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Abstract

Let X be a smooth projective complex variety with an ample line bundle L, and let D be a simple normal
crossing divisor. We establish the Kobayashi-Hitchin correspondence between tame harmonic bundles on
X − D and µL-stable parabolic λ-flat bundles with trivial characteristic numbers on (X, D). Especially, we
obtain the quasiprojective version of the Corlette-Simpson correspondence between flat bundles and Higgs
bundles.
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1 Introduction

1.1 Main Results

We explain the main results in this paper. We do not recall history or background about the study of Kobayashi-
Hitchin correspondence and harmonic bundles, for which we refer the introductions of [36], [22] or [30], for
example. The notion of regular filtered λ-flat bundles and parabolic λ-flat bundles are explained in the subsection
2.1. (See also the subsections 3.1–3.2 of [30]. But, we also use a slightly different notation and terminology, as
is explained in the subsection 2.1.6.) They are equivalent, and we will not care about the distinction of them.
The notion of filtered local systems is explained in the section 6.

1.1.1 Kobayashi-Hitchin Correspondence

Let X be a smooth complex projective variety with an ample line bundle L. Let D be a normal crossing divisor
of X . Our main purpose is to show the following theorem.

Theorem 1.1 (Theorem 5.16, Proposition 2.26, Proposition 2.27) Let (E∗,D
λ) be a regular filtered λ-

flat bundle on (X,D). We put E := E|X−D. Then the following conditions are equivalent.

• It is µL-polystable with the trivial characteristic numbers par-degL(E∗) =
∫

X
par-ch2,L(E∗) = 0.

• There exists a pluri-harmonic metric h of (E,Dλ) adapted to the parabolic structure.

Such a metric is unique up to obvious ambiguity.

Remark 1.2 The claims of Theorem 1.1 in the case λ = 0 has already been proved in our previous paper [30].
Thus we restrict ourselves to the case λ 6= 0 in this paper.

Corollary 1.3 (Corollary 5.18) Let Cpoly
λ denote the category of µL-polystable λ-flat regular filtered bundles

on (X,D) with trivial characteristic numbers. Then we have the natural equivalence of the categories Cpoly
λ1

'
Cpoly

λ2
for any λi ∈ C (i = 1, 2). The equivalence preserves the tensor products, direct sums and duals.

Remark 1.4 Let λi (i = 1, 2) be two complex numbers. A λ2-connection Dλ2 = d′′ + (λ2/λ1) · d′ is induced

from a λ1-connection Dλ1 = d′′ + d′. Hence we have the obvious functor Obv : Cpoly
λ1

−→ Cpoly
λ2

. But this is not

same as the above functor Ξλ1,λ2 .

Especially, we obtain a generalization of the Corlette-Simpson correspondence between flat bundles and
Higgs bundles in the so-called non-abelian Hodge theory.

Corollary 1.5 We have the equivalences of the following two categories:

• The category of µL-polystable regular filtered Higgs bundles on (X,D) with trivial characteristic numbers.

• The category of µL-polystable regular filtered flat bundles on (X,D) with trivial characteristic numbers.

1.1.2 Bogomolov-Gieseker inequality and some formula for the characteristic numbers

Let X , L and D be as above.

Theorem 1.6 (Corollary 3.22) Let (E∗,D
λ) be a µL-stable regular filtered λ-flat bundle on (X,D) in codi-

mension two. Then we have the following inequality holds for the parabolic characteristic numbers for E∗:

∫

X

par-ch2,L(E∗) ≤
∫

X
par-c2

1,L(E∗)

2 rankE
. (1)

It is a generalization of the so-called Bogomolov-Gieseker inequality.
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In the case λ 6= 0, we also have some formulas about the parabolic Chern characteristic numbers, which are
valid for any parabolic λ-flat bundles in codimension two. One of the formulas can be stated simply, after we see
the correspondence of regular filtered λ-flat sheaves and filtered local systems. Let(E∗,D

λ) be a regular filtered
λ-flat sheaf on (X,D). As is explained in Remark 1.4, we have the obvious correspondence of flat λ-connection
Dλ = d′′ + d′ (λ 6= 0) and flat connection Dλ f = d′′ + λ−1d′. In particular, we obtain the local system L on
X −D from the flat bundle (E∗,D

λ,f )|X−D. Moreover, the parabolic structure of (E∗,D
λ) induces the filtered

structure of L, and we have the more refined claims as in the following proposition.

Proposition 1.7 (Corollary 6.4 and Corollary 6.6) Let C̃(X,D) denote the category of filtered local system
on (X,D), and let Csat

λ (X,D) denote the category of saturated regular filtered λ-flat sheaves on (X,D) for λ 6= 0.

Then we have the equivalent functor Φλ : C̃(X,D) −→ Csat
λ (X,D) such that par-c1(L∗) = par-c1

(
Φλ(L∗)

)
and∫

X par-ch2,L(L∗) =
∫

X par-ch2,L

(
Φλ(L∗)

)
. The functor Φλ preserves the µL-stability.

Remark 1.8 From Theorem 1.6 and Proposition 1.7, we obtain the Bogomolov-Gieseker inequality for µL-stable
filtered local systems (Corollary 6.7). Such a kind of the inequality is discussed in [39].

Remark 1.9 Let us describe the formula
∫

X par-ch2,L(L∗) =
∫

X par-ch2,L(Φ(L∗)) in terms of the c-truncation

(cE∗,D
λ) of saturated regular filtered λ-flat bundle Φλ(L∗). For simplicity, we assume dimX = 2.

∫

X

par-ch2(cE∗) =
1

2

∑

i∈S

∑

u∈KMS(cE∗,i)

(
Re(λ−1α) + a

)2 · r(i, u) · (Di, Di)

+
1

2

∑

i∈S

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(cE∗,P )

(
Reλ−1αi + ai

)(
Reλ−1αj + aj

)
· r(P, ui, uj). (2)

Here, u = (a, α), ui = (ai, αi) and uj = (aj , αj) denote the KMS-spectra, which are elements of R × C.

We put r(i, u) := rank i GrF,E
a,α(cE|Di

) for (a, α) ∈ KMS(cE∗, i), and r(P, ui, uj) := rank P GrF,E
(ui,uj)

(cE|P ) for

(ui, uj) ∈ KMS(cE,P ) and P ∈ Di ∩Dj. And (Di, Dj) and
(
Di, c1(L)

)
denote the intersection numbers.

We also have some other formulas for
∫

X par-ch2(cE) (Proposition 3.24) or some vanishings for the data of

(cE,D
λ) at D (Proposition 3.26 and Proposition 3.27).

1.1.3 Vanishing of the characteristic numbers and existence of the Corlette-Jost-Zuo metric

Due to Proposition 1.7, we obtain the vanishings par-degL(E∗) =
∫

X par-ch2,L(E∗) = 0, when (E∗,D
λ) corre-

sponds to the filtered local system whose parabolic structure is trivial. In other words, Reα+a = 0 is satisfied for
any KMS-spectrum u = (a, α) ∈ KMS(i) and for any i ∈ S. We can apply such a consideration to the canonical
prolongation of a flat bundle due to P. Deligne [3]. Let (E,∇) be a flat bundle on X−D. Then it is shown that

there exists the holomorphic vector bundle Ẽ on X satisfying (i) Ẽ|X−D = E (ii) ∇Ẽ ⊂ Ẽ ⊗ Ω1,0(logD) (iii)
the real parts of the eigenvalues of Resi(∇) are contained in [0, 1[. In that case, we have the naturally defined
parabolic structure F for which Reα + a = 0 are satisfied for any KMS-spectrum (a, α). Hence we obtain the

vanishing par-degL(Ẽ,F ) =
∫

X par-ch2,L(Ẽ,F ) = 0.
This vanishing is significant to understand the existence theorem of the Corlette-Jost-Zuo metric from the

view point of Kobayashi-Hitchin correspondence. When (E,∇) is semisimple, we know the existence of a tame
pure imaginary pluri-harmonic metric, which we call the Corlette-Jost-Zuo metric. (See [2] for the case D = ∅
and [14] for the general case. See also [29].) Since semisimplicity obviously implies the µL-polystability of

(Ẽ,F ,∇) ([33], for example), we can derive the existence of the Corlette-Jost-Zuo metric from Theorem 1.1 due
to the vanishing of the characteristic numbers.

1.2 Methods and Difficulty

1.2.1 Perturbation of parabolic structure

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X . Let (E,F ,Dλ)

be a parabolic λ-flat bundle on (X,D). For any small ε > 0, we take an ε-perturbation F
(ε) of the parabolic
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structure, and then (E,F (ε),Dλ) is graded semisimple (the subsection 2.1.5). It can be shown that the pseudo

curvature of ordinary metrics for (E,F (ε),Dλ) (ε > 0) satisfy the appropriate finiteness (the section 3). By

using the theorem of Simpson, we can take a Hermitian-Einstein metric h
(ε)
HE of (E|X−D ,D

λ) which is adapted

to F
(ε) (ε > 0). Then we can easily derive the Bogomolov-Gieseker inequality (Theorem 1.6). We also obtain

the formulas by calculating the integrals of the characteristic numbers for pseudo curvatures, for example (2).

Let us consider the existence of a pluri-harmonic metric (Theorem 1.1). Ideally, the limit limε→0 h
(ε)
HE should

give the desired pluri-harmonic metric for the given flat parabolic bundle (E,F ,Dλ). However, it is not easy to
show such a convergence. It is the main problem which we have to overcome in this paper.

1.2.2 Difficulty

In [30], we gave an argument to deal with such a convergence problem for the case λ = 0. The argument doesn’t
work in the case λ 6= 0. Let us explain what is the difference heuristically and imprecisely in the case λ = 1.

Since we have par-degL(E,F (ε)) = 0, the metrics h
(ε)
HE give the harmonic metrics in this case. Recall that a

harmonic metric can be regarded as a harmonic map, at least locally, and that we know a well established
argument for the convergence of a sequence of harmonic maps when the energies are dominated ([7]). In our

case, the energies of h
(ε)
HE over X −D are not finite, in general. Even if we consider the energies over a compact

subset Z ⊂ X−D, it is not clear how to derive a uniform estimate which is independent of ε. On the other hand,
the Higgs field is fixed for such a convergence problem in the case λ = 0. In particular, the eigenvalues of the
Higgs fields are fixed. Then we can derive the estimate of the local L2-norm of the Higgs fields independently of
ε. Since such L2-norms play the role of the energies, the local convergence can be easily shown in the Higgs case,
although we need some technical argument for global convergence. On the contrary, even the local convergence
is not easy to show in the case λ 6= 0.

1.2.3 Convergences

To attack the problem, we discuss similar convergence problems in the curve case where the Kobayashi-Hitchin
correspondence was established and well understood by C. Simpson ([35]). Let C be a smooth projective curve,

and let D be a divisor of C. Let (E,F ,Dλ) be a λ-flat stable parabolic bundle on (C,D), and let F
(ε) be

ε-perturbations. Note we have det(E,F ,Dλ) = det(E,F (ε),Dλ). We can take a sequence of harmonic metrics

h(ε) for (E,F (ε),Dλ) (ε ≥ 0) such that deth(ε) = deth(0), due to the result of Simpson.

