Kobayashi-Hitchin correspondence for tame harmonic bundles II

Takuro Mochizuki

Abstract

Let X be a smooth projective complex variety with an ample line bundle L, and let D be a simple normal
crossing divisor. We establish the Kobayashi-Hitchin correspondence between tame harmonic bundles on
X — D and pr-stable parabolic A-flat bundles with trivial characteristic numbers on (X, D). Especially, we
obtain the quasiprojective version of the Corlette-Simpson correspondence between flat bundles and Higgs
bundles.
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1 Introduction

1.1 Main Results

We explain the main results in this paper. We do not recall history or background about the study of Kobayashi-
Hitchin correspondence and harmonic bundles, for which we refer the introductions of [36], [22] or [30], for
example. The notion of regular filtered A-flat bundles and parabolic A-flat bundles are explained in the subsection
2.1. (See also the subsections 3.1-3.2 of [30]. But, we also use a slightly different notation and terminology, as
is explained in the subsection 2.1.6.) They are equivalent, and we will not care about the distinction of them.
The notion of filtered local systems is explained in the section 6.

1.1.1 Kobayashi-Hitchin Correspondence

Let X be a smooth complex projective variety with an ample line bundle L. Let D be a normal crossing divisor
of X. Our main purpose is to show the following theorem.

Theorem 1.1 (Theorem 5.16, Proposition 2.26, Proposition 2.27) Let (E.,D*) be a regular filtered \-
flat bundle on (X, D). We put E := E|x_p. Then the following conditions are equivalent.

o It is yug-polystable with the trivial characteristic numbers par-deg; (E.) = [ par-ch, ;(E.) = 0.
e There exists a pluri-harmonic metric h of (E,D) adapted to the parabolic structure.

Such a metric is unique up to obvious ambiguity. |

Remark 1.2 The claims of Theorem 1.1 in the case A = 0 has already been proved in our previous paper [30].
Thus we restrict ourselves to the case A\ # 0 in this paper.

Corollary 1.3 (Corollary 5.18) Let C’;Oly denote the category of ur-polystable \-flat regular filtered bundles
on (X, D) with trivial characteristic numbers. Then we have the natural equivalence of the categories Cf‘fly ~

Cfgly for any \; € C (i = 1,2). The equivalence preserves the tensor products, direct sums and duals. |

Remark 1.4 Let \; (i = 1,2) be two complexr numbers. A Ay-connection D*2 = d" + (\y/\1) - d’ is induced
from a \-connection DM = d” + d’. Hence we have the obvious functor Obv : Cifly — Ci;’ly. But this is not

same as the above functor Zy, »,. |

Especially, we obtain a generalization of the Corlette-Simpson correspondence between flat bundles and
Higgs bundles in the so-called non-abelian Hodge theory.

Corollary 1.5 We have the equivalences of the following two categories:
e The category of ur-polystable reqular filtered Higgs bundles on (X, D) with trivial characteristic numbers.

e The category of pr-polystable regular filtered flat bundles on (X, D) with trivial characteristic numbers. I
1.1.2 Bogomolov-Gieseker inequality and some formula for the characteristic numbers
Let X, L and D be as above.

Theorem 1.6 (Corollary 3.22) Let (E.,D*) be a up-stable reqular filtered A-flat bundle on (X, D) in codi-
mension two. Then we have the following inequality holds for the parabolic characteristic numbers for E:

Jx par-ci [ (E.)
<chy [ (By) < —=—— 22—~ 1
[ parchy (B < HEESL (1)
It is a generalization of the so-called Bogomolov-Gieseker inequality. |



In the case A # 0, we also have some formulas about the parabolic Chern characteristic numbers, which are
valid for any parabolic A-flat bundles in codimension two. One of the formulas can be stated simply, after we see
the correspondence of regular filtered \-flat sheaves and filtered local systems. Let(E., D) be a regular filtered
A-flat sheaf on (X, D). As is explained in Remark 1.4, we have the obvious correspondence of flat A-connection

AM=d" +d (\#0) and flat connection DM/ = d” + A\~!d’. In particular, we obtain the local system £ on
X — D from the flat bundle (E,, ]D))"f)|X_D. Moreover, the parabolic structure of (E,, D) induces the filtered
structure of £, and we have the more refined claims as in the following proposition.

Proposition 1.7 (Corollary 6.4 and Corollary 6.6) Let C~(X, D) denote the category of filtered local system
on (X, D), and let C5**(X, D) denote the category of saturated regular filtered A-flat sheaves on (X, D) for X # 0.
Then we have the equivalent functor ® : C(X, D) — C5(X, D) such that par-c,(L,) = par-c, (®x(L.)) and
[ par-chy 1 (£,) = [ par-chy  (®A(L.)). The functor ® preserves the pp-stability. 1

Remark 1.8 From Theorem 1.6 and Proposition 1.7, we obtain the Bogomolov-Gieseker inequality for pr-stable
filtered local systems (Corollary 6.7). Such a kind of the inequality is discussed in [39).

Remark 1.9 Let us describe the formula [ par-chy ; (L.) = [ par-chy ; (®(L.)) in terms of the c-truncation
(cE.,D*) of saturated reqular filtered \-flat bundle @A(E ) For simplicity, we assume dim X = 2.

/X par-chy (¢ Z Z (Re(/\fla) + a)2 -r(i,u) - (D;, D;)

zeS UEKMS (o En i)

1 -1 -1
+§Z Z > (ReA™La; +a;) (Re A oy + aj) - 7(Puj, up). (2)
€S j#i (ui,uj ) EKMS(cEx,P)
PeD;ND;

Here, u = (a,a), u; = (a;, ;) and u; = (aj,0;) denote the KMS-spectra, which are elements of R x C.
We put r(i,u) = rankiGri’E(cE‘Di) for (a, ) € KMS(cE., 1), and r(P,u;, uj) := rankPGr (et )( Ep) for

(ui,u;) € KMS(cE, P) and P € D; N\ Dj. And (D;,D;) and (D;,c1(L)) denote the intersection numbers.
We also have some other formulas for fX par-chy(cF) (Proposition 3.24) or some vanishings for the data of
(cE,D*) at D (Proposition 3.26 and Proposition 3.27). 1

1.1.3 Vanishing of the characteristic numbers and existence of the Corlette-Jost-Zuo metric

Due to Proposition 1.7, we obtain the vanishings par-deg, (E.) = [y par-ch, (E.) = 0, when (E,,D*) corre-
sponds to the filtered local system whose parabolic structure is tr1V1al In other words, Re a+a = 0 is satisfied for
any KMS-spectrum u = (a, «) € KMS(i) and for any ¢ € S. We can apply such a consideration to the canonical
prolongation of a flat bundle due to P. Deligne [3]. Let (£, V) be a flat bundle on X — D. Then it is shown that
there exists the holomorphic vector bundle E on X batlbfymg (i) Ejx_p = E (ii) VE € E® Q"(log D) (iii)
the real parts of the eigenvalues of Res;(V) are contained in [0,1[. In that case, we have the naturally defined
parabolic structure F' for which Rea + a = 0 are satisfied for any KMS-spectrum (a, ). Hence we obtain the
vanishing par-deg; (E, F) = Ix par—chQ’L(E, F)=0.

This vanishing is significant to understand the existence theorem of the Corlette-Jost-Zuo metric from the
view point of Kobayashi-Hitchin correspondence. When (E, V) is semisimple, we know the existence of a tame
pure imaginary pluri-harmonic metric, which we call the Corlette-Jost-Zuo metric. (See [2] for the case D = ()
and [14] for the general case. See also [29].) Since semisimplicity obviously implies the pp-polystability of
(E,F,V) ([33], for example), we can derive the existence of the Corlette-Jost-Zuo metric from Theorem 1.1 due
to the vanishing of the characteristic numbers.

1.2 Methods and Difficulty

1.2.1 Perturbation of parabolic structure

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X. Let (E, F,D*)
be a parabolic A-flat bundle on (X, D). For any small € > 0, we take an e-perturbation F© of the parabolic



structure, and then (E, F9 D) is graded semisimple (the subsection 2.1.5). It can be shown that the pseudo
curvature of ordinary metrics for (E, F(9 D) (e > 0) satisfy the appropriate finiteness (the section 3). By
using the theorem of Simpson, we can take a Hermitian-Einstein metric hS)E of (E|x_p, D*) which is adapted
to F(© (¢ > 0). Then we can easily derive the Bogomolov-Gieseker inequality (Theorem 1.6). We also obtain
the formulas by calculating the integrals of the characteristic numbers for pseudo curvatures, for example (2).

Let us consider the existence of a pluri-harmonic metric (Theorem 1.1). Ideally, the limit lim._.¢ hS)E should
give the desired pluri-harmonic metric for the given flat parabolic bundle (E, F,D*). However, it is not easy to
show such a convergence. It is the main problem which we have to overcome in this paper.

1.2.2 Difficulty

In [30], we gave an argument to deal with such a convergence problem for the case A = 0. The argument doesn’t
work in the case A # 0. Let us explain what is the difference heuristically and imprecisely in the case A = 1.
Since we have par-deg; (E, F()) = 0, the metrics hS)E give the harmonic metrics in this case. Recall that a
harmonic metric can be regarded as a harmonic map, at least locally, and that we know a well established
argument for the convergence of a sequence of harmonic maps when the energies are dominated ([7]). In our
case, the energies of h(I?E over X — D are not finite, in general. Even if we consider the energies over a compact
subset Z C X — D, it is not clear how to derive a uniform estimate which is independent of . On the other hand,
the Higgs field is fixed for such a convergence problem in the case A = 0. In particular, the eigenvalues of the
Higgs fields are fixed. Then we can derive the estimate of the local L2-norm of the Higgs fields independently of
e. Since such L2-norms play the role of the energies, the local convergence can be easily shown in the Higgs case,
although we need some technical argument for global convergence. On the contrary, even the local convergence
is not easy to show in the case A # 0.

1.2.3 Convergences

To attack the problem, we discuss similar convergence problems in the curve case where the Kobayashi-Hitchin
correspondence was established and well understood by C. Simpson ([35]). Let C' be a smooth projective curve,
and let D be a divisor of C. Let (E,F,D*) be a Mflat stable parabolic bundle on (C, D), and let F© be
e-perturbations. Note we have det(E, F,D*) = det(E, F, D*). We can take a sequence of harmonic metrics
h© for (E, F© D*) (e > 0) such that det A9 = det h(0), due to the result of Simpson.

First, we will show that the sequence {h(?)|e > 0} converges to h(?). Namely, let hio (e > 0) be initial

m

metrics for (E, F(E), DA), and let s(9) be the endomorphism determined by h(€) = hEZ) - (9. Then we can show
the following relations:

MBS, hD) <0, [logs©|, 0 < Cre+ Coc- M, AE), D2, o < / |t (s - G(R{S)))| dvol, .

(3)
Here M (hgfl), (<)) denote the Donaldson functionals, and w. denote appropriate metrics of C'— D. Hence, if we
show that Cj . can be taken independently of € for some we, and if we can construct appropriate family of initial

metrics hl(fl) such that G(hEZ)) are uniformly bounded with respect to w. and hEZ), we obtain the L?-boundedness

of the family {s(°)}. Then, by using a standard bootstrapping argument, we can show that the sequence {s(®)}
is convergent to the identity in the C'*°-sense (the section 4).

Next, suppose that we are given hermitian metrics RO = n© .50 for e > 0, with the following properties:
o det h(9) = det h(®).

o [IGRP — 0.

. HD)‘S(E)H2 < 00. (We do not need uniform bound.)

Then we can show that {E(E)} is convergent to h(?) (the subsection 5.1).



We apply the above results to our convergence problem explained in the subsection 1.2.1. Due to the standard
Mehta-Ramanathan type theorem (Proposition 2.8), the restriction (E, F, ID)A)|C is also stable for almost every

ample C C X. Let h¢ be a harmonic bundle of (E, F, ID)A)|C. Then we can show that {hg_;)E | C} is convergent to
hec almost everywhere on C' for almost every C' C X, by using the above result. Therefore, we obtain a metric
hy defined almost everywhere on X — D such that hy o = hce on almost everywhere on C' for almost every
curve C' C X. With some more additional argument, we can show that hy gives the desired pluri-harmonic
metric, indeed (the subsection 5.2).

Remark 1.10 Perhaps, the argument of this paper can be used in the Higgs case, to show the existence of a
pluri-harmonic metric. However, we remark that the argument for a convergence given in [30] can be applied
i a wider range. In fact, we used it to discuss the convergence of a family of harmonic bundles induced by the
constant multiplication of Higgs fields. |
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2 Preliminary

2.1 Generality of Regular Filtered A\-Flat Sheaf in Complex Geometry

The notion of a parabolic bundle, filtered bundle and their characteristic numbers are explained in the sections
3.1-3.2 of [30]. We use the notation there.

2.1.1 A-connection

Let Y be a complex manifold, and let £ be an Oy-module. Recall that a A-connection of £ is defined to be a
linear map D* : £ — £® Q%}O satisfying the twisted Leibniz rule DA(f - s) = f-D*(s) + A - dy (f) - s, where f
and s denote holomorphic sections of Oy and & respectively. The linear maps D* : £ ® QP0 — £ ® QP10 are
induced. When D* o D* is satisfied, it is called flat.

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decom-
position D = (J;cg Di. Let & = (€,{'F|i € S}) be a c-parabolic sheaf on (X, D) for some ¢ € R°. A flat
(logarithmic) A-connection D* of &, is defined to be a linear map D* : £ — £® Q1% (log D) satisfying the same
twisted Leibniz rule as above, the flatness D* o D* = 0 and D*(*F,) C *F, ® Q%(log D). Such a tuple (£,, D)
will be called a parabolic A-flat sheaf. When the underlying c-parabolic sheaf £, is a c-parabolic bundle in
codimension k, it is called a A-flat c-parabolic bundle in codimension k.

Let E, = (E,{.E} | ce RS) be a filtered sheaf on (X, D). A regular A-connection of E, is a A-connection
D* of E satisfying D (CE) CE® Qﬁéo(log D). A tuple (E.,D?") is called a regular filtered \-flat sheaf. When
the underlying filtered sheaf is a filtered bundle in codimension k, it is called a regular filtered A-flat bundle in
codimension k.

Lemma 2.1 A regular filtered sheaf on (X, D) is a regular filtered \-flat bundle in codimension one.

Proof We have only to check that there exists a subset W C D with codimx (W) > 2, such that .F, | x\w
is a c-parabolic bundle on (X \ W, D \ W) for some c. We can take W as (J,,; D; N D; C W, and hence
we may assume D is smooth. Since E = E|x_p is locally free and .F is torsion-free, we can take W' c D
with codimx (W’) > 2 such that .E|x_y- is locally free. We may also take a subset W” C D\ W’ with
codimy (W") > 2 such that the parabolic filtration of ¢E|p\w+uw~) is filtration in the category of vector
bundles. Then W = W’ U W” gives the desired subset. |



When X is an n-dimensional projective variety with an ample line bundle L, we can define the p-stability,
pu-semistability, and p-polystability of regular filtered A-flat sheaves with respect to L, in the standard manner.
“p-stability with respect to L” will be called pp-stability, in this paper.

2.1.2 KMS-structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D =,cg Di. Let (E,,D*) be a regular filtered A-flat bundle in codimension one over (X, D). For simplicity,
we consider only the case A # 0. Let us take any element ¢ € R, and the c-truncation .E, of E,. We would
like to recall the KMS-structure at D;, or more precisely, at the generic point of D;. We may assume that
(CE*,DA) is a c-parabolic bundle. We have the induced filtration *F on <Ep,; which induces the associated
graded bundle:

‘G (Epp,) = EB ‘Grl (Ep,).
ci—1<a<c;
Recall that we use the notation Par(cE;,i) = {a|¢; —1 < a < ¢, iGrf(cE‘Di) # 0} and Par(E.,i) =
Ueers Par(cEx,i). Due to the regularity, we have the residue endomorphism Res;(D*) on ¢E|p,, which pre-
serves the filtration ‘F, and hence we have the induced endomorphism Gr’ Res;(D*) of ? Gr’’ (cEip;). We

remark that the eigenvalues of Res;(D*) are constant on D;. In particular, we obtain the generalized eigen
decomposition:

iGrg‘(CE\Di) = @ iGrg}E(CE\Di)'
acC
We put ICMS(CE*,Z') = {(a,a) €lei — 1,¢] % R|iGraF”E(cE|Di) # O}. Any elements of ’CMS(CE*,Z') or
KMS(E.,i) := Uocps KMS(cEy, i) are called a KMS-spectrum.

2.1.3 Prolongment of flat subbundle and Mehta-Ramanathan type theorem

To begin with, we recall a well known fact about regular singularity of a connection.

Lemma 2.2 Let E be a holomorphic bundle on a disc A, and let V be a logarithmic connection of E on (A, O),
i.e., V(E) C E®QY0(log O). Let f be a flat section of E\a«. Then f naturally gives a meromorphic section of
E. |

Corollary 2.3 We put X = A, x A and D = {0} x A'. Let E be a holomorphic vector bundle on X and V
be the logarithmic connection of E on (X, D). Let e be a flat section of E|x_p.

e ¢ gives a meromorphic section of E.

o Assume that e is holomorphic on E and that e # 0 for some Q € D. Then e|q # 0 for any Q" € D.

Proof We may assume that we have a holomorphic frame v of E. We have the expression e = > f;(z,w) - v;.
When we fix w, then f;(z,w) are meromorphic with respect to z. Thus we have the least integer j(w) such that
the orders of the poles of fi(z,w) are less than j(w). We put S; := {w|j(w) < j}. We have D = J;S;. If
S; # D, the measure of S; is 0. Hence we obtain S; = D for some j, which means e is meromorphic. Thus we
obtain the first claim.

Assume that e is holomorphic and that e # 0 for some @ € D. Recall that we have the induced connection
DY of E|p. Namely, for any holomorphic section f € E|p, take a holomorphic F' € E such that Fjp = f, and
then PV(f) := V(F)|p is well defined. Since we have PV (e|p) = 0, we obtain the second claim. |

Corollary 2.4 We put X = A", D; = {z; = 0} and D = |J_, D;. Let (E,V) be a logarithmic connection on
(X, D), and let e be a flat section on X — D.

e ¢ gives a meromorphic section of E.

o Assume that e is holomorphic. We put D} := Di\U#i Dj. Ifejg # 0 for some Q € D7, we have | # 0
for any Q' € Dg.



Let X be a complex manifold, and let D be a normal crossing divisor of X. Let (E,V) be a flat bundle
on X — D. Recall that P. Deligne gave the extension E of E with the properties: (i) Ejx_p = E, (ii)
V(E) C E ® Q%(log D) (iii) the real parts of the eigenvalues of Res;(V) are contained in {0 < ¢ < 1} ([3]).
Such an extension is unique, or in other words, it is unique as the subsheaf of ¢, F, where ¢ denotes the inclusion

X — D — X. The prolongment can also be done for M-flat bundle (E,D*) on X — D, or more precisely, for
the associated flat bundle (E, D).

Lemma 2.5 Let (E.,D*) be a regular filtered A-flat bundle on (X, D), and we put (E,D*) := (E.,D*)x_p.

Let (E, D) be the Deligne extension of (E,D*). Then we have E = E ® Ox (xD), where Ox (xD) denotes the
sheaf of meromorphic functions on X whose poles are contained in D.

Proof We have the naturally defined flat section s on Hom(.E, E)| x—p- Due to Corollary 2.4, s is a meromor-
phic section, and hence we obtain the flat inclusion .F — E® O(N - D) for some large integer N, which induce
the morphism E = | .E = (E®O(xD) — E®O(xD). Similarly, we obtain the inclusion E — EQO(N-D),
and E ® O(xD) — E. They are clearly mutually inverse. |

Lemma 2.6 Let (E., D) be a regular filtered A-flat sheaf on (X, D), and let (E,D*) be in the previous lemma.
Then we have E ~ E @ O(xD) naturally.

Proof Due to Lemma 2.1 and Lemma 2.5, there exists a subset W C D with codimx (W) > 2 such that
Ex_w ~ E® O(xD)|x—w. Let us fix c¢. There exists a large integer N such that we have Ejx_w C
E®O(N - D) x_w. Since E is locally free, we obtain .E C E ® O(N - D), and thus E C E ® O(xD). On the
other hand, there exists a large integer N’ such that E|X,W C ERO(N'-D)|x_w. Hence E C EYV@O(N'-D),
where (EVY denotes the double dual of .E. Hence we obtain E ® O(xD) C (EVY @ O(xD). It is easy to see
cEVY @ O(xD) ~ .E @ O(xD). Thus we are done.

Lemma 2.7 Let (E.,D*) be a regular filtered A-flat sheaf on (X, D), and we put (E,D*) := (E.,D*)x_p.
Let E' be a \-flat subbundle of E. Then we have the corresponding regular filtered \-flat subsheaf E!, C E,
such that E' are saturated in E.

Proof Let E denote the Deligne extension of (E,D*). We have the corresponding subbundle E' C E. There-
fore, we obtain E =F¢ O(xD) C E® O(xD) = E. For each ¢, the c-truncation oF’ is given by the
intersection of .F and E’ in E. Or equivalently, .E’ can be given by the intersection of .E and E'(N - D) in

E(N - D) for sufficiently large N. Thus we obtain E’, C E.,. |

Let us show the Mehta-Ramanathan type theorem for regular filtered A-flat sheaves. Let X be a smooth
projective variety with an ample bundle L and a simple normal crossing divisor D. Let (E.,D*) be a regular
filtered A-flat sheaf on (X, D). Let N be a sufficiently large number. We can take a generic hyper-plane section
Y of L®Y satisfying the properties: (i) Y N D is normal crossing, (i) 71 (Y \ D) — 71 (X \ D) is surjective.

Proposition 2.8 Assume dim X > 2. (E,,D?*) is pr-stable, if and only if (E, D)y is pur-stable.

Proof Let us fix c. If W C .FE destabilizes, the restriction W)y clearly destabilizes. Hence the jp-stability
of (cE,,D*))y implies the pz-stability of (cE.,D*). Assume that (cE,,D*) is not ur-stable, and let W be a
subsheaf of .E such that DA(W) C W ® Q'9(log D) and that par-deg(W.)/ rank(W) > par-deg(.F.)/rank E.
Let @ be any point of X — D. Take a path v connecting @ and a point P of Y \ D. By the parallel transport
along the path, we obtain the vector subspace Wé C Ejg. It is independent of choices of P and v, and we
obtain the flat subbundle W’ C .E|x_p. Due to Lemma 2.7, we obtain the saturated subsheaf W' c E. Bya
general argument, it can be shown that there exists a subset Z C D with codimx(Z) > 2 such that Wﬂil x_z 18

a parabolic subbundle of . F|x_z. Then it is easy to check W' destabilizes. |



2.1.4 Saturated regular filtered \-flat sheaf
Let X and D be as above. Let (E,,D*) be a regular filtered \-flat sheaf (X # 0).

Definition 2.9 (E.,D?*) is called saturated, if the following conditions are satisfied:

o There exists a subset Z C D with codimx (Z) > 2, and each oE are determined on oE)x_z. Namely, for
any open subset U C X, we have the following:

oBE(U) = aE(U\ 2)NEU). (4)

It is easy to see that a regular filtered A-flat bundle is saturated.

Lemma 2.10 Let (E.,D*) be a saturated regular filtered A-sheaf on (X, D). Then each c-truncation .E is
reflexive.

Proof Recall we have already known that .E, is a filtered bundle in codimension one (Lemma 2.1). Let
<EYV denote the double dual of .E. We have the naturally defined injective map E — EYV. Due to the
saturatedness, any sections of .EVY naturally gives sections of .F, i.e., oF is isomorphic to .EVV. |

Lemma 2.11 A saturated regular filtered \-flat sheaf (E.,D*) on (X, D) is a regular filtered \-flat bundle in
codimension two.

Proof We have only to show that there exists a subset Z C D with codimx(Z) > 3 such that .E,| x_z is a
c-parabolic bundle on (X — Z, D — Z) for any c. Due to c1pE = cE@O(b- D), where b- D =}, o b;- D;, we
have only to show such a claim for finite number of tuples c. Due to Lemma 2.10, there exists a subset Z/ C D
with codimx(Z’) > 3 such that cE|\x_z is locally free. Hence we can assume that .FE is locally free from the
beginning. B
We have the parabolic filtration "F = {"F,|¢; — 1 < a < ¢;} of (Ejp,. We can take the saturation “F, of
iF,. Namely, we put G, := CE‘Di/iFa, and let G 4o denote the torsion-part of G,. Let 7w, : cEp, — G,

denote the projection, and we put iﬁa = w;l (Gator).
Lemma 2.12 ‘F, = iF,.

Proof By our construction, we have iFFZNC iF,, and we also know that there exists a subset W C D, with
codimp, (W) > 1 such that *F, | p,—w = "Fy|p,—w-

Let P be any point of D;. Let g be a germ of a section of *F}, at P, and let G be a local section of .F on an
open subset Uof P in X such that the germ of the restriction of G to D; gives g. Then G\w gives a section
of « E on U\ W, where ¢’ = (c}) is determined by ¢; = ¢; (j # i) and ¢; = a. Due to the saturatedness, G is a

section of o F on U. Thus g is the germ of a section of *Fj, and *F, = iﬁa. Hence we obtain Lemma 2.12. 1

Let us return to the proof of Lemma 2.11. Due to Lemma 2.12, the associated graded vector bundle
iGr¥(cE|p,) is torsion free. Hence there exists a subset Z/ C D; with codimp, Z/ > 2 such that "Fip,\zr is a
filtration in the category of vector bundles on Dj' \ Z;’. Then .E,|x_z~ is a c-parabolic locally free sheaf on
(X —Z",D — Z"). Thus we are done. |

Remark 2.13 By the correspondence of saturated regular filtered flat bundles and filtered local systems, we can
obtain more concrete picture of the saturated regular filtered flat sheaves. We will see it in the section 6. |



2.1.5 Perturbation of parabolic structure
Let X be a smooth projective surface with an ample line bundle L, and D be a simple normal crossing divisor
with the irreducible decomposition D = |J;cg D;. Let (F, F,D*) be a c-parabolic A-flat bundle over (X, D)
for some ¢ € R¥. Assume X\ # 0. We also assume ¢; & Par(.E, F,i) for each i € S, for simplicity.

In the subsection 3.4 of [30], we explained how to perturb the parabolic structure F' in the Higgs case. The

argument clearly works even in the case A # 0 (Proposition 2.16). However, we need more concrete way of
perturbation, which we will explain in the following.

Remark 2.14 The construction given in this subsection is valid when the base manifold X is a curve. |

Let N denote the nilpotent part of the induced endomorphism Gr Res;(D*) on *GrZ (cE|p,). Before
proceeding, we give a definition of graded semisimplicity, as in the Higgs case.

