}<oo.(See[L].) The aim of this note is
to prove the following theorem:
THEQOREM.
We have with respect to the Weil function on K(C) defined from the embedding
K(C)(Q)CCP>(Q) the following estimate for big enouph h:

#{ x€K(C)CcCP™(Q)| u(x)<h}<c(1ogh)5h

where c is a positive constant.

The proof of this theorem is based on the observation that K(C) has an elliptic fibration
structure, i.e. there exists a map m: K(C)— CP! such that the "generic” fibres are non-singular
elliptic curves. More over we prove that there exist two sections o, and o, of this elliptic
fibrations defined over Q which are "independent”, i.e. the rank of the ”Weil-Mordell” group
has rank 1 over C(t))( C(t) is the ﬁel\d of the rational functions over C). From these facts our

estimates follows almost diréctly.
We know that J(C)/+id can be embedded in CP? and moreover the equation:
(*) A(x4+y4+z4+t4)+B(x2y2+z2t2)+C(x222+y2t2)+D(x2t2+y222)+nyzt:O
with the condition R(A,B,C,D,F)=0, where R is the resultant, defines J(C)/+id. So we can

state the following result: If the.16 double points on the surface defined in CP? by (+) has

- : e . - .
rational coordinates then (x) has an infinite number 'of rational solutions.
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Here one should mentioned that FElkies and D. Zagier have proved that the equation

x*+y*+42z*4t*=0 has infinite number of rational solutions. See [E] and [Z].

This note was inspired from conversations with Yu. Tschinkel at MPI Bonn, who explain me
the lectures of Yu. I. Manin given at MIT and the joint work of Tschinkel, Franke and Manin.
In his MIT lectures Manin stated some very interesting conjectures and problems, relating the
asymptotic behaviour of the counting function with respect to a fixed height function with the
geometry of the variety. Lang was the frst who pointed out the importance of studing the
following problem; Let H be a height fnction on some algebraic manifold X defined over a
number field K try to find the asymptotic behaviour of the #{ xeX(K)| H(x)gh}. (See [Sch].)
This is an a.n/alogue to th.(? Weyl probl‘;zm‘”can one hear the shape of the drum” in the
formulation of L. Bers. Andther very beautiful book, part of which is devoted to the above
problem is Serre’s book "Lectures o'ﬁ the Mordell-Weil Theorem?”.

Let me mentioned that in very few cases v:;e have detailed knowledge of the asymptotic
behaviour of the counting function with respect to some height. Schanuel gave an answer to
that problem for P™. (See [S].) Tschinkel, Franke and Manin gave very presice and beautiful
answer in the case of G/P, wh/ere G is a semisimple algebraic group and P is a parabolic
group. (See [FMT].) Very interesting and beautiful results are stated in the article [BM].
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#£1. Elliptic fibrations of K(C).

Proposition 1.
The linear system |2C| on J(C) gives a two to one map ¢12C]:J(C)—vCP3. ¢12c|(J(C)) is &
hypersurface of degree 4 which has exactly 16 double rational points.
PROOF: See [G&H] chapter 6.
Q.E.D.
Cor. 1.1. If we blow up the 16 double points on ¢, (J(C)) we will get K(C).
PROOF: See [G&H] chapter 6.
Q.E.D.
‘ L y \

Proposition 2. e

Let A, and A, are two of- the double pg\lnts on ¢|2C|(J(C)) Let {Ht} be the pencil of
hyperplanes in CP® passing through A, and A,. Let {Et} be the pencil of curves, where
Et:=Htﬂ¢|2CI(J(C)). Let {Et} be the pencil of crves on the K(C), where K(C) is obtained
fr0r~n gﬁlzcl(J(C)) by blowing uli the sixteen double rational points C, is the proper praimage
of E;. Then
a) There exists a map K(C)—»Cﬂ:'1 such that 7!' 1(t) E; and for generic t E; is a non-
singular elliptic curve, i.e. 7: K(C)—»CP1 defines an e]hptlc fibration on K(C).
b) The singular fibres of the elliptic fibration are of the following types; 6 singular fibres of
type I, and two singular fibres of type I3.
c) There exists two sections ¢y and ¢, of the above defined elliptic fibrartion of K(C) which
are independent over CP!, i.e. they generate the Mordell-Weil group of K(C), if we consider
K(C) as an elliptic curve over CP'. In other words the rank Mordell-Weil group of K(C) over
C(t).