First, we will show that the sequence {h(ε) | ε > 0} converges to h(0). Namely, let h
(ε)
in (ε > 0) be initial

metrics for (E,F (ε),Dλ), and let s(ε) be the endomorphism determined by h(ε) = h
(ε)
in · s(ε). Then we can show

the following relations:

M(h
(ε)
in , h

(ε)) ≤ 0,
∣∣log s(ε)

∣∣
h
(ε)
in

≤ C1,ε + C2,ε ·M(h
(ε)
in , h

(ε)),
∥∥Dλs(ε)

∥∥2

L2,h
(ε)
in ,ωε

≤
∫ ∣∣tr

(
s(ε) ·G(h

(ε)
in )
)∣∣dvolωε

.

(3)

Here M(h
(ε)
in , h

(ε)) denote the Donaldson functionals, and ωε denote appropriate metrics of C −D. Hence, if we
show that Ci,ε can be taken independently of ε for some ωε, and if we can construct appropriate family of initial

metrics h
(ε)
in such that G(h

(ε)
in ) are uniformly bounded with respect to ωε and h

(ε)
in , we obtain the L2

1-boundedness
of the family {s(ε)}. Then, by using a standard bootstrapping argument, we can show that the sequence {s(ε)}
is convergent to the identity in the C∞-sense (the section 4).

Next, suppose that we are given hermitian metrics h̃(ε) := h(ε) · s̃(ε) for ε > 0, with the following properties:

• det h̃(ε) = deth(ε).

•
∫
|G(h̃(ε))|2 −→ 0.

•
∥∥Dλs(ε)

∥∥2
<∞. (We do not need uniform bound.)

Then we can show that {h̃(ε)} is convergent to h(0) (the subsection 5.1).
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We apply the above results to our convergence problem explained in the subsection 1.2.1. Due to the standard
Mehta-Ramanathan type theorem (Proposition 2.8), the restriction (E,F ,Dλ)|C is also stable for almost every

ample C ⊂ X . Let hC be a harmonic bundle of (E,F ,Dλ)|C . Then we can show that
{
h

(ε)
HE |C

}
is convergent to

hC almost everywhere on C for almost every C ⊂ X , by using the above result. Therefore, we obtain a metric
hV defined almost everywhere on X − D such that hV |C = hC on almost everywhere on C for almost every
curve C ⊂ X . With some more additional argument, we can show that hV gives the desired pluri-harmonic
metric, indeed (the subsection 5.2).

Remark 1.10 Perhaps, the argument of this paper can be used in the Higgs case, to show the existence of a
pluri-harmonic metric. However, we remark that the argument for a convergence given in [30] can be applied
in a wider range. In fact, we used it to discuss the convergence of a family of harmonic bundles induced by the
constant multiplication of Higgs fields.

1.3 Acknowledgement

This paper is a result of an effort to understand the works of C. Simpson, in particular, [34] and [36]. The
author thanks A. Ishii and Y. Tsuchimoto for their constant encouragement. He is grateful to the colleagues of
Department of Mathematics at Kyoto University for their cooperation. The author wrote this paper during his
stay at Max-Planck Institute for Mathematics. He acknowledges their excellent hospitality and support.

2 Preliminary

2.1 Generality of Regular Filtered λ-Flat Sheaf in Complex Geometry

The notion of a parabolic bundle, filtered bundle and their characteristic numbers are explained in the sections
3.1–3.2 of [30]. We use the notation there.

2.1.1 λ-connection

Let Y be a complex manifold, and let E be an OY -module. Recall that a λ-connection of E is defined to be a
linear map Dλ : E −→ E ⊗ Ω1,0

Y satisfying the twisted Leibniz rule Dλ(f · s) = f · Dλ(s) + λ · dY (f) · s, where f
and s denote holomorphic sections of OY and E respectively. The linear maps Dλ : E ⊗Ωp,0 −→ E ⊗Ωp+1,0 are
induced. When Dλ ◦ Dλ is satisfied, it is called flat.

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decom-
position D =

⋃
i∈S Di. Let E∗ =

(
E , {iF

∣∣ i ∈ S}
)

be a c-parabolic sheaf on (X,D) for some c ∈ R
S . A flat

(logarithmic) λ-connection Dλ of E∗ is defined to be a linear map Dλ : E −→ E⊗Ω1,0(logD) satisfying the same
twisted Leibniz rule as above, the flatness Dλ ◦Dλ = 0 and Dλ(iFa) ⊂ iFa ⊗Ω1,0(logD). Such a tuple (E∗,Dλ)
will be called a parabolic λ-flat sheaf. When the underlying c-parabolic sheaf E∗ is a c-parabolic bundle in
codimension k, it is called a λ-flat c-parabolic bundle in codimension k.

Let E∗ =
(
E, {cE}

∣∣ c ∈ R
S
)

be a filtered sheaf on (X,D). A regular λ-connection of E∗ is a λ-connection

Dλ of E satisfying Dλ
(
cE
)
⊂ cE ⊗Ω1,0

X (logD). A tuple (E∗,D
λ) is called a regular filtered λ-flat sheaf. When

the underlying filtered sheaf is a filtered bundle in codimension k, it is called a regular filtered λ-flat bundle in
codimension k.

Lemma 2.1 A regular filtered sheaf on (X,D) is a regular filtered λ-flat bundle in codimension one.

Proof We have only to check that there exists a subset W ⊂ D with codimX (W ) ≥ 2, such that cE∗ |X\W

is a c-parabolic bundle on (X \W,D \ W ) for some c. We can take W as
⋃

i6=j Di ∩ Dj ⊂ W , and hence
we may assume D is smooth. Since E = E |X−D is locally free and cE is torsion-free, we can take W ′ ⊂ D
with codimX(W ′) ≥ 2 such that cE|X−W ′ is locally free. We may also take a subset W ′′ ⊂ D \ W ′ with
codimX(W ′′) ≥ 2 such that the parabolic filtration of cE|D\(W ′∪W ′′) is filtration in the category of vector

bundles. Then W = W ′ ∪W ′′ gives the desired subset.
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When X is an n-dimensional projective variety with an ample line bundle L, we can define the µ-stability,
µ-semistability, and µ-polystability of regular filtered λ-flat sheaves with respect to L, in the standard manner.
“µ-stability with respect to L” will be called µL-stability, in this paper.

2.1.2 KMS-structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D =

⋃
i∈S Di. Let (E∗,D

λ) be a regular filtered λ-flat bundle in codimension one over (X,D). For simplicity,

we consider only the case λ 6= 0. Let us take any element c ∈ R
S , and the c-truncation cE∗ of E∗. We would

like to recall the KMS-structure at Di, or more precisely, at the generic point of Di. We may assume that
(cE∗,D

λ) is a c-parabolic bundle. We have the induced filtration iF on cE|Di
, which induces the associated

graded bundle:
i GrF (cE|Di

) =
⊕

ci−1<a≤ci

i GrF
a (cE|Di

).

Recall that we use the notation Par(cE∗, i) :=
{
a
∣∣ ci − 1 < a ≤ ci,

i GrF
a (cE|Di

) 6= 0
}

and Par(E∗, i) :=⋃
c∈RS Par(cE∗, i). Due to the regularity, we have the residue endomorphism Resi(D

λ) on cE|Di
, which pre-

serves the filtration iF , and hence we have the induced endomorphism GrF Resi(D
λ) of i GrF

(
cE|Di

)
. We

remark that the eigenvalues of Resi(D
λ) are constant on Di. In particular, we obtain the generalized eigen

decomposition:
i GrF

a (cE|Di
) =

⊕

α∈C

i GrF,E
a,α(cE|Di

).

We put KMS
(
cE∗, i

)
:=
{
(a, α) ∈]ci − 1, ci] × R

∣∣ i GrF,E
a,α(cE|Di

) 6= 0
}
. Any elements of KMS

(
cE∗, i

)
or

KMS
(
E∗, i

)
:=
⋃

c∈RS KMS
(
cE∗, i

)
are called a KMS-spectrum.

2.1.3 Prolongment of flat subbundle and Mehta-Ramanathan type theorem

To begin with, we recall a well known fact about regular singularity of a connection.

Lemma 2.2 Let E be a holomorphic bundle on a disc ∆, and let ∇ be a logarithmic connection of E on (∆, O),
i.e., ∇(E) ⊂ E ⊗Ω1,0(logO). Let f be a flat section of E|∆∗ . Then f naturally gives a meromorphic section of

E.

Corollary 2.3 We put X = ∆z ×∆n
w and D = {0}×∆n

w. Let E be a holomorphic vector bundle on X and ∇
be the logarithmic connection of E on (X,D). Let e be a flat section of E|X−D.

• e gives a meromorphic section of E.

• Assume that e is holomorphic on E and that e|Q 6= 0 for some Q ∈ D. Then e|Q′ 6= 0 for any Q′ ∈ D.

Proof We may assume that we have a holomorphic frame v of E. We have the expression e =
∑
fi(z, w) · vi.

When we fix w, then fi(z, w) are meromorphic with respect to z. Thus we have the least integer j(w) such that
the orders of the poles of fi(z, w) are less than j(w). We put Sj := {w | j(w) ≤ j}. We have D =

⋃
j Sj . If

Sj 6= D, the measure of Sj is 0. Hence we obtain Sj = D for some j, which means e is meromorphic. Thus we
obtain the first claim.

Assume that e is holomorphic and that e|Q 6= 0 for some Q ∈ D. Recall that we have the induced connection
D∇ of E|D. Namely, for any holomorphic section f ∈ E|D , take a holomorphic F ∈ E such that F|D = f , and

then D∇(f) := ∇(F )|D is well defined. Since we have D∇(e|D) = 0, we obtain the second claim.

Corollary 2.4 We put X = ∆n, Di = {zi = 0} and D =
⋃n

i=1Di. Let (E,∇) be a logarithmic connection on
(X,D), and let e be a flat section on X −D.

• e gives a meromorphic section of E.

• Assume that e is holomorphic. We put D◦
i := Di \

⋃
j 6=i Dj . If e|Q 6= 0 for some Q ∈ D◦

i , we have e|Q′ 6= 0

for any Q′ ∈ D◦
i .
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Let X be a complex manifold, and let D be a normal crossing divisor of X . Let (E,∇) be a flat bundle

on X − D. Recall that P. Deligne gave the extension Ẽ of E with the properties: (i) Ẽ|X−D = E, (ii)

∇(Ẽ) ⊂ Ẽ ⊗ Ω1,0(logD) (iii) the real parts of the eigenvalues of Resi(∇) are contained in {0 ≤ t < 1} ([3]).
Such an extension is unique, or in other words, it is unique as the subsheaf of ι∗E, where ι denotes the inclusion
X −D −→ X . The prolongment can also be done for λ-flat bundle (E,Dλ) on X −D, or more precisely, for
the associated flat bundle (E,Dλ f ).

Lemma 2.5 Let (E∗,D
λ) be a regular filtered λ-flat bundle on (X,D), and we put (E,Dλ) := (E∗,D

λ)|X−D.

Let (Ẽ,Dλ) be the Deligne extension of (E,Dλ). Then we have E = Ẽ ⊗OX(∗D), where OX(∗D) denotes the
sheaf of meromorphic functions on X whose poles are contained in D.