Definition 2.15 The \-flat c-parabolic bundle (.E, F,D) is called graded semisimple, if the nilpotent parts
N; are 0 for anyi € S.
By the argument given in the subsection 3.4 of [30], we can show the following proposition.

Proposition 2.16 Let e be any sufficiently small positive number. There exists a tuple of the parabolic structure
Fl) = (iF(e) ‘z € S) such that the following holds:

o (oF, F(E)) is a graded semisimple c-parabolic \-flat bundle.
o We have par-deg; (o E, F'9) = par-deg; (. E, F).

o There is a constant C, which is independent of €, such that the following holds:

‘/ par-ch, (. E, F'9) —/ par—chQ(CE,F)‘ < C e
X X

’/X par—c%(cE,F(E)) = /Xpar—c%(cE,F)’ <C-e.

o gap(cE, F©) > ¢/r. |
For later use, we need to take such a perturbation in a more concrete way. Hence, we recall the construction
in the following. Let 7 be a generic point of D;. We have the weight filtration W, of the nilpotent map N ,
on ‘Grf’ (CEID'i)n’ which is indexed by Z. Then we can extend it to the filtration W of ! Gr*' (cE|p,) in the

category of vector bundles on D; due to dim D; = 1. By our construction, N;(W) C Wy_o. The endomorphism
Res;(D*) preserves the filtration W on iGrF(CE| p,), and the nilpotent part of the induced endomorphisms on

Gr" i Gr" (.E|p,) are trivial. Recall that the flat A-connection D* locally induces the A-connection ‘D* of the
vector bundle . E|p, on D;. Since i Grf ('D*) commutes with Res; D*, it preserves the filtration W.

Let us take the refinement of the filtration ‘F. For any a €]c; — 1,¢;], we have the surjection m, :
'Fo(cEp,) — iGraF(cE‘Di). We put i~a,k = 7, }(Wx). We use the lexicographic order on J¢; — 1,¢;] X Z.
Thus we obtain the increasing filtration ‘F indexed by J¢; — 1,¢;] x Z. Obviously, the set S; := {(a,k) €
Jei — 1] X Z | Grf;k) # 0} is finite.

Next, we explain the perturbation of the weight for the parabolic structure. Let e be a small positive
number such that 0 < rank E - € < gap(.E, F). Let us take an increasing map ¢; : S; —]¢; — 1,¢;] given by
¢i(a,k) = a+e-k. Then 'F and ¢; give the c-parabolic filtration F(©) = (*F(© |4 € S). Thus we obtain the
c-parabolic M-flat bundle (cE, F©) DA), which are called the e-perturbation of (.E, F, D).

The following proposition is standard. (See Proposition 3.3 of [30], for example.)

Proposition 2.17 Assume that (CE,F, ]D)A) is pp-stable. If € is sufficiently small, then the e-perturbation
(CE,F(E),]D)‘) is also pr-stable. |



2.1.6 Remarks about the terminology and the notation

We give some remarks about the terminology “parabolic structure”. Let X be a complex manifold, and let D
be a simple normal crossing divisor of X with the irreducible decomposition D = |, 4 D;. We often discuss a

€S
c-parabolic M-flat bundle on (X, D) for some ¢ € R®. In our most arguments, a choice of ¢ are not relevant.
In fact, ¢ is fixed to be (0,...,0) in many references where the parabolic structure is discussed. But, it is

sometimes convenient to avoid the case ¢; € Par(cFx,1), for example, when we consider a perturbation of the
parabolic structure. That is the main reason why we consider general c-parabolic structure.

In the following argument, we implicitly assume ¢; & Par(cEx, 1), and we often omit to distinguish ¢, and
use the terminology “parabolic structure” instead of “c-parabolic structure”, when we do not have to care about
a choice of ¢. The author hopes that there will be no confusion and that it will reduce unnecessary complexity
of the description.

Relatedly we have the remark about the notation to denote parabolic bundles. We often use the notation
(cE, F) or .FE, to denote a c-parabolic bundle, when we would like to distinguish e¢. The notation “.E” is also
appropriate and useful, when we regard it as a prolongment of the locally free sheaf £ on X — D. But, in most
part of this paper, a vector bundle is given not only on X — D but also on X from the beginning. And, as is
said above, we will not care about a choice of ¢. Therefore, we often prefer to use the notation (E, F') or E.,
for simplicity.

2.2 Generality for A-connection in the C'*°-category

We will give some generality for A-connections. They are straightforward generalization of the argument for
Higgs bundles or flat bundles given in Simpson’s papers (for example [34] and [36]), and hence we will often
omit to give a detailed proof. For simplicity, we will assume A # 0.

2.2.1 The induced operators

Let X be a complex manifold, and (E,D*) be a flat A-connection on X. We have the decomposition of D* into
the (0, 1)-part d% and the (1, 0)-part d’;. The holomorphic structure of E is given by d. Recall that the twisted
Leibniz rule d’5 (f-v) = X-0x (f)v+ f-dgv holds for f € C*°(X) and v € C*°(X, E). Let h be a hermitian metric
of E. From d7 and h, we obtain the (1,0)-operator 0% ; determined by Oh(u,v) = h(du,v)+h(u, 0 pv). From
dy and h, we obtain the (0, 1)-operator &7 , determined by Aoh(u,v) = h(dpu,v) + h(u,d% ,v). We remark
Spp(f-v)= X Oxf-v+f- %, (v). We obtain the following operators:

— 1 1

0 = (dE+ M), Opni=——a(dy 4+ 0% ,),
B,h 1+|)\|2( E En)s OEn 1 |)\|2( e+ 0Bn) o)
0h ) = L (Mg — 0% 1), Opni= 1 (dy — X% 1,)-
S TEPE v PETEPPR :

It is easy to see that the following Leibniz rule holds:
Opn(fs)=0xf s+ [ -0pns, Opn(fs)=0xf s+ f Opns.

On the other hand, 6 and 0" give the sections of End(F) ® Q1 and End(E) ® Q% respectively. We also have
the formulas:

b=0pn+ M5, dg=Xpn+08n 05, =08n—Nen Op,=Npn— 05,

Remark 2.18 The index “E,h” is attached to emphasize the bundle E and the metric h. We will often omit
them if there are no confusion. |

We put DA* := &), — 8 = O + 0} — X(Dn + 01). We have the following formula:

DA — AD)*
1T+ |A]2?

Dy* + AD*

5 8h+0:L:W

On +0h, =
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We recall that h is called a pluri-harmonic metric if (95, + 65,)% = 0 holds, i.e., (E,,0) is a Higgs bundle.
The condition is equivalent to [D*, Dp*] = 0.

Let us consider the case where X is provided with a Kahler form w. For a differential operator A of E'® Q'
of degree one, i.e., A: C°(X,E® Q) — OC°(X,E® Q!), let A* denote a formal adjoint with respect to w
and h, i.e., [ (Au,v)p. dvol, = [y (u, A*0)p, dvoly, hold for any C*°-sections u and v with compact supports.
Here (-,-)n,w denotes the Hermitiann inner product of appropriate vector bundles induced by h and w.

Lemma 2.19 (]D))‘*)* = s/—l[Aw,ID)A} and (DA)* = —\/—I[Aw,DA*}.

Proof It follows from the relations 9* = /—1[A,,,8g], 0 = —v—1[A,dp], 0* = —/—1[A,, 0] and (01)* =
V—1[A,, 6] 1

The Laplacian Azw :C®(X,E) — C*®(X, E) is defined by A}){,w = /—1A, DD *.

Remark 2.20 For the differential operators of functions, A} := /=TA(8419)o(0—A) = (1+|)|?)v/—1AD =
(1+ [M2)A”, where A", denotes the usual Laplacian /—1A,00. |

Lemma 2.21 When X # 0, we have X7162 + 27102 =0 and )\*152 —|—X71(9}:)2 =0.

Proof From the flatness (D*)2 = 0, we obtain the following formulas:

@+ N01)2 =T + ABu] + A2(00)2 =0, (6)
(N0 + 01)% = N207 + Ny + 67 = 0, (7)
[@n -+ A0h, A9h + 0] = A([B,0n] + [0, 60] ) +Dnb + A2046], = 0. (8)

For a section A of End(E) ® QP4 let A;‘L denote the section of End(FE) ® Q%P which is the adjoint of A with
L = (u, ALU);L- Here (-, ), denotes the hermitian product (E®Q )@ (E®Q) —

Q" induced by h. Then it is easy to see (5,21)}; = 02, (5;19};)" = 00y and (9};)2 = —(62)7. Therefore we obtain
the following equality from (6):

respect to h in the sense (A-u,v)

—02 4+ X(0h6n) — X602 = 0. (9)

From (7) and (9), we obtain ()\+X71)6,21 + (AT X0 =1+ |)\|2)(X715}2L + A7167) = 0, which gives the first
formula in the lemma. The second formula can be obtained by taking the adjoint. |

Lemma 2.22 When A # 0, we have X_l . 3;19}; + 218,00, =0 and [ah ,gh] + [Oh , OH =0.

Proof It is easy to check [8;1,5;1];‘1 = —[0n,0n), [0h, 9;2];2 = —[0h, 0;‘1] and (5h0h);2 = 8;19;2. Hence we obtain the
following equality from (8):

(O, 0] = 01,00 + X 0h0) + X310, = 0. (10)
The claim of the lemma immediately follows from (8) and (10). 1

Corollary 2.23 When X\ # 0, the pluri-harmonicity of the metric h is equivalent to the vanishings 07 =0 and
Onbp, = 0. 1
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2.2.2 Local expression

Let (E,D*) be a flat A-connection, and let h be a C*°-metric. Let v = (vy,...,v,) be a holomorphic frame of
E. Let H = H(h,v) denote the hermitian matrix valued function of h with respect to v, i.e., H; ; = h(v;, vj).
Let us see the local expression of the induced operators.

Let A denote the M(r)-valued (1,0)-form of D* with respect to v, i.e., D*v = v - A, in other words,
D*v; = 3" Aji - vj. Let B denote the (1,0)-form of §) with respect to v, i.e., §,v = v - B, and then we have
gh(vl,vj) = h(vz,dhvj) Zh(vz, Bkjvk) Hence OH = H - B, i.e., we obtain B = F‘laﬁ Let C denote the
(0, 1)-form of 47 with respect to v, i.e., v = v - C, and then we have A-Oh(v;,v5) = h(d’vl,vj) + h(v;, 5;{1)])
S h(Ag vk, vi) + 3, h(vi, Ckjur). Hence NOH = 'AH + HC, i.e., we obtain C = X\- H '9H - H 'YAH.
Thus we obtain the following;:

1 —1,.= = A -1

—v-—— (A-H '0H —v.-—-__(N\-H 0H - A}).
Opv =v 1+|)\|2( 0H), Opv=w 1+|>\|2(/\ 0 h)

Here At denote the adjoint of A with respect to h, i.e., Al =" ALH

2.2.3 Pseudo curvature and the Hermitian-Einstein condition

Assume A # 0. For a flat A-connection (E,D?*) with a hermitian metric h, the pseudo curvature G(h,D?*) is

defined as follows:
@ P)?

A
Then a hermitian metric h is a pluri-harmonic metric for (E,D*), if and only if G(h,D*) = 0 holds. We will
often use the notation G(h) or Gy, instead of G(h,D*) if there are no confusion.

When X is provided with a Kahler form w, a Hermitian-Einstein condition for h is A,G(h,D*)* = 0, where
“1” means the trace free part.

G(h,D*) := [D*,Dy*] = (On + 6)%

2.2.4 Some relations between curvature and pseudo curvature

By the construction of 4y, the operator d” 4 0j, is a unitary connection of (E,h). The curvature of d” + 9), is
denoted by R(d”,h). We have the following expression of R(d”,h) due to [d”,d'] = 0:

2 2
R(d", h) _ [d", 5;1] — [d”, )fld/] _ % [d//7 eh] — _% (Ehgh + )\[927 9h])~ (11)
Lemma 2.24 The following equality holds:
1P
1" — D — 12
tr R(d", h) e tr G(D*, h) = 3 Otrdy,. (12)

Proof From (11), we obtain tr R(d"”,h) = —(1 + |A\[*)A™! - 9tr ). On the other hand, we have the following:

(1+A2)°

b\ gtrﬂh.

1+
trG(h,ID)A):—i( +)|\ b tr(Dy, + Db+ 63) = —

Here we have used tr(6?) = 0, which implies tr(éi) = 0 due to Lemma 2.21. Thus we are done. |

Lemma 2.25 In the case dim X = 2, we have the following formula:

(L+[AP2)?

1\2 __
tr R(h,d")" = )

tr G(h, D)2 — tr(62 - 0]).

1
(1+[AP)?

12



Proof We have the following:

o (AR

tr G(h, D) 2

(tr(@heh)ﬂ) +2tr(d, - ez))

o _ (L+AP)?
- T

Since we have tr ([0, 9}:]2) =-2 tr(@i@};?) and (95, + /\9}:)2 = 5,% + )ﬁ;ﬁ}: + )\29;2 = 0, we obtain the following:

tr R(h,d") (tx(@n0n)2) + 27t (Dnbn - [0, 6}]) + X2 tr([61, 6})%) ).
A tr ([0, 00)7) = —2tr (N2 67 - 6]7) = 2tr(§i 02+ \- D0 ﬁ,%).
Hence we have the following equality:

1+ |2
A

2
tr R(h, d")? = ( ) (5r(@181)%) + 20 tx(But - B0, 6L)) + 21x(3 - 63) + 22 1(n0), - 67) ).

We also remark the following:

tr(5h9h . [Hh, 9;]) + tr(e,zl 5}19;) = tr((ﬁheh) -0 - 9;) + tr(5h9h . 92: . Gh) — tr(9h 5}19; . Gh)
=0tr(0y- 0] -0,) = —0tr (63 -0}). (13)

Then the claim of the lemma immediately follows. |

2.2.5 Change of hermitian metrics

Let h; (¢ = 1,2) be hermitian metrics of E. The endomorphism s is determined by ho = hy - s, i.e., ha(u,v) =
h1 (s-u,v) = hy (u,s-v), which is self adjoint with respect to both of h;. Then we have the relations 5;12 =
6, + 5710, s and 6 =0y + s~ '8} s. Therefore we have the following relations from (5):

— — A 1 1 -1
Ony = O, + TWS 0,8, Ony = Ony + Wé’ S, S,
1 A
T _pf —1g1 _ —1g/
0}12 = 9h1 — 1 n |>\|2 S 5}128’ ohg - 0h1 - 1 +—|)\|2S 5}7,15'

We also have Dp* = Dp* + s7'Dp *s, and thus [D* Dp*] = [DY, Dp*] +D*(s7!) - D) *s + s~ 'D*Dp*s. Then
we obtain the following formula:

AR, o8 =sV—=1(AuG(h2) — AuG(h1)) + V—=1A,D*s - s 1D s, (14)
In particular, we obtain the following formula by taking the trace:
Adtr(s) = tr(sx/—l(AwG(hg) - AwG(hl))) - |]D))‘(s)s_1/2|ihw. (15)

As in Lemma 3.1 of [34], we can derive the following inequality for some positive constant C which depends
only on A:

AJlogtr(s) < Cx(|[AuG(h1)],, + [AuG(ha)], ) (16)
2.3 Parabolic A-flat Bundles Associated to Tame Harmonic Bundles
2.3.1 Tame pluri-harmonic metric

Let X be a complex manifold with a simple normal crossing divisor D. Let (E,D*) be a A-flat bundle on X —D.
Let h be a pluri-harmonic metric of (E,D*). Then we have the induced Higgs bundle (E,dy,605). Recall the

13



tameness of pluri-harmonic metric. Let P be any point of X, and let (Up, 21, ..., z,) be a holomorphic coordinate
around P such that DNUp = Uézl{zi = 0}. Then we have the expression:

l n
HZZfi'%-f—Zgj-de.
i=1 g

j=i+1

The pluri-harmonic metric h is called tame, if the coefficients of the characteristic polynomials det(t — f;) and
det(t — g;) are holomorphic on Up.

Recall also that the curve test for tameness is valid ([28]), namely, a pluri-harmonic h for (E,D*) is tame if
and only if h|¢ is tame for any closed curve C' C X transversal with D.

2.3.2 Prolongation of tame harmonic bundles and uniqueness of pluri-harmonic metrics

Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal crossing
divisor of X with the irreducible decomposition D = |J;.g D;. Let (E,D*, k) be a tame harmonic bundle on

X — D. Recall that E' is prolonged to the filtered bundle E. = (cE | ce RS) such that (E,,D?") is a regular
filtered A-flat bundle ([28]). And the metric h is adapted to the parabolic structure. (See the section 3.3 of [30]
for the adaptedness, for example.)

Proposition 2.26 Let (E.,D) be as above.
e (E.,D") is ur-polystable with par-deg; (E,) = 0.

o Let (E,.,DV) = @j (Ej, D;‘) ® CPY) be the canonical decomposition of pr-polystable reqular filtered \-flat
bundle. Then we have the corresponding decomposition of the metric h = @ h; ® g;, where h; denote
pluri-harmonic metrics of (E;, D) adapted to the parabolic structure, and g; denote metrics of cri,

o We have the vanishings of characteristic numbers:

/ par-ch, ; (E.) :/ par-ci 1 (E,) = 0.
X

X

Proof The first two claims can be shown by the same argument as the proof of Proposition 5.1 of [30]. The
third claim can be shown by an argument similar to the proof of Proposition 5.3 of [30], which we explain
briefly. We have only to consider the case dim X = 2. Since h is pluri-harmonic, we have the equalities
tr R(d”,h) = (14 [A?)"' tr G(h,D*) = 0 and tr(R(d”,h)?) = (14 [A[*)72 - tr(G(h,D*)?) = 0, due to Lemma
2.24 and Lemma 2.25 on X — D. Hence we have only to show the following:

(5 f o= et () [ e~ [

It can be shown by the same argument as the proof of Proposition 5.3 of [30]. 1

Proposition 2.27 Let (E.,D*) be a regular filtered A-flat bundle. We put (E,D*) := (E.,D*)x_p. Let hq
(a = 1,2) be pluri-harmonic metrics of (E,D*) on X — D which is adapted to the parabolic structure. Then we
have the decomposition (E,D*) = @(E;, D) with the following properties:

e The decomposition is orthogonal with respect to both of h, (a = 1,2). Hence we have the decomposition

hae =, hai-
o There exist positive numbers b; such that hy; = b; - ho ;.

The decomposition on X — D is prolonged to the decomposition (E.,D*) = @(E;.,D*) on X.

Proof Similar to Proposition 5.2 of [30]. 1
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2.4 Review of Existence Result of a Hermitian-Einstein Metric due to Simpson
2.4.1 Analytic stability of flat A\-bundle

Let X be a complex manifold with a Kahler form w. In this subsection, we impose the following condition as
in [34].

Condition 2.28
1. The volume of X with respect to w is finite.
2. There exists a C™-function ¢ : X — R>( with the following properties:
o {x € X|¢(x) <a} is compact for any a.
e 0<+/—=100¢ < C -w, and 0¢ is bounded with respect to w.
3. There exists a continuous increasing function a : [0, co[— [0, oo with the following properties:
e a(0) =0 and a(t) =t fort > 1.

o Let f be a positive bounded function on X such that A,f < B for some B € R. Then there exists
a constant C(B), depending only on B, such that supy |f| < C(B) - a ([ |f|-dvol,). Moreover,
Ay (f) <0 implies A, (f) =0. 1

Let (E,D*) be a flat A-connection on X. There are two conditions on the finiteness of the pseudo curvature
of (E,D*, h). The stronger one is as follows:

sup |G(h, DM |p.. < 0. (17)

The finiteness (17) implies the weaker one:
sup [A, G (h, DM < 0. (18)
When a hermitian metric h of F is given with the finiteness (18), the degree deg,(FE, h) is defined as follows:

VAL [ wGRDY ., VoL

: = R(h,d") - w" 2.
o Jx 1+ 27 o [, RO W

deg (E,h) :=

Here we have used (12). For any A-flat bundle (V, D) C (E,D*), the restriction hy := hjy induces deg,,(V, hy).
As in Lemma 3.2 of [34], we have the Chern-Weil formula. The proof is same.

Lemma 2.29 Let 7wy denote the orthogonal projection of E onto V.. Then the following holds, for some positive
constant C':

1 A n—1 A 2
deg,(V, hy) = 5 1+|AI2 <\/ / tr(my o G(h,DY)) - w —/X|]D> 7rv|h’w>
The value is finite or —oo, when (18) is satisfied. 1

Definition 2.30 (E,D*, h) is defined to be analytically stable with respect to w, if the inequality

deg,,(Vihy)  deg,(E,h)
rank V' rank B

holds for any (V,D3,) C (E,D*). |
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2.4.2 Existence theorem of Simpson and some consequence

Proposition 2.31 Let (X,w) be a Kahler manifold satisfying Condition 2.28, and let (E,D*, hg) be a metrized
flat \-connection satisfying (17). Assume that (E,D*, ho) is analytically stable with respect to w. Then there
exists a hermitian metric h = hg - s satisfying the following conditions:

e h and hy are mutually bounded.

e det(h) = det(ho)

DA (s) is L? with respect to hy and w.

It satisfies the Hermitian Einstein condition A,G(h)* = 0, where G(h)* denotes the trace free part of
G(h).

The following equalities hold:

/Ytr(G(h)2) W = /Ytr(G(ho)2) ST /Ytr(G(h)Jj) W = /Ytr(G(ho)J‘2) w2,

We do not give a proof of this proposition, because we need only minor modification of the proof of Theorem
1, Proposition 3.5 and Lemma 7.4 of [34]. Indeed, we have only to replace D", D’ and F(h) with D}, D** and
G(h), and to make some obvious modification of positive constant multiplications, as was suggested by Simpson
himself. (See the page 754 of [35], for example. Remark that “D¢” corresponds to our —D**, and hence our
G(h) is slightly different from his.) The author recommends the reader to read a quite excellent discussion in
[34]. However, we will use some results related with the Donaldson functional, which are obtained from the
proof. Hence we recall a brief outline of the proof of Proposition 2.31. We will use the notation in the subsection
2.5.

Let ho be a metric for (E,D?*) satisfying the finiteness (18). Let us consider the heat equation for the self
adjoint endomorphisms s; with respect to hg:

ds
—1 t
tar

= —VZIALG(h)*. (19)

A detailed argument to solve (19) is given in the section 6 of [34]. Moreover, A, G(h;) is shown to be uniformly
bounded. We do not reproduce them here.

Then we would like to show the existence of an appropriate subsequence ¢; — oo such that {s;, } converges to
S0 weakly in L locally on X, and we would like to show that he, = ho-Soo gives the desired Hermitian-Einstein
metric. For that purpose, Simpson used the Donaldson functional M (ho, ho - 5t¢)~ (We recall the definition
and some fundamental property in the subsection 2.5, below.) He showed that there exist positive constants C;
(¢ = 1,2) such that the following holds: (Proposition 5.3 of [34]. We review it in Proposition 2.38. We will use
the notation there in the following.)

sup |s¢| < Cy + Co - M (ho, host). (20)

He also showed (Lemma 7.1 of [34]) that M (hg, ho - s¢) is C* with respect to ¢, and that the following formula
holds: p

2
EM(ho,h0 S8) = — /X\AWG(ht)HhW <0. (21)

Since we have M (ho,ho) = 0 by definition, we obtain M (hg, ho - s¢) < 0 from (21). Then we obtain the
boundedness of s; from (20). For the solution of (19), we have det(s;) = 1. Hence we also obtain the boundedness
of 5, 1. We also obtain the existence of a subsequence {t} such that ‘AUJG(hQi)‘LQ — 0.

From the uniform boundedness of s; and A,G(h¢), we obtain the lower bound of M (ho, host). (See Corollary
2.37 in this paper, for example.) Moreover, we obtain the uniform bound of | X‘D)\“t‘io due to the positivity
of ¥ given in (26), where s; = exp(u;). Due to the boundedness of s; and s; *, we also obtain the boundedness
of fX‘DAstﬁo. Then we obtain the L7 boundedness. Hence we can take a subsequence {t;} such that s
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converges to some s, weakly in L? locally on X — D. Due to some more excellent additional argument given
in the page 895 of [34], it can be shown that the convergence is weakly L% locally on X — D, for any p. As a
result, we obtain the Hermitian-Einstein metric.

By the above argument, we can derive the following lemma, which we would like to use in later discussion.

Lemma 2.32 Let hg be the hermitian metric satisfying (17), Let hg g be the Hermitian-Einstein metric obtained
in Proposition 2.31. Then we have M(ho, hHE) <0.

Proof Recall that hy g is obtained as the limit hg- s of some sequence {hgsy, }, and we have M (hg, hg-s¢,) < 0.
We use the formula (25). Let Z be any compact subset of X. The sequence {s,} converges to s in C° on Z.
The sequence {A,G(hy,)} converges to A,G(hyg) weakly in L? on Z. Therefore we have the convergence:

lim tr(ue, - AwG(he,)) dvol, = / tr (oo - AuG(hpg)) dvol, .
z

t;—0o0 z

Here u; are given by exp(u;) = s¢. Since supy |s| and supy [AG(h¢)| are bounded independently of ¢, we can
easily obtain the convergence:

tlim tr(uti . AwG(hti)) dvol, = / tr(uoo . AMG(hHE)) dvol,, .

We have the C%-convergence of the sequence {D*uy,} to D u,. Hence we have the following inequality, due to
Fatou’s lemma:

/ (\I/(uoo)]D)‘uoo, ]DAuoo) dvol,, < h_m/ (\I/(uti)DAuti, ]D)‘uti) dvol,, .
X X

Then we obtain the desired inequality. |

2.5 Review of Donaldson Functional

We recall the Donaldson functional, by following Donaldson and Simpson ([4] and [34]).

2.5.1 Functions of self adjoint endomorphisms

Let V' be a vector space over C with a hermitian metric h. Let S(V,h) denote the set of the endomorphisms
of V' which are self-adjoint with respect to h. Let ¢ : R — R be a continuous function. Then ¢(s) is
naturally defined for any s € S(V,h). Namely, let vy,...,v,. be the orthogonal base which consists of the
eigen vectors of s, and let vy,..., v be the dual base. Then we have the description s = > k; - v/ ® v;, and
we put ¢(s) = > (ki) - v ®v;. Thus we obtain the induced map ¢ : S(V,h) — S(V,h), which is well
known to be continuous. To see the continuity, for example, we can argue as follows: Let U(h) denote the
unitary group with respect to h. Take e = (eq,...,e,) be an orthogonal base of V. Let T' denote the set of
endomorphisms of V' which is diagonal with respect to the base e. Then we have the continuous surjective map
7:U(h) x T — S(V,h) given by (u,t) — u-t-u~L. It is easy to check the continuity of the composite o .
Since the topology of S(V,h) is same as the induced topology via 7, we obtain the continuity. When ¢ is real
analytic given by the convergent power series Y a;-t7, then ¢(s) = > a; - s7. The induced map is real analytic
in this case.