Proof of Proposition 2.a.:

Let Et:2¢|2C|(J(C))nHtv where H, is a generic plane in CP?. Then Bertinni theorem implies
that generic Et is plane curve of degree 4 with two ordinary singular point, so its
normalization will be an elliptic curve. This follows directly from the fact that the genus of a
non-singular curve of degree 4 is 3. From here it is trivial to see that we get a regular map =:

K(C)—CP!. So we get an elliptic fibration.
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Proof of Proposition 2.b.:

The best way to study the dege/nerate fibres is to project ¢|2C|(J(C)) from the point say A,
onto CP2. It is not difficult to prove that the degree of this projection is two. The projection
just described we w\ill denote l:y pAlf/F‘rom here one can obtain that the remification divisor is
a union of six lines which we will denote by Li’ i=1,..,6. All these lines intersect in 15 points.
For the proof of these facts see [G&H] chapter 6. Let us denote again by A, the image of
pAl(AZ)' It is clear that if we blow up the singular points A, and A, on ¢I2CI(J(C)) and
denote the -2 curves which we obtain after those two blows up by P, and P,, then P, and P,
will be two sections of the elliptic fibration obtained in Proposition 2.a.. It is clear that the
praimages of the two lines in CP? that pass through A, will be a conic on qSlzCl(J(C)) which
contain exactly 6 double points. After the blows up we get on the aboved described elliptic
fibration of K(C) two degenerate fibres of type I§. The other degenerate fibres we will obtain
from the hyperplanes that passes through A;, A, and any of the rest of the double points on
¢|2CI(J(C)), i.e. those double points that do not lie niether on P, nor on P,. It is easy to see
that we have exactly 6 double points that do not lie niether on P, nor on P,. So from here we
obtain 6 singular fibres of type I,. From the formula of the Euler characteristics of K(C), i.e.
24=x(K(C))=Zx(singular fibres)
we get that these are all singular fibres of the elliptic fibration described above. For the proof

of the above mentioned formula see [G&H] chapter 4.

Proof of Proposition 2.c.:

Construction of sections of the elliptic fibration.

Let us denote by Ci,....,C;¢ the translates of C in J(C) by the points of order 2, which we
will denote by A,....,A 5. It is easy to prove that
FACTI1. Each C- contains exactly 6 two torsion points
FACT?2. a. Any two different C; and C mtersects in two different points of order two on J(C)
b. Through two different A a,nd A p/a.‘ss exa.ctly two different Ck and Cl
¢. On the union of two different Cl and CJ there are exactly 10 points of order 2.
For the proves of these two facts see [GH] chapter 6.
FACTS3. ¢I2CI(Ci) for i=1,...,16 is a plane nonsingular conic on J(C)/+id which contains
exactly 6 double rational points.

PROOF OF FACTS3:

From the way we deﬁned C we see that each of the curve C is invarian under the involution

Xx— —X, whose fixed points are exctly the two-torsion points on J(C). This is the canonical
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involution of the hyper-elliptic curves Ci."fFi'om here and the fact that the linear system |2C|
EaN

define a map J(C) *J(C)/iqd/ﬁ‘A(}'I( 3 follows directly.

N,
i

Q.E.D.