Proof We have the naturally defined flat section s on Hom(cE, Ẽ)|X−D. Due to Corollary 2.4, s is a meromor-

phic section, and hence we obtain the flat inclusion cE −→ Ẽ⊗O(N ·D) for some large integer N , which induce

the morphism E =
⋃

cE = cE⊗O(∗D) −→ Ẽ⊗O(∗D). Similarly, we obtain the inclusion Ẽ −→ cE⊗O(N ·D),

and Ẽ ⊗O(∗D) −→ E. They are clearly mutually inverse.

Lemma 2.6 Let (E∗,D
λ) be a regular filtered λ-flat sheaf on (X,D), and let (Ẽ,Dλ) be in the previous lemma.

Then we have E ' Ẽ ⊗O(∗D) naturally.

Proof Due to Lemma 2.1 and Lemma 2.5, there exists a subset W ⊂ D with codimX(W ) ≥ 2 such that

E|X−W ' Ẽ ⊗ O(∗D)|X−W . Let us fix c. There exists a large integer N such that we have cE|X−W ⊂
Ẽ ⊗O(N ·D)|X−W . Since Ẽ is locally free, we obtain cE ⊂ Ẽ ⊗O(N ·D), and thus E ⊂ Ẽ ⊗O(∗D). On the

other hand, there exists a large integerN ′ such that Ẽ|X−W ⊂ cE⊗O(N ′·D)|X−W . Hence Ẽ ⊂ cE
∨∨⊗O(N ′·D),

where cE
∨∨ denotes the double dual of cE. Hence we obtain Ẽ ⊗ O(∗D) ⊂ cE

∨∨ ⊗ O(∗D). It is easy to see

cE
∨∨ ⊗O(∗D) ' cE ⊗O(∗D). Thus we are done.

Lemma 2.7 Let (E∗,D
λ) be a regular filtered λ-flat sheaf on (X,D), and we put (E,Dλ) := (E∗,D

λ)|X−D.
Let E′ be a λ-flat subbundle of E. Then we have the corresponding regular filtered λ-flat subsheaf E

′
∗ ⊂ E∗

such that cE
′ are saturated in cE.

Proof Let Ẽ denote the Deligne extension of (E,Dλ). We have the corresponding subbundle Ẽ′ ⊂ Ẽ. There-

fore, we obtain Ẽ
′

:= Ẽ′ ⊗ O(∗D) ⊂ Ẽ ⊗ O(∗D) = E. For each c, the c-truncation cE
′ is given by the

intersection of cE and E
′ in E. Or equivalently, cE

′ can be given by the intersection of cE and Ẽ′(N ·D) in

Ẽ(N ·D) for sufficiently large N . Thus we obtain E
′
∗ ⊂ E∗.

Let us show the Mehta-Ramanathan type theorem for regular filtered λ-flat sheaves. Let X be a smooth
projective variety with an ample bundle L and a simple normal crossing divisor D. Let (E∗,D

λ) be a regular
filtered λ-flat sheaf on (X,D). Let N be a sufficiently large number. We can take a generic hyper-plane section
Y of L⊗N satisfying the properties: (i) Y ∩D is normal crossing, (ii) π1(Y \D) −→ π1(X \D) is surjective.

Proposition 2.8 Assume dimX ≥ 2. (E∗,D
λ) is µL-stable, if and only if (E∗,D

λ)|Y is µL-stable.

Proof Let us fix c. If W ⊂ cE destabilizes, the restriction W|Y clearly destabilizes. Hence the µL-stability

of (cE∗,D
λ)|Y implies the µL-stability of (cE∗,D

λ). Assume that (cE∗,D
λ) is not µL-stable, and let W be a

subsheaf of cE such that Dλ(W ) ⊂ W ⊗ Ω1,0(logD) and that par-deg(W∗)/ rank(W ) ≥ par-deg(cE∗)/ rankE.
Let Q be any point of X −D. Take a path γ connecting Q and a point P of Y \D. By the parallel transport
along the path, we obtain the vector subspace W ′

Q ⊂ E|Q. It is independent of choices of P and γ, and we

obtain the flat subbundle W ′ ⊂ cE|X−D. Due to Lemma 2.7, we obtain the saturated subsheaf W̃ ′ ⊂ cE. By a

general argument, it can be shown that there exists a subset Z ⊂ D with codimX(Z) ≥ 2 such that W̃ ′
∗|X−Z is

a parabolic subbundle of cE|X−Z . Then it is easy to check W̃ ′ destabilizes.
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2.1.4 Saturated regular filtered λ-flat sheaf

Let X and D be as above. Let (E∗,D
λ) be a regular filtered λ-flat sheaf (λ 6= 0).

Definition 2.9 (E∗,D
λ) is called saturated, if the following conditions are satisfied:

• There exists a subset Z ⊂ D with codimX(Z) ≥ 2, and each aE are determined on aE|X−Z . Namely, for
any open subset U ⊂ X, we have the following:

aE(U) = aE(U \ Z) ∩ E(U). (4)

It is easy to see that a regular filtered λ-flat bundle is saturated.

Lemma 2.10 Let (E∗,D
λ) be a saturated regular filtered λ-sheaf on (X,D). Then each c-truncation cE is

reflexive.

Proof Recall we have already known that cE∗ is a filtered bundle in codimension one (Lemma 2.1). Let

cE
∨∨ denote the double dual of cE. We have the naturally defined injective map cE −→ cE

∨∨. Due to the
saturatedness, any sections of cE

∨∨ naturally gives sections of cE, i.e., cE is isomorphic to cE
∨∨.

Lemma 2.11 A saturated regular filtered λ-flat sheaf (E∗,D
λ) on (X,D) is a regular filtered λ-flat bundle in

codimension two.

Proof We have only to show that there exists a subset Z ⊂ D with codimX(Z) ≥ 3 such that cE∗ |X−Z is a
c-parabolic bundle on (X −Z,D−Z) for any c. Due to c+bE = cE ⊗O(b ·D), where b ·D =

∑
i∈S bi ·Di, we

have only to show such a claim for finite number of tuples c. Due to Lemma 2.10, there exists a subset Z ′ ⊂ D
with codimX(Z ′) ≥ 3 such that cE|X−Z′ is locally free. Hence we can assume that cE is locally free from the
beginning.

We have the parabolic filtration iF = {iFa | ci − 1 < a ≤ ci} of cE|Di
. We can take the saturation iF̃a of

iFa. Namely, we put Ga := cE|Di

/
iFa, and let Ga tor denote the torsion-part of Ga. Let πa : cE|Di

−→ Ga

denote the projection, and we put iF̃a := π−1
a

(
Ga tor

)
.

Lemma 2.12 iF̃a = iFa.

Proof By our construction, we have iFa ⊂ iF̃a, and we also know that there exists a subset W ⊂ Di with
codimDi

(W ) ≥ 1 such that iFa |Di−W = iF̃a |Di−W .

Let P be any point of Di. Let g be a germ of a section of iF̃a at P , and let G be a local section of cE on an
open subset Uof P in X such that the germ of the restriction of G to Di gives g. Then G|U\W gives a section
of c′E on U \W , where c

′ = (c′j) is determined by c′j = cj (j 6= i) and ci = a. Due to the saturatedness, G is a

section of c′E on U . Thus g is the germ of a section of iFa, and iFa = iF̃a. Hence we obtain Lemma 2.12.

Let us return to the proof of Lemma 2.11. Due to Lemma 2.12, the associated graded vector bundle
i GrF (cE|Di

) is torsion free. Hence there exists a subset Z ′′
i ⊂ Di with codimDi

Z ′′
i ≥ 2 such that iF|Di\Z′′

i
is a

filtration in the category of vector bundles on D′′
i \ Z ′′

i . Then cE∗ |X−Z′′ is a c-parabolic locally free sheaf on

(X − Z ′′, D − Z ′′). Thus we are done.

Remark 2.13 By the correspondence of saturated regular filtered flat bundles and filtered local systems, we can
obtain more concrete picture of the saturated regular filtered flat sheaves. We will see it in the section 6.
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2.1.5 Perturbation of parabolic structure

Let X be a smooth projective surface with an ample line bundle L, and D be a simple normal crossing divisor
with the irreducible decomposition D =

⋃
i∈S Di. Let (cE,F ,D

λ) be a c-parabolic λ-flat bundle over (X,D)

for some c ∈ R
S . Assume λ 6= 0. We also assume ci 6∈ Par(cE,F , i) for each i ∈ S, for simplicity.

In the subsection 3.4 of [30], we explained how to perturb the parabolic structure F in the Higgs case. The
argument clearly works even in the case λ 6= 0 (Proposition 2.16). However, we need more concrete way of
perturbation, which we will explain in the following.

Remark 2.14 The construction given in this subsection is valid when the base manifold X is a curve.

Let Ni denote the nilpotent part of the induced endomorphism GrF Resi(D
λ) on i GrF

a (cE|Di
). Before

proceeding, we give a definition of graded semisimplicity, as in the Higgs case.

Definition 2.15 The λ-flat c-parabolic bundle (cE,F ,D
λ) is called graded semisimple, if the nilpotent parts

Ni are 0 for any i ∈ S.

By the argument given in the subsection 3.4 of [30], we can show the following proposition.

Proposition 2.16 Let ε be any sufficiently small positive number. There exists a tuple of the parabolic structure
F

(ε) =
(
iF (ε)

∣∣ i ∈ S
)

such that the following holds:

• (cE,F
(ε)) is a graded semisimple c-parabolic λ-flat bundle.

• We have par-degL(cE,F
(ε)) = par-degL(cE,F ).

• There is a constant C, which is independent of ε, such that the following holds:

∣∣∣
∫

X

par-ch2(cE,F
(ε)) −

∫

X

par-ch2(cE,F )
∣∣∣ ≤ C · ε,

∣∣∣
∫

X

par-c2
1(cE,F

(ε)) =

∫

X

par-c2
1(cE,F )

∣∣∣ ≤ C · ε.

• gap(cE,F
(ε)) ≥ ε/r.

For later use, we need to take such a perturbation in a more concrete way. Hence, we recall the construction
in the following. Let η be a generic point of Di. We have the weight filtration Wη of the nilpotent map Ni,η

on i GrF
(
cE|Di

)
η
, which is indexed by Z. Then we can extend it to the filtration W of i GrF

(
cE|Di

)
in the

category of vector bundles on Di due to dimDi = 1. By our construction, Ni(Wk) ⊂Wk−2. The endomorphism
Resi(D

λ) preserves the filtration W on i GrF (cE|Di
), and the nilpotent part of the induced endomorphisms on

GrW i GrF (cE|Di
) are trivial. Recall that the flat λ-connection Dλ locally induces the λ-connection iDλ of the

vector bundle cE|Di
on Di. Since i GrF (iDλ) commutes with Resi Dλ, it preserves the filtration W .

Let us take the refinement of the filtration iF . For any a ∈]ci − 1, ci], we have the surjection πa :
iFa(cE|Di

) −→ i GrF
a (cE|Di

). We put iF̃a,k := π−1
a (Wk). We use the lexicographic order on ]ci − 1, ci] × Z.

Thus we obtain the increasing filtration iF̃ indexed by ]ci − 1, ci] × Z. Obviously, the set S̃i :=
{
(a, k) ∈

]ci − 1, ci] × Z
∣∣ i Gr

eF
(a,k) 6= 0

}
is finite.