Let ¥ : R x R — R be a continuous function. For a self adjoint map s € S(V,h), let v1,...,v, and
vY,...,v) be as above. Then we put U(s)(4) = > U(ki,kj) - A;; - v @ vj for any endomorphism A =
> A v @vj of V. Thus we obtain ¥ : S(V, h) — S(End(V), k), which is also well known to be continuous.
Here S(End(E), h) denotes the set of the self adjoint endomorphisms of End(V) with respect to the metric
induced by h. To see the continuity, we can use the same argument as above. When ¥ is real analytic given by
a power series, Y by, nt7't5, then we have U(s)(A4) = > by ns™ - A - s™, and the induced map is real analytic.

When ¢ is C?, the continuous function dp : R* — R is given by dp(t1,t2) = (t1 — t2) "1 (p(t1) — ¢(t2))
(t1 # t2) and do(ti,t1) = @' (t1). In this case, ¢ : S(V,h) — S(V,h) is also C!, and the derivative at s is
given by dy(s). To see it, we can argue as follows: When ¢ is real analytic, the claim can be checked by a
direct calculation. In general, we can take an approximate sequence p; — ¢ by real analytic functions on

17



an appropriate compact neighbourhoods of the eigenvalues of s € S(V, h). The induced maps ¢; : S(V,h) —
S(V,h) and dy; : S(V,h) — S(End(F),h) uniformly converge to ¢ and dy on an appropriate compact
neighbourhoods of s. Then we can derive that ¢ is the integral of the form dy by a general fact.

The construction can be done on manifolds. Namely, let £ be a C'°°-vector bundle with a hermitian metric
h. Let Sp(F) (or simply S;) be the bundle of the self-adjoint endomorphisms of (F, h), and let Sy, (End(E)) be
the bundle of the self-adjoint endomorphisms of (End(F), k). Then a continuous function ¢ : R — R induces
¢ : Sp(E) — Sp(E), and ¥ : R*> — R induces V¥ : Sy(E) — Sy(End(E)). We have D p(s) = de(s)(D*s),
when ¢ is C*.

2.5.2 A closed one form

Let (X,w) and (E,D*) be as in the subsection 2.4.1. Following Simpson [34], we introduce the space P(S},),
which consists of sections s of Sj,(F) satisfying the following finiteness:

Isllh,w,p = sup Isln + D sl2,n.0 + 1A% wSll1nw < 0.

Here || - ||p,h denote the LP-norm with respect to (h,w). We will omit to denote w and h, when there are no
confusion. The following lemma corresponds to Proposition 4.1 (d) in [34]. The proof is same.

Lemma 2.33 Let p and ¥ are analytic functions on R with infinite radius of convergence. Then ¢ : P(Sy) —
P(Sy) and U : P(S) — P(Sp(End(E))) are analytic.

Let h be a metric satisfying (18). Let P, (S) denote the set of the self adjoint positive definite endomor-
phisms s with respect to h such that ||s||s,p < 0o and [|s™||5,p < c0. We put Pp, := {h-s|s € P+(S)}. It is
easy to see that any hy € Py, also satisfies (18) and Pj, = Py, due to (14). It is also easy to see P = Py, for
h1 € Pp.

Let P(S},) denote the space of the self adjoint endomorphisms s with respect to h such that ||s||pn < co. It
is easy to see that P4 (S}) is open in P(Sy). In particular, we obtain the Banach manifold structure of P, (S}).
By the natural bijection Py, >~ P (S}, ) for hy € Py, we also obtain the Banach manifold structure of Py, which
is independent of a choice of h; € Pj. We have the map P (S, ) — P+ (Sh, ) given by s — e® (Lemma 2.33). It
gives a diffeomorphism around 0 € P(Sp,) and 1 € Py (Sh,). Therefore the map P(Sp,) — Pp by s — hy - €°
gives a diffeomorphism around 0 and h;. In particular, the tangent space T3, Py can be naturally identified
with P(Sy,) for any hy; € Pj. We also have the natural isomorphism P(Sy,) ~ P(Sy) given by ¢t — u - t for
h1 = h - u € Py, which gives the local trivialization of the tangent bundle.

For any hi € Py, and s € Ty, P, we put as follows:

Dy, (s) = / @}, (s)dvol, € C, @, (s) :=+v—1tr(s- AwG(]D)A,hl)).
b'e
Then @' gives the L'(X, le)—valued one form on Py, and ® gives the one form of Pj,. The differentiability of
d is easy to see.
Lemma 2.34 ¢ is a closed one form.

Proof In the following argument, we use the notation D** instead of D} *. Let kq, ko € P,. They naturally
give the vector field by addition. At any point h; € Py, they give the tangent vectors o = hl_lkl and 7 = hl_lkg
in T, Py, = P(Sh,). Hence we have the following at h + ek;:

Bpper, (ko) = \/—_I/tr((h—i—ekl)’l ko - G(h+ek1)) S

We have (h+ €k1) ke = (1 +e0) lr =7 —eor + (1 + e0) 2€20?7. Remark o7 is bounded. We also have the
following:

(1+e0)(G(h + €k1) — G(h)) = D*D**(1 + €0) — D (1 + €0) - (1 + €0) "' D**(1 + eo)
= DD o — Do - (14 e0) 1D 0. (22)
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Hence we have G(h +¢ek1) — G(h) = eD D**o + 2Ry (e, 0, 7), where Ry (e, 0, 7) is an L'-section of End(E) ® 02,
and the L'-norm is bounded independently of e. Therefore we obtain the following:

Bpyck, (ko) — Pp (ko) = \/—_l/tr((h +eki) "t ko G(h+eky)) W — \/—_1/tr(h*1 ko - G(h)) - w" !
= \/—_]./tl"(TG(h +eki) — TG(Rh)) W™ — e\/—_l/tr(aTG(h + k1)) w" T + € Rie,0,7)
=€ (\/jl/tr(TDADA*U) cw T \/—_1/tr(a -7-G(h)) -w"_1> + eRa(e,0,7). (23)

Here we have R;(e,0,7) — 0 (i = 1,2) in € — 0, due to ||o]|p and ||7]|p < co. Hence we obtain the following
equality:

dp®(0,7) = v _1/(“(7@)\1@)\*‘7) _tr(‘TDADA*T)) W — v—l/tr([a, - G(h)) - w™
We have the following equality, due to [D*, D**] = G(h):

(=X0 + 0) tr(tD o) + (A + ) tr(cD**7) = tr(D**7D*¢) + tr(7D* *D*o) 4 tr(D oD *7) + tr(eD D *7)

= —tr(rD*D**0) + tr(7 - [G(h), 0]) + tr(eD DY *7) = — tr(rD*D**0) + tr(eD*D**7) + tr ([0, 7] - G(R))
(24)
Hence we obtain d,®(o,7) = —v/—1 [ ((—/\_5+3) tr(tDA o) + (A0 + 9) tI'(O']D)A*T)) -w"~L. By using ||o||p < o0
and ||7]|p < 0o, we obtain the vanishing of d;®(c, 7), due to Lemma 5.2 of [34]. |

2.5.3 Donaldson functional

For hy,hy € Py, take a differentiable path v : [0,1] — P, such that v(0) = h; and (1) = hg, and the
Donaldson functional is defined to be M (hq,hg) := fv ®. It is independent of a choice of a base metric w, in
the case dim X = 1. We have M (hy, ha) + M (ha, hs) = M (hi, hg) by the construction.

Lemma 2.35 When ho = hy - ¢e® for s € P(Sy,), we have the following formula:
M (hy, ho) = \/—1/ tr(sAuG(hy)) dvol, —|—/ (\I/(S)DAS,DAS)W . dvol, . (25)
X X o

Here (-, )w,n, denotes the hermitian product induced by w and hy, and U is given as follows:

et2—t1 (tg — tl) -1
(tz —t1)?

U(tq,ta) = (26)

See the subsection 2.5.1 for the meaning of ¥(s)(D*s).

Proof Let M’(hi,hs) denote the right hand side of (25). The following formula immediately follows from the
definition:

i]\4/(}116758, hle(t+u)s)|uzo = / v —1tr (SAwG(hlets)).
ou X
The following formula can be shown:
& / t (t+u) & / (t+u)
6t6uM (hle ,h1€ )‘uzo = 6t6uM (hl,hle )|u:0. (27)

We omit to give the argument to show (27), because it is same as that in the page 883 of [34] to show the
following equality:
0? 0?

_M(}% hets)|t:1,u:0 = %

It2 M(hetsv he(tJFU)S)\t:Lu:O-
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We have the obvious equality:

a S u)s a u)s
%M/(hlet S el ) g g = %M/(hlahle(“— %) t=0,u=o0-

Hence we obtain the following:

0
—M’(hl,hlets):/ VT tr(sAuG ().
ot X

Thus M’(hy, h1e®) is the integral of ® along the path (t) = hie'®, and hence M’(hy, ha) = M (h1, h2). |

Remark 2.36 In [34], the formula (25) is adopted to be the definition of the functional. We follow the original
definition of Donaldson ([4]). |

We obtain the following corollary due to the positivity of the function W.

Corollary 2.37 When sup |[A,G(h)|n < B, we have the following inequality:
M(h,he®) > /-1 /tr(sAwG(h)) -dvol, > —B/ [s]p, - dvol,, .
In particular, the upper bound of s gives the lower bound of M (h, he®). |

2.5.4 Main estimate

The following key estimate is the counterpart of Proposition 5.3 in [34]. The proof is same.

Proposition 2.38 Fiz B > 0. Let (E,D*) be a flat A-connection. Let h be a hermitian metric of E such
that sup‘AwG(h,]D)A)“ < B. Let (E,D* h) be analytically stable with respect to w. Then there exist positive
constants C; (i = 1,2) with the following property:

o Let s be any self adjoint endomorphism satisfying ||s||p,n < o0, tr(s) =0 and sup‘AwG(h : es,]D))‘)‘ < B.
Then the following inequality holds:

sup|s|lp < C1 + Ca - M (h, he®)
X

(Sketch of the proof) The excellent argument given in [34] works in the case of A-connection without any
essential change. Since we would like to use some minor variants of the proposition (the subsections 2.5.5-2.5.6),
we recall an outline of the proof for the convenience of the reader. To begin with, we remark that we have only
to show the following inequality due to Corollary 2.37:

sup |s|, < C] + C4 - max{0, M (h, he®) },
X

As is noticed in the subsubsection 2.2.5, the inequality A} logtr(e®) < C - (|AG(h)}h + }AG(heS)}hes) < 2BC)

holds. Hence there exist some constants C; (i = 3,4) such that the inequality logtr(e®) < C3 + Cy - [ logtr(e®)
holds for any s as above, due to Condition 2.28. Since we have C5+ Cg - |s|n < logtre® < C7+ Cy - |s|, for some
positive constants C; (i = 5,6,7,8), there exist some constants C; (i = 9,10) such that the following holds for
any s as above:

sup |s|n < Cgy + Cip - / [s|n- (28)

Assume that the claim of the proposition does not hold, and we will derive a contradiction. Under the
assumption, either one of the following occurs:

Case 1. There exists a sequence {s; € P(Sy)|i =1,2,---,} such that sup|s;|, — oo and M (h, he®) < 0.
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Case 2. There exist sequences {s; € P(Sy)} and {C2; € R} with the following properties:

sup |s;| — o0, Co; — 00, (i — o)
X

M(h,he®) >0, sup|s;|p > C2,;M(h, he®)

In both cases, we have ||s;||p1 — co. We put ¢; := ||s;]|1 and w; := s;/¢;. Clearly we have ||u;||z1 = 1, and
uniform boundedness sup y |u;| < C due to (28). In the following, let L?(Sy) (resp. L3(Sh)) denote the space of
L?-sections (resp. L2-sections) of Sj,. The following lemma is one of the keys in the proof of Proposition 2.38.

Lemma 2.39 After going to an appropriate subsequence, {u;} weakly converges to some us # 0 in L2(Sh).
Moreover, we have the following inequality, for any C*°-function ® : R x R — Rx>¢ such that ®(y1,y2) <

(y1 —y2) ™t for y1 > yo:

\/—_1/tr(uokoG(h)) —|—/ (@(uoo)DAuoo,ID))‘uoo)hw <0.
x ,

Proof By considering ® — ¢ for any small positive number ¢, we have only to consider the case ®(y1,y2) <
(y1 —y2)~ ! for y1 > y2. In the both cases, we have the inequalities for some constant C, from the formula (27):

<
Cayi

s

i/ —1/ tr(uiAwG(h,lD)‘)) + K? /(\IJ(&ui)DAui,D)‘ui)h <Y -
X

(In the case 1, we take any sequence {C5;} such that Cy; — 00). Let ® be as above. Due to the uniform
boundedness of u;, we may assume that ® has the compact support. Then if ¢ is sufficiently large, we have
D(A1, A2) < LU (€A1, 0)2). Therefore, we obtain the following inequality:

C
\/—_l/X tr(uiAwG(h,]D)A)) —|—/X(<I>(ui)]]]))‘ui,D)‘ui)h’w < E

Since supy |u;| is bounded independently of i, there exists a function ® as above which satisfies ®(u;) = ¢ - id,
moreover, for some small positive number ¢ > 0. Therefore, we obtain the boundedness of {u;} in L?. By
taking an appropriate subsequence, {u;} is weakly convergent in L?. Let us denote the weak limit. Let Z
be any compact subset of X. Then {u;} is convergent to us on Z in L?, and hence [, |u;| — [, |uco|. Since
sup |u;| are uniformly bounded, we obtain [, |us| # 0, if the volume of X — Z is sufficiently small. Thus
U # 0. Similarly, we can show the convergence [ tr(u;AG(h,D*)) — [ tr(uscAG(h,D*)). Since {u;} are
weakly convergent to us, in L?, we have the almost everywhere convergence of {u;} and {D*u;} to u., and
D*u, respectively. Therefore {®(u;)D u;} converges to @ (oo )D Moo almost everywhere. Therefore we have

/((b(uoo)D)‘uoo,uoo)h L < li_m/(@(ui)ﬂ))‘ui,ui)h "

due to Fatou’s lemma. Thus we obtain the desired inequality, and the proof of Lemma 2.39 is finished. |

We reproduce the rest of the excellent argument given in [34] just for the completeness. We do not use it in
the later argument. The point is that we can derive a contradiction from the existence of the non-trivial section
Uso as in Lemma 2.39.

Lemma 2.40 The eigenvalues of us, are constant, and u, has at least two distinct eigenvalues.

Proof To show the constantness of the eigenvalues, we have only to show the constantness of tr (gp(uoo)) for
any C*°-function ¢ : R — R. We have (0 + A) trp(us) = tr(D*¢(uc)) = tr(dp(us)D Muss). Let N
be any large number. We can take a C*°-function ® : R x R — R such that ®(y1,y1) = de(y1,y1) and
N®%(y1,y2) < (y1 — y2)~ " for y1 > ya. We obtain trdp(ue)(D o) = tr(P(ties)D uos) due to the first
condition. We obtain the following inequality from Lemma 2.39:

A V-1
/X|<I>(uoo)]D) Uoo|? < —T/Xtr(uooAG(h)).
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Therefore |(0 + A9) tr p(uco ‘L2 = 0. Thus the eigenvalues of us are constant. Since tr(us) = 0 and ue # 0,
Uso has at least two distinct eigenvalues. |

Let k1 < kg < -+ < Ky denote the constant distinct eigenvalues of ue. Then p(us) and ®(us) depend
only on the values ¢(k;) and ¢(k;, ;) respectively.

Lemma 2.41 Let & : R* — R be a C™-function such that ®(k;, k;) = 0 for k; > k;. Then ®(uso)(D M) =
0.

Proof We may replace ® with ®; satisfying ®1(k;,k;) = 0 for ; > r; and N®?(y1,y2) < (y1 — y2)~* for
y1 > 2. Then we obtain ||<I’1(um)]DD)‘umHQL2 < C/N due to Lemma 2.39, and hence we obtain ® (e )DMug, =
(I’l(uoo)]D)Auoo = O I

Let ~y; denote the open interval |x;, ki11]. Let p, : R — [0,1] be any decreasing C'*°-function such that
py(ki) = 1 and py(kir1) = 0. We put my = p,(uco). It is easy to see that 7, is L}. Due to p? = p,, we have
72 = my. We have D’y = dp(toe)D Muse. We put @, (y1,92) = (1 — py)(y2) - dpy(y1,y2), and then we have
(1 —my) oDy = @ (Uoo) © D use. On the other hand, since we have ®.(k;, /;) = 0 (k; > k), we obtain
@, (Uoo) D Muoo = 0 due to Lemma 2.41. Therefore we obtain (1 — m.,) o D*r., = 0.

From (1—m.,)d"m, = 0, we obtain a saturated coherent subsheaf V, such that ., is the orthogonal projection
on V,, due to the result of Uhlenbeck-Yau [43]. From (1 — 7, )d'm, = 0, the bundle V;, is D*-invariant. Since
we consider the case A #0, it is easy to see that V,, is indeed a subbundle of E. Namely, we obtain the A-flat
subbundle (VV,D‘A,W) C (E,DY).

Let us show deg,, (V5, hy)/rank V, > deg,,(E, h)/ rank E for some +y, which contradicts the stability assump-
tion of (E,D*, k), where h, := hy,. From Lemma 2.29, we have

dea(V:) = o1 (VT [ nmGon) - [ 102 12).

We have wog = Ky — || - ™y, where |y| denotes the length of . We put

W = Ky, deg(FE Z |v] - deg(V- 2 g |/\|2 (\/ /tr Uco AG(h /Z|7| 7ry|2.) .

Since D 7., = dp- (oo )DMuco, We have

1 A A
27r1+ |/\|2 (\/ /tr uOOAG /(ZM dp-( Uoo)? - DMuo, D uoo))

We can check Y |v|(dpy)(ki, k;) = (ki — k;) 7! for k; > k; by a direct argument. Therefore we obtain W < 0,
due to Lemma 2.39. Namely we obtain a - deg E < " || - deg(V5). On the other hand, we have 0 = tr(us) =

-rank E — " |v| - rank V. Therefore, we obtain deg(V- )/rankV > deg(E )/rankE for one of ~y, which
contradicts with the stability of (E,D*, h). Thus the proof of Proposition 2.38 is finished. |

2.5.5 Variant 1 of Proposition 2.38

Let C be a smooth projective curve, and D be a simple divisor. Let (E,D*, F') be a A-flat bundle on (C, D). Let
1 be a sufficiently small positive number such that 10 -n < gap(E, F'). Let ¢¢ be a sufficiently smaller number
than 7, for example 10rank(FE)ey < 1. Let we (0 < € < €y) be a Kahler metric of C' — D with the following
properties:

e Let P € D. Let (U, 2) be a holomorphic coordinate around P such that z(P) = 0. Then the following
holds for some positive constants C; (i = 1,2):

AZ o e 2

dz
Crrwe < S0 HE

SCQ'WE
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® w. — wy for € — 0 in the C'*°-sense locally on C' — D.

Let F) be an e-perturbation of F'. See the subsubsection 2.1.5 for the notion of e-perturbation. We discuss
the surface case there, but it can be applied in the curve case. Suppose that we are given hermitian metrics
h® for (E, F'9) with the following properties:

. ‘A%G(h(e),ﬂ)’\ﬂh(e) < (4, where the constant C; is independent of e.
e {19} converges to h(®) for € — 0 in the C™-sense locally on C' — D.

Lemma 2.42 Let s(©) be self adjoint endomorphisms of (E, h(f)) satisfying tr s() = 0 and the following prop-
erties:

. ||3(E)|‘P7h<€)7we < 00. But we do not assume the uniform boundedness.

. }AweG(h(e)eS(E),DA)}h(e) < Cy. The constant C1 is independent of €.

Then there exist constants C; (i = 3,4), which is independent of €, with the following property:
sup [s |0 < Cs + Cy - M(h(), h(es'”).

(Sketch of a proof) The argument is essentially same as the proof of Proposition 2.38. We assume that the
claim does not hold, and we will derive a contradiction. After going to an appropriate subsequence, either one
of the following holds:

Case 1. M (h9), h(e)es(e)) <0 and sups_p |s(9| — oo for € — 0.

Case 2. M(h(é),h(e)es(e)) > 0, sup|sl9| > C’éE)M(h(E),h(e)es(e)), supo_p |89 — oo and C’ée) — oo for
e — 0.

By using Lemma 2.44 (given below) and the argument given in the first part of Proposition 2.38, we can
show that there exist positive constants C; (i = 5,6), which are independent of ¢, with the following property:

sup |90 < Cs + Cs - / 15,0, dvol,, .
C-D

We put £(9) :=||s(9)]| 11 and u() := 5(9) /() The following lemma is the counterpart of Lemma 2.39.
Lemma 2.43 We have a non-trivial L?-section us of Sy with the following property:
o The following inequality holds for any C*°-function ® : R x R — R such that ®(y1,ys2) < (y1 —y2)
for yv > ya:

v =1 b tr (uokoo G(h,(O))) dVOlwo + /C,D (Q(UOO)DA’U,Oo7 ]D))\uoo)hw«'o dVOle S 0

Proof The argument is essentially same as the proof of Lemma 2.39. We have the following, for some constant
053

€ € € € € C
V-1 tr(u( )A,,. G(h ))) dvol,,, +/ (@(u( NDA () DA ))h(g) dvol,, < %
C—-D C—-D CQ

(In the case 1, we take any sequence {C’ée)} such that C’éﬁ) — o00.) From this, we obtain the following
boundedness as in the proof of Lemma 2.39:

/ ID*u? ) dvol,, < Cio.
C—-D

Let us take a sequence of C®-isometries F. : (E,h(€)) — (E, h(?)) which converges to the identity of E, in
the C*-sense locally on C'— D. Remark that the sequence {F,(D*)} converges to D* for € — 0 in the C-sense
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locally on C — D. The sequence {F. (u(e))} is bounded on L? locally on C' — D. By going to an appropriate
subsequence, we may assume that the sequence {u(e)} is weakly convergent in L? locally on C'— D, and hence
it is convergent in L? on any compact subset Z C C'— D. Let us denote the weak limit. We have [, |ul)| —
J; luss|. Hence [, |uso| # 0, when the volume of C'— Z U D is sufficiently small, due to the boundedness of
{sup|ul®|| e > 0}. In particular, us # 0. Similarly, we obtain [, , tr(u9G(h(9))) — [, tr(uscG(h?)).
Since we can derive the almost everywhere convergence ®(u(9)D*u(®) — ® (o) D Muse and ul® — uy, we
obtain [, (®(uee)D e, D Muse) < lim [, (@(u(9)D*ul), D ul®)) due to Fatou’s lemma. Thus the proof
of Lemma 2.43 is finished. |

The rest of the proof of Lemma 2.42 is completely same as the argument for Proposition 2.38. |

We have used the following lemma in the proof.

Lemma 2.44 For any positive number B, there exist positive constants C; (i = 1,2) with the following property:

o Let € be any positive number such that € < 1/2. For any non-negative function f such that A,_f < B,
the inequality sup(f) < Cy + Cs [ f - dvol,,. holds. |

Proof Let (Up,z) be as above for P € D. On Up, the inequality A,,_ f < B is equivalent to the following:

2e 2n
A <B. 27| 2 12| .
wl = ( FRRAAPE

Here gg := dz - dz. Then we obtain the following inequality on Up:
Dgo(f=B-¢) <0, ¢ =]z +][z*".
For any point @ € A(P,1/2), we have the following:

(f- )@ <~ /A AT

™

Therefore there exist some constants C; (i = 3,4) which are independent of €, such that the following holds:

f(Q)§03+C4/f-dvolw€.

Thus we obtain the upper bound of f(Q), when @ is close to a point of D. We can obtain such an estimate
when @ is far from D, similarly and more easily. |

2.5.6 Variant 2 of Proposition 2.38

We will use another variant. Let 7 : C — A be a holomorphic family of smooth projective curves. Let D C C
be a relative divisor. Let (E,D*, F) be a A-flat parabolic bundle on (C,D). We denote the fiber 7~1(t) by C;
for t € A. The restriction (E,D*, F)c, is denoted by (E;,D}, F¢). Let w be a metric of the relative tangent
bundle of C/A such that w ~ 7?|z|?*"~2dz - dz around D. Here 7 denotes a small positive number such that
10rank(E)-n < gap(E, F), and z is holomorphic function such that z~!(0) = D and dz # 0. The restriction wic,
is denoted by w; for t € A. Let h be a C*°-hermitian metric of £ adapted to F' such that |Ath(]D)f‘, ht) |ht <Cy
for any t € A, where a constant C is independent of ¢, and h; denotes the restriction h¢,. The following lemma
can be shown by an argument similar to the proof of Lemma 2.44.

Lemma 2.45 There exist positive constants C; (i = 3,4), which are independent of t, with the following
property.

o Let s be an element of Ph,(Ey) satisfying trs® = 0, ||s®n, p < oo and |Ath(Df‘,hteS(t>)‘ < (.
Then the inequality sup |s®)| < C3 + Cy - M (hy, htes(t)) holds. 1
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2.6 The Integral of the Pseudo Curvature of Non-flat A-connection on a Curve

Let Y be a smooth projective curve, and let D be a divisor. Let (E, F') be a parabolic bundle on (Y, D). Let
D* be a C° A-connection on Ejy_p. In this subsection, we do not assume D* is flat, i.e., (D*)? may not be
0. But we assume that it is flat around an appropriate neighbourhood Up of each P € D, and (F, F,]D)A)‘ Up
is a parabolic A-flat bundle. In particular, we have Resp(D*) € End(E|p). We assume that it is graded
semisimple, for simplicity. For the later use (the subsection 3.5), we calculate the integral of the trace of the
pseudo curvature.

For each P € D, we have the generalized eigen decomposition F|p := P PE, of Resp(D*). We also have
the filtration ©F of E|p. Let us take a holomorphic frame v of Ejy,, which is compatible with (PE,PF). We
put a(v;) := deg®(v;) and a(v;) := deg” (v;). Let h be a C*°-metric of Ejy_p such that h(v;,v;) = | 2| ~2a(vi)
(i = 7) and 0 (i # j). Let us decompose D* = d” + d’. Let us take a (1,0)-operator dj such that d” + dj
is C* A-connection of E on Y. We also assume djv = 0. We put A := d' — dfj, which is a C'"°-section of
End(E) ® Q'°(log D) on Y, and holomorphic around D. We have tr Resp(A) = tr Resp (D).

Let hg be a C*°-metric of £ on Y such that ho(v;,v;)is1 (i =3) or 0 (¢ # j) on Up (P € D). Let s be the en-
domorphism determined by h = hg-s. Then s is described by the diagonal matrix diag(|z|’2a(”1)7 ce |z|’2a(”7‘))
with respect to the frame v on Up.