FACT4. From the way we defined the elliptic pencil on ¢|2C|(J(C)) and FACT?2 it follows that
the two singular fibres of the type 1§ are obtain from the images of the two say C, and C,
that intersect each other in j\q &l"\ld\_Ag and the resﬁ\of the 8 blown up points that lie on C; and
Cs. N S \

PROOF OF FACT 4:

This follows directly from the description of the fibres of type I§ we gave above and the fact

that |2C| gives the caonical map J(C)—J(C)/+idcCP?.

Q.E.D.
DEFINITION.

Let us denote the points of order two that lie on C; and C, by A,A;,...,A 5. Let C, contains
AL Ay LAg.

Now we are ready to construct 8 sections from C,,..,C;q. Namely an easy calculation show

that there are exactly 8 curves among C,..,C,¢ say Cil,...,Ciswith the following property:

(**) Each of the curve C‘j passes through either A, or A, and contains A), where k=3,4,5, 6.

SUBLEMMA 1. Each of the curve Cijdeﬁned by (*x) is a section of our elliptic fibration.

PROOF OF THE SUBLEMMA 1:

From FACT4 it follows that the proper image of each of Cik for k=1,..,8 intersect one of
the

singular fibre of type I in one point, this point is obtained in the following way: Let

C, ﬂCiszluAa. Clearly that after we blow up the image of the point A4 in ¢[2C|(J(C)) then
AL S -
C,k will intersect transversally th'e//£2-/curve that is obtain after the blow up exactly in one

point. Since blow up of A, is a two section of our elliptic fibration we get that each of the Cik
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is a section of our fibration.
Q.E.D.

REMARK. From all this discussion it follows that we can consider K(C) as an elliptic curve

over the fileld of rational functions over € with one variable C(T) since we can fix one of the

/ P NP

section as the zero point on’K(C). -~ . -

/

/
SUBLEMMA 2. The rank of the Mordell-Weil group of K(C) is equal to one.

PROOF OF THE SUBLEMMA 2:

In order to prove Sublemma we need to use the following formula of Shioda-Tate for elliptic
' N - \ i 5

surfaces: N ~ \

4

p=r-|-2+2 (mv—l)
vVES
where p is the Picard number of the elliptic surface, r is the rank of the Mordell-Weil group
and my is the number of the irreducible components of the singular fibres. (See [Sh].)
Notice that p of K(C) is 17 and simple calculations show that Z {my—1)=14. So plugging

vES
these numbers in the Shioda-Tate formula we ge that r=1.

Q.E.D.

So Proposition 2. is proved.

Q.E.D.

#2. THE PROOF OF THE THEQREM.




From [G&H] chapter 6 we know that the linear system

16
|4C—'21Ei|
1=

on J(C), where J(C) is obtained from J(C) by blowing up the 16 2-torsion points on J(C) gives
a regular two to one map of J(C)—K(C)cCPS.
THEOREM.
Let C be a curve of genus 2 given\by j}zz\(x—ql)...(x—qs). where ¢, €Q. Let K(C) be the
Kummer surf;xce defined /il\i/'the—/’ﬁwrc';d’u'éttion. We know that we have an embedding
K(C)(Q)CCP°>(Q). We have wiL}; respect to the Weil function on K(C) defined from the
embedding K(C)(Q)CCP®(Q) the following inequality:

#{ x€K(C)CCP™(Q)| i-I(x)gh}Sc(logh)%h%
where c is a positive constant. |

NN

PROOF OF THE THEOREM:

The proof of this theorem is based on the following Lemma.
LEMMA. Let C be defined as follows:

y?=(x—q;)(x—q3).-(x—qg), where q,€Q.
Let K(C) be the Kummer surface associated with C. We know from proposition 2 that I{(C) is
an elliptic curve over C(T) and its Mordell -Weil group has rank 1. Let oo be the zero element
and o, be the generator of the Mordell-Weil group. Then for any k let crk=k01. We know that
o are sections of the elliptic fibration m:I{(C)—CP'. Then all o) are defined over Q and more

over each o) contains an infinite number of rational points.