Next, we explain the perturbation of the weight for the parabolic structure. Let ε be a small positive
number such that 0 < rankE · ε < gap(cE,F ). Let us take an increasing map ϕi : S̃i −→]ci − 1, ci] given by

ϕi(a, k) = a+ ε · k. Then iF̃ and ϕi give the c-parabolic filtration F
(ε) =

(
iF (ε)

∣∣ i ∈ S
)
. Thus we obtain the

c-parabolic λ-flat bundle
(
cE,F

(ε),Dλ
)
, which are called the ε-perturbation of (cE,F ,D

λ).

The following proposition is standard. (See Proposition 3.3 of [30], for example.)

Proposition 2.17 Assume that
(
cE,F ,D

λ
)

is µL-stable. If ε is sufficiently small, then the ε-perturbation(
cE,F

(ε),Dλ
)

is also µL-stable.
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2.1.6 Remarks about the terminology and the notation

We give some remarks about the terminology “parabolic structure”. Let X be a complex manifold, and let D
be a simple normal crossing divisor of X with the irreducible decomposition D =

⋃
i∈S Di. We often discuss a

c-parabolic λ-flat bundle on (X,D) for some c ∈ R
S . In our most arguments, a choice of c are not relevant.

In fact, c is fixed to be (0, . . . , 0) in many references where the parabolic structure is discussed. But, it is
sometimes convenient to avoid the case ci ∈ Par(cE∗, i), for example, when we consider a perturbation of the
parabolic structure. That is the main reason why we consider general c-parabolic structure.

In the following argument, we implicitly assume ci 6∈ Par(cE∗, i), and we often omit to distinguish c, and
use the terminology “parabolic structure” instead of “c-parabolic structure”, when we do not have to care about
a choice of c. The author hopes that there will be no confusion and that it will reduce unnecessary complexity
of the description.

Relatedly we have the remark about the notation to denote parabolic bundles. We often use the notation
(cE,F ) or cE∗ to denote a c-parabolic bundle, when we would like to distinguish c. The notation “cE” is also
appropriate and useful, when we regard it as a prolongment of the locally free sheaf E on X −D. But, in most
part of this paper, a vector bundle is given not only on X −D but also on X from the beginning. And, as is
said above, we will not care about a choice of c. Therefore, we often prefer to use the notation (E,F ) or E∗

for simplicity.

2.2 Generality for λ-connection in the C∞-category

We will give some generality for λ-connections. They are straightforward generalization of the argument for
Higgs bundles or flat bundles given in Simpson’s papers (for example [34] and [36]), and hence we will often
omit to give a detailed proof. For simplicity, we will assume λ 6= 0.

2.2.1 The induced operators

Let X be a complex manifold, and (E,Dλ) be a flat λ-connection on X . We have the decomposition of Dλ into
the (0, 1)-part d′′E and the (1, 0)-part d′E . The holomorphic structure of E is given by d′′E . Recall that the twisted
Leibniz rule d′E(f ·v) = λ·∂X(f)v+f ·d′Ev holds for f ∈ C∞(X) and v ∈ C∞(X,E). Let h be a hermitian metric
of E. From d′′E and h, we obtain the (1, 0)-operator δ′E,h determined by ∂h(u, v) = h(d′′Eu, v)+h(u, δ

′
E,hv). From

d′E and h, we obtain the (0, 1)-operator δ′′E,h determined by λ∂h(u, v) = h(d′Eu, v) + h(u, δ′′E,hv). We remark

δ′′E,h(f · v) = λ · ∂Xf · v + f · δ′′E,h(v). We obtain the following operators:

∂E,h :=
1

1 + |λ|2 (d′′E + λδ′′E,h), ∂E,h :=
1

1 + |λ|2 (λd′E + δ′E,h),

θ†E,h :=
1

1 + |λ|2 (λd′′E − δ′′E,h), θE,h :=
1

1 + |λ|2 (d′E − λδ′E,h).

(5)

It is easy to see that the following Leibniz rule holds:

∂E,h(fs) = ∂Xf · s+ f · ∂E,hs, ∂E,h(fs) = ∂Xf · s+ f · ∂E,hs.

On the other hand, θ and θ† give the sections of End(E) ⊗ Ω1,0 and End(E) ⊗ Ω0,1 respectively. We also have
the formulas:

d′′E = ∂E,h + λθ†E,h, d′E = λ∂E,h + θE,h, δ′E,h = ∂E,h − λθE,h, δ′′E,h = λ∂E,h − θ†E,h.

Remark 2.18 The index “E, h” is attached to emphasize the bundle E and the metric h. We will often omit
them if there are no confusion.

We put Dλ ?
h := δ′h − δ′′h = ∂h + θ†h − λ(∂h + θh). We have the following formula:

∂h + θh =
Dλ − λDλ ?

h

1 + |λ|2 , ∂h + θ†h =
Dλ ?

h + λDλ

1 + |λ|2 .

10



We recall that h is called a pluri-harmonic metric if (∂h + θh)2 = 0 holds, i.e., (E, ∂h, θh) is a Higgs bundle.
The condition is equivalent to

[
Dλ,Dλ ?

h

]
= 0.

Let us consider the case where X is provided with a Kahler form ω. For a differential operator A of E ⊗Ω·

of degree one, i.e., A : C∞(X,E ⊗ Ωi) −→ C∞(X,E ⊗ Ωi+1), let A∗ denote a formal adjoint with respect to ω
and h, i.e.,

∫
X(Au, v)h,ω dvolω =

∫
X(u,A∗v)h,ω dvolω hold for any C∞-sections u and v with compact supports.

Here (·, ·)h,ω denotes the Hermitiann inner product of appropriate vector bundles induced by h and ω.

Lemma 2.19
(
Dλ ?

)∗
=

√
−1
[
Λω,D

λ
]

and
(
Dλ
)∗

= −
√
−1
[
Λω,D

λ ?
]
.

Proof It follows from the relations ∂∗ =
√
−1[Λω, ∂E ], ∂

∗
= −

√
−1[Λω, ∂E ], θ∗ = −

√
−1[Λω, θ

†] and (θ†)∗ =√
−1[Λω, θ].

The Laplacian ∆λ
h,ω : C∞(X,E) −→ C∞(X,E) is defined by ∆λ

h,ω :=
√
−1ΛωDλDλ ?.

Remark 2.20 For the differential operators of functions, ∆λ
ω :=

√
−1Λ(∂+λ∂)◦(∂−λ∂) = (1+|λ|2)

√
−1Λ∂∂ =

(1 + |λ|2)∆′′
ω, where ∆′′

ω denotes the usual Laplacian
√
−1Λω∂∂.

Lemma 2.21 When λ 6= 0, we have λ
−1
∂2

h + λ−1θ2h = 0 and λ−1∂
2

h + λ
−1

(θ†h)2 = 0.

Proof From the flatness (Dλ)2 = 0, we obtain the following formulas:

(∂h + λθ†h)2 = ∂
2

h + λ∂hθ
†
h + λ2(θ†h)2 = 0, (6)

(λ∂h + θh)2 = λ2∂2
h + λ∂hθh + θ2h = 0, (7)

[
∂h + λθ†h, λ∂h + θh

]
= λ

([
∂h , ∂h

]
+
[
θ†h, θh

])
+ ∂hθh + λ2∂hθ

†
h = 0. (8)

For a section A of End(E)⊗Ωp,q , let A†
h denote the section of End(E)⊗Ωq,p which is the adjoint of A with

respect to h in the sense
(
A·u, v

)
h

=
(
u,A†

hv
)
h
. Here (·, ·)h denotes the hermitian product

(
E⊗Ω·

)
⊗
(
E⊗Ω·

)
−→

Ω· induced by h. Then it is easy to see (∂
2

h)†h = −∂2
h, (∂hθ

†
h)† = ∂hθh and (θ†h)2 = −(θ2h)†. Therefore we obtain

the following equality from (6):

−∂2
h + λ

(
∂hθh

)
− λ

2
θ2h = 0. (9)

From (7) and (9), we obtain
(
λ+ λ

−1)
∂2

h +
(
λ−1 + λ

)
θ2h = (1 + |λ|2)

(
λ
−1
∂2

h + λ−1θ2h
)

= 0, which gives the first

formula in the lemma. The second formula can be obtained by taking the adjoint.

Lemma 2.22 When λ 6= 0, we have λ
−1 · ∂hθ

†
h + λ−1 · ∂hθh = 0 and

[
∂h , ∂h

]
+
[
θh , θ

†
h

]
= 0.

Proof It is easy to check [∂h, ∂h]†h = −[∂h, ∂h], [θh, θ
†
h]†h = −[θh, θ

†
h] and (∂hθh)†h = ∂hθ

†
h. Hence we obtain the

following equality from (8):

−[∂h, ∂h] − [θ†h, θh] + λ
−1 · ∂hθ

†
h + λ · ∂hθh = 0. (10)

The claim of the lemma immediately follows from (8) and (10).

Corollary 2.23 When λ 6= 0, the pluri-harmonicity of the metric h is equivalent to the vanishings θ2
h = 0 and

∂hθh = 0.
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2.2.2 Local expression

Let (E,Dλ) be a flat λ-connection, and let h be a C∞-metric. Let v = (v1, . . . , vr) be a holomorphic frame of
E. Let H = H(h,v) denote the hermitian matrix valued function of h with respect to v, i.e., Hi,j = h(vi, vj).
Let us see the local expression of the induced operators.

Let A denote the M(r)-valued (1, 0)-form of Dλ with respect to v, i.e., Dλ
v = v · A, in other words,

Dλvi =
∑
Aj i · vj . Let B denote the (1, 0)-form of δ′h with respect to v, i.e., δ′hv = v · B, and then we have

∂h(vi, vj) = h
(
vi, δ

′
hvj

)
=
∑
h
(
vi, Bk,jvk

)
. Hence ∂H = H · B, i.e., we obtain B = H

−1
∂H. Let C denote the

(0, 1)-form of δ′′h with respect to v, i.e., δ′′hv = v ·C, and then we have λ · ∂h(vi, vj) = h(d′vi, vj) +h(vi, δ
′′
hvj) =∑

k h(Ak,ivk, vj) +
∑

k h(vi, Ck,jvk). Hence λ∂H = tAH + HC, i.e., we obtain C = λ · H−1
∂H −H

−1tAH .
Thus we obtain the following:

θhv = v · 1

1 + |λ|2 (A−H
−1
∂H), ∂hv = v · λ

1 + |λ|2 (λ ·H−1
∂H −A†

h).

Here A† denote the adjoint of A with respect to h, i.e., A†
h = H

−1 · tA ·H.

2.2.3 Pseudo curvature and the Hermitian-Einstein condition

Assume λ 6= 0. For a flat λ-connection (E,Dλ) with a hermitian metric h, the pseudo curvature G(h,Dλ) is
defined as follows:

G(h,Dλ) :=
[
Dλ,Dλ ?

h

]
= − (1 + |λ|2)2

λ
(∂h + θh)2.

Then a hermitian metric h is a pluri-harmonic metric for (E,Dλ), if and only if G(h,Dλ) = 0 holds. We will
often use the notation G(h) or Gh instead of G(h,Dλ) if there are no confusion.

When X is provided with a Kahler form ω, a Hermitian-Einstein condition for h is ΛωG(h,Dλ)⊥ = 0, where
“⊥” means the trace free part.