Although D? is not necessarily flat, we obtain the operators 01, 07, On, On, O and 0;‘1 as in the subsection
2.2.1. We also have D) * = &} — ;. Then we put G(D*, h) := [D*, D} *] for the non-flat A\-connection D*.

Remark 2.46 Since D* is not assumed to be flat, G(h) = —(1 + |/\|2)2/\_1(5h9h) does not hold in general. |

Lemma 2.47 We have the following formula:

v /t G(D* h) = (1 — [A]?) - deg(E Z(2Re (X - tr Resp D) + (1 + |A2) -wt(E,F,P)). (29)
P
We also have the following formula:
v=1 (= , A 1 A\
7/Yatre_ 1+|A|Q§(/\ -tr Resp D +wt(E7F7P)). (30)

Proof By a direct calculation, we have D** = A~*d’ — Xd” — (1 + [A[?) - (A= - 6, + 0] ). Hence we obtain

1— AP

G(D*,h) = D%, D] = —

[, d”] + (1+ [A]?) - DX (=A"105 + 0}).

Therefore we have

‘/_/ tr G(D*, h) = ‘/2__1 (/ 1_A|/\|2 tr[d', d"]+ (1 + |>\|2)/(5+>\8) tr(—/\19h+9;))
m Y

— \/2? (/y 1_A|A|2 trld, ")+ (14 |A|2)/(—xl§“9h “3“92)) -

Recall d” + A~1d)) gives the C*°-connection of (E, F) in the usual sense. Hence A~1 tr[d”, dj)] gives the first
Chern class of E. Therefore we have
A / tr[d, d"] = Y — / 0, d"] 4+ — /8trA Adeg(E —i—ZtrResPID) (32)

Let us consider the integral of dtr6),. Let d},, denote the (1,0)-operator obtained from d” and hg as in the
subsection 2.2.1. Then we have

1 , 1 1

Op=——(d —X-6 -6 A—X-s716;,5).
h 1_|_|>\|2( h) |A|2( ho) +|)\|2( S hos)

25



We would like to apply the Stokes formula to the integral of dtr 0y,. If we do so, dj — /\5;10 does not contribute,
because it is the C*-section of End(E) @ Q1°. We have

/ dtr(A ZtrRebp]D)‘

Since s'4}, s is described by diag(—a(v1),...,—a(v,))-dz/z with respect to v on Up (P € D), we have

\/_—1 _ rank E/
—/ Dtr(s'opos) =D Y —a(v))=—> wt(E,F,P).
™ Jy P =1 P
Therefore, we obtain the following formula:

/1 2
1+|)\| /3tr9 =

A~ tr Resp D +wt(E7F7P)). (33)

In particular, we obtain (30).
Let us consider the integral of 0 tr GT Let 56’ ho (rebp dy.5,) denote the operator obtained from djy and ho

(resp. h) as in the subsection 2.2.1. We have d;/ p— Al = 00 o + 57100 S — Al (See the proof of Lemma
2.21 for the notation “A};” .) Hence we have
1 ~ 1 _
o) = (A" = 8 1q) + (A} = 57108 4y ®)-

1+ |2 1+ A2

Again, we would like to apply the Stokes formula to the integral of dtr@f. Since \d” — 801, 18 @ C*°-section of
End(E) ® Q%! the contribution is 0. As for the other terms, we have the following:

V=1 — V=1 -
—/atrAT =~ trRespD?, 7/ya 5700 ,8) = > Awt(E, F, P).
P P

Hence we obtain the following formula:

o) -
Y1+ |A|2)A/ otro = —Z(/\ -tr Resp DA + |)\|2wt(E,F,P)). (34)
21 Y I
The formula (29) immediately follows from (32), (33) and (34). 1

Remark 2.48 When D?* is flat, we have the relation G(h) = —(14|\|?)2A"10404, and hence the formulas (29)
and (30) give some equality. But we obtain only the well known formulas.

deg(E) +ZRe A~ trResp DY) ZIm A"l trResp DY) = 0.
Such a consideration leads us some results in the surface case. See the subsection 3.5. |

3 Ordinary metric and some consequences

We give a construction of an ordinary metric for a parabolic A-flat bundle on a surface, and we give the estimate
for the pseudo curvature. The construction is essentially same as that for the parabolic Higgs bundle, given in
the section 4 of [30]. Namely, we give the constructions and the estimates around the intersection of the divisor
(the subsection 3.1) and the smooth point of the divisor (the subsection 3.2), and then we immediately obtain
a global construction and estimate (the subsection 3.3). However, we can derive some additional information
about the characteristic numbers in the case A # 0. Hence we give the detail.

In the following of this paper, “parabolic” means “c-parabolic” for some tuple of real numbers ¢, and we
prefer to use the notation (E, F') or E, to denote a parabolic bundle instead of (. E, F') or .E,, as is explained
in the subsection 2.1.6.
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3.1 Around the Intersection of the Divisor
3.1.1 Construction of a metric

We put X := A% D; := {z; = 0}, and D := D; U Dy. We use the metric w, = D icis eNF21212¢72 - dz; - dz;
of X — D in this subsection. Let (E, F,D*) be a graded semisimple A-flat parabolic bundle on (X, D). Assume
10e < gap(E,F). We have the endomorphism Res;(D*) of Ejp,. We also have the naturally induced flat
A-connection ‘D of Ep,, ie., for a section f of E|p,, let us take a section f of E such that f‘Di = f and
DM =D fip,.

When \ # 0, the eigenvalues of Res;(D*) are constant, since Res;(D*) is flat with respect to ‘D*. We have
the generalized eigen decomposition E|p, = P ‘E,. The tuple (1F,2F,1E,?E) is compatible in the sense of [28],
i.e., we have the following:

Fo =@ FuN'Ea, 2Fa(Ej0) = @ *Fa(Ej0) N *Ea(E|0).

[e3%

Here we put 2F (4, 4,)(Ej0) = "F,, |0N*Fay 0 and 2E (4, o,)(E|0) = 'Ea, | 0N?Eq, |o- Let us take a holomorphic
decomposition:

E= @ VUsa suchthat Ean'Fo= @ Usa|p,: 2EanFa=EPUsao-
(a,a)eR2XC? qi((a)ga b<a
qi ()=«

Let us take a holomorphic frame v of E compatible with the decomposition. We put a(v;) := * deg”(v;) and
a(v;) == “deg” (v;). Let h be a metric such that h(vi,v;) = & j|z1| 7241 . | 25| 72%2(¥)  where §; ; denotes 1
(i = j) or 0 (i # J).

One of our main purpose of this subsection (Lemma 3.1) is to show the boundedness of G(h, D*) with respect
to we and h. However, we will also need more close estimate, which relate G(h,D*) and the pseudo curvatures
on the metrized A-connection on the divisors, which we explain in the next subsubsection.

3.1.2 Objects on the divisors
Let ! Gr? (E|p,) denote the graded bundle associated to the filtration !F. We have the generalized eigen

decomposition ! Gr% | (E|p,) with respect to Res; (D). We put 'E, := ' GrEF(Ep,), and 'E := @ 'E,. Due

(a’a)
to the graded semisimplicity assumption, the residue Res;(D*) induces the endomorphism @(a a) Q- id, Bla®

Since !D* preserves LF and 'E, the flat A-connection D* of ' E is induced. We put as follows:

1Ua7a = @ Ua,a

q1(a,0)=(a,)

Then we have the natural isomorphism 'U, | D, = 1Eu, which induces the identification of the holomorphic
bundles 1E ~ Ep,. Let 'h be a metric of E|p, given by 1h(vi‘D1, vj‘Dl) = 5i,j|z'2|_“2(”i). Then the M-
connection 'D* and the metric 'h induce the operators 19, 16 and G(lfy‘, 'h) on 'E. Similarly, we obtain the
metric 2h, 28, 20 and G(*D*,%h) for Ep,,

3.1.3 Estimate

Let us estimate G(h) = —(1 + [A|?)2A~1 (5,21 + 00, + 0%) and 00),. For the projection X — D;, we give the
isomorphism i Ep, ~ E via the frames 7r_1'v|D,i and v. Wepwt I'; :=Pa; - idy, ,, and Q; 1= P o idy, o -

Lemma 3.1 G(D*,h) is bounded with respect to (we, h). More closely, we have the following estimate:

G(D*, h) = mrG(D*, 1) + 753G (2D, 2h) 4 O(|21 13| 22]3¢). (35)
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In particular, 0,0y is bounded with respect to (we, h). More closely, we have the following estimate:

OnOy =} (13(19)) + 75 (25(202)) + O(|21)%¢| 22|9). (36)
We also have the following estimate with respect to we and h:
; 1 dz;
0= (0 e i+ AL - — 1 7
i§2ﬂ—l( )+1+|>\|2i;2(g + ) Z +0(1) (37)

Lemma 3.2 We put Ys := {|z1] =6, |22| > 6} U{|22] =6 |21| > §}. Then we obtain the following:

g%/yé tr(67 - 0}) = 0.

The proof is given in the rest of this subsection.

3.1.4 Preliminary

The diagonal matrix valued functions Hy (k = 1,2) are given by Hy := diag(|zk|‘2“k(”l), e |zk|_2“’v(“)).
We also put H := H; - Ho, and then we have H = (h(vi,vj)), and Opv = v - H '0H. We also have H;, =
(lh(vi‘Dl, vj‘Dl)) and 16U|Dl =vp, -Hk_lﬁHk, for | # k. We also remark H ! (GH/azk) = Hk_1 . (aHk/azk).
The matrix-valued functions A; are determined by D*v = v 3" A;-dz;/z;. Then Res; (ID)A)'U‘Di =vp, 4| D,
and ‘D v|p, = v|p, - Aj| p, - dzj/z; for j # i. The diagonal matrix-valued function A (k = 1,2) are given by
Aﬁ = diag(ak(vl), . ,ak(vr)). We put N; := A; — A%, and N = Y. N; - dz;/ 2.
Lemma 3.3 Let N; denote the endomorphism of E determined by Njv = v - N;.
o We have the estimate |N;|, = O(|z]).

o Let F be an endomorphism of E of the form F = @k(a, ) -idy, ., where k(a,a) denote complex
numbers. Then we have |[F,N;]|, = O(|21]>|z2[*).

o [N, N3]|, = Oz - [22]™).

Proof Nj|p, preserves /E and /F. If i = j, we have N p,("F,) C "F<o due to the graded semisimplicity
assumption. Then the first claim follows. The third claim immediately follows from the first one. The second
claim follows from [F, ;] p, (*F,) C *F., for k =1,2. 1

ln

Remark 3.4 In the following argument, the norm of the matrix is taken for the metric h. Namely, for a matriz
valued function B, we have the endomorphism Fg determined by Fg(v) = v - B. And, the norm of B with
respect to h means the norm of Fg with respect to h.

Lemma 3.5 Lemma 3.3 can be restated as follows.
o N; = O(|z¢|5€) with respect to the metric h.
e Let T be a constant diagonal matriz. Then [T, N;] = O(|z1]%¢|22[%¢) with respect to h.
o [Ny, N3] = O(|zl|5é|z2|5€) with respect to h. |
By a similar argument, we can show the following lemma.
Lemma 3.6 We have the following estimates for (i,7) = (1,2) or (2,1), with respect to (we, h):
ON; dz

cdzj - — = O]z [*¢ 2>

) le . ng
0z; Zi Z1 22

)

The matrix-valued (1,0)-forms Q(5},) and Q(9;) are determined by &jv = v - Q(3}) and Ipv = v - Q(Ip)
respectively. Then we have Q(8,) = H10H and Q(0n) = A(1 + [A*)71Q(d}). The matrix-valued (0,1)-
forms Q(d7/) and © are determined by §)v = v - Q(d)) and v = v - O respectively. Then we have Q(d)) =
NH'OH — Al and © = (1 + [A[2)"1(A — \Q(8},)), where Al = H-'"AH.
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3.1.5 Proof of the estimate (37) and Lemma 3.2

The estimate (37) is easy to see, as follows:

1

1
0O=——
T+ |\]?

d21'
= m -

%

(A= 2Q(6))) (A= XH7'OH) + ) O(|zi]™)

1=1,2

1 dz; e\ 4z
RETRIE S Qi+ M) —+ > Oz )z_' (38)
i=1,2 v

P ;
i=1,2 v

Then we obtain 62 = O(|21/%¢|22|>¢) - dz1 - dz2/z1 - 22 with respect to h, from Lemma 3.5 and (38). Thus we
obtain the following estimate:

le . dzl dZQ le dZQ . dzg
920T =0 5e 5e O 5e 5e
(|Zl| 2 ) 21?22 " (|Z1| &l ) 21 |zf?
Then the claim of Lemma 3.2 immediately follows. |

3.1.6 Proof of Lemma 3.1
Let us show that 52 is small. We have Eiv =v(0Q(0n) + Q(9n) 0 Q(n)). Let us see dQ(0y):

_ A _ _ A
= "~ (NI(H'OH) - 9A}) = — - 0A].
3@(8h) 1+ |)\|2 (/\8( ) ) 0 h) 1+ |)\|2(9 h
We have 9A] = 9(H""AH) = H-'9("A)H + [A}, H"'0H| = H-"{(ON)H + [N/, H"'0H]. Then we know

the following estimate with respect to the metric h, due to Lemma 3.5 and Lemma 3.6:
le . ng

ON =O(|z1f* =) ==, [N,H'0H] = O(|=1* - |=2*) ——

le . ng
Therefore we obtain EA}LL = O(|z1]3¢ - |22/>) with respect to (we, h). Let us see the term Q(95) o Q(Ip):

5 = _ 1 A s -135 T Y15 T
Q(ah)oQ(ah)_§<m) (XH19H — A}, XH'9H - Al

VD N N -
= <W> (—2A[H‘16H, Ni] +2[ALT Nf] + [NJL,N;]) (39)
As in the case of 9Q(0},), we obtain Q(J;) o Q(Ir) = O(|z1[3¢|z2|¢) with respect to (we, h), from Lemma 3.5.
We have (1+ |\%)?© 00 = [A— AH'9H, A— AH~'9H] = 2[N, A — \H'0H] + [N, N]. This can be
estimated in the same way as Q(9) o Q(9},), due to Lemma 3.5. Thus we obtain 6, o 8, = O(|z1 || 22|3°).
Let us see 00,. We have (0,0,)v = v(90 + [Q(9), ©]). We have 90 = —X- (1 + [A|?)~1-0Q(d},) =0 by a
direct calculation. We also have the following;:

Q@) 0] = m Q). A~ Q)] = [z VH1OH — 4], A= AH o8]
= m ([XH’@H — AT, N] = [Nf, A" = AH'0H] - [N;,N]). (40)

The boundedness of the right hand side easily follows from Lemma 3.5. Moreover, we can see that the terms
containing dz; - dz; (i # j) are dominated as O(|21]3¢|22|3) with respect to (we, k).

Let us see the terms containing dz;-dz; more closely. Let As = >~ Ay ,, v be the decomposition corresponding
to E=@'U,. We put 45 :=>" As,,, and A% := Ay — A, Then we have 1DA'U‘D1 =v|p, -Ag‘Dl-dzg/zg. We
have the following with respect to h:
ng

AQ = WT(A:S\Dl) + O(|Zl|56|22|55) ~
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Hence we obtain the following estimates:

t dzg dZQ

NH Y9 H — (o)) =2, Ap—2 — NH 10, H
zZ9 Z9
v |~ rr—1% dz dz _ . o dzo - dZ
=i |8 Bt = (4 S 5, T2 - M ] 4 Ol SR (0

Here 02 H denotes (0H/0z5)-dZz5, and the meaning of d H is similar. We have a similar estimate for [XH -19,H—
(Al)}:, Ay — /\H_lalH]. On the other hand, we have the following formula for 19(*6), as in the case of 9,0},
(see (40), for example):

_ - = dz dz _
(16(19))U\D1 = ’UlDl |:)\H2 182H2 — (A§|D1)Ihz_227 Anglz_j — )\H2 182H2:| . (42)

Thus we obtain the estimate (35). Since we have already shown that 3 and 62 are sufficiently small, we also
obtain (36). |

3.2 Around the Smooth Part of the Divisor
3.2.1 Construction of a metric

Let Y be a complex curve, and let 7 : L — Y be a line bundle over Y. Let | - | denote a hermitian metric of
L. We use the same notation to denote the induced hermitian metric on #*L. Let DL := {(y,s)||s| <1} C L.
Let o denote the canonical section L — 7* L.

Let Jpr, denote the natural complex structure of DL. We denote by d and 0 the natural (0, 1)-operator and
the (1,0)-operator respectively. Let J denote a given integrable complex structure of DL such that Jpr —J =

O(|o|). We use the notation @ and 8 to denote the corresponding (0, 1)-operator and (1,0)-operator. We put

sy =0—0=—-0+09. For any point @) € Y, we take a holomorphic coordinate (Ug, 21, 22) around @ with
respect to J such that z;'(0) = Ug NY. For a real coordinate (zy,xs,23,24) given by 21 = @1 + /—1aa,
29 = w3 ++/— 124, we have the expression sy = > fij-dx;- 0y, +> gj-dxj, where f; ; and g; are C*°-functions
such that O(|#]).

Let (E, F,D*) be a parabolic flat A\-connection on (DL,Y’) with respect to J, which is assumed to be graded
semisimple. We have the decomposition D}, = J’é + J’E We put Ey := Ejy. Because of A # 0, the eigenvalues
of ResD* are constant, and hence we have the decomposition Ey = @ E,. We have the parabolic filtration F
of Ey. We put Ey7(a7a) = GrlE (Ey) and Ey = @Ey’(a)a). We have the surjection E, N F, — Ey7(a7a).

(a7a)

By taking a C°°-splitting for each (a, ), we obtain the C'*°-identification Fy ~ By. We put 8" :=df,, — d%y.

We can take a C™-isomorphism @ : E ~ 7* By for which T := ®(d)y) — d’. gy is small in the following sense.

(T is small) For each @ € Y with the holomorphic coordinate (Ug, z1,22) as above, we have the following
expression, where F; ; and G; are C*°-sections of End(7* Ey ) such that F; ;|y = G|y = 0:

T:ZE,j'dﬂii@%‘FZGj'dmja
J

In the following argument, we identify £ and 7* Ey via ®. Let us take a C°°-metric hy, (4 ) of Ex(a,a), and
we put hy := @(a,a) hy q,o- We put as follows:

W =1hy =@ 7 hy ey h=EPT by, a) - lo] 7>

Let w be a Kahler form with respect to J. We put w, = w + C - €¥/=198|0]2¢, where € be a small positive
number such that 10 - € < gap(E, F).

Our main purpose of this subsection is to show that G'(h, D) is bounded with respect to h and w, (Lemma
3.8). However, we would like to derive a more detailed estimate relating G((h,D*) and the pseudo curvature of
the A-connection on Y, which we will explain in the next subsubsection.
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3.2.2 The induced A-connection on the divisor

We will often use the index u to denote an element (a,a) € R x C. We put E, := W*Ey’u. We also put
Q:=@a-idp, and I := @, , a - idp,, We have the A-connection D* := D* — Q - dlog|o|*, which is not
necessarily flat. It gives the map:

C®(E) — C*(E®Q"Y(logY)) & C=(E @ Q%').
Lemma 3.7 D* induces the A-connection D)‘EY of Ey, which is also not necessarily flat.

Proof Let @ be a point of Y, and (U, 21, 22) be the holomorphic coordinate as above. Let f be a C'°°-section
of E on Uq such that fjyny, € Fu(E). Let us decompose:

~ d
DM = flzill + f1dz1 + fodzo + fordZo.

Due to the graded semisimplicity assumption, we obtain the following:

fiiyaug € F<a(E),  fa)vnu, € Fu(E), (k=1',2,2").

Let us see that (f2 - dza + fo - dZ2)yny,, is well defined, i.e., it is independent of a choice of the coordinate

(21, 22). Let (w1, ws) be another coordinate such that wl_l(O) =Y NUg. Then we have dz1/z1 = dwi /w1 + g1,
where g is a C°°-one form. We also have dz; = dw; + g1/, where g1 is C°° such that gi/|y,ny = 0. Then the

claim immediately follows from g1/|y,ny = 0 and fi|y,ny € F<q. Therefore the A-connection ]D)% on Ey are
Y
induced. |

3.2.3 Estimate

Lemma 3.8 G(D?*, h) is bounded with respect to (we, h). More closely, we have the following estimate:

G(D* h) = 7"G (D%, hy) — (AQ +XQ + (1 + [A*)T) .98 log |o]? + O(|o|). (43)

We also have the following estimate with respect to (we,h):

Opnlen = ”*(gﬁy,hyeﬁy7hy) + (Q + AT") - ddlog |o|? + O(|o|) (44)

1+ A2
We also have the following estimate with respect to we and h:

1

TW(Q+/\F)~510g|J|2+O(1). (45)

0y, = ﬂ—*aﬁy,hy +

Lemma 3.9 We have the estimate Q%EJL = O(|o|>¢) with respect to (we,h). In particular, }ir% fyé tr(9267) = 0,
where we put Ys := {|o| = 0}.

The proof of these lemmas are given in the rest of this subsection.

3.2.4 Preliminary

Let DM/ denote the associated connection to D*, i.e., DM = dy + A’ldjg. Let ]D)%i be similar. Let W*D%}Jj
denote the connection of E induced by D%z Then DM/ — ﬁ*D%’}{ is a C°°-section of End(E) ® Q1%(logY). We
have the expression DM/ — W*D%j = A"1Q-dlog|o|> + M. Then M is a C*-section of End(E) @ Q10(log V).
Moreover, we decompose it as follows, around Q) € Y:

d dz
M=M - My Z My dzy + My - dZs, Me=Y Myuuw, M € Hom(E,, Ey).
z1 Z1
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Then we have M, ., v/|ynu, = 0 for any x, unless a > a’ and o = ¢/, due to our construction of ID)i*E .
~ - Y
Recall d = d” . + T + n*S". Hence we have D — m*DY = T 4+ 7*S" 4 A\~'(d), — d'_ - ), and we
T By Ey m*Ey
obtain the following:

Iy =d_.; + Q- dloglo* + N(M =T —7°5").

Let T'= > Ty be the decomposition corresponding to £ = @ E,,. Weput T? := > Ty, and T" =T —T".
Then TP is a differential operator of order 1, which satisfies the twisted Leibniz rule T?(fv) — fTP(v) =
sy (f)v, and T" is a C*-section of P, _,,, Hom(Ey, Eyr). Let T be the operator determined by sy (h(u,v)) =
h(TPu,v) + h(u, T} °v). We remark the twisted Leibniz rule T} °(fv) — fT%°(v) = —sy(f)v. Similarly the

operator TF,° is defined from 7% and h'. Then we have the relation:
TP =T +T - sy (log|a|?).

Since we have df, = d .5 — AP — Qdlog|o|?> + A(M — T" — 7*S") and d)j = d 5 + TP+ T+ 775", we
obtain the following formula:

= 8 5y o — NS = Qdlog|o|> — TAdlog 0|2 — X(M — T" — 7*S")} |
S = O gy TN = I'dloglof> — (T" +7*S")} .

3.2.5 Proof of the estimate (43)
We put as follows: B
D, = Di*gy + (1 =NT?, Dy:= D;::Ey,h/ + 1+ NS,
Ri=AM + (1 =N (T" +7°8"), Ry:=—(1—N(T" +7*S")} + M.

Then, we have the following equality:
G(D*, h) = D, D}*] = [Dy + Qdlog o]? + Ry, Dy + 0Cdlog o2 — (9 —Ad)log|o2 + Ra].  (46)
Let us see the right hand side of (46). We have the following;:

1D =GB}, ) + [0 V1B, ] + B

E B Mg (LENTE] 4 [(1 = NT7, (1+NTE].

Since G(D*, h) and W*G(]D)% , hy) are C'*°-sections, it is easy to see that the summation of the last three terms
Y
is also just a C*°-section of @ End(E,) ® Q2. Moreover it is O(|o|>¢) with respect to w. and h, since T is small.

By a direct calculation, we obtain the following equality:
[Ds, @-510g|c;’|2 — F(g— - 5) log |o*|2] + [leog lo|?, Ds]
= (M +0)dlog|o> - T— (A +0)(@—X-9)log|o2 - T + (8 — A)dlog|o]? - Q
= —(AQ+XQ+ 1+ [\HT) - ddloglo|®.  (47)
We decompose R; = > Ry corresponding to P E,,, and we decompose R; . as follows:

dz1 dzq
,R'i;u,,u’ = Ri,u;u/;l Z_ + ,R'i;u,u’;l’ = + Ri7u,u’;2dz2 + Ri,u7u’;2’dz2'
1 1

Let us see Ri. Then Ry y ks is a C®-section of Hom(E,, E,), and we have Ri (a,a),(a’,a’)ix|YrUg = 0
unless @ > a’ and o = /. Hence we obtain Ry = O(|o|>¢) with respect to (w, k), and it is easy to check
[Da, R1] = O(|o]¢) with respect to (we, h). On the other hand, Ry u/;x h w01 7207 where RY , .,
are C*-sections of Hom(Ey, Ew) and R (, o) (4 a7y | yru, = 0 unless a < a’ and o = . Hence we can easily
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obtain Ro = O(|o|*¢) and [D1, Ra] = O(|o|>¢) with respect to (we, h). In particular, we also obtain the following
estimate with respect to (we, h):

[R1,Ra] = O(lo>), [N Q- dlog o], Ra] = O(|o|*),

[R1, X- T dlog|of2 — I'(8 — 39) log |o[2] = O(|o]™).
In all, we obtain (43). 1

3.2.6 Proof of the estimates (44) and (45)
We put §; := —)\(Tp + TP —M+T" +7*S" + (T + W*S/I)L). Then 6z 5, can be described as follows:

g7 N * 1 3 2
O = e = Nen) =705, 4, + w((Q FAL) - logof? — 31). (48)

We put as follows:

_ 1 1
Dy:=0 .5 ,, +—-(TP — |\?-TE?), & := T 4+ 78" — | A\2(M —T" —7*8")1).
3 ﬂEY’h+l+|)\|2( | | h )7 2 1+|>\|2( + | |( T )h)
Then EE,h is described as follows:
Opp = L(J” +A\3)) =D3 — #(§+Xr)510g|o—|2 +S
Eh T Ty o PTIHN *

Therefore we obtain the following:

OpnlEn = [D3,7T*9E},’hy] + (Q+ D) -gglog|a|2 + [Ds3, 8]

1+ |A=?