PROOF OF THE LEMMA:

From Proposition 2 we know that K(C) is an elliptic fibration over CP' which have

sections constructed in Proposition 2. Here we will make a very important remark, namely
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since C is defined as follows:
yzz(x—ql)(x—q2)...(x—qs), where q,€Q
and since the images of C; on K(C) arc plane curves of dgree 2 whic contain six rational
points, so all these conics are defined over Q and contain infinite number of rational points.
/ NN
From here we get that the sections o) -aré defined over Q and contain an infinite number of
/ y
rational points. So any section which we obtain using the group law of the elliptic curve K(C)

over C(T) are rational curves defined over Q and contain infinite number of rational points.

Q.E.D.

ra

REMARK. The arguments, which will be used later are based on this lemma.
\

S \
Before st:\irting the proof we'/will remind the reader the following facts:
FACT 1.
Let A be an abelian variety defined over global field F. From the Mordell-Weil Theorem and a

refined Neron-Tate height H one deduce that:

L
#{xeA(F)| H(x)gh}fvc(logh)z
where r is the rank of A(F) and c is a canstant that can be expressed throughcard(A(F)), .
and the volume of the ellipsoid H<1. See [FMT}.

FACT 2.
For P" Schanuel proved:
#{xeP"(Q)| H(x)<h}~en™ T
For the proof of this fact see [Sc].

We proved that the rank of Mordell-Weil group of K(C) over C(T) is one. Since Pic CP'=Z,
from a theorem proved by Silvermann we know that for all points of CP! over which the
elliptic curves E; are defined over @ except finite number of them the rank of Mordell-Weil
group of these elliptic curves will be the same as of m:K(C)—CP?, i.e. 1. For the proof of this

/ i Y

\
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Theorem of Silvermann see chapter IX of [L]. Let me fix a generic elliptic curve E(Q) of this
fibration with Mordell-Weil rank 1. Let x;,...,xp be all points on E(Q)/TorE(Q) with the
property that H(xi)<h. From the LEMMA proved above it follows that all of them are

generated by the two sections oo and o, of K(C)—CP!. On the other hand we know that

NI

(a) n~e,(logh)

(See [FMT].)
. ' \,\ {J

/';/“ S

We know that each xk=akﬂE/l(Q), where gy is a section equal to kjoy for some k;€Z in
\
the sence of group law of the elliptic curve K(C) over C(T). On each o). we have by the

theorem of Schanuel:
—2
* dego .
(*x) #{xeak| H(x)\<h}~c2h . 9 !(‘, w/here degcrk:(\crk,L) L is the hyperplane in CIP5(See [L]).

So from (*) and (%) we get:

1

1 d
(x*%) #{xeK(C)l H(x)gh}»w#(torsion points of K(C)/C(T))Z cyh egak, where n~c;logh.
k=1

So from (***) we get the following estimate:

1
1 mindego,
(k) #{XEK(C)I H(x)gh}g#(torsion points of K(C)/C(T)clcz(logh)ih K
From Proposition 2 it follows immediately that

mkin degak =2
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i.e. it is achieved on the images of C; under the map of the linear system |4C—~ZE-1|. So our

theorem is proved.

Q.E.D.

SOME REMARKS.

a. Mukai and Mori proved that if X is any algebraic K3 surface, then after blowing up certain
amount of points on X, then we have an elliptic fibration m:X —CP!, even more they
constructed a section o of n. So we have bascally the same situation as in the case of the
Kummer surface, that was treated in this article. But it is impossible for me to see if this

section is defined over Q. So one should expect the same estimates as we obtained for the
Kummer surface. . :
/ K ‘;\ Ll

b. It will be interesring to che&ck the/Bogfonfélbv’s conjecure, namely that any rational point on

a K3 surface lie on a rational curve for K(C). \,
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