2.2.4 Some relations between curvature and pseudo curvature

By the construction of δ′h, the operator d′′ + δ′h is a unitary connection of (E, h). The curvature of d′′ + δ′h is
denoted by R(d′′, h). We have the following expression of R(d′′, h) due to [d′′, d′] = 0:

R(d′′, h) =
[
d′′, δ′h

]
=
[
d′′, λ−1d′

]
− 1 + |λ|2

λ

[
d′′, θh

]
= −1 + |λ|2

λ

(
∂hθh + λ[θ†h, θh]

)
. (11)

Lemma 2.24 The following equality holds:

trR(d′′, h) =
1

1 + |λ|2 trG(Dλ, h) = −1 + |λ|2
λ

∂ tr θh. (12)

Proof From (11), we obtain trR(d′′, h) = −(1 + |λ|2)λ−1 · ∂ tr θh. On the other hand, we have the following:

trG(h,Dλ) = −
(
1 + |λ|2

)2

λ
tr
(
∂

2

h + ∂hθh + θ2h
)

= −
(
1 + |λ|2

)2

λ
∂ tr θh.

Here we have used tr(θ2
h) = 0, which implies tr(∂

2

h) = 0 due to Lemma 2.21. Thus we are done.

Lemma 2.25 In the case dimX = 2, we have the following formula:

trR(h, d′′)2 =
1

(1 + |λ|2)2 trG(h,Dλ)2 − (1 + |λ|2)2
λ

∂ tr(θ2h · θ†h).
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Proof We have the following:

trG(h,Dλ)2 =
(1 + |λ|2)4

λ2

(
tr
(
(∂hθh)2

)
+ 2 tr

(
∂

2

h · θ2h
))

trR(h, d′′)2 =
(1 + |λ|2)2

λ2

(
tr
(
(∂hθh)2

)
+ 2λ tr

(
∂hθh · [θh, θ

†
h]
)

+ λ2 tr
(
[θh, θ

†
h]2
))
.

Since we have tr
(
[θh, θ

†
h]2
)

= −2 tr
(
θ2hθ

† 2
h

)
and (∂h + λθ†h)2 = ∂

2

h +λ∂hθ
†
h + λ2θ† 2

h = 0, we obtain the following:

λ2 tr
(
[θh, θ

†
h]2
)

= −2 tr
(
λ2 · θ2h · θ† 2

h

)
= 2 tr

(
∂

2

h · θ2h + λ · ∂hθ
†
h · θ2h

)
.

Hence we have the following equality:

trR(h, d′′)2 =

(
1 + |λ|2

λ

)2 (
tr
(
(∂hθh)2

)
+ 2λ tr

(
∂hθh · [θh, θ

†
h]
)

+ 2 tr
(
∂

2

h · θ2h
)

+ 2λ tr
(
∂hθ

†
h · θ2h

))
.

We also remark the following:

tr
(
∂hθh · [θh, θ

†
h]
)

+ tr(θ2h · ∂hθ
†
h) = tr

(
(∂hθh) · θh · θ†h

)
+ tr

(
∂hθh · θ†h · θh

)
− tr

(
θh · ∂hθ

†
h · θh

)

= ∂ tr
(
θh · θ†h · θh

)
= −∂ tr(θ2h · θ†h). (13)

Then the claim of the lemma immediately follows.

2.2.5 Change of hermitian metrics

Let hi (i = 1, 2) be hermitian metrics of E. The endomorphism s is determined by h2 = h1 · s, i.e., h2(u, v) =
h1

(
s ·u, v

)
= h1

(
u, s ·v

)
, which is self adjoint with respect to both of hi. Then we have the relations δ′h2

=
δ′h1

+ s−1δ′h1
s and δ′′h2

= δ′′h1
+ s−1δ′′h1

s. Therefore we have the following relations from (5):

∂h2 = ∂h1 +
λ

1 + |λ|2 s
−1δ′′h1

s, ∂h2 = ∂h1 +
1

1 + |λ|2 s
−1δ′h1

s,

θ†h2
= θ†h1

− 1

1 + |λ|2 s
−1δ′′h2

s, θh2 = θh1 −
λ

1 + |λ|2 s
−1δ′h1

s.

We also have Dλ ?
h2

= Dλ ?
h1

+ s−1Dλ ?
h1
s, and thus

[
Dλ,Dλ ?

h2

]
=
[
Dλ,Dλ ?

h1

]
+ Dλ(s−1) · Dλ ?

h1
s + s−1DλDλ ?

h1
s. Then

we obtain the following formula:

∆λ
h1,ωs = s

√
−1
(
ΛωG(h2) − ΛωG(h1)

)
+
√
−1ΛωDλs · s−1Dλ ?s. (14)

In particular, we obtain the following formula by taking the trace:

∆λ
ω tr(s) = tr

(
s
√
−1
(
ΛωG(h2) − ΛωG(h1)

))
−
∣∣Dλ(s)s−1/2

∣∣2
h1,ω

. (15)

As in Lemma 3.1 of [34], we can derive the following inequality for some positive constant Cλ which depends
only on λ:

∆λ
ω log tr(s) ≤ Cλ

(∣∣ΛωG(h1)
∣∣
h1

+
∣∣ΛωG(h2)

∣∣
h2

)
(16)

2.3 Parabolic λ-flat Bundles Associated to Tame Harmonic Bundles

2.3.1 Tame pluri-harmonic metric

Let X be a complex manifold with a simple normal crossing divisor D. Let (E,Dλ) be a λ-flat bundle on X−D.
Let h be a pluri-harmonic metric of (E,Dλ). Then we have the induced Higgs bundle (E, ∂h, θh). Recall the
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tameness of pluri-harmonic metric. Let P be any point ofX , and let (UP , z1, . . . , zn) be a holomorphic coordinate

around P such that D ∩ UP =
⋃l

i=1{zi = 0}. Then we have the expression:

θ =

l∑

i=1

fi ·
dzi

zi
+

n∑

j=l+1

gj · dzj .

The pluri-harmonic metric h is called tame, if the coefficients of the characteristic polynomials det(t− fi) and
det(t− gj) are holomorphic on UP .

Recall also that the curve test for tameness is valid ([28]), namely, a pluri-harmonic h for (E,Dλ) is tame if
and only if h|C is tame for any closed curve C ⊂ X transversal with D.

2.3.2 Prolongation of tame harmonic bundles and uniqueness of pluri-harmonic metrics

Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal crossing
divisor of X with the irreducible decomposition D =

⋃
i∈S Di. Let (E,Dλ, h) be a tame harmonic bundle on

X −D. Recall that E is prolonged to the filtered bundle E∗ =
(

cE
∣∣ c ∈ R

S
)

such that (E∗,D
λ) is a regular

filtered λ-flat bundle ([28]). And the metric h is adapted to the parabolic structure. (See the section 3.3 of [30]
for the adaptedness, for example.)

Proposition 2.26 Let (E∗,D
λ) be as above.

• (E∗,D
λ) is µL-polystable with par-degL(E∗) = 0.

• Let (E∗,D
λ) =

⊕
j(Ej ∗,D

λ
j )⊗C

p(j) be the canonical decomposition of µL-polystable regular filtered λ-flat
bundle. Then we have the corresponding decomposition of the metric h =

⊕
hi ⊗ gi, where hi denote

pluri-harmonic metrics of (Ei,D
λ
i ) adapted to the parabolic structure, and gi denote metrics of C

p(i).

• We have the vanishings of characteristic numbers:

∫

X

par-ch2,L(E∗) =

∫

X

par-c2
1,L(E∗) = 0.

Proof The first two claims can be shown by the same argument as the proof of Proposition 5.1 of [30]. The
third claim can be shown by an argument similar to the proof of Proposition 5.3 of [30], which we explain
briefly. We have only to consider the case dimX = 2. Since h is pluri-harmonic, we have the equalities
trR(d′′, h) = (1 + |λ|2)−1 trG(h,Dλ) = 0 and tr

(
R(d′′, h)2

)
= (1 + |λ|2)−2 · tr

(
G(h,Dλ)2

)
= 0, due to Lemma

2.24 and Lemma 2.25 on X −D. Hence we have only to show the following:

(√
−1

2π

)2 ∫

X−D

(
trR(d′′, h)

)2
=

∫

X

par-c2
1(E∗),

(√
−1

2π

)2 ∫

X−D

tr
(
R(d′′, h)2

)
=

∫

X

2 par-ch2(E).

It can be shown by the same argument as the proof of Proposition 5.3 of [30].

Proposition 2.27 Let (E∗,D
λ) be a regular filtered λ-flat bundle. We put (E,Dλ) := (E∗,D

λ)|X−D. Let ha

(a = 1, 2) be pluri-harmonic metrics of (E,Dλ) on X −D which is adapted to the parabolic structure. Then we
have the decomposition (E,Dλ) =

⊕
(Ei,D

λ) with the following properties:

• The decomposition is orthogonal with respect to both of ha (a = 1, 2). Hence we have the decomposition
ha =

⊕
i ha,i.

• There exist positive numbers bi such that h1,i = bi · h2,i.

The decomposition on X −D is prolonged to the decomposition (E∗,D
λ) =

⊕
(Ei ∗,D

λ) on X.

Proof Similar to Proposition 5.2 of [30].
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2.4 Review of Existence Result of a Hermitian-Einstein Metric due to Simpson

2.4.1 Analytic stability of flat λ-bundle

Let X be a complex manifold with a Kahler form ω. In this subsection, we impose the following condition as
in [34].

Condition 2.28

1. The volume of X with respect to ω is finite.

2. There exists a C∞-function φ : X −→ R≥ 0 with the following properties:

• {x ∈ X |φ(x) ≤ a} is compact for any a.

• 0 ≤
√
−1∂∂φ ≤ C · ω, and ∂φ is bounded with respect to ω.

3. There exists a continuous increasing function a : [0,∞[−→ [0,∞[ with the following properties:

• a(0) = 0 and a(t) = t for t ≥ 1.

• Let f be a positive bounded function on X such that ∆ωf ≤ B for some B ∈ R. Then there exists
a constant C(B), depending only on B, such that supX |f | ≤ C(B) · a

(∫
X |f | · dvolω

)
. Moreover,

∆ω(f) ≤ 0 implies ∆ω(f) = 0.

Let (E,Dλ) be a flat λ-connection on X . There are two conditions on the finiteness of the pseudo curvature
of (E,Dλ, h). The stronger one is as follows:

sup |G(h,Dλ)|h,ω <∞. (17)

The finiteness (17) implies the weaker one:

sup |ΛωG(h,Dλ)|h,ω <∞. (18)

When a hermitian metric h of E is given with the finiteness (18), the degree degω(E, h) is defined as follows:

degω(E, h) :=

√
−1

2π

∫

X

trG(h,Dλ)

1 + |λ|2 · ωn−1 =

√
−1

2π

∫

X

trR(h, d′′) · ωn−1.

Here we have used (12). For any λ-flat bundle (V,Dλ
V ) ⊂ (E,Dλ), the restriction hV := h|V induces degω(V, hV ).

As in Lemma 3.2 of [34], we have the Chern-Weil formula. The proof is same.