1 — .= . 1 ~
- 1TE RE [(Q + M)A log |0|2,S1] + [52,71' GEYJll} + T DE RE [82, (Q+ AT')dlog |0'|2] + [S2,81)- (49)

We have [D3, 705, | =705 05, , )+ A+A)HTP =N T0°, 705,
term is O(|o|>¢) with respect to (we,h). Since S; is a sum of the small diagonal term T? + T%,° and the term
of the forms which are similar to Ry and Ra, we can obtain S; = O(|o|>¢) and [D3, S1] = O(|o|>¢) with respect
to (we, h) similarly. In particular, we obtain (45) from (48). We obtain a similar estimate for Sp. Hence the

remaining terms are also O(|o|>¢) with respect to (we, k). In all, we obtain (44), and thus the proof of Lemma
3.8 is finished. |

]. Since T is small, the second

3.2.7 Proof of Lemma 3.9

We have (705 h1)2 =0 due to dimY = 1, and hence we obtain the following from (48):
0% =205, , . S1]+2(1+ [A?)T(Q+ AD)dlog o], 81] + [S1, 1]

Thus we obtain Lemma 3.9. |

3.3 Global Construction of a Metric
3.3.1 Setting

Let X be a smooth projective surface, and D be a simple normal crossing divisor with the irreducible decompo-
sition D = | J;cg Di- Let L be an ample line bundle on X, and w be a Kahler form which represents c;(L). For
any point P € D; N D;, we take a holomorphic coordinate (Up, z;, z;) around P such that Up N Dy, = {z1 = 0}
(k =1i,j) and Up ~ A? by the coordinate. Let us take a hermitian metric g; of O(D;) and the canonical section
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O — O(D;) is denoted by ;. We may assume |o4|2 = |z[* (k =4,j) on Up for P € D; N D;. Let us take
a hermitian metric g of the tangent bundle T'X such that g = dz; - dz; + dz; - dz; on Up. It is not necessarily
same as w, and not necessarily Kahler. The metric g induces the exponential map exp : TX — X.

Let Np, X denote the normal bundle of D; in X. We can take a sufficiently small neighbourhood U/ of D;
in Np, X such that the restriction of exp|y gives the diffeomorphism of U/ and the neighbourhood U; of D; in
X. We may assume U; NU; = HPeDij Up and U; = {|oyy < 1}.

Let p; denote the diffeomorphism expy, : U; — Uj. Let m; denote the natural projection U; — D;. Via
the diffeomorphism p;, we also have the C°*°-map U; — D;, which is also denoted by ;. On Up, 7; is same as
the natural projection (z;, z;) — 2;.

Via p;, we have two complex structure Jy; and Jy, on U;. Due to our choice of the hermitian metric g, p;
preserves the holomorphic structure (i.e., Jy; —Ju, = 0) on Up. The derivative of p; gives the isomorphism of the
complex bundles T(Np, (X)) p, ~ TD;®Np, X ~ TX|p, on D;. Hence we have the estimate Jy —Jy, = O(|oi]).

Let € be any number such that 0 < e < 1/2. Let us fix a sufficiently large number N, for example N > 10.
We put as follows, for some positive number C' > 0:

We ;:w—|—ZC-6N . \/—135|0’¢|Zf. (50)

It can be shown that w. are Kahler metrics of X — D for any 0 < ¢ < 1/2, if C is sufficiently small,

Remark 3.10 Let 7 be a closed 2-form on X — D which is bounded with respect to w.. Then the following

formula holds:
/ w-T= / We * T.
X-D X-D

In particular, we also have [ pw? = [ w?. |

In the case ¢ = 1/m for some positive integer m, it can be shown that the metric w, satisfies Condition
2.28. The Kahler forms w, behave well around any point of D in the following sense, which is clear from the
construction:

o Let P be any point of D; N D;. Then there exist positive constants C;(€) (i = 1, 2) such that the following
holds on Up, for any 0 < e < 1/2

Cr we < V-1-€N12. dzi - % + dzj - dz;
T 2272 " |z4]22

) + \/—].(dZi -dz; + de . dfj) < (Cs - we.

e Let @ be any point of D; \ Uj# Dj, and (U, w,w2) be a holomorphic coordinate around @ such that
UND,; = {wy = 0}. Then there exist positive constants C; (i = 1, 2) such that the following holds for any
0<e<1/20nU:

dwy - dw
C1we < \/—1'€N+2' (u) + v—l(dwl-dwl —l—dwg'dQDQ) < (O - we.

[wy |22

3.3.2 Construction of a metric

Let (E, F,D) be a graded semisimple parabolic A-flat bundle. For simplicity, we consider only the case A # 0.
We will recall the construction of an ordinary metric hg for (E, F) ([30], for example). For each point P €
D; N D;, we may assume that there is a decomposition, as in the subsection 3.1:

By, =P Vaa- (51)

We take a holomorphic frame v of E|y, compatible with the decomposition (51) for each P. We can take a
C*°-isomorphism ‘® : 7} (E‘Di) ~ F on U, satisfying the following:
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o i@(dz*(E‘D‘)) — d' is small in the sense of the subsection 3.2.1.

o The restriction of ‘® to D; is the identity.
e For P € D; N Dj, the restriction of ‘® to Up is holomorphic such that ‘® (7} (v|p,nv,)) = v.
We take the C*°-decomposition E|y, = @ ‘E,, as in the subsection 3.2. We may assume the following on Up:
iEu|Up = @ PUa7a'
gi(a,a)=u

Here (a, o) denotes an element (a;,aj, o, o) € R? x C?, and ¢;(a, @) denotes (a;, ay).
We can take a hermitian metric h{, of E satisfying the following conditions:

o We have h((vg,v;) = Oy, e, it is 1 (k =1) or 0 (k # 1) on Up for P € D; N D;. In particular, the
decomposition Ejy;, = @ F'Uq,q« is orthogonal.

o Ejy, = @"E, is orthogonal with respect to h{. Thus we have the decomposition hy = @ *h!, on U;.

e We put hyp, := hg| p,- Then we have ‘®(myhyp,) = hy on U;. Note that we have the decomposition
hop, =@ hup,-

We put Dy := D, \ Uj# Dj. By modifying h{ p , we take a C'*°-hermitian metric ho p, of E\pe satisfying
the following;:

e The decomposition Ejpe = PDE, | pe is orthogonal. Hence we have the decomposition ho p, = D hu b, -
e For P € D; N D;, we have hop,(vg| p,, 01| ;) = Skalzj| 2% (W) on Up N DS.

Then we can take a C'°*°-metric hy of E on X — D satisfying the following conditions:
o ho(vg,v) = 5k,l|z¢|_2“i(”k)|zj|_2“f(”’“) on Up\ D for P € D; N D;.

e The decomposition Ejy\p = @an7a|U'i\ p is orthogonal with respect to hg. In particular, we have the
decomposition hg = @ *hy, on U; \ D.
® gy = T h(a,0),D; 103l

Such a hermitian metric hg is called an ordinary metric of (£, §).

3.3.3 Estimate and some formula

We put Q; := B, 4 a - idig,, and I'i == P, , @ idig,, on Ui. We put Eupi = iGrf’E(Ewi) and
EDi = @Eu p,- Now it has been identified with E|p, in the C*°-category. Recall that we also obtain the
A-connection D%)i of Ep,, which is constructed as in the subsubsection 3.2.2. It is flat around P € D; N D;. As

before, HA))bi and the metric ho, p, induce the operators 9 and 0 of Ep,.
Let € be a sufficiently small positive number such that 10-¢ < gap(E, F'). Combining Lemma 3.1 and Lemma
3.8, we obtain the following proposition.

Proposition 3.11 G(D*, hy) is bounded with respect to (we, ho). Moreover, we have the following estimate with
respect to (we, ho), on U; \ ((JUp U D):

G(D*, ho) = 7rG(D), hop,) — (AQi +XQ; + (1 + [AH)T;) - 9dlog loil2, + O(loil30),

Do = 77 (0(0)) + (Qi + AL;) - 90log || + O(|oi] ).

1
1T+ |A]2?

L x (1 # . . 12
Ono = m; (*0) + e (Q; + AL;)dlog |o;|* + O(1).
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On Up\ D for P € D; N D;, we have the following estimate:
G(D*, ho) = m;G(D), . hop,) + G (D, hop,) + O(|oy|*|o;[*),

3hooho = Z ﬂ-l: (kg(ko)) +O(|Ui|3€|aj|3é)'

k=i,
N 1
Ony, = Z 7Tk(k0) + Z W(Qk +AT) - 810g|0’k|2.
k=i,j k=i,j
We remark 00 log |0-i|§i =0onUp\D for Pe D,ND,. |

From the lemmas 3.2 and 3.9, we obtain the following proposition.
Proposition 3.12 We put Y5 := {2z € X | min; |o;|(z) = 6}, and then we have fY5 tr(t9,210 . 9};0) — 0 for
0 — 0. |
Corollary 3.13 The following equality holds:
1
tr(R(ho)?) = 7/ tr(G(ho)?).
Jep R 0) = G e(G00P)

As a result, we have the following formula:

V=IO 1 )
tr(G(h = -ch,(E, F). 52
< ot (1+|>\|2)2 ~/X—D I’( ( 0) ) /Xpa'rc 2( ) ( )
Proof The second equality follows from the first equality and the proof of Proposition 4.4 of [30]. Due to
Lemma 2.25, we have only to show the vanishing fgtr(GiDO;flo) = 0, which is given in Proposition 3.12. |

Remark we can show the following equality similarly:

CE L (28 - (2 [ o= s

Corollary 3.14 Let 7 be any C'* two form on X. Then we have the following equalities:

V-1

2r Jx-p

\/—1 tI‘G(ho)
27T X—D 1 + |)\|2

tr R(ho) - 7= /X(par—cl(E,F) 7)) = /X <01(E) T = Zwt(E7F,i) -[D;] - 7') .

€S

ST = —/ Z(/\*l tr Res; D* + wt(E, F,i)) - [D] - 7.
Xies

Proof The first equality follows from the estimate of tr R(ho) given in the proof of Lemma 4.28 of [30]. The
second equality follows from the relation of G(hg) and 96y and the estimates of §y given in Proposition 3.11. 11

Corollary 3.15
v—1 v—1
— tr R(ho) - we = —— tr Glho)

-d E F)= il Vs 75
par egw( ’ ) 27'(' X—D 27T X—-D 1+|)\|2

CWe.

Proof The second follows from Lemma 2.24. The first equality follows from Lemma 4.18 of [30] and Corollary
3.14. 1

In particular, we obtain the following equality of the cohomology classes from Corollary 3.14:

c1(E)+> Re(A'trRes; DY) - [D;] =0, Y Im(A~'trRes; DY) - [D;] = 0. (53)
€S €S
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The first equality implies the following:
par-c, (E,) = — Z(Re()\_l tr Res; (D)) + wt(E., i)) . [Di]. (54)
Especially, we obtain the following formula:

par-deg  (E,) = — X:Re(/\_1 tr Res; (D)) + wt (E*,z)) - (Dy,w). (55)

Remark 3.16 It can be shown that these equalities hold for any parabolic \-flat bundle (E, F, D) which are
not necessarily graded semisimple, by using the method of perturbation of the parabolic structures. They can
also be derived from a similar formula for the curve case and the fact that the Neron-Severi group NSY(X)® R
can be embedded into the rational cohomology group H?(X, R).

3.3.4 The relation between the pseudo curvature and the data at the divisor

Recall [, tr G(h)! =0, when X is compact ([36]). In the case where X is not compact, such a vanishing does
not hold, in general. But we can derive some formulas for | x_ptr (G (hO)Q) by the same way. For simplicity of
the description, we put as follows:

u=(a,a), r(i,u):=rankp, E, p, = rankp, iGrij(E‘Di), d(i,u) := degp, E, D;- (56)

We also put r(P, u;,u;) := rank ¥ Gr[," . (Ejp). Let KMS(i) denote the set of the KMS-spectrum of (E, F,D*)

(i, uy)
at D;. Let KMS(P) denote the set of the KMS-spectrum at P € D; N D;. (See the subsection 2.1.2 for the
KMS-spectrum.)

Lemma 3.17 We have the following formula:

(5 fram-

Y —(la+xat 1+ APa) ((1 — AR) - d(,u) — (i) - (14 AP)a+ 2Re(Xo¢))[Di]2)
i€S ueKMS(4)

+ Z Z Z (A a4+ @ + (1 + [MPai) - (14 |AP)a; + 2Re(Aeyy)) - r(Pui, uj).  (57)
€5 A (uiuy)EKMS(P)
PeD;ND;

Proof Since we have D*G(ho) = 0 and G(hg) = (1+|A|?)- DA (—=A~10y, —|—9}:0), we obtain the following equality:
tr(G(ho)?) = (1+ [A]%) - (D + A0) tr((—xleho +0) ) G(ho)).

We decompose G(hg) = G*Y 4+ Gt + G2, where GP+? are (p, q)-forms. Then we have the following:

tr G(hO)Q

W = dtr(—,\—lohO . Gl,l) _ dtr(9h0 ,GO,Z) —|—dtr()\t9};0 .Gl,l) + dtr(ﬂ,];o ) GQ’O).

We would like to apply the Stokes formula to the integral of tr G(hg)?. Since G(hg) is bounded with respect to
ho and we, and since we need (1, 1)-form for the integration over complex curves D, it is easy to see that the
only terms d tr(—A"'6p, - G*') and dtr()\GLO - G'1) can contribute. Namely, we have the following equality:

/tr(G(h0)2) —(1+ |A|2)/dtr((—x19ho +26)) -Gl’l).

We also remark the following estimate on U; \ Up with respect to (we, ho), which follows from Proposition 3.11:
1

A, A0 = TP ((—A‘lQi —Ti) - Ologloil?, + (AQi + |APT) -510g|0i|§i) +0(1).
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Similarly, on Up (P € D; N Dj), we have the following:

1 — —
_>\_10h0 +A- 9};0 = TMP Z ((—A_lgk —T%) - dlog |Gk|£2]k + ()\Qk + |)\|2Fk) - 0log |Uk|£2]k) +0(1).
k=i,j

Then we obtain the following equality due to Proposition 3.11:

<§)2/ -3 % (A*la—Aa—(Hw?)a)x

i€S ueKMS(i
v—=1

o (/ trG(]ﬁ))‘E hup,) —r(i,u) - (a4 da+ (1+ \)\|2)a)/ 5810g|0i|§i) . (58)
D; D D;

i

Recall we have /— fD 90 log |42, = [Di]?>. Due to the formula (29), the right hand side of (58) is
rewritten as follows.

=Y (A XE (L4 A)a) - ((1 — AR - d(i,u) — (i, u) - (1 + [A2)a + 2Re Xa) - [Di]2)
+Y D (et Aaa+ (14 [AP)a) - (ZRe(XtrReSPD%DM) + (14 |/\|2)wt(EDi,u*,P)). (59)

i,u PeD;

Here EDi « « denotes the parabolic bundle which is a pair of the vector bundle Ep, ,, » with the naturally induced
parabolic structure. We remark the following equality:

Y Y (v laam (14 APa) - (2Re(XtrResPD%Diyu) +(1+ |,\|2)Wt(EDW*,P))

1€S ue KMS(i) PED;

=> > > (A ag +23@ + (14 [Ma:) - (14 [M?)a; +2Re(Ray)) - 7(P,us,ug).  (60)
i j#i (ui,u;)EKMS(P)
PeD;ND;
Then we obtain (57). |

Lemma 3.18 We have the following equality:
tr(G(ho)?) = A2+ (L4 |A]*)* - 9tx(hg - OnoOhno)- (61)

Proof We have tr(G(ho)?) = (1+|A[2)*- 272 (tr(5h09h0)2 + 2t1r(5,21D : 9%0)). We also have the following:

_ — — =2 = =2

6tr(9h0 . 6h09h0) = tr((ahoaho)z) - tr(9h0 . [6h0, Hho]) = tr((ahoaho)z) + 2tr(6h0 -9%0),
Then (61) follows. 1
Lemma 3.19 The following formula holds:

<\/2?)2/ +|)\| Z Z Z At +a) (N ey +aj) - r(Poug,ug)

€S Jj#i (us,u; ) EKMS(P)
PeD;ND;

+> > riw)-(Wa+a? D (62)

i€S ueKMS(i)

Proof From Proposition 3.11, we obtain the following;:

a+da /-1 i a+ Aa . = 2
<27T ) /atr Oho-Ono O ) ZZHMP o </Ditr(80u)+m-r(z,u)-/[)i3310g|az|) (63)
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By using (30), the right hand side hand can be rewritten as follows:

ZZ 10;—7)3? <Z(trReSPi]Df‘L + /\Wt(EDiu*;P)) + (o + Aa) - (i, u) - [D¢]2>
P

DS 3 i +Aai)(ay + Aa;
B . jL(l(:—)l(sllé)j2L ) (P uy)
i j#i (ui,uj ) EKMS(P)
PeD;ND;

+ Y %-r(i,u)~[17¢]z- (64)

i ueKMS(i

Then (62) follows from (61). 1

3.4 Preliminary Existence Result of a Hermitian-Einstein Metric
3.4.1 Hermitian-Einstein metric for graded semisimple A-flat parabolic bundle on surface

We use the setting in the subsection 3.3.1. Let X be a smooth projective surface with an ample line bundle L and
a simple normal crossing divisor D. Let (E, F,D*) be a A-flat bundle on (X, D), which is graded semisimple
and pp-stable. Let w be the Kahler form representing c¢i(L). Let € be a small positive number such that
10 - e < gap(E, F). The metric w, is given by (50). Let hg be an ordinary metric constructed in the subsection
3.3.2.

Lemma 3.20 We can construct a hermitian metric h, for E|x_p which salisfies the following conditions:
e h;, is adapted to the parabolic structure F'.
o G(hin,D*) is bounded with respect to hi, and we.

o LetV be any saturated coherent subsheaves E|\x_p, and let my denote the orthogonal projection of E\x_p
onto V', which is defined outside a finite subset. Then D my is L? with respect to hiy and we, if and only
if there exists a coherent subsheaf 1% of E such that ‘7|X_D = V. Moreover we have par-degw(f/, Fy) =
degwe (V, hm)v),

o t1G(hin, D) - we = (1+ |\|?) - a-w? for some constant a. The constant a is determined by the following

condition:
Vv—1 v—1
a-—— w=a-~— | w?=par-deg, (E,F). (65)
27T X—D 27T X

e The following equalities hold:

(§>2/X_D%:/Xgpapch2(lﬁ,1’)’ (g)zfx_D (1(+|>\|2))22 :/Xpar—C%(E,F).

o Let s be determined by hip, = ho-s. Then s and s~ is bounded, and D*s is L? with respect to hg and we.

Due to the third condition, (E,hi,,0) is analytic stable with respect to we, if and only if (E, F, D) is ur-stable.
The metric hyy, is called an initial metric.

Proof We have only to modify an ordinary metric hg to hg - €X for some positive scalar function y so that
tr G(ho) - we = a - w? holds. Once we have obtained the estimate as in Proposition 3.11, it can be shown by the
argument given in the subsection 6.1.3 of [30]. (In the case A # 0, we can use Lemma 2.7 for the prolongation
of subsheaves to show the third property, and hence the proof is a little easier.)

Proposition 3.21 There exists a hermitian metric hgyg of (E,D*) with respect to w. satisfying the following
properties:
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Hermitian-FEinstein condition A, G(hpg) = a holds for the constant a determined by (65).

par'degL (E7 F) = degw (E7 hHE)

We have the following formulas:

VN [ e(Clhe)?)
<27r ) /X_D 1+ [\2)2 —/XZpar—ch2(E,F), (67)

(66)

hyg is adapted to the parabolic structure F'. More strongly, let s be determined by hgyg = hip -s. Then s
and s~ are bounded with respect to hi,, and D*s is L2 with respect to h;, and we.

Proof It follows from Lemma 3.20 and Proposition 2.31. |

3.4.2 Bogomolov-Gieseker inequality

Let Y be a smooth projective variety of any dimension Let L be an ample line bundle on Y, and let D be a
simple normal crossing divisor.

Corollary 3.22 Let (E.,D*) be a py-stable reqular filtered \-flat bundle on (Y, D) in codimension two. Then,
Bogomolov-Gieseker inequality holds for E.. Namely, we have the following inequality:

-chy 1 (E,) <
/Ypar chy 1 (E-) < 2rank £

Proof Similar to Theorem 6.1 of [30]. Namely, since we have the Mehta-Ramanathan type theorem (Proposi-
tion 2.8), we have only to prove the claim in the case dimY = 2. Due to the method of perturbation of parabolic
structure, we have only to prove the inequality in the case (E, F,D*) is a graded semisimple p7-stable parabolic
A-flat bundle on (Y, D). Then we can take a Hermitian-Einstein metric hgg as in Proposition 3.21, for which
we have the standard inequality (See Proposition 3.4 of [34]):

/ tr(G(hgp,DM)*2) > 0. (68)
Y—-D

Here G(hgp,D*)* denotes the trace free part of G(hgp,D*). Hence we obtain the desired inequality from
(68).

3.5 Some Formulas and Vanishings of Characteristic Numbers

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X. We obtained
some formulas for [, par-chy(E, F) when (E, F,D?*) is a graded semisimple parabolic A-flat bundle on (X, D).
By using them, we will derive some formulas and vanishings for (E, F,D*) which is not necessarily graded
semisimple in this subsection. We will use the notation given by (56).

Remark 3.23 We restrict ourselves to the case dim X = 2 just for simplicity. The formula can be obviously
generalized for [, par-chy (E, F) of reqular A-flat parabolic bundles (E, F,D*) on (X, D) in codimension two
for dim X > 2, where L denotes a line bundle on X. |
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3.5.1 Formulas of fX par-chy(E, F') in terms of the data at the divisor

To begin with, we remark that we have only to show such formulas for graded semisimple parabolic \-flat
bundles, due to the method of perturbation of the parabolic structure (the subsection 2.1.5). We will use it
without mention in the following argument.

Proposition 3.24

/X2par —<h,(E, F) Z Z (Re(A ') —|—a) r(i,u) - [Di]®

€S ue KMS(4)

+Z Z Z (Re Ao +a;) (Re A oy + aj) - r(Pug, uy). (69)

i€S A (uiuy)ECMS(P)

PeD;ND;
We also have the following:
2 par-chy (E, F) Z Z Re(A '+ a) - par-deg(Ey p, «)- (70)
1€S 1€EKXMS(3)

Here E,, p, « denote the parabolic bundle which is the pair of Ey, p, with the naturally induced parabolic structure.

Proof From (52) and (57), we obtain the following equality:

A la+ 2@ -2 ; 2ReAa 2
2par-chy (B, F) = - Y [ —ri— ' - ' Tepe) P
/X par-ch, (E, F) ;( e +a) <1+|)\|2 d(i,u) — r(i,u) <a+ 1+|)\|2> [D;] )

Aty + M@ 2ReXaj
2 Z( e o) (Frpe ) e )
Peb, nD; (1s,3)

A la+ M2 Lo 1—|N?% . ) 2|A\2Re X ta 9
= — — . A4 2 7)) b,
3 (R ) (oo (o4 ) o)

/\_10¢¢+|)\|2/\_1ai 2|>\|2Re)\_1o¢j
) (22 o) r(Pous ). (71
Yy (BT ) (AR ).

i JFL (ui,uyg)
PeD;ND;

By taking the real part, we obtain

B . 1—|N? , 2/A2Re(A"1a) 12
/X 2par-chy(E, F) = — Z(Re)\ a+a) <1 . |)\|2d(z,u) —r(i,u) (a + W) [D;] )

i,

2
+ Z Z Z (Re X' + a;) <1 _||_ ||>\|2 Re\ ta; + aj> (P, us, uj)

i JFL (ui,uy)
PeD;ND;

_ L T IR T O
_—Z(Re()\ @)+ a) <1+|)\|2d(z,u)—r(z,u)(a—!—Re/\ a— 1+|)\| Re A )[DZ])

1 L— ) 1
YD > (Re ai+a¢)<<l—w ReA ' +a; | - r(Pug,uy)  (72)

i JFL (uiyuy)
PeD;ND;

Let us make the following observation. For the decomposition D* = d” 4 d’, we put D* := d” + (A /\)d'.
Then D™ is the flat A\;-connection of the parabolic bundle (E, F). If (a,«) is a KMS-spectrum for D*, then
(a/,a) = (a, \ra/\) is a KMS-spectrum for D. Under the correspondence, we have A™*a = A '’ (Indeed,
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it is the eigenvalues of the residue of the associated flat connection D*f.) Therefore, we obtain the following
formula by considering the formula (72) for A\; # 0:

1— M2 -
/X2parch2EF Z Z Z ReA™ az—i—al)((l—m Re )\ 1aj—|—aj (P g, ug)

i JF#u (wi,uy)
PeD;ND;
_ 1— M2 . . _ 1— M2 _
1 1 1 2
— ;u (RQ(A 04) + CL) (m . d(% U,) - T(Z7 U) a+Red""a— m Red "« [Dz]

(73)

We can regard the formula (73) as a polynomial of t = (1 — |A1]?)(1 +|A1]?)~!. Therefore we obtain (69) by
taking the degree O-part of (73). By considering the coefficients of the degree one part of (73), we obtain the
following:

Z Re(A\'a +a) (d(i7 u) + (i, u) - Re()\*la)[Di]Q)
+3 Y > Be(Z o) +ai) Re(W o) r(Poug,ug) = 0. (74)
i VE (wi,uj)
PeD;ND;
Subtracting (74) from (69), we obtain (70). 1
Remark 3.25 The formula (69) can be regarded as the equality of parabolic second Chern character numbers
for (E, F,D*) and the corresponding filtered local system. See the section 6. |
3.5.2 Some vanishing
Proposition 3.26 We have the following vanishing:

S Y (A la) (d(z‘, w) + 7(i,u) - Re(A\"1a) - [Di]2)

i€S ueMS(i)

+Y Y > Im(A'ay)-Re(A\'ay) r(Pous,uy) = 0. (75)
€S J#t (ug,uj ) EKMS(P)
PeD;ND;

We also have the following vanishing:
Z ZIm()Fla) . (deg E.p,«—r(,u)- a- [Di]2) =0. (76)

Proof We obtain the following, by taking the imaginary part of (71):
ZZ L= o)) (22 a6 ) — i) (at (1 2222 Y Rea-ta - (pa?
1+ |A? T4+ |A2 ’ 1+ |A? !
|)\|I/\1 1= LY Reatay 4 ap ) (P, ug) — 0. (77
+Z Z Z 1+ [\ e aj +aj | r(Pui,ug) = 0. (77)

4 VE) (ui,uj
PeD;ND;

By the same consideration, we can regard (77) as a polynomial of t = (1 — [A\|?)(1 + |A\|?)~!. By taking the
degree two part, we obtain (75). By taking the degree one part, we obtain the following:

ZZIm(x\_la)-r( u)- (a+Rex 'a) —|—Z Z Z Im(A™ i) (a; +Re A" ay) - 7(Pyug, uy) = 0.

% J#i (Umu])
PeD;ND;

(78)
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From (75) and (78), we obtain the following:

ZZIm(x\_la)-(d(i, u) —r(i,u)-a ) ZZ Z ImA ') - a; - r(Pui,uy) = 0. (79)

i JFL (u,uy)
It is equivalent to (76). 1

Proposition 3.27 We have the following formula:

SN (A ) - Im(Atay) - r(Pus,ug) + Z Z(Im()\_loz))Qr(i,u) [Di)? =0. (80)

i gL (ug,uy)

Proof From (52) and (62), we obtain the following:

/2parch2EF ZZ Z A e +a) (N ey + aj) - r(Poug, ug)

i JFL (Uuuj)

£ et a?r(iu)- D (81)

i weKMS(i)

Let us take the real part of (81), and compare it with (69). Then we obtain (80). |

3.5.3 Remark on the vanishing of the parabolic Chern character numbers

Recall the formulas for [ par-chy(E, F') (Proposition 3.24, for example) and the formula for par-c,(E, F) (see
(55) and Remark 3.16). Then we immediately obtain the following corollary.

Corollary 3.28 When a+ReX~'a =0 for any KMS-spectrum (a,a) of (E, F,D*), the characteristic numbers
par-deg,(E, F) and [ par-chy(E, F) automatically vanish. |

Remark 3.29 Let E be a vector bundle on X — D with a flat connection V. We have the Deligne extension
(E,V). (Sec the subsection 2.1.3, for ezample.) Then we have the canonically defined parabolic structure F
such that Rea+a = 0 for any KMS-spectrum. In that case, the stabzlzty of (E F,V) and the semisimplicity of
(E,V) is equivalent. The corollary means [ par- <, (E, F) = par-deg ,(E, F) = 0.

When (E,V) is semisimple, we know that there exists the Corlette-Jost-Zuo metric of (E,V) which is a
pure imaginary tame pluri-harmonic metric adapted to the parabolic structure F (See [2] for the case D = ()
and [14] for the general case. See also [29].) To show such an existence theorem from the Kobayashi-Hitchin
correspondence, we have to show the vanishing of the characteristic numbers which is “the obstruction on the
way from harmonicity to pluri-harmonicity”. Corollary 3.28 clarifies the point. |

4 Continuity of some families of harmonic metrics

4.1 Statements

In this section, we will show continuity of two kinds of families of harmonic metrics on curves, i.e., Proposition
4.1 and Proposition 4.2. We will give a detailed proof of the first one. Because the second one can be proved
similarly and more easily, we just give some remarks in the end of this section.

4.1.1 Continuity for e-perturbation

Let C be a smooth projective curve with a simple divisor D. Let (E, F,D*) be a parabolic flat A\-connection over
(C, D), which is stable and par-deg(E, F') = 0. Let F be the e-perturbation of the parabolic structures. (See
the subsection 2.1.5.) We remark det(E, F) = det(E, F'9). Let h() be the harmonic metric for (E, F(9), D)
for 0 < € < eg. Let (9 denote the Higgs fields for the harmonic bundles (E, D*, h(e)).

43



Proposition 4.1 The sequences {h(e) |e > 0} and {9(6)} converge to h(% and 80 respectively, in the C>-sense
locally on C — D.

The proof is given in the subsection 4.5 after the preparation given in the subsections 4.2-4.4. Before going
into the proof of Proposition 4.1, we give a similar statement for another family in the next subsubsection.

4.1.2 Continuity for a holomorphic family

Let C — A be a holomorphic family of smooth projective curve, and D — A be a relative divisor. Let
(E, F,D*) be a parabolic flat bundle on (C, D). Let t be any point of A. We denote the fibers by C; and D,
and the restriction of (E, F,D*) to (C;,D;) is denoted by (Ey, Fy,D}'). We assume par-deg(E;, F;) = 0 and
that (E;, Fy,D}) is stable for each ¢. For simplicity, we also assume that we are given a pluri harmonic metric
haet(py of det(E, ID)’\)|C,D which is adapted to the induced parabolic structure.

Let hg+ be a harmonic metric of (Ey, FY, D}) such that det(hm,t) = haet(p)|c,- They give the metric hy of
E. Let 0, be the Higgs filed obtained from (E;, D*, h(¢t)), which is a section of End(E;) ® Q¢ (log D). They
give the section 0y of End(E) ® Qé’/OA (log D), where Qé’/OA(log D) denotes the sheaf of the logarithmic relative
(1,0)-forms.

Proposition 4.2 hy and 0 are continuous. Their derivatives of any degree along the fiber directions are
continuous.

Since Proposition 4.2 can be proved similarly and more easily, we will not give a detailed proof. See Remark
4.14.

4.2 Preliminary from Elementary Calculus

For any z € A* = {z € C||z| < 1} and € > 0, we put as follows:

2|7 = I2I° 217 + |2 . e
Loy = EE D ey o= BB b o= (0 — g 1)
We also put Lo(z) := —log|z|?, Ko(2) = 1 and My(z) = 1. Then they are continuous with respect to

(z,€) € A* X R>.
Lemma 4.3 For any (z,€) € A* X R>y, we have Lo(z) < L(z).

Proof We put g(€) :=a"¢—a‘+e-loga® for 0 < a < 1 and 0 < e. Taking the derivative with respect to €, we
obtain the following;:

g'(€) = —(a “ +a)loga+loga®, g"(e) =(a - a)(loga)® > 0.
Since we have g(0) = ¢’(0) = 0, the claim of the lemme follows. |
Lemma 4.4 (Ke(z)—l)-(LE(Z)2'€2'|Z|€)_1 are bounded on A*, independently of e. We also have K.(z)—1 > 0.
Proof The second claim is clear. Let us check the first claim. We put as follows, for 0 < a <1 and 0 <e < 1:
gile)  =a " —2+4a° ga(e) == (a™ —a)%a® = a"° — 2a° + a*.

We have only to show that gz(€) > g1(€). We put g(€) := g2(€) — g1(€) = 2+ a3¢ — 3a. By taking the derivative
with respect to €, we obtain the following:

g’ (€) = 3¢ -loga — 3a° - loga = 3(—a> + a%)(—loga) > 0.

Since we have g(0) = 0, we obtain g(e) > 0. Thus we are done. |
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Lemma 4.5 (1—ME(Z))'(LE(Z)2'€2'|Z|€)71 are bounded on A*, independently of . We also have 1—M(z) > 0.
Proof We have only to show the following inequalities for 0 < a <1 and 0 <e < 1:
0 <1—a*(1—loga®) <3(a"°—a)%ac.

To show the left inequality, we put h(e) := 1 — a*¢(1 — loga*). By taking the derivative with respect to ¢, we
have h/(¢€) = —a*¢loga*(1 — loga*®) 4 a*“loga* = ea**(loga*)? > 0. We also have h(0) = 0. Hence we obtain
h(e) > 0. To show the right inequality, we put as follows:

g(e) :==a* (Z’)(a_6 —a9%a — (1—a*(1— loga“))) =3(a"" —2a7% +a"°) + (1 — loga™) —a™*.
By taking the derivative with respect to €, we obtain the following:
g'(€) = 3(a™>(=5loga) — 2a~*(—3loga) + a~“(—loga)) — 4loga — a~*(—4loga)

g"(€) = (75a~% — 16a~*“ — 54a™“ + 3a"°) - (log a)”.

It is easy to check ¢g”(¢) > 0 by using a=®¢ > a=*¢ (k = 3,4). Since we have ¢’(0) = g(0) = 0, we obtain
g(€) > 0. Thus we are done. |

Lemma 4.6 Let P(t) be a polynomial with variable t, and let b be any fixed positive number. Then we have the
boundedness of |z|"*P(eLo(z)) on A*, independently of 0 < e < 1/2.

Proof We put u := |2|%, and then |z|**P(eLo(z)) = u’- P(Lo(u)). Hence we have only to show the boundedness
of u’ - P(Lo(u)) when 0 < u < 1, but it is easy. |

4.3 A Family of the Metrics for Logarithmic flat A\-bundle of Rank Two on a Disc
4.3.1 Construction of a family of metrics

We put X = A = {z]|z] < 1}. Let O denote the origin, and we put X* := X — {O}. We use the Kahler form
we == €2|z]°dz - dZ/|z|* + dz - dZ in this subsection. We will use the notation in the subsection 4.2.

To begin with, we recall an example of a harmonic bundle on a punctured disc. Let E = Ox -v1 & Ox - v
be a holomorphic vector bundle on a disc. Let 6 be a Higgs bundle such that 6 - v1 = vy - dz/z and 6 - vy = 0.
Let h be the metric of Ejx- such that h(vi,v1) = Lo, h(va,v2) = Lyt and h(vi,vj) = 0 (i # 7). Recall
that the tuple (E,dg,#,h) is a harmonic bundle. Let us see the associated A-connection. We put u; := vy
and ug = vy — A - Lgl -w;. Then it can be shown by a direct calculation that (9g + M0 )u; = 0 (i = 1,2),
D Muy = g - dz/z and D*ug = 0. We also have the following:

h(ul,ul) = LQ, h(UQ,UQ) = (]. + |)\|2) . Lal, h(ul,u2) = —)\7 h(ug,ul) = —>\.

Motivated by this example, we consider the following family of the metrics h. on the A-connection (E,D*)
given as follows:

hE(U/1,U/1) = LE) hE(UQ;UQ) = (1 + |A|2)_1 . L€7 h‘e(ulauQ) = _X ME) hE(UQ,U/l) =X ME-

The A-connection D* and the metric h, induce the operators 9. and 6, (the subsection 2.2.1). The main purpose
of this subsection is to show the following proposition.

Proposition 4.7 There exists a some positive constant C such that |5595‘h L SC forany0<e<1/2.
Although the proof of the proposition is just a calculation, we will give the detail in the rest of this subsection.

Remark 4.8 Let h!. be the metric determined by h.(u1,u1) = Le, hl(u2,u2) = L7' and hL(u;,u;) =0 (i # j).
Then there exist positive constants C; (i = 1,2) such that Cy - hl < he < Cy-h. for any 0 < e < 1/2. Hence we
have only to consider the norms for h. instead of those for h.. |
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4.3.2 Preliminary

Let H. be the hermitian matrix valued function given by H, := H (h.,u), i.e.,
0o L. -\ M,
T\ A M. T+ NHLTT )

Let N be determined by D u = w- N -dz/z, and let N denote the adjoint of N with respect to the metric H.,
ie.,

1 o X1+ AP LM, 1+ |A2)2L02
N= (00 Ni_F.N.H - ! L+ DPLSMe - (1+ X)L
10 1+ |\2(1 — M2) N M2 A1+ A2 M L1

Recall the calculation given in the subsubsection 2.2.2. Then d, and 6, can be described with respect to u as
follows: ) iz ) p
SN p— Z z —1,—
2 _(xH 6HE—NT—), 0.u = 7(N——>\H 6HE).
1+|>\|2( ¢ <z B TP G ¢
Therefore 9, (f,) is described by the following 2 x 2-matrix valued 2-form with respect to w:

1
1T+ |A]2?

du=u

A ~ =le= dz dz  dz dz | —=-1,=
——— ([X\-H, 0H,N—| — |N] =, N—| + |N/ =, XH,_ 0H.| ). (82

e (7 N T] - [N N [V m ) )
Here we have used [F;laﬁe, F;lﬁH ¢] =0, which can be checked easily.

Lemma 4.9 To show Proposition 4.7, we have only to show the uniform boundedness of (1,1)-entry, (2,2)-
entry, Lex (1,2)-entry and L7 x (2,1)-entry, in the matriz valued function (82).

Proof It follows from Remark 4.8. |

5(—@*@) +

In the following calculation, we often use the notation L and M instead of L. and M., if there are no
confusion. Let us see H. '9H.. We have the following equality:

2y 71 . . ).
= 1 <(1+B|)LE )\M€>’ 8H€:( OL. A - OM, )

T A2 - M2) - M, L. —X-0OM, (1+|M?) 0Lt
Then we obtain the following formula for H, 9H.:

1 (1+ |A2)LYOL — [A2MOM A1+ [A2)(~L~'0M + MOL™?) )

H_'0H, =
CUT T T4+ MR- M2) ANMOL — LOM) (1+ A2 LOL™ — ]\>M - OM

(83)

We also have a similar formula for ﬁ;la_He. We obtain the following formula, for E(Fglaﬁe):

-1 — B 2|/\|2M5M ——1 ==
d(H, 0H.) = 1+|A|2(1—M2)Hf OH.

1 (14 |N2)00log L — 27 A[200M?  A(1 + |M\?)(MOOL™ — L=100M)
1+ |M\2(1 — M?2) ANMOIOL — LOOM) (1+|N?)00log L=t — 27\ [ZooM? )~

+

The commutator of H;laT{E and N - dz/z is as follows:

dz (1+]A?) M—=L7*0M + MOL™1) 0 dz
| ( )

11—
[He OHe, N -— 2LIL! ~MN—=L'9M + MAL™Y)

L A2 - M2)

> .

Let us see the commutator of H. 9H,. and NI. By direct calculations, we have the following equality:

o N1+ NDL2MOL (1 + |M\?)2L30L
H9H. - N = 1 X1+ A?) oL (L+[AP) 78
1+ [\2(1 — M2) X - MOM X1+ AP LoM

.\ 1 2NZN(L + [AP)M2LTOM  —2[A2(1 + |A[2)2ML~20M
(1+ A1 — M2))? OMBIMN |2 —ONAR(L+ N2 M2L oM )

46



We also have the following:

1 1 X1+ N2)L7OM (1 +|A2)2L 1oL !
NI T OTL — ( +_|2 %) (14 A )2 - (87)
14 [\2(1 = M?2) ~X MoM M1+ |A?)MOL
Therefore we obtain the following formula:
N Hom]
z
B 1 dz [ =XM1+ M) (LOM — L~2MOL) —2(14 [M\?)2L30L
TIANEO M2z —oXN MOM M1+ |A2)(MOL~! + L~10M)
B 2| \[? dz [ A+ PNPMPLTIOM (14 [AP)PML20M (88)
(1+ 20— 2)? = X MM X1+ AP)M2L oM

The commutator of N and N| is as follows:

- 1 (14 \2)2L-2 0
INEN] = e ( N+ NHMLL (14 \2)2L-2 ) (89)

4.3.3 Estimate

We have the following:

2
oL — -K.Z ok — ST om =4 a0y C (90)
z 4 z z
In particular, we have the following estimate:
2 8¢ dz
MM, = O(€ - |2 Lo - (1+€Lo) ).
Let us see the first term in the right hand side of (84):
2|\[2 M. OM, 1
H-"0H. 91
ED AR oy
For the (1, 1)-entry and (2, 2)-entry, we have the following estimates:
= K.\ dz-d L
MM, -L7'0L. =0 <62 Lo - |2|%(1 + eLO)L—) % =0 <|z|5f(1 + eLO)L—O> - We
dz-dz

MM, - M.OM, = 0(64 )10 (1 + eLO)QL?J) - o(|z|15f (14 eLO)Q(eLO)Q) - we.

|22

They are bounded with respect to w, due to Lemma 4.3 and Lemma 4.6. Hence the (1, 1)-entry and the (2, 2)-
entry of (91) are bounded independently of €. Let us see the (1,2)-entry. Recall Lemma 4.9. Hence we have
only to see the following:

Le x (MOM,) - (L7'OMe — M.OL; ') = MOMOM, + MZOM.L;'OL..

Both terms in the right hand side can be estimated as in the previous case, by using Lemma 4.3 and Lemma
4.6:
MMM, = O(|z|10€(1 + eLO)(eLO)2) cwe=0(1) - we.

M?OM.L7'0L, = O(|z|11€(1 + eLW%) cwe=0(1) - we
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The (2, 1)-entry can be estimated similarly:
L7 x (MOM) (ML, — LOM,.) = M?L;7"OM.OL. — M, - OM.OM, = O(1) - we.

Let us see the second term in the right hand side of (84):

1 (1+[A?)ddlog L — 27 AP0OM? A1+ [A*)(MOIL™" — L~190M) (92)
1T+ |A2(1— M?) A1+ [A*)(MOOL — LOOM) (14 |\[?)00log L= — 271 \[200M?
It is easy to see the following estimate:
OM? = 0(62 e]fe(1 + eLo)Q) we = 0(&2) - we. (93)

Hence it is bounded with respect to w. independently of e. We remark that L;lMﬁaLE is also bounded
independently of e:
— €2 dz - dz
LM, -90L, = — M, - ——== = 0O(1) - w..
: M T =00) w

Hence we have the following, modulo the uniformly bounded term with respect to (he,we):

S — (1+ A7) d0log L AM.OOL”"
) = — € 4
O(H. OH) = 3o — 172 0 —ddlogL. (94)
Let us see (85). By the same argument, we have the following uniform boundedness:
= dz L dz -dz
LM, - = =0 (22 ). === 0(1) - w..
-0 ; (0] <e |z] I. EE (1) w

Hence we have the following, modulo the uniformly bounded terms with respect to (he,we):

— 1 dz] (1+|A?) AM_ OL? 0 dz
He 0He, N- 7} T 1+ AP —M2)\ 2LALTY -AMALIY )z (95)

Let us see (88). We remark the following, for any & > 1:

dz MFOM,
z L.

=0(1) - we.

L dz-d
ZO<€2|Z|4(k+1)€(1+€L0)k—0). Z - az

Le |2|?

Hence the terms containing OM in the right hand side of (88) can be ignored. Hence we obtain the following,
modulo the uniformly bounded terms with respect to (he,we):

(1+[A\?) d=z < ALZ2M AL,  —2(1+ |\?)L30L, ) (96)

dZ ——1,.—
T2 = - _
{NE z’ He 8H6} T+ ANFQ-ME) z 0 AM QL1

In all, (82) is same as the following, modulo uniformly bounded terms due to (89), (94), (95) and (96):

1 ~M\d9log L. —A2M,-900L!
1+ |A2(1— M2) ( 0 A0 log L. )
N |\ dE-dz()\-Me- e L72 0 )
T+ |A2(1 = M2) 1+ A2 |22 2K - L7* ~A-M.- K- L2
N 1 N dz-dz ( X M- K- L72 214+ [A\?)L73 - K. )
L+ AR =M1+ A2 |22 0 XM, K. L2

A dz - dz L2 0 (7)
TIHNEA=M2) 22\ 2MA+ M) TIM L7t L2 )
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The summation of the last three term in (97) is as follows:

1 dz - dz —AL2 2N° L3 K, (98)
T+ AP = M2) 22\ 2MPA+ AP 7HEK - MLt ALZ? '
By a direct calculation, we can show the following equalities:
= 1 dz-dz = 2dz-dz €1 dz-dz
logle = ————, Ll - -
Wlebe =" M TTRE 9L P
Therefore, (97) can be rewritten as follows:
1 0 AL (K, — M,) \ dZ-dz
L+ A1 = M2) \ 2P+ AT (K = M) 0 EE
1 0 MNe2M.(2L)~ ! dz - dz
——. (99
e (o o Eal

Due to M. = O(|z]*(1 + €Ly)), the second term in (99) can be ignored. Due to Lemma 4.5 and Lemma 4.4,
we have the uniform boundedness of (M, —1)- L2 -dz-dz/|z|? and (K. —1)- L:%-dz-dz/|z|>. Thus the proof
of Proposition 4.7 is finished. 1

4.4 A Family of Metrics of a Parabolic Flat Bundle on a Disc
4.4.1 Simple case

We put X := A = {z € C||z] < 1} and X* := A — {O}. Let V; be a vector space over C with a base
e = (e1,...,e), and let N; be the nilpotent endomorphism of V; given by N; - e;41 =¢; fori=1,...,1 —1 and
Ni-e; = 0. We put E; := Ox®V,. Then e; naturally induce the frame of Ej, which we denote by v = (v1,...,v;).
The fiber E|o is naturally identified with V', and we have v|p = e. We have the logarithmic A-connection ]D)l)‘
of E; given by ]D)l)‘vi =41 -dz/zfori=1,...,1—1 and Dl)‘vl = 0. The residue Res(D?) is given by N;. We
have the weight filtration W of E|o with respect to N;.

We have the trivial parabolic structure F of E;. Take a sufficiently small positive number e. The e-

perturbation F(©) is given by F,g:) =Wy fork=—-l+1,—-14+3...,1—1 in this case.

Let us fix a sufficiently small positive number €y such that rank F - ¢g < 7/10. In the previous subsection,
we have constructed a family of metrics hée) (0 < € < ¢). Tt induces the metric of Sym' ™! (Ey, D3) ~ (E;, D),
which we denote by hl(e). The following property can be shown by reducing to the case | = 2.

° hl(o) is the harmonic metric.

hl(e) — hl(o) for € — 0, in the C'*°-sense locally on X*.

‘AWEG(hl(E))‘hZ(€> < C.
° hl(e) is adapted to the parabolic structure Fl(é).
o Let t.:= det(hl(e))/ det(hl(o)). Then t. and ¢! are bounded, independently of e.

Lemma 4.10 Let H. = (h(e)(vi, vj)), Then, we have the following estimate with respect to hl(é):

'@+ 30)H. = 00) Z o) Z

Proof We see only H. OH.. The term H, OH,. can be discussed in the same way. We have only to check
the case | = 2. As in Lemma 4.9, we have only to see the (1, 1)-entry, (2,2)-entry, L.x (1,2)-entry and L1 x
(2,1)-entry in the matrix valued function (83). As is seen in the subsubsection 4.3.3, the term containing
OM_. is bounded with respect to w,, and hence we can ignore them. Therefore we have only to show that
L7'0L. = —L.OL! is O(1) - dz/z, but it can be checked by a direct calculation. |
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4.4.2 General case

Let (E, F,D*) be a parabolic flat A-connection on (X, Q). Take a positive number 7 such that 10-n < gap(E, F).

We will use the metrics:
dz - dz

|22

dz - dz

R
ER

we = €226

(100)

Here € will be a small positive number such that 10rank(E) - € < 1. We take the e-perturbation F(©) as in the
subsection 2.1.5.

We have the endomorphism Res(D*) of GrZ'. Tt induces the generalized eigen decomposition Grf (E) =
DPoce Gri’E(E). On CrX®(E), the endomorphism Res(D?*) is decomposed as «a - id +N,, where u = (a, ) €
R x C. Let W be the weight filtration of N, on GrZ™*(E). They induce the filtration W of Gr’ (E). Recall
that the e-perturbation is constructed from W and F.

For v € R x C, we put V, := Gr*¥(E) with the induced nilpotent map N,. Then we can take an

isomorphism:
m(u)

(Vua Nu) = @ (‘/E(u,l) ) Nl(u,z)) .
i=1

We put (Ey, D7) := B (Eiu,i ]Dl)‘(w)). Let 7,9 denote the metric of E,, induced by hl( ;) (see the subsubsection
4.4.1).

Let Q(u) denote harmonic bundle of rank one for v = (a, @), which is given by Ox-e with the A-connection
D*e = e-a-dz/z and the metric h!’(e,e) = |z|~2%. Then we obtain the vector bundle Ey with the A-connection
D} and the parabolic structure F, as follows:

(Eo,13) = (B, D)) ® Qw),  Fo(Eojo) = P Ea.e) ® Qlaa)jo

u a<b

The metrics hi'” and h!' induce the metric h of E,®Q(u). Let h,(f) denote the direct sum of them. We can
take a holomorphic isomorphism ¥ : Ey — FE satisfying the following conditions:

o It preserves the filtration F'.

e Gr(¥) o Gr¥ ResD* = Gr! Res D) G’ ().
We identify Ey and E via W. The naturally induced metric is denoted by the same notation h((f).
Lemma 4.11 The family {h((f) |0 <e< 60} of the hermitian metrics has the following properties:

o G(D*, h((f)) is uniformly bounded with respect to (we, h((f)).

o {h((f) |e > 0} converges to h((JO) in the C*-sense locally on X*.

. h,(f) is adapted to the perturbed parabolic structure F(©).

o Let te be determined by det(hée))/det(héo)). Then t. and t-1 are bounded, independently of €.

Proof We check only the first claim. The other claims are easy to see. Let f be determined by f -dz/z =
D* — D}, and we put fI := f}];(e). We put D} * := D%, and ]D)‘* :=D**.,. Then we have the following:

h(€) 0,h(e)"
GO 1Y) = [ D2 = DA + 52, miz + 71
(e) Axs m A2 t 11dz - dzZ
:G(DOahO )+DO,e(f) +]D0(f) [f7fe] |Z|2 : (101)
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We have the decomposition f = " fuw, where fy . € Hom(E, ® Q(u), Ey ® Q(u')). We have f, /|0 =0
unless @ = o and a > a/. Hence there exist positive constants C and N such that the following holds for
0 <e<ep:

|flye < C - 2PTLY,

Here N - € is sufficiently smaller than n. Hence, we have the following:
Tl SC- 127 17 1] = O(J=).
We have the induced frames v,, of E, ® Q(u). They induce the frame v of Ey. Let B and Ay be determined
by Fv =v-B-dz/z and D}v = vAg - dz/z. Then we have the following:

D}, Fflo=v (DBTd— + [Ao, B ]dz : dz) .

|22

Here we put D = d + A\J and B} = H;l ‘B - H,, where H = H(h((f), u). Since B! is sufficiently small with
respect to (we, th)), [Ao, BI] is also sufficiently small. Corresponding to the decomposition f = 3" fi, u/, we
have B =Y By, . Then the following holds:

(BD = F;’l,etgu’,uﬁu,e-

Here Hy, . := H(hge), v,,). Hence we obtain the following:
f dzZ —-1 = — -1
DB, ,— =H, (D'Byw)Hye— H, EDIT{u/_E(B Vuur + (B )u, U/H DHu ..