Lemma 2.29 Let πV denote the orthogonal projection of E onto V . Then the following holds, for some positive
constant C:

degω(V, hV ) =
1

2π

1

1 + |λ|2
(√

−1

∫

X

tr
(
πV ◦G(h,Dλ)

)
· ωn−1 −

∫

X

∣∣DλπV

∣∣2
h,ω

)

The value is finite or −∞, when (18) is satisfied.

Definition 2.30 (E,Dλ, h) is defined to be analytically stable with respect to ω, if the inequality

degω(V, hV )

rankV
<

degω(E, h)

rankE

holds for any (V,Dλ
V ) ⊂ (E,Dλ).
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2.4.2 Existence theorem of Simpson and some consequence

Proposition 2.31 Let (X,ω) be a Kahler manifold satisfying Condition 2.28, and let (E,Dλ, h0) be a metrized
flat λ-connection satisfying (17). Assume that (E,Dλ, h0) is analytically stable with respect to ω. Then there
exists a hermitian metric h = h0 · s satisfying the following conditions:

• h and h0 are mutually bounded.

• det(h) = det(h0)

• Dλ(s) is L2 with respect to h0 and ω.

• It satisfies the Hermitian Einstein condition ΛωG(h)⊥ = 0, where G(h)⊥ denotes the trace free part of
G(h).

• The following equalities hold:

∫

Y

tr
(
G(h)2

)
· ωn−2 =

∫

Y

tr
(
G(h0)

2
)
· ωn−2,

∫

Y

tr
(
G(h)⊥ 2

)
· ωn−2 =

∫

Y

tr
(
G(h0)

⊥ 2
)
· ωn−2.

We do not give a proof of this proposition, because we need only minor modification of the proof of Theorem
1, Proposition 3.5 and Lemma 7.4 of [34]. Indeed, we have only to replace D′′, D′ and F (h) with Dλ, Dλ ? and
G(h), and to make some obvious modification of positive constant multiplications, as was suggested by Simpson
himself. (See the page 754 of [35], for example. Remark that “Dc” corresponds to our −Dλ ?, and hence our
G(h) is slightly different from his.) The author recommends the reader to read a quite excellent discussion in
[34]. However, we will use some results related with the Donaldson functional, which are obtained from the
proof. Hence we recall a brief outline of the proof of Proposition 2.31. We will use the notation in the subsection
2.5.

Let h0 be a metric for (E,Dλ) satisfying the finiteness (18). Let us consider the heat equation for the self
adjoint endomorphisms st with respect to h0:

s−1
t

dst

dt
= −

√
−1ΛωG(ht)

⊥. (19)

A detailed argument to solve (19) is given in the section 6 of [34]. Moreover, ΛωG(ht) is shown to be uniformly
bounded. We do not reproduce them here.

Then we would like to show the existence of an appropriate subsequence ti → ∞ such that {sti
} converges to

s∞ weakly in Lp
2 locally on X , and we would like to show that h∞ = h0 ·s∞ gives the desired Hermitian-Einstein

metric. For that purpose, Simpson used the Donaldson functional M
(
h0, h0 · sti

)
. (We recall the definition

and some fundamental property in the subsection 2.5, below.) He showed that there exist positive constants Ci

(i = 1, 2) such that the following holds: (Proposition 5.3 of [34]. We review it in Proposition 2.38. We will use
the notation there in the following.)

sup |st| ≤ C1 + C2 ·M(h0, h0st). (20)

He also showed (Lemma 7.1 of [34]) that M(h0, h0 · st) is C1 with respect to t, and that the following formula
holds:

d

dt
M
(
h0, h0 · st

)
= −

∫

X

∣∣ΛωG(ht)
⊥
∣∣2
ht,ω

≤ 0. (21)

Since we have M(h0, h0) = 0 by definition, we obtain M(h0, h0 · st) ≤ 0 from (21). Then we obtain the
boundedness of st from (20). For the solution of (19), we have det(st) = 1. Hence we also obtain the boundedness
of s−1

t . We also obtain the existence of a subsequence {t′i} such that
∣∣ΛωG(h′ti

)
∣∣
L2 −→ 0.

From the uniform boundedness of st and ΛωG(ht), we obtain the lower bound of M
(
h0, h0st

)
. (See Corollary

2.37 in this paper, for example.) Moreover, we obtain the uniform bound of
∫

X

∣∣Dλut

∣∣2
h0

due to the positivity

of Ψ given in (26), where st = exp(ut). Due to the boundedness of st and s−1
t , we also obtain the boundedness

of
∫

X

∣∣Dλst

∣∣2
h0

. Then we obtain the L2
1 boundedness. Hence we can take a subsequence {t′′i } such that st′′i
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converges to some s∞ weakly in L2
1 locally on X −D. Due to some more excellent additional argument given

in the page 895 of [34], it can be shown that the convergence is weakly Lp
2 locally on X −D, for any p. As a

result, we obtain the Hermitian-Einstein metric.
By the above argument, we can derive the following lemma, which we would like to use in later discussion.

Lemma 2.32 Let h0 be the hermitian metric satisfying (17), Let hHE be the Hermitian-Einstein metric obtained
in Proposition 2.31. Then we have M

(
h0, hHE

)
≤ 0.

Proof Recall that hHE is obtained as the limit h0 ·s∞ of some sequence {h0sti
}, and we haveM(h0, h0 ·sti

) ≤ 0.
We use the formula (25). Let Z be any compact subset of X . The sequence {sti

} converges to s∞ in C0 on Z.
The sequence {ΛωG(hti

)} converges to ΛωG(hHE) weakly in L2 on Z. Therefore we have the convergence:

lim
ti→∞

∫

Z

tr
(
uti

· ΛωG(hti
)
)
dvolω =

∫

Z

tr
(
u∞ · ΛωG(hHE)

)
dvolω .

Here ut are given by exp(ut) = st. Since supX |st| and supX |ΛG(ht)| are bounded independently of t, we can
easily obtain the convergence:

lim
ti→∞

∫

X

tr
(
uti

· ΛωG(hti
)
)
dvolω =

∫

X

tr
(
u∞ · ΛωG(hHE)

)
dvolω .

We have the C0-convergence of the sequence {Dλuti
} to Dλu∞. Hence we have the following inequality, due to

Fatou’s lemma: ∫

X

(
Ψ(u∞)Dλu∞, Dλu∞

)
dvolω ≤ lim

∫

X

(
Ψ(uti

)Dλuti
, Dλuti

)
dvolω .

Then we obtain the desired inequality.

2.5 Review of Donaldson Functional

We recall the Donaldson functional, by following Donaldson and Simpson ([4] and [34]).

2.5.1 Functions of self adjoint endomorphisms

Let V be a vector space over C with a hermitian metric h. Let S(V, h) denote the set of the endomorphisms
of V which are self-adjoint with respect to h. Let ϕ : R −→ R be a continuous function. Then ϕ(s) is
naturally defined for any s ∈ S(V, h). Namely, let v1, . . . , vr be the orthogonal base which consists of the
eigen vectors of s, and let v∨1 , . . . , v

∨
r be the dual base. Then we have the description s =

∑
κi · v∨i ⊗ vi, and

we put ϕ(s) :=
∑
ϕ(κi) · v∨i ⊗ vi. Thus we obtain the induced map ϕ : S(V, h) −→ S(V, h), which is well

known to be continuous. To see the continuity, for example, we can argue as follows: Let U(h) denote the
unitary group with respect to h. Take e = (e1, . . . , er) be an orthogonal base of V . Let T denote the set of
endomorphisms of V which is diagonal with respect to the base e. Then we have the continuous surjective map
π : U(h)× T −→ S(V, h) given by (u, t) 7−→ u · t · u−1. It is easy to check the continuity of the composite ϕ ◦ π.
Since the topology of S(V, h) is same as the induced topology via π, we obtain the continuity. When ϕ is real
analytic given by the convergent power series

∑
aj · tj , then ϕ(s) =

∑
aj · sj . The induced map is real analytic

in this case.
Let Ψ : R × R −→ R be a continuous function. For a self adjoint map s ∈ S(V, h), let v1, . . . , vr and

v∨1 , . . . , v
∨
r be as above. Then we put Ψ(s)(A) =

∑
Ψ(κi, κj) · Ai,j · v∨i ⊗ vj for any endomorphism A =∑

Ai,j · v∨i ⊗ vj of V . Thus we obtain Ψ : S(V, h) −→ S(End(V ), h), which is also well known to be continuous.
Here S(End(E), h) denotes the set of the self adjoint endomorphisms of End(V ) with respect to the metric
induced by h. To see the continuity, we can use the same argument as above. When Ψ is real analytic given by
a power series,

∑
bm,nt

m
1 t

n
2 , then we have Ψ(s)(A) =

∑
bm,ns

m ·A · sn, and the induced map is real analytic.
When ϕ is C1, the continuous function dϕ : R

2 −→ R is given by dϕ(t1, t2) = (t1 − t2)
−1
(
ϕ(t1) − ϕ(t2)

)

(t1 6= t2) and dϕ(t1, t1) = ϕ′(t1). In this case, ϕ : S(V, h) −→ S(V, h) is also C1, and the derivative at s is
given by dϕ(s). To see it, we can argue as follows: When ϕ is real analytic, the claim can be checked by a
direct calculation. In general, we can take an approximate sequence ϕi −→ ϕ by real analytic functions on
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an appropriate compact neighbourhoods of the eigenvalues of s ∈ S(V, h). The induced maps ϕi : S(V, h) −→
S(V, h) and dϕi : S(V, h) −→ S(End(E), h) uniformly converge to ϕ and dϕ on an appropriate compact
neighbourhoods of s. Then we can derive that ϕ is the integral of the form dϕ by a general fact.

The construction can be done on manifolds. Namely, let E be a C∞-vector bundle with a hermitian metric
h. Let Sh(E) (or simply Sh) be the bundle of the self-adjoint endomorphisms of (E, h), and let Sh(End(E)) be
the bundle of the self-adjoint endomorphisms of (End(E), h). Then a continuous function ϕ : R −→ R induces
ϕ : Sh(E) −→ Sh(E), and Ψ : R

2 −→ R induces Ψ : Sh(E) −→ Sh(End(E)). We have Dλϕ(s) = dϕ(s)
(
Dλs

)
,

when ϕ is C1.

2.5.2 A closed one form

Let (X,ω) and (E,Dλ) be as in the subsection 2.4.1. Following Simpson [34], we introduce the space P (Sh),
which consists of sections s of Sh(E) satisfying the following finiteness:

‖s‖h,ω,P := sup
X

|s|h + ‖Dλs‖2,h,ω + ‖∆λ
h,ωs‖1,h,ω <∞.

Here ‖ · ‖p,h,ω denote the Lp-norm with respect to (h, ω). We will omit to denote ω and h, when there are no
confusion. The following lemma corresponds to Proposition 4.1 (d) in [34]. The proof is same.

Lemma 2.33 Let ϕ and Ψ are analytic functions on R with infinite radius of convergence. Then ϕ : P (Sh) −→
P (Sh) and Ψ : P (Sh) −→ P (Sh(End(E))) are analytic.

Let h be a metric satisfying (18). Let P+(Sh) denote the set of the self adjoint positive definite endomor-
phisms s with respect to h such that ‖s‖h,P <∞ and ‖s−1‖h,P <∞. We put Ph :=

{
h · s

∣∣ s ∈ P+(Sh)
}
. It is

easy to see that any h1 ∈ Ph also satisfies (18) and Ph = Ph1 , due to (14). It is also easy to see Ph = Ph1 for
h1 ∈ Ph.

Let P(Sh) denote the space of the self adjoint endomorphisms s with respect to h such that ‖s‖P,h <∞. It
is easy to see that P+(Sh) is open in P(Sh). In particular, we obtain the Banach manifold structure of P+(Sh).
By the natural bijection Ph ' P+(Sh1) for h1 ∈ Ph, we also obtain the Banach manifold structure of Ph, which
is independent of a choice of h1 ∈ Ph. We have the map P(Sh1) −→ P+(Sh1) given by s 7−→ es (Lemma 2.33). It
gives a diffeomorphism around 0 ∈ P(Sh1) and 1 ∈ P+(Sh1). Therefore the map P(Sh1) −→ Ph by s 7−→ h1 · es

gives a diffeomorphism around 0 and h1. In particular, the tangent space Th1Ph can be naturally identified
with P(Sh1) for any h1 ∈ Ph. We also have the natural isomorphism P(Sh1) ' P(Sh) given by t 7−→ u · t for
h1 = h · u ∈ Ph, which gives the local trivialization of the tangent bundle.

For any h1 ∈ Ph and s ∈ Th1Ph, we put as follows:

Φh1(s) :=

∫

X

Φ′
h1

(s) dvolω ∈ C, Φ′
h1

(s) :=
√
−1 tr

(
s · ΛωG(Dλ, h1)

)
.

Then Φ′ gives the L1(X,Ω1,1
X )-valued one form on Ph, and Φ gives the one form of Ph. The differentiability of

Φ is easy to see.

Lemma 2.34 Φ is a closed one form.

Proof In the following argument, we use the notation Dλ ? instead of Dλ ?
h . Let k1, k2 ∈ Ph. They naturally

give the vector field by addition. At any point h1 ∈ Ph, they give the tangent vectors σ = h−1
1 k1 and τ = h−1

1 k2

in Th1Ph = P(Sh1). Hence we have the following at h+ εk1:

Φh+εk1(k2) =
√
−1

∫
tr
(
(h+ εk1)

−1 · k2 ·G(h+ εk1)
)
· ωn−1.

We have (h+ εk1)
−1k2 = (1 + εσ)−1τ = τ − εστ + (1 + εσ)−2ε2σ2τ . Remark σ2τ is bounded. We also have the

following:

(1 + εσ)
(
G(h+ εk1) −G(h)

)
= DλDλ ?(1 + εσ) − Dλ(1 + εσ) · (1 + εσ)−1Dλ ?(1 + εσ)

= εDλDλ ?σ − ε2Dλσ · (1 + εσ)−1Dλ ?σ. (22)
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Hence we have G(h+ εk1)−G(h) = εDλDλ ?σ+ ε2R0(ε, σ, τ), where R0(ε, σ, τ) is an L1-section of End(E)⊗Ω2,
and the L1-norm is bounded independently of ε. Therefore we obtain the following:

Φh+εk1(k2) − Φh(k2) =
√
−1

∫
tr
(
(h+ εk1)

−1 · k2 ·G(h+ εk1)
)
· ωn−1 −

√
−1

∫
tr
(
h−1 · k2 ·G(h)

)
· ωn−1

=
√
−1

∫
tr
(
τG(h+ εk1) − τG(h)

)
· ωn−1 − ε

√
−1

∫
tr
(
στG(h + εk1)

)
· ωn−1 + ε · R1(ε, σ, τ)

= ε

(√
−1

∫
tr
(
τDλDλ ?σ

)
· ωn−1 −

√
−1

∫
tr
(
σ · τ ·G(h)

)
· ωn−1

)
+ εR2(ε, σ, τ). (23)

Here we have Ri(ε, σ, τ) −→ 0 (i = 1, 2) in ε → 0, due to ‖σ‖P and ‖τ‖P < ∞. Hence we obtain the following
equality:

dhΦ(σ, τ) =
√
−1

∫ (
tr
(
τDλDλ ?σ

)
− tr

(
σDλDλ ?τ

))
· ωn−1 −

√
−1

∫
tr
(
[σ, τ ] ·G(h)

)
· ωn−1.

We have the following equality, due to [Dλ,Dλ ?] = G(h):

(−λ∂ + ∂) tr(τDλσ) + (λ∂ + ∂) tr(σDλ ?τ) = tr(Dλ ?τDλσ) + tr(τDλ ?Dλσ) + tr(DλσDλ ?τ) + tr(σDλDλ ?τ)

= − tr(τDλDλ ?σ) + tr(τ · [G(h), σ]) + tr(σDλDλ ?τ) = − tr
(
τDλDλ ?σ

)
+ tr(σDλDλ ?τ) + tr

(
[σ, τ ] ·G(h)

)

(24)

Hence we obtain dhΦ(σ, τ) = −
√
−1
∫

X

(
(−λ∂+∂) tr(τDλσ)+(λ∂+∂) tr(σDλ ?τ)

)
·ωn−1. By using ‖σ‖P <∞

and ‖τ‖P <∞, we obtain the vanishing of dhΦ(σ, τ), due to Lemma 5.2 of [34].

2.5.3 Donaldson functional

For h1, h2 ∈ Ph, take a differentiable path γ : [0, 1] −→ Ph such that γ(0) = h1 and γ(1) = h2, and the
Donaldson functional is defined to be M(h1, h2) :=

∫
γ

Φ. It is independent of a choice of a base metric ω, in

the case dimX = 1. We have M(h1, h2) +M(h2, h3) = M(h1, h3) by the construction.

Lemma 2.35 When h2 = h1 · es for s ∈ P(Sh1), we have the following formula:

M
(
h1, h2

)
=

√
−1

∫

X

tr
(
sΛωG(h1)

)
dvolω +

∫

X

(
Ψ(s)Dλs,Dλs

)
ω,h1

dvolω . (25)

Here (·, ·)ω,h1 denotes the hermitian product induced by ω and h1, and Ψ is given as follows:

Ψ(t1, t2) =
et2−t1 − (t2 − t1) − 1

(t2 − t1)2
. (26)

See the subsection 2.5.1 for the meaning of Ψ(s)(Dλs).

Proof Let M ′(h1, h2) denote the right hand side of (25). The following formula immediately follows from the
definition:

∂

∂u
M ′(h1e

ts, h1e
(t+u)s)|u=0 =

∫

X

√
−1 tr

(
sΛωG(h1e

ts)
)
.

The following formula can be shown:

∂2

∂t∂u
M ′(h1e

ts, h1e
(t+u)s)|u=0 =

∂2

∂t∂u
M ′(h1, h1e

(t+u)s)|u=0. (27)

We omit to give the argument to show (27), because it is same as that in the page 883 of [34] to show the
following equality:

∂2

∂t2
M(h, hets)|t=1,u=0 =

∂2

∂t∂u
M(hets, he(t+u)s)|t=1,u=0.
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We have the obvious equality:

∂

∂u
M ′(h1e

ts, h1e
(t+u)s)|t=0,u=0 =

∂

∂u
M ′(h1, h1e

(t+u)s)|t=0,u=0.

Hence we obtain the following:

∂

∂t
M ′(h1, h1e

ts) =

∫

X

√
−1 tr

(
sΛωG(h1e

ts)
)
.

Thus M ′(h1, h1e
s) is the integral of Φ′ along the path γ(t) = h1e

ts, and hence M ′(h1, h2) = M(h1, h2).

Remark 2.36 In [34], the formula (25) is adopted to be the definition of the functional. We follow the original
definition of Donaldson ([4]).

We obtain the following corollary due to the positivity of the function Ψ.

Corollary 2.37 When sup |ΛωG(h)|h < B, we have the following inequality:

M(h, hes) ≥
√
−1

∫
tr
(
sΛωG(h)

)
· dvolω ≥ −B

∫
|s|h · dvolω .

In particular, the upper bound of s gives the lower bound of M(h, hes).

2.5.4 Main estimate

The following key estimate is the counterpart of Proposition 5.3 in [34]. The proof is same.

Proposition 2.38 Fix B > 0. Let (E,Dλ) be a flat λ-connection. Let h be a hermitian metric of E such
that sup

∣∣ΛωG(h,Dλ)
∣∣
h
≤ B. Let (E,Dλ, h) be analytically stable with respect to ω. Then there exist positive

constants Ci (i = 1, 2) with the following property:

• Let s be any self adjoint endomorphism satisfying ‖s‖P,h < ∞, tr(s) = 0 and sup
∣∣ΛωG(h · es,Dλ)

∣∣ ≤ B.
Then the following inequality holds:

sup
X

|s|h ≤ C1 + C2 ·M(h, hes)

(Sketch of the proof) The excellent argument given in [34] works in the case of λ-connection without any
essential change. Since we would like to use some minor variants of the proposition (the subsections 2.5.5–2.5.6),
we recall an outline of the proof for the convenience of the reader. To begin with, we remark that we have only
to show the following inequality due to Corollary 2.37:

sup
X

|s|h ≤ C ′
1 + C ′

2 · max
{
0,M(h, hes)

}
,

As is noticed in the subsubsection 2.2.5, the inequality ∆λ
ω log tr(es) ≤ Cλ ·

(∣∣ΛG(h)
∣∣
h
+
∣∣ΛG(hes)

∣∣
hes

)
≤ 2BCλ

holds. Hence there exist some constants Ci (i = 3, 4) such that the inequality log tr(es) ≤ C3 +C4 ·
∫

log tr(es)
holds for any s as above, due to Condition 2.28. Since we have C5 +C6 · |s|h ≤ log tr es ≤ C7 +C8 · |s|h for some
positive constants Ci (i = 5, 6, 7, 8), there exist some constants Ci (i = 9, 10) such that the following holds for
any s as above:

sup |s|h ≤ C9 + C10 ·
∫

|s|h. (28)

Assume that the claim of the proposition does not hold, and we will derive a contradiction. Under the
assumption, either one of the following occurs:

Case 1. There exists a sequence {si ∈ P(Sh) | i = 1, 2, · · · , } such that sup |si|h −→ ∞ and M(h, hesi) ≤ 0.
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Case 2. There exist sequences {si ∈ P(Sh)} and {C2,i ∈ R} with the following properties:

sup
X

|si| −→ ∞, C2,i −→ ∞, (i −→ ∞)

M(h, hesi) > 0, sup |si|h ≥ C2,iM(h, hesi)

In both cases, we have ‖si‖L1 −→ ∞. We put `i := ‖si‖L1 and ui := si/`i. Clearly we have ‖ui‖L1 = 1, and
uniform boundedness supX |ui| < C due to (28). In the following, let L2(Sh) (resp. L2

1(Sh)) denote the space of
L2-sections (resp. L2

1-sections) of Sh. The following lemma is one of the keys in the proof of Proposition 2.38.

Lemma 2.39 After going to an appropriate subsequence, {ui} weakly converges to some u∞ 6= 0 in L2
1(Sh).

Moreover, we have the following inequality, for any C∞-function Φ : R × R −→ R≥ 0 such that Φ(y1, y2) ≤
(y1 − y2)

−1 for y1 > y2:

√
−1

∫
tr
(
u∞ΛωG(h)

)
+

∫

X

(
Φ(u∞)Dλu∞,D

λu∞
)
h,ω

≤ 0.