Since B is holomorphic, we have F;,l’e (D'Byu) -Hu,e-dz/Z = 0. We put H},, := H(19,v,). Then we have
Hyo = |2 8]

Uu,€)’

and the following holds with respect to h((f) due to Lemma 4.10:

H, DH,. = ()\% dz) +®, 'DH,,. =0 )dz +o(1)

dz
z z

Since (Bf)y.. is small with respect to (we, AS?), (B )u.u -F;’iﬁﬁuﬁ is also small. Therefore, D)F' - dz/Z is

small with respect to (we, h,(f)). It also follows that Dy *F - dz/z is small. Thus we are done. |

4.5 Proof of Proposition 4.1
4.5.1 Construction of a family of initial metrics

Let n be a small positive number such that 1 < gap(FE, F)/10. Let ¢y be a small positive number such that
rank E - g < 7. For any 0 < € < €q, let us take w, be the Kahler forms of C' — D with the following properties:

e Let (Up, z) be a holomorphic coordinate around P € D such that z(P) = 0, and then w, is given by (100).
o w. — wy for ¢ — 0 in the C*°-sense locally on X — D.
Lemma 4.12 We can construct a family of metrics h of E\c_p with the following properties:
° h((f) s adapted to the perturbed parabolic structure F (@,
. hée) — héo) in the C'*°-sense locally on C' — D.
. G(h((f)) is uniformly bounded with respect to (we, h((f)),

o We put t. := det(hée))/det(héo)). Then t. and t-1 are bounded independently of e.
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Proof We construct a C*°-metric of E on (Jpcp(Up — {P}), by applying the construction given in the sub-
section 4.4.2 to (E, F,D)‘)‘UP for each P € D, and then we prolong it to a C*°-metric of £ on C' — D. |

Let R(det héo)) denote the curvature of the metrized holomorphic bundle det(E, d"”, héo)), where d” denote
the (0,1)-part of D*. Since det héo) gives the harmonic metric around D due to our construction, R(det h((JO))
vanishes around D. We also have [ R(det héo)) = —2my/—1 - par-deg(E, F) = 0. Let us take the C°°-function
Xo on C and satisfies the equality rank(E) - ddxo + R(det(héo))) = 0. We put hl(g) = h((JO) -exp(XO). Then
R(det hgg)) = 0, i.e., det hgg) is a harmonic metric of det(F,D*). Let x. be the functions determined by

det(hl(»,ol)) = det(hgf)) - exp (rank(E) . Xe)- The following claims immediately follows from Lemma 4.12.
e Y. and —x, are bounded on C, independently of e.
e Y. — 0 in the C"*°-sense on C' — D.
We put hl(.:b) = hée) - exp (Xe), which is the metric of Ejc_p.
Lemma 4.13 The following claims are easy to check.
. hEZ) is adapted to the parabolic structure F(©).
. hgfl) — hl(,ol) in the C*°-sense locally on C' — D.
o G(hl(.;)) is uniformly bounded with respect to (we, hl(.;)).

©) _ det (0,

n mn

o det hEZ) s harmonic, and we have det h

In other words, they give initial metrics for (E, F(E), D*) in the sense of Lemma 3.20, and their pseudo curvature
satisfy some uniform finiteness. |

4.5.2 L3-finiteness of the sequence

Due to Proposition 2.31, we obtain harmonic metrics k(9 for (E, F(E),DA). Due to Lemma 2.32, we have the
following inequalities for any e:
M, (9, h) <. (102)

in

Let s(¢ be determined by h(®) = hl(.;)s(f). Due to Lemma 2.42, (102) and det s() = 1, there exists a positive
constant A which is independent on e, with the following property:

|S(E) |h§;) < A, |S(€) -1 ‘hgi) < A. (103)

Let D)* be the operator obtained from D*, w, and A as in the subsection 2.2.1. We have the following
equalities:

Ai‘)e trs(® = —v/—1 tr(s(E)AweG(hl(.;))) +v-1 tr(AweDAs(e) (st -Df‘n*s(e)).

See Remark 2.20 for AJ . Since we have [ A} tr 59 = 0, there exists a positive constant A’ such that the
following holds:

/UD)AS(E) . S(e)—1/2|}21(5) ., dvol,, < A (104)

in YYe

In particular, we obtain ||D*s(® .2 is bounded for 0 < € < €.

weoh)
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4.5.3 The end of the proof of Proposition 4.1

Let @ be a point of C — D. Let (U, z) be a holomorphic coordinate around @ such that z(Q) = 0 and
U~A=1{z||z| <1}. We use the standard metric g = dz - dz of U. The harmonic bundle (E,D*, 2(9)) induces

the Higgs bundle (E, d., ). We have 0, = f.-dz on U. On the other hand, we also obtain 51-”,6 and 6, ¢ from
(E,D* h(.e)), although Oin,c (fin,c) = 0 is not satisfied, in general. Let 47, . be the (1,0)-operator obtained from

s Min in,e

hl(.;) and d”, as in the subsubsection 2.2.1. Then we have the relation:

A

0(—: = oin,e - TMP(S(E) —L. 5/ S(E)). (105)

Due to (103), (104) and (105), there exists a positive constant Co such that [, |fe|* - dvoly < Co holds for

any 0 < € < ¢p. Hence the following inequality holds for some positive constants C; (i = 1,2,3) and for any
0 <e<ep:

/ log |f.|2 - dvol, < Cy +/ Co - |£.J? - dvol, < Ci. (106)
U U
Recall the fundamental inequality for the Higgs field of a harmonic bundle ([35]):
T 2
Aglog|f|* < —% <0. (107)

Due to (106) and (107), there exists a positive constant Cy4 such that the following holds for any Q' € U(1/2) :=
{l]z| < 1/2}: .
/(@0 < Ca (108)

By using (105), we obtain that &/, .s(®) is uniformly bounded with respect to (w., hl(.;)) on U(1/2).

Since ! is the adjoint of 6., we obtain the uniform boundedness of 0! on U(1/2). Let 47, . be the operator
obtained from hl(.;) and d’ as in the subsubsection 2.2.1, where d’ denotes the (1,0)-part of D*. Then we also
obtain the uniform boundedness of 6/, _s() on U(1/2). Hence D) * s is uniformly bounded on U(1/2), where

D}t = e — Oy . Since we have d’ = 3 (01, e+ A+ [A2)0], ) and @' = A&, .+ (1+|A[2)8, we also obtain
D*s(9) is uniformly bounded on U(1/2). Recall the formula D*D2*s(®) = s(<). G(hEZ)) +DAs(e) . s =1 DA*g(e),
Thus D*D)*s(9) is also uniformly bounded on U(1/2). Therefore {s(°)} is L}-bounded for any p > 1 and U(1/2).
By taking an appropriate subsequence (¢;), s(¢1) weakly converges to some 3 in L% locally on C — D.

It is easy to see that hl(.g) -5 is a harmonic metric. We have dets = 1. We also have the boundedness of 5§
and 5~ with respect to h\”). Thus we have h{" - § = h(®) i.., the sequence {h()} converges to h(®) weakly in
L% locally on C' — D.

Although we take a subsequence in the above argument, we can conclude that h(¢) converges to h(?) weakly
in L% locally on C' — D, due to a general argument. We can also obtain the C'°°-convergence by a standard
bootstrapping argument. In the above argument, the convergence of {0(6)} is also proved. |

Remark 4.14 As for the proof of Proposition 4.2, we take a C*-metric hi, of (E,F,D*) such that each
restriction hi, | ¢, is an initial metric. Lel s be determined by hy = hy, - s. By applying the same argument, we
obtain the continuity of s. Similarly for 0. |

5 The existence of a pluri-harmonic metric

We will prove our main existence theorem of pluri-harmonic metric for parabolic A-flat bundle, which is adapted
to the parabolic structure. (See the subsection 3.3 of [30] for the adaptedness.)
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5.1 Preliminary

Let C be a smooth projective curve with a simple effective divisor D. Let (E, F,D*) be a stable parabolic \-flat
bundle on (C, D) with par-deg(E, F') = 0. For each P € D, let (Up, z) be a holomorphic coordinate around P

such that z(P) = 0. Let F'© be an e-perturbation. We have h{f) be a harmonic metric for (E, F©) D) for
some sequence {¢;} such that ¢, — 0. For simplicity of the description, we use € instead of €;. We assume

det h((f) = det h((JO). Let N be a large positive number, for example N > 10. In this subsection, we use Kahler
metrics g (€ > 0) of C — D which are as follows on Up for each P € D:

dz-dz
|22

(6N+2|Z|2e + |Z|2)

We assume that {g.} converges to go for e — 0 in the C'°°-sense locally on C' — D.
Proposition 5.1 Let h(©) (€ >0) be hermitian metrics of Ejc_p with the following properties:

1. Let s'9 be determined by h(®) = h((f)-s(e). Then s'9) is bounded with respect to h((f), and we have det s(€) = 1.
We also have the finiteness ||]D)‘s(€)||2 B g < OO (The estimates may depend on €.)
sty »Ye

2. We have ‘|G(h(6))||2,h(€)7ge < 00 and lim._,q ||G(h(6))||27h<e)}ge =0.
Then the following claims hold.

o The sequence {3(5)} is weakly convergent to the identity in L? locally on C — D.

e {suppcc_p |S|(163)|h§f> e>0} and {suppec_p |S|(IED)_1|h§f> € >0} are bounded.

Proof To begin with, we remark that we have only to show the existence of a subsequence {s(¢)} with
the desired properties as above. We put ||s(€)|\oO plo = SUPPec_D‘S\(g‘hM- For any point P € C — D, let
ERA0) 0

SE(s
SE(
SE(s9))(P) > 1 for any P.

Let us take b, > 0 satisfying 2 < b, - sup SE(s(9))(P) < 2 +e. We put 5 = b.s(® and hl®) := h,(f) 509,
Then 3(¢) are uniformly bounded with respect to hgf). We remark G(h(9) = G(h(9)). We also remark that h(¢)
and h(¢) induce the same metric of End(FE).

()(P) denote the maximal eigenvalue of SI(IED) There exists a constant 0 < Cy < 1 such that C - |s|(;)|h<e) <
0
s (P) < |s‘(2|h<e>. We have det SI(IED) = 1. Hence it is easy to see logtr s‘(;) > logr > 0. We also have
0

Lemma 5.2 After going to an appropriate subsequence, {Eﬁi)} converges to a positive constant multiplication,
weakly in L? locally on C — D.

Proof We have the following (the subsection 2.2.5):

A;mhg);@ = 5OVTIA L, G(hD) + V=TA,, D5 (5 *1)11)2((;)3@ (109)

Since we have [ A;‘D trs-dvolg, = 0, we obtain the following inequality from (109) and the uniform boundedness
of 3(9);

/|DA§<E) .?e)—1/2|30 1O dvoly, < A- /|tr AgoG(E(E)” - dvoly,
)t
= A-/}trAgeG(fz(E)ﬂ ~dvol,, < A" }|G(i~z(é))||2)ﬁ(e)’gs. (110)

In particular, we obtain the uniform finiteness HDAE(E)H2 e <A HG(iNL(E))H2 7O g
,90,hg () ge

{E(E)} is L2-bounded on any compact subset of C'— D. By taking an appropriate subsequence, it is weakly

. Therefore the sequence
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L2-convergent locally on C' — D. Let 5() denote the weak limit. We obtain D*3(°°) = 0. We also know that
5(°) is bounded with respect to h((JO). Therefore 5(>) gives an automorphism of (E, F,D*). Due to the stability
of (E,F,D*), 5 is a constant multiplication.

We would like to show 5(°) # 0. Let us take any point Q. € C' — D satisfying the following:

SE(s(E))(QE)zg sup SE(s9)(P).
10 pec—p

Then we have log tr 59 (Q.) > log(9/5). By taking an appropriate subsequence, we may assume the sequence
{Qc} converges to a point Q... We have two cases (i) Qoo € D (ii) Qoo & D. We discuss only the case (i). The
other case is similar and easier.

We use the coordinate neighbourhood (U, z) such that 2(Q«) = 0. For any point P € U, we put A(P,r) :=
{Q € U||z(P) — 2(Q)| < r}. When e is sufficiently small, Q. is contained in A(Q,1/2) = {]z] < 1/2}. Let
g = dz - dz denote the standard metric of U. We have the following inequality on U (see the subsubsection
2.2.5):

A;‘ log tr 519 < ‘AgG(iNL(E))h(E).

Let B(©) be the endomorphism of E determined as follows:

dz-dz

7Oy — () — B@©
G(h'9) = G(h'?) e

Then we have the following estimate, which is independent of e:

—1dvol ~
/|B(€)‘%és) (€N+1|Z|2€ + |Z|2) 1 |Z|2g S A/‘G(h’(é))hzi(s):gs ' dVOlge ’

Here A denotes a constant independent of e. Due to Proposition 2.5 in our previous paper [30], there exist v(©
such that the following inequalities hold for some positive constant A’ which is independent of e:

900 = ‘B(E)|7L(e)%7 "U(E)(Z)‘ < A (G(N—l)/2|2|e + |Z|1/2) . HG(E(e))HQ,E&),ge

Then we have A) (log tr 5(9) — v(9)) < 0. Therefore, we obtain the following:

log tr 59 (Q0) — v (Q.) < A” - / (1og tr3© — v<f>) - dvol, .

A(Qe;1/2)

Here A” denotes a positive constant which is independent of e. Then we obtain the following inequalities, for
some positive constants C; (¢ = 1,2) which are independent of e:

log(9/5) < logtr39(Q.) < C; - / log tr3(¢) - dvol, +Cs.
A(Qe,1/2)

Recall that logtr3() are uniformly bounded from above. Therefore there exists a positive constant Cs such
that the following holds for any sufficiently small € > 0:

/ —min(0, log tr3(9)) - dvol, < Cs.
A(Qe,1/2)
Due to Fatou’s lemma, we obtain the following:

/ - min((), log tr §<°°)) -dvol, < Cs.
A(Qos,1/2)

It means 5(>) is not constantly 0 on A(Qs,1/2). In all, we can conclude that 5(°°) is a positive constant
multiplication. Thus the proof of Lemma 5.2 is accomplished. |
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Let {g(”)} be a subsequence as in Lemma 5.2. It is almost everywhere convergent to some constant multi-
plication. Then we obtain that the sequence {det3(¢) = p=nkE . id,. )} converges to the positive constant.
In particular, {b,} is convergent. Therefore, the sequence {s(fi)} is convergent to the identity. Thus we are

done. |
Corollary 5.3

The sequence {h(e)} is convergent to h(()o) weakly in L3 locally on C' — D.

The sequence {DAS(E)} is weakly convergent to 0 in L? locally on C — D.

The sequence {9(6)} converges to 0 is weakly convergent to 0 in L? locally on C — D.

In particular, the sequences are convergent almost everywhere. |

5.2 The Surface Case
5.2.1 Statement

Let X be a smooth projective surface with an ample line bundle L, and let D be a simple normal crossing
divisor with the irreducible decomposition D = (J;cg D;. We put X* := X — D. Let ¢ be any element of
R®. Let (E,F,D") be a pur-stable c-parabolic flat A-connection on (X, D) with trivial characteristic num-
bers par-deg; (E,F) = [, par-chy(E, F) = 0. Recall that we have already known par-c,(E, F) = 0 due to
Bogomolov-Gieseker inequality and Hodge index theorem (See Corollary 6.2 of [30].) Hence we can take the
pluri-harmonic metric hgeq(g) of the determinant bundle det(E, F,D*). The purpose of this subsection is to
show the following existence theorem.

Theorem 5.4 There exists a tame pluri-harmonic metric h of (E, D) x~ with det(h) = haet & which is adapted
to the parabolic structure.

The proof will be given in the rest of this subsection.

5.2.2 The sequence of Hermitian-Einstein metrics for the e-perturbations

Let F'©) be an e-perturbation as in the subsection 2.1.5. If € is sufficiently small, (E, F(E)7 ]D))‘) is also pr-stable.
We also have par-c,(E, F'9) = par-c,(E,F) = 0. Since (E,F©) D) is graded semisimple, we can apply
Proposition 3.21. Let h(® be the Hermitian-Einstein metric for (E,F(e),ID)A) with respect to w,, such that
det (9 = Rget(E) and A, G(h{9)) = 0 (Proposition 3.21).

Remark 5.5 Since gap(E, F(©)) ~ ¢, we have to take a smaller number €1, for example /100, and use w,, .
However, we use the notation w. for simplicity.

Since hgey(p) is pluri-harmonic, we also have tr G (h(f)) = 0. Therefore, we have the following convergence:

<§>2/\G(h<f>)|i<e>,wg -dvol,, = <§)2/tr(G(h(E))2) = 2(1+[AP)* - par-chy(E, F(9) — 0. (111)

We would like to discuss the limit of A(®) for ¢ — 0.

5.2.3 Convergence on almost every curve

Let L™ be sufficiently ample. We put P, := P(H%(X,L™)Y). For any s € Py,, we put X, := s71(0). Recall
Proposition 2.8, and let & denote the Zariski open subset of IP,;, which consists of the points s with the following
properties:

e X, is smooth, and XN D is a simple normal crossing divisor.
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° (E7F7]D))‘)|Xs is pp-stable.

We will use the notation X} := X, \ D and D, := X, N D. We have the metric we s of X7, induced by we.

The induced volume form is denoted by dvol,. We put (Es, Fs,D3) := (E, F,D*)|x,. We have the metric hl(X)

of E,| x-. Since (E,, F{Y,D}) is stable for any point s € U, we have the harmonic metric h'" of (E,, {9, D})
with det hg = hqet g x»- Let us ) be the endomorphism of E|x. determined by h\x* = hgﬁ) . ugé). For a point

z € X*, weput Uy :={s €U |z € X;}. Weput Z := {w € X*|U, = 0}. We remark that Z is a finite set. Let
us fix a sequence ¢, — 0. We often use the notation “€” instead of “¢;”, for simplicity of the description.

Lemma 5.6 For almost every s € U, the following holds:

o We have the following convergence when €; — 0:

G h“) 2 ), dvol, — 0. 112
h

e For each €;, we have the finiteness:

D3 ul| 2 peor . < 00 (113)

Let U denote the set of s for which both of (112) and (113) hold.

Proof We discuss only the condition (112). The other one can be discussed similarly by using the fourth
property in Proposition 3.21. Let us fix s € U. We take generic s; € U (i = 2,3), i.e., X, is transversal with
X, (i=2,3) and X, N X, N Xs, = 0. We also fix the lifts of s; to H°(X, L™), and denote them by the same

notation. Take open subsets Wi(j) ( = 1,2) such that X, N X, C Wi(l) - Wi@). Moreover, we assume that the

closure of Wi(l) in X are contained in Wi(

in U, with the following property:

2| Take an open neighbourhood U; of s1, which is relatively compact

e For any s’ € Uy, X is transversal with X, (1 =2,3) and Xy N X;, C Wi(l).

We also take an embedding U; — H?(X, L™) which is a lift of U; C U, compatible with the lift of s;.

We have the line bundle ¢; L™ ® ¢5Op:(1) on X x U; x P, where ¢; denote the projections onto the i-th
components. We have the section ¥ of ¢ L™ given by ¥(z,s’,p) = s'(x). The section @ of ¢ L™ ® ¢5Op1(1) is
given by ® = g3t - ¢is2 + ¢4 (teo — to) - g7 ¥, where [tg : too] is a homogeneous coordinate of P1. Then Z denote
the zero set of ®. In other words, we put Z; := {(z,',t) € X x Uy x P! | (tsy + (1 — t)s')(x) = 0}. The fiber
over s’ € Uy via gy z, is the Lefschetz pencil of s and ss.

We fix any Kahler forms wy, and wpr of U; and PL. The induced volume forms are denoted by dvoly, and
dvolp:. Then we have the following convergence for € — 0:

/Z2qf(

We put 25 := 25\ ¢; *(W. Wi )) Then the following convergence is obtained, in particular:

/ qi‘(
Z,

Let ¢ : Z; — U x P! denote the projection. For (s',t) € Uy x C, we put Xy = (s, t) =
(t82 + (1 - t)s’)fl(O) = Xiso+(1-t)s- On X(y ), we have the induced volume forms dvol(y 4. The family
{dvol(y 4 [ (s',t) € U1 x C} gives the C*-relative volume form dvolz; /u, xp1 of 25 — Uy X P!. There exists
a constant A such that the following holds on U; x P!, under the isomorphism:

(h)[?. dvolX) - dvoly, — 0.

(h())? -dvolx) - dvoly, — 0. (114)

* ) |2 € 2
A- 4 }G(h( ))| . dVOlX Z }G(h‘()()(s’,t)” . dVOlzé/leﬂn . dVOllpl .
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Therefore, we obtain the following convergence for almost every (s’,t) € Uy x P!, from (114):
/ G )2 dvoliy gy — 0. (115)
X(* /,t)\W2(2) ho

Let S denote the set of the points (s’,t) € U; x P! such that the above convergence (115) does not hold. The
measure of S is 0 with respect to dvoly, x dvolp:.

Let J : Uy x P! — P, denote the map given by (s',t) — ts2 + (1 — t)s’. We have the open subset
J1(Uy) C Up xP! and the measure of SNJ ~1(U;) is 0 with respect to dvoly, - dvolpr. We have SNJT ~1(U;) =
JH(J(S) NUy), and hence the measure of 7(S) is 0 with respect to wy,. Namely, we have the following
convergence for almost every s € Uy:

2. dvoly, — 0.

(¢)
/x*\w<2> }G(h|X;)

Similarly, we can show the following convergence for almost every s € Us:

(e)
/X*\W<2> ‘G(h‘x‘:)
s 3

Now the claim of the lemma immediately follows. |

% dvol, — 0

We obtain the following claims from Proposition 5.1 and Corollary 5.3.

(¢)

Corollary 5.7 For any s € H, the sequence {h\x*

} converges to h® weakly in L? locally on X}, and {0‘(;)5}
converges to Hgo) weakly in L* locally on X*. In particular, they are almost everywhere convergent.

Proof It follows from Lemma 5.6 and Proposition 5.1 |

5.2.4 The construction of a metric defined almost everywhere

Let us take any Kahler form wp,, of P,,. Then we obtain the induced metric of X x P,,. We put Z := {(s,x) €
U x X*|z € X;}. Then we have the induced metric of Z. The induced volume form is denoted by dvolz. Let

T denote the set of (s,2) € U x X such that (s,z) € Z and lim,_q B = p©

|z sla”
Lemma 5.8 The measure of T¢:= Z — T is 0 with respect to dvolz.

Proof Let us consider the naturally defined fibration Z — U. Then the claim follows from Corollary 5.7 and
Fubini’s theorem. |

(0)

Lemma 5.9 For almost every x € X* and almost every s € U,, the sequence {hl(;)} converges to h e

Proof Let us consider the naturally defined fibration 7 — X *. Then the claim follows from Lemma 5.8 and
Fubini’s theorem. |

Let V denote the set of € X* such that the sequence {hl(;)} converges to h§0|)w for almost s € U,,. For any
z €V, let U, denote the set of s such that {h‘(;)} converges to h'?

sz

ORI

s1|x sola”

Lemma 5.10 For any x € V and for any s; € U, (1 =1,2), we have

Proof Both of them are same as the limit lim._,g hgf). |

Let us take any x € V and any s € U,. Then the metric h, of E, is given by hy := hg|,. Due to Lemma
5.10, it is well defined. Thus we obtain the metric hy := (h, |z € V) of E)y.
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5.2.5 The C'-property

We would like to show that hy is C' on X* — Z in other words, we would like to show the existence of a
C'-metric h of E|x~_z such that h = hy on V. Let us begin with a preparation.

Lemma 5.11 Let x € X* — Z. Let us take any s € U,. Then there exists a Lefschetz fibration ¢ : X — P!
with the following properties:

e 1 is not a singular point of .
e ¢ 1(0) = X,.
o Almost every t € P! belongs to u.

Proof Let M denote the set of the lines ¢ of P, which contain s. We put as follows:

Pr={(6,s) E M x Py |8 €} CMxP,,.

It is the blow up of P,, at s. We have the projection w3 : By, —> Pp,. We put If := 7y H(U) and U= w{l(g).
Since U — U has measure 0, the measure of I/E;’m — U is also 0. Let us consider the projection my : @m — M,

and apply Fubini’s theorem. Then we obtain s; € U for almost every £ € M and for almost every s; € £. Thus
we are done. 1

Let « be any point of X* — Z. Let us take a Lefschetz fibration m; : X; — P! (i = 1,2) with the following
properties:

e Both of them satisfy the properties in Lemma 5.11.

e Around z, the fibers of 71 and 7o are transversal. Then two fibrations give the holomorphic coordinate
(21, 22) of an appropriate neighbourhood U, of x, such that {z; = a} = m; *(a) N U,.

For any t; € P!, let Xy, := m; '(t;). If t; are close to 0, (E, F, ID)A)|Xti are stable, and hence there exist tame
harmonic bundles hy, for (E, F, ]D)A)‘Xti such that det(h,) = haet(E)|x,, - Let ¢, denote the operator obtained
from Dl)\Xt. and hy, as in the subsection 2.2.1.

Let usltake an appropriate neighbourhoods B; C P! of 0. Recall Proposition 4.2. Then {h,g1 ‘ t € Bl} are
C-along z2, and it is continuous with respect to (z1,22). The family {9,51 |t1 S Bl} has a similar property.
Thus we obtain a continuous metric A(!) and the continuous section () of End(E) ® Q" around z. Similarly
{he, |t2 € B2} is C> along 21 and it is continuous with respect to (z1,22). The family {6y, |t € B2} has a
similar property. Thus we obtain a continuous metric h(?) and the continuous section 6 of End(E) @ Q0
around z.

We remark that AV = hy, = A on U, NV due to our construction of hy. Since k(Y are continuous, we
obtain () = h(?) on U,. Then we obtain that h(? are C* on U,, due to the continuity of #().

Therefore we obtain the C''-metric h of E on X* — Z with the following properties:

® hyy=hy

e For any s € U, we have hjx- = hs and 0, x» = 0.

5.2.6 Pluri-harmonicity

We would like to show that h is pluri-harmonic. By the formalism explained in the subsection 2.2.1, the
operators 9, and 0 are given on X — (D U Z) from h and D*. Let us take any C* metric b’ of E on X — D,
and let s’ be the endomorphism determined by h = A/ - s’. Then s’ is C', and we have the following relation:

A

39 _ 9 1—=1gm 1 _ 1—=1gr 1
8h = ah/ + S 6h’87 eh = 9}7/ - WS 058

1+ |A=?
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Then we obtain 036, as a distribution:

A A2

2
E) =010 — - /—1//,/ )1 /1/// /—1//'
6h9h_8h9h 1+|/\|2 [S (5h8,9h] (71+|/\|2> [ 5 S 5}15}

)\ ) =1/ !/
T (8 0 +

Similarly, we obtain G(h) as a distribution.
Lemma 5.12 9,0, = 0.

Proof For any point x € X* — D, let us take the holomorphic coordinate (z1, 22) as before. We remark that
the curves {z; = a} (i = 1,2), {21 + 22 = b}, {z1 ++v/—123 = ¢} can be regarded as parts of X for some s’ € U.
We have the expression 0 = f1 - dz; + f2 - dza, where f; are continuous sections of End(FE). We have already
known 0f1/0%, = 0f2/0%Z> = 0. Thus we have only to show 0f;/0z; = 0 for ¢ # j. Let us consider the change
of the coordinate given by wi = z1 + z2 and ws = 21 — 2. Then we have the following:

f1-d21+f2-d22=%(f1+f2) dwy + & (fl f2) - dws.
Thus we obtain the following:
0 1o} 0 0
(f1+f2) 5 (3_21+—) (fi+ f2) = (aﬁ + 82) (116)

Let us consider the change of the coordinate given by u; = z1 + v/ —122 and us = z; — v/—129. Then we have

the following:
1 1 1
-d cdzg = = — d dus.
Ji-dzi+ f2-dz 5 (f1+\/_—1f2> U+ - <f1 \/_—lfz) U
Thus we obtain the following;:

0 L YoL(o Lo LYo L( Lok 1o
0= g () =3 (o5~ verom) (0 ) =2 (Vs - vrom) - 00

From (116) and (117), we obtain df;/0z; = 0 for i # j. Thus we obtain 9,0, = 0, and the proof of Lemma
5.12 is accomplished. |

Lemma 5.13 h is a harmonic metric for (E,D*) with respect to wy on X*—Z. (Recall Z = {z € X*

U, =0}.)