Proof By considering Φ − ε for any small positive number ε, we have only to consider the case Φ(y1, y2) <
(y1 − y2)

−1 for y1 > y2. In the both cases, we have the inequalities for some constant C, from the formula (27):

`i
√
−1

∫

X

tr
(
uiΛωG(h,Dλ)

)
+ `2i

∫ (
Ψ(`iui)D

λui,D
λui

)
h
≤ `i ·

C

C2,i
.

(In the case 1, we take any sequence {C2,i} such that C2,i −→ ∞). Let Φ be as above. Due to the uniform
boundedness of ui, we may assume that Φ has the compact support. Then if ` is sufficiently large, we have
Φ(λ1, λ2) < `Ψ(`λ1, `λ2). Therefore, we obtain the following inequality:

√
−1

∫

X

tr
(
uiΛωG(h,Dλ)

)
+

∫

X

(
Φ(ui)D

λui,D
λui

)
h,ω

≤ C

C2,i
.

Since supX |ui| is bounded independently of i, there exists a function Φ as above which satisfies Φ(ui) = c · id,
moreover, for some small positive number c > 0. Therefore, we obtain the boundedness of {ui} in L2

1. By
taking an appropriate subsequence, {ui} is weakly convergent in L2

1. Let u∞ denote the weak limit. Let Z
be any compact subset of X . Then {ui} is convergent to u∞ on Z in L2, and hence

∫
Z |ui| →

∫
Z |u∞|. Since

sup |ui| are uniformly bounded, we obtain
∫

Z |u∞| 6= 0, if the volume of X − Z is sufficiently small. Thus

u∞ 6= 0. Similarly, we can show the convergence
∫

tr
(
uiΛG(h,Dλ)

)
−→

∫
tr
(
u∞ΛG(h,Dλ)

)
. Since {ui} are

weakly convergent to u∞ in L2
1, we have the almost everywhere convergence of {ui} and {Dλui} to u∞ and

Dλu∞ respectively. Therefore {Φ(ui)D
λui} converges to Φ(u∞)Dλu∞ almost everywhere. Therefore we have

∫ (
Φ(u∞)Dλu∞, u∞

)
h,ω

≤ lim

∫ (
Φ(ui)D

λui, ui

)
h,ω

due to Fatou’s lemma. Thus we obtain the desired inequality, and the proof of Lemma 2.39 is finished.

We reproduce the rest of the excellent argument given in [34] just for the completeness. We do not use it in
the later argument. The point is that we can derive a contradiction from the existence of the non-trivial section
u∞ as in Lemma 2.39.

Lemma 2.40 The eigenvalues of u∞ are constant, and u∞ has at least two distinct eigenvalues.

Proof To show the constantness of the eigenvalues, we have only to show the constantness of tr
(
ϕ(u∞)

)
for

any C∞-function ϕ : R −→ R. We have
(
∂ + λ∂

)
trϕ(u∞) = tr

(
Dλϕ(u∞)

)
= tr

(
dϕ(u∞)Dλu∞

)
. Let N

be any large number. We can take a C∞-function Φ : R × R −→ R such that Φ(y1, y1) = dϕ(y1, y1) and
NΦ2(y1, y2) < (y1 − y2)

−1 for y1 > y2. We obtain tr dϕ(u∞)(Dλu∞) = tr
(
Φ(u∞)Dλu∞

)
due to the first

condition. We obtain the following inequality from Lemma 2.39:

∫

X

|Φ(u∞)Dλu∞|2 ≤ −
√
−1

N

∫

X

tr
(
u∞ΛG(h)

)
.

21



Therefore
∣∣(∂ + λ∂) trϕ(u∞)

∣∣2
L2 = 0. Thus the eigenvalues of u∞ are constant. Since tr(u∞) = 0 and u∞ 6= 0,

u∞ has at least two distinct eigenvalues.

Let κ1 < κ2 < · · · < κw denote the constant distinct eigenvalues of u∞. Then ϕ(u∞) and Φ(u∞) depend
only on the values ϕ(κi) and ϕ(κi, κj) respectively.

Lemma 2.41 Let Φ : R
2 −→ R be a C∞-function such that Φ(κi, κj) = 0 for κi > κj . Then Φ(u∞)(Dλu∞) =

0.

Proof We may replace Φ with Φ1 satisfying Φ1(κi, κj) = 0 for κi > κj and NΦ2
1(y1, y2) < (y1 − y2)

−1 for

y1 > y2. Then we obtain
∥∥Φ1(u∞)Dλu∞

∥∥2

L2 ≤ C/N due to Lemma 2.39, and hence we obtain Φ(u∞)Dλu∞ =

Φ1(u∞)Dλu∞ = 0.

Let γi denote the open interval ]κi, κi+1[. Let pγ : R −→ [0, 1] be any decreasing C∞-function such that
pγ(κi) = 1 and pγ(κi+1) = 0. We put πγ = pγ(u∞). It is easy to see that πγ is L2

1. Due to p2
γ = pγ , we have

π2
γ = πγ . We have Dλπγ = dp(u∞)Dλu∞. We put Φγ(y1, y2) = (1 − pγ)(y2) · dpγ(y1, y2), and then we have

(1 − πγ) ◦ Dλπγ = Φγ(u∞) ◦ Dλu∞. On the other hand, since we have Φγ(κi, κj) = 0 (κi > κj), we obtain
Φγ(u∞)Dλu∞ = 0 due to Lemma 2.41. Therefore we obtain (1 − πγ) ◦ Dλπγ = 0.

From (1−πγ)d′′πγ = 0, we obtain a saturated coherent subsheaf Vγ such that πγ is the orthogonal projection
on Vγ due to the result of Uhlenbeck-Yau [43]. From (1 − πγ)d′πγ = 0, the bundle Vγ is Dλ-invariant. Since
we consider the case λ 6=0, it is easy to see that Vγ is indeed a subbundle of E. Namely, we obtain the λ-flat
subbundle (Vγ ,D

λ
Vγ

) ⊂ (E,Dλ).

Let us show degω(Vγ , hγ)/ rankVγ > degω(E, h)/ rankE for some γ, which contradicts the stability assump-
tion of (E,Dλ, h), where hγ := h|Vγ

. From Lemma 2.29, we have

deg(Vγ) =
1

2π

1

1 + |λ|2
(√

−1

∫
tr
(
πγG(h)

)
−
∫

‖Dλπγ‖2

)
.

We have u∞ = κw −∑ |γ| · πγ , where |γ| denotes the length of γ. We put

W = κw deg(E) −
∑

|γ| · deg(Vγ) =
1

2π

1

1 + |λ|2
(√

−1

∫
tr
(
u∞ΛG(h)

)
+

∫ ∑
|γ| ·

∣∣Dλπγ

∣∣2.
)
.

Since Dλπγ = dpγ(u∞)Dλu∞, we have

W =
1

2π

1

1 + |λ|2
(√

−1

∫
tr
(
u∞ΛG(h)

)
+

∫ (∑
|γ| · dpγ(u∞)2 · Dλu∞, Dλu∞

))
.

We can check
∑ |γ|(dpγ)(κi, κj) = (κi − κj)

−1 for κi > κj by a direct argument. Therefore we obtain W ≤ 0,
due to Lemma 2.39. Namely we obtain a · degE ≤∑ |γ| · deg(Vγ). On the other hand, we have 0 = tr(u∞) =
a · rankE −∑ |γ| · rankVγ . Therefore, we obtain deg(Vγ)/ rankVγ ≥ deg(E)/ rankE for one of γ, which
contradicts with the stability of (E,Dλ, h). Thus the proof of Proposition 2.38 is finished.

2.5.5 Variant 1 of Proposition 2.38

Let C be a smooth projective curve, and D be a simple divisor. Let (E,Dλ,F ) be a λ-flat bundle on (C,D). Let
η be a sufficiently small positive number such that 10 · η < gap(E,F ). Let ε0 be a sufficiently smaller number
than η, for example 10 rank(E)ε0 < η. Let ωε (0 ≤ ε < ε0) be a Kahler metric of C − D with the following
properties:

• Let P ∈ D. Let (U, z) be a holomorphic coordinate around P such that z(P ) = 0. Then the following
holds for some positive constants Ci (i = 1, 2):

C1 · ωε ≤ ε2|z|2ε dz · dz
|z|2 + η2|z|2η dz · dz

|z|2 ≤ C2 · ωε
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• ωε −→ ω0 for ε→ 0 in the C∞-sense locally on C −D.

Let F
(ε) be an ε-perturbation of F . See the subsubsection 2.1.5 for the notion of ε-perturbation. We discuss

the surface case there, but it can be applied in the curve case. Suppose that we are given hermitian metrics
h(ε) for (E,F (ε)) with the following properties:

•
∣∣Λωε

G(h(ε),Dλ)
∣∣
h(ε) ≤ C1, where the constant C1 is independent of ε.

• {h(ε)} converges to h(0) for ε→ 0 in the C∞-sense locally on C −D.

Lemma 2.42 Let s(ε) be self adjoint endomorphisms of (E, h(ε)) satisfying tr s(ε) = 0 and the following prop-
erties:

• ‖s(ε)‖P,h(ε),ωε
<∞. But we do not assume the uniform boundedness.

•
∣∣Λωε

G(h(ε)es(ε)

,Dλ)
∣∣
h(ε) ≤ C1. The constant C1 is independent of ε.

Then there exist constants Ci (i = 3, 4), which is independent of ε, with the following property:

sup |s(ε)|h(ε) ≤ C3 + C4 ·M(h(ε), h(ε)es(ε)

).

(Sketch of a proof) The argument is essentially same as the proof of Proposition 2.38. We assume that the
claim does not hold, and we will derive a contradiction. After going to an appropriate subsequence, either one
of the following holds:

Case 1. M(h(ε), h(ε)es(ε)

) ≤ 0 and supC−D |s(ε)| −→ ∞ for ε→ 0.

Case 2. M(h(ε), h(ε)es(ε)

) > 0, sup |s(ε)| ≥ C
(ε)
2 M(h(ε), h(ε)es(ε)

), supC−D |s(ε)| −→ ∞ and C
(ε)
2 −→ ∞ for

ε→ 0.

By using Lemma 2.44 (given below) and the argument given in the first part of Proposition 2.38, we can
show that there exist positive constants Ci (i = 5, 6), which are independent of ε, with the following property:

sup
C−D

|s(ε)|h(ε) ≤ C5 + C6 ·
∫

|s(ε)|h(ε) dvolωε
.

We put `(ε) := ‖s(ε)‖L1 and u(ε) := s(ε)/`(ε). The following lemma is the counterpart of Lemma 2.39.

Lemma 2.43 We have a non-trivial L2
1-section u∞ of Sh(0) with the following property:

• The following inequality holds for any C∞-function Φ : R×R −→ R≥ 0 such that Φ(y1, y2) ≤ (y1 − y2)
−1

for y1 > y2:

√
−1

∫

C−D

tr
(
u∞Λω0G(h(0))

)
dvolω0 +

∫

C−D

(
Φ(u∞)Dλu∞,D

λu∞
)
h,ω0

dvolω0 ≤ 0.

Proof The argument is essentially same as the proof of