Proof Due to Lemma 5.12, we have A,G(h) = A, (9,0,) = 0. Hence we have only to show that h is C>°. We
obtain the following formula in the level of distribution, by the formalism explained in the subsection 2.2.5:

A () =8 (—ALG(W)) + V=TADYs - ' 71 - Dp2s.

The right hand side is C°. Hence by using the elliptic regularity and the standard boot strapping argument,
we obtain that s’ is C*°. Thus we obtain Lemma 5.13. |

Lemma 5.14 h is pluri-harmonic metric of E|x-_yz

Proof We have already shown 0,0, = 0 in Lemma 5.12. Recall Corollary 2.23. Then we have only to
show 67 = 0. Due to Corollary 5.7 and On| x, = 0s, we know that the sequence {6()} converges to 6, almost

everywhere. In particular, we obtain the almost everywhere convergence of {6()2} to 67. On the other hand, we
know the almost everywhere convergence G(h(9)) — 0, due to (111). We have G(h(9)) = 5? +5(6)9(6) +6(9)2,
which is the decomposition into (2,0), (1,1) and (0,2)-forms. Therefore we obtain §2 = 0, almost everywhere.
Thus we obtain Lemma 5.14. |

Lemma 5.15 h gives a pluri-harmonic metric of E)x-.
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Proof We have only to check that h gives a C°°-metric of Ejx-. Let Q be a point of Z. Let (U, 21,22) be a
holomorphic coordinate around @ such that z1(Q) = 22(Q) = 0. The pluri-harmonic metric h of (E,D*);_(0}
is given. We would like to show that h is naturally extended to the pluri-harmonic metric of (E,DA)W.

We have § = f1-dz1 + fo-dzo defined on U —{Q}. Let us consider the characteristic polynomials det(¢t— f;) for
i =1,2. The coefficients are holomorphic on U — {Q}, and thus on U due to the theorem of Hartogs. Hence the
eigenvalues of f; are bounded on U. Let us consider the restriction of (E,D*, k) to the discs C(a;) := {z; = a;}
(a; # 0) for j = 1,2. Then it can be shown that the norms }fi | C(ay) |h < C (i # j) can be dominated
independently of a;. (See Lemma 2.7 in [36], for example.) Thus f; are bounded with respect to h on U — {Q}.
In other words, € is bounded on U — {Q}.

Let B := Ejy_{.,.2,—0}- Let us consider the sheaf °E” on U of the sections satisfying the growth condition
lgln, = O[]z ~¢) for any € > 0 (the subsection 2.3.2). By using the result of the asymptotic behaviour of
tame harmonic bundle at A ([28]), °E” is locally free on U. Since °E’ and E|y_{g; are naturally isomorphic on
U—{Q}, they are isomorphic on U. Let A’ be any C*°-metric of E|;7, and let 5" be the endomorphism determined
by h = h' - s’. Due to the norm estimate given in ([28]), the metrics h and h’ are mutually bounded. Hence
s" and s’ ~1 are bounded on U. Due to the boundedness of #, s’ ~!D*s’ is also bounded on U — {Q} (See the
subsubsection 2.2.5, for example.) Since we have the formula Aﬁ’,wo s = 8" (=N G(W)) + Ay D7 s" 8" 7L DA Fs,
we can conclude that s’ is C*° due to the standard bootstrapping argument. Namely, h is extended to the C'°°-
metric of Fjy. |

5.2.7 The end of the proof of Theorem 5.4

Now, we have only to show that h is tame and adapted to the parabolic structure. Since h|x, = hs for any
s € U, the tameness immediately follows from the curve test shown in [28]. Then we obtain the prolongment
E = ¢E|x~ with the induced parabolic structure F (the subsection 2.3.2). We would like to show that (E, F',D*)
and (E, F,D*) are isomorphic. For that purpose, we see that the identity E|x- — E|x« can be prolonged to
the homomorphism ¥ : £ — E. Let @ be any smooth point of D; C D. We take a holomorphic coordinate
(Ug, 71, z2) with the following property:

e The curve z; '(0) is same as Ug N D.
e The curves C(b) := z, ' (b) are parts of X for s(b) e U.

Let f be a holomorphic section of Ejyy. Since the restriction h\Xs<b> is same as hyp), we have |fiom)ln =
O(|z1|7%7¢) for any € > 0. Then we obtain |f[, = O(|z1|7%~¢) for any € > 0, due to the result given in
[28]. Thus f naturally gives the section of E| x+ on U. Therefore, we obtain the morphism £ — E| X+ on
X - (U¢¢jD¢ N Dj). It naturally prolongs to the morphism £ — E|X*.

Recall that the restriction of B = cE|x- to X, is same as (E) X*) (See [28].) Therefore, the restrictions of
¥ to X, are isomorphic, due to the hypothesis of the induction. Hence ¥ is isomorphic on X — (U#jDi N Dj),

and thus on X. By a similar argument, we can show that the parabolic structures are also same. Thus the
proof of Theorem 5.4 is finished. |

5.3 Correspondences
5.3.1 Kobayashi-Hitchin correspondence in the higher dimensional case

Let X be a smooth projective variety of dimension n (n > 3) with an ample line bundle L, and let D be a
simple normal crossing divisor with the irreducible decomposition D = (J,.g D;. Let (E.,D") be a pz-stable
regular filtered A-flat bundle on (X, D) in codimension two with trivial characteristic numbers par-deg; (E.) =
[ par-ch, 1 (E,) = 0, and we put (E,D*) := (E.,D*) x_p. Recall par-c;(E) = 0 due to the Bogomolov-
Gieseker inequality and the Hodge index theorem. For each ¢ € R®, we have the determinant line bundle
det(.E) of torsion-free sheaf .F, on which we have the induced parabolic structure and the induced flat \-
connection. Thus we obtain the canonically determined regular filtered A-flat bundle (det E*,DA) on (X, D)
of rank one. We also have par-c; (det E*) = par-c; (E*) = 0. Therefore, we can take a pluri-harmonic metric
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haet £ of (det(E), D) which is adapted to the parabolic structure of det E ... Recall that we have a subset Z C D
with codimx (Z) > 3 such that (E.,D*) x_7 is a regular filtered A-flat bundle.

Theorem 5.16 There exists the unique tame pluri-harmonic metric h of (E,D*) with the following properties:
o det(h) = hget -

o [tis adapted on the parabolic structure of E. on X —Z. Namely, (E.(h), ]D)A)|X_Z ~ (E,, DA)|X_Z, where
(E.(h),D*) denotes the reqular A-flat bundle on (X, D) obtained from (E,D*, h). (See the subsection 2.3.)

Proof Due to Mehta-Ramanathan type theorem (Proposition 2.8), the uniqueness can be easily reduced to
the dim X = 1 case, by considering the restriction to the generic curves C' C X. We have already known it
(Proposition 2.27).

We will use the induction on the dimension n to show the existence. The case n = 2 has already been shown
(Theorem 5.4). Assume that L™ is sufficiently ample. We put P, := P(H°(X, L™)V). For any s € P,,, we put
X, := s71(0). Recall Proposition 2.8. Let U be the Zariski open subset of P, which consists of s € P, with
the following properties:

e X, is smooth, and D, := X;N D is a normal crossing divisor.
e The codimension of Wy = W N X, in X is larger than 3.
o (E,DY)x, is pr-stable.

We use the existence hypothesis in the (n — 1)-dimensional case of the induction. Then we may have the
tame pluri-harmonic metric hg of (E,]D))‘)| x,\p with det(hs) = hget | x,\p Which is adapted to the parabolic
structure on X, \ W. We also use the uniqueness result in the (n — 2)-dimensional case. Then we can show
the existence of a finite subset Z’ C X — D and a metric h of E|x_p such that hy| p = hjp. By the arguments
given in the subsections 5.2.5-5.2.7, we can show that h is the desired metric. The only different point is the
argument to show the vanishing of G(h) = 0. Due to dim X > 2, it can be shown easier. |

Theorem 5.17 Let X, D and L be as above. Let (E,.,D) be a saturated jur-stable regular filtered \-flat sheaf
on (X, D) with the trivial characteristic numbers par-degy, (E.) = [ par-chy ; (E.) = 0. We put (E,D*) :=
(E., DA)‘X,D. Then there exists a pluri-harmonic metric h of (E,D) such that the induced regular filtered \-flat
bundle (E*(h),]D))‘) is isomorphic to (E.,D*). Such a metric is unique up to positive constant multiplication.
In particular, E is a filtered bundle.

Proof Since a saturated regular filtered A-flat sheaf is a regular filtered A-flat bundle in codimension two
(Lemma 2.11), we may apply Theorem 5.16. Then there exists a pluri-harmonic metric h and a subset W C D
with codimx (W) > 3 such that the induced regular filtered A-flat bundle (E,(h), D) is isomorphic to (E,, D)
on X — W. Since both of (E,(h),D*) and (E.,D") are saturated, they are isomorphic on X.

5.3.2 The equivalence of the categories

Let Cf\wly denote the category of jup-stable regular filtered A-flat bundles (E.,D*) on (X, D) with the trivial
characteristic numbers par-deg; (E.) = [ par-ch, ;(E.) = 0. Morphisms f : (E1+,D}) — (E3.,D}) are
defined to be Ox-homomorphism f : E; — Ej satisfying D3 o f = foD{ and f(cE1) C B> for any c.

Corollary 5.18 Let \; (i = 1,2) be two complex numbers. We have the natural functor Zx, x, : Cifly — Cizly,
which is equivalent. It preserves direct sums, tensor products and duals.

Proof Let (EX',D*) be an object of Cifly. We put EM = El)‘j:l)
of (E*,DM), which is adapted to the parabolic structure. Then we obtain the operators dy,, 9y, O, 0;‘1, as in
the subsection 2.2.1. Note that the holomorphic structure of EM is given by d, + /\19;2. The (0, 1)-operator
On + /\29}; also gives a holomorphic structure of C*-bundle E*'. To distinguish them, we use the notation

Then we have a pluri-harmonic metric h
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E*2 when we consider the holomorphic structure 9 + )\292. We put D*2 := 9y, + 0, + X2(Oh + 9}:), which
gives a flat \y-connection of £*2. The metric & is pluri-harmonic for (E*2,D*2). Since the corresponding Higgs
bundle for (E*1,D*t h) and (E*2,D*2, h) are same, we obtain the tameness of (E*2,D*2, h). Therefore, we
obtain the prolongment (E*2, D*), which are uz-polystable regular filtered Ao-flat bundle on (X, D) with trivial
characteristic numbers (Proposition 2.26).

We remark that (E>‘2,]D))‘2) is independent of a choice of h, due to the uniqueness in Proposition 2.27.
Therefore we put Zy, », (EM,DM) := (E*?, D). It is easy to see that =y, , gives a functor. It is also easy to
see that Zy, x, 0Za, 1, (B, D) is naturally isomorphic to (E*, D). The compatibility with the direct sums,
duals and tensor products are obtained from the corresponding compatibility statements of the prolongments
for tame harmonic bundles ([28]).

Remark 5.19 From a \i-connection D = d” +d', a Aa-connection is given d” + (Mo /A1) -d'. Hence we have
the obvious functor Obv : Cifly — Cfgly. This is not same as the above functor Ex, ,. 1

6 Filtered local system

6.1 Definition
6.1.1 Filtered structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D = J;cq Di- We will use the notation DI : =U;z; DiNDj and D7 := D;\ U, ; D;. Let £ be a local system
on X — D. A filtered structure of £ at D is a tuple of increasing filtrations *F (i € ) of Liu,\p indexed by
R, where U; denotes an appropriate open neighbourhood of D;. Let U/ be an open neighbourhood of D; such
that U/ C U;, then we have the induced filtration *F|ys, and the filtration *F can be reconstructed from *Fjy.
Hence we define two filtered structures (*F,U;|i € S) and (*F',U!|i € S) are equivalent, if there exists an
open neighbourhood U/’ of D; such that U/ C U; N U] and i}"U{/ = i}"’U{,. A tuple of a local system £ and an
equivalence class of filtered system (*F,U;) is called a filtered local system, and it is denoted by L.. We do not
have to care about a choice of open neighbourhoods Uj;.

Morphisms of filtered local systems f : L1, — L2, are defined to be a morphism f : £; — L of local
systems preserving the filtered structures in an obvious sense. We denote by C(X, D) the category of filtered
local systems on (X, D).

6.1.2 Characteristic numbers

We put U := U; \ D and iGrf(ﬁ‘Ui*) = Z‘.7-',1(£|U;f)/i.7-'<a(£wi*). Since the local monodromy around D,
preserves the filtration *F, we obtain the induced endomorphism of ? Grf(ﬁwr ), and thus the generalized eigen
decomposition:

TGrl (L) EB Grl, ) (Lws)-
We put as follows:

Par(L..i) == {a € R|"Gr] (Liy+) #0}, KMS(L.,i) == {(a,w) € Rx C*

(a.0)

The parabolic first Chern class is defined as follows:

par-c; (£ Zwt 1) - [Di] € H*(X, R), wt(Ly, 1) = Z a- rankiGrf(qU;). (118)
€S a€Par(L.,i)

Here [D;] denotes the cohomology class representing D;.
Let Irr(D; N D;) denote the set of the irreducible components of D; N D;. For each P € Irr(D; N Dj), let
Up be an appropriate open neighbourhood of P in X such that Up C U;NU;. We put U}, := Up \ D. We have
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the two filtrations ‘7 and 7 F of Liys . The naturally induced graded local system is denoted as follows:

B Fay NI Fa,
Z(bi,bj)ﬁ(ai,aj) F, N j]:bf .

P F P F P F )
Gr (‘C\UI*D) = @ Gr(auaj)(‘c\Uz*v)’ Gr(aua;‘)(‘c\U?) :
(ai,a;)€R?
Here (b;,b;) < (ai,a;) means “b; < a;, b; < a; and (b;,b;) # (a;,a;)”. We have the two endomorphisms

induced by the local monodromies around Up N D; and Up N D;, which are commutative. Hence we obtain the
generalized eigen decomposition:

PGrf(ﬁ\U;): @ PGTf,’E(QU},)-

weC*?

We put as follows:
Par(Ly, P) := {(a;,a;) € R? | P Gr(];i’aj)(/lw;) #0},

KMS(L., P) = {(a,w) € R? x C*2|P GrlE (L) # 0.

(a,w)

The parabolic second Chern character is defined as follows:

1 .
par-chy (L) = 3 Z Z a? -rank’ Gr? (L) - [D;)?

i€S a€Par(Ly,i)

+ % ZZ Z Z a; - a; -rank Gr(};i,aj)(ﬁlU;;) -[P]. (119)

i€S j#i Pelrr(D;NDj) (a;,a;)EPar(Ly,P)
When X is a smooth projective variety with an ample line bundle L, we put as follows:

_ par-deg (L)

par-degy, (L) = /X par-cy (L) - et (L) A7 (L) - rank £

Then the notion of uy-stability, py-semistability, and pp-polystability for filtered local systems on (X, D) are
defined in the standard manner. We also put as follows:

/par—ciL(E*) ::/ par-c; (£,)? - ¢ (L)X =2 /par—chQ,L(ﬁ*) ::/ par—chQ,L(/j*)-cl(L)dimX_Q.
X X b'e b'e

6.2 Correspondence

In this subsection, we give the correspondence of filtered local systems on (X, D) and saturated regular filtered
A-flat sheaves (A # 0). See the subsection 2.1.4 for saturated regular filtered A-flat sheaves. Since we have the
obvious correspondence between flat A-connection and flat 1-connection, we only discuss the case A = 1, i.e.
ordinary flat connections.

Let C{%*(X, D) denote the category of saturated regular filtered flat sheaves on (X, D). Let us see briefly
that we have the equivalent functor ® : C(X, D) — C5%¢(X, D). Since it is given by Simpson in [35] essentially
in the curve case, we give only an outline.

6.2.1 Construction of ¢

First we give a construction of ®. Let L, be a filtered local system on (X, D). Let (E, V) be the corresponding
flat bundle on X — D. We have the Deligne extension (E,V) on (X,D). We put E := E ® O(xD). Thus
we have only to give the way of the construction of the Ox-coherent submodules o ¥ C E such that Vo F C
o @ Q"%(log D) and J,cps of = E. Let us consider the case X = A"™ = {(z1,...,2,)]]z| < 1} and
D = {z; = 0}. Then the construction is essentially same as that for the case dim X = 1 given by Simpson [35].
We briefly recall it. Let H(L) denote the space of the multi-valued flat sections of £. We have the induced
filtration FH (L) and the generalized eigen decomposition H(L) = @ E.,(H(L)), which are compatible in the
sense F, = @, Fo NE,. Let u = (u1,...,u,) be a frame compatible of H (L), compatible with (F,E). Then
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for each w;, the numbers w(u;) € C and a(u;) € R are determined by u; € Ey,,) and u; € Foru,) — Fea(u)-
The complex number «(u;) is determined by the conditions exp(—27a(u;)) = w(u;) and 0 < Rea(u;) < 1. Let
M* denote the endomorphism of H(L) or £, which is the unipotent part of the monodromy around D, and
we put N := —(2my/—1)"1log M“. We regard u; as a multi-valued C*-section of E. Then it is standard that
v; 1= exp (1og zl(a(ui)—i—]\f)) -u; gives a holomorphic section of E. Moreover, v = (v1, ..., v,) gives a frame of the

Deligne extension E. Let b be any real number. Then we put n(b,u;) := max{n € Z| a(u;) — Rea(u;) +n < b},

and we put v;(b) := z; ""*") .4, Let ,E denote the Ox-submodule of E generated by vy (b), ..., v.(b). It is
easy to check that ;£ is locally free and independent of a choice of u. It is also easy to see E = |J,cgvE.
Thus we obtain the filtration in the case X = A™ and D = {z; = 0}. It can be checked that the filtration is
independent of a choice of the coordinate (21, 22, ..., 2,) satisfying D = {27 = 0}. Then we obtain the 4F on
X — DB by gluing them. The subsheaves o E are determined by the condition (4). It is easy to see that oF
is the saturation of a finitely generated submodules of E®O x (IV - D) for some large integer N, and hence we

have the Ox-coherence of ,F.

Let f: L1+ — Lo, be a morphism. Let (E;.,V;) := ®(L;). We have the induced map f: E, — FE5 It
is easy to see that cE1|X_D[2] — CEQ‘X_D[z] is induced. Due to saturatedness of (E2., V), we obtain maps
cEl — CEQ, and thus CI)(f) : (El % Vl) — (Eg*, Vg)

6.2.2 Equivalence

Let us show that @ is equivalent. To begin with, we consider the case X = A™ and D = {z; = 0}. Let C}*(X, D)
denote the category of regular filtered flat bundles on (X, D), which is the subcategory of C;**(X, D). By the
construction, the image of ® is contained in C{*(X, D). The following lemma can be shown as in [35].

Lemma 6.1 The functor ® gives the equivalence of C1(X, D) and C**(X, D). It is also compatible with direct
sums, duals, and tensor products. |

Lemma 6.2 In the case X = A" and D = {z; = 0}, we have C¥*(X, D) ~ C{**(X, D) naturally. In particular,
O gives the equivalence C1(X, D) ~ C;**(X, D).

Proof Let (E.,V) be a saturated regular filtered flat sheaf on (X, D). We put (E,V) := (E.,V)x_p, and
let £ denote the corresponding local system on X — D. Let H(L) denote the space of the multi-valued flat
sections of L.

Recall that there exists a subset W C D with codimx (W) > 3 such that (E., V) x_w is regular filtered
flat bundle on (X — W, D — W) (Lemma 2.11). Let P be any point of D — W, and let (Up, 21,...,2,) be a
holomorphic coordinate neighbourhood such that z;1(0) = Up N D and Up N W = (. Due to Lemma 6.1, we
have the unique filtration 7 of H(Ljy,\p) ~ H(L) corresponding to (E., V) y,. Due to the uniqueness, it is
independent of a choice of P and Up.

Let ©w = (u1,...,u,) be a frame of H(L) compatible with the filtration F and the generalized eigen de-
composition with respect to the monodromy around D. For any real number b € R, we construct v(b) =
(v1(b),...,vr(b)) as above. Then, for any P € D — W, v(b) gives a holomorphic frame of ,E;;, compatible
with the filtration due to Lemma 6.2. Hence each v;(b) gives a section of vE|x_w. Due to the saturatedness of
(E.,D*), v;(b) gives a section of , £ on X. Now it is easy to see that v(b) gives a frame of ;,F, and in particular,
bE is locally free. Hence (E,,D?) is a regular filtered flat bundle on (X, D). 1

Now, it is easy to see that ® is equivalent for general (X, D). Let us see the fully faithfulness of ®. The
faithfulness is obvious. Let f : ®(L1,) — ®(L2) be a morphism in C{%(X, D). We have the map g : £1 — Lo
corresponding to f. We would like to check that g preserves the filtrations *F. Let P be any point of DY, and
(U,z1,...,2,) be any coordinate neighbourhood such that U N D = zfl(O). Applying Lemma 6.2, we obtain
that g preserves the filtration ‘F on U \ D;. Thus we obtain the fully faithfulness.

Let us show the essential surjectivity. Let (E., V) be a saturated filtered flat sheaf on (X, D). Let £ denote
the local system corresponding to (E«, V) x_p. We have only to construct appropriate filtrations iF of Liuap
on appropriate neighbourhoods of D;. Let P be any point of D?, and (Up, 21,...,2,) denote any coordinate
neighbourhood around P such that 21_1(0) = Up N D. Due to Lemma 6.1, we obtain the unique filtration *F
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of Ly,\p- We obtain the filtration iF on Upepe Up by gluing them, due to the uniqueness. Thus we obtain
that @ is essentially surjective, and hence equivalent.

6.2.3 The parabolic first Chern class

We have the Z-action on R x C given by n - (a,«) = (a +n,a —n). It induces the action of Z on KCMS(E.,1).
The following lemma is clear from the construction of ®.

Lemma 6.3 We have the bijective correspondence of the sets KMS(®(L.),4)/Z and KMS (L, i), which is
given by (a, @) — (b,w) = (a—|—Re a,eXp(—Zﬂ'\/—la)) Jor (a,a) € KMS(®(L.),). Moreover, rank" Grf;’]Ea) =

i F.E
rank Gr(b7w). |

Corollary 6.4 We have the equality of the parabolic first Chern class par-cq (L) = par-c,(®(Ly)). In particu-
lar, when X is a smooth projective variety with an ample line bundle L, the pr-stability of L.« and pr-stability
of ®(L.) are equivalent.

Proof Recall the formula (54). It is shown for the case where (E,, V) is graded semisimple and dim X is two
dimensional. However, the graded semisimplicity condition is not necessary as is explained in Remark 3.16.
The assumption dim X = 2 is also not necessary, due to the Lefschetz theorem. Then the claim of the corollary
follows from the formula (54) and the correspondence of the KMS-spectrums given in Lemma 6.3. |

6.2.4 The second parabolic Chern character

Lemma 6.5 Let X = A" = {(21,...,2n) ||2:i| <1}, and D = Dy U D3, where D; = {z; = 0}. Let (E.,V) be a
saturated regular filtered flat sheaf on (X, D).

o (E.,V) is a regular filtered flat bundle on (X, D).

o Let ¢ be any element of R?, and let .E denote the c-truncation. Let L, be the corresponding filtered local
system on (X, D). Then we have the equality:

rank 2 Gré’i) (£) = rank?2 Grf:ﬁx) (E).

Here the meaning of the notation is as follows:

— b= (b1,b2) and w = (w1,ws) denote elements of R? and C*? respectively.

— a = (a1,az2) and o = (a1, 2) denote elements of R? and C? respectively, determined by the condi-
tions ¢; — 1 < a; < ¢;, exp(—2mv—1;) = w; and a; + Rea; = b;.

Proof Let £, = (£,'F,2F) be as above. Let u be a frame of H(L) compatible with *F and 2F. For each
u; and the divisor Dy, the complex number ay(u;) and ay(u;) are determined as before. For the monodromies
around Dy, we obtain the nilpotent endomorphism Nj as before. The holomorphic section v; is given by

vj = exp (Z log 2, (v (uy) + Nk)) Let ny(uj) be the numbers determined by the condition ¢ — 1 < ng(u;) +

ar(u;) —Reag(u;) < ck. We put v; :=[] z,:nk(uj) -vj. Then v = (v1,...,v,) gives the frame of ¢ E|x_(p,np,)-
Due to the saturatedness, v = (v1,...,0,) gives the frame of .F, and hence .E are locally free. Thus the first
claim is proved. The frame @ is compatible with ‘E and ? F', and we have ¥ deg” (7;) = ax (u;) —Re a (u;)+nx (u;)
and U; | p, € "E(o(u;) — ni(u;)). Thus the second claim follows.

Corollary 6.6 Let X be a complex manifold, and let D be a simple normal crossing divisor. Let (E,V) be a
saturated reqular filtered flat sheaf on (X, D). Then it is a regular filtered flat bundle in codimension two, and
we have the equality of the parabolic second Chern character numbers [, par-chy (L.) = [y par-ch, ;(E.).
Here L, denotes the corresponding filtered local system. |
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Corollary 6.7 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let L, be a py,-stable filtered local system on (X, D). Then the Bogomolov-Gieseker inequality

for L. holds:
Jx parf ; (L)
- . St
/X par-chy (£+) < 2rank £

Proof Recall that saturated regular filtered flat shaves are regular filtered flat bundles in codimension two
(Lemma 2.11). Hence the claim follows from Corollary 6.4, Corollary 6.6 and Corollary 3.22. |

Corollary 6.8 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let Cf(’ly be the category of py-polystable regular filtered flat bundle on (X, D) with trivial

characteristic numbers, and let C?Oly be the category of pr,-polystable filtered local system on (X, D) with trivial
characteristic numbers. Then the functor ® naturally gives the equivalence of them.

Proof We have only to remark that saturated pp-stable regular filtered flat sheaves are regular filtered bundles

(Theorem 5.17). 1
Remark 6.9 Due to the result in [28] and the existence of a pluri-harmonic metric for ®(L.), the filtrations
'F for pr-stable filtered local systems L. satisfy some compatibility around the intersection points of D. |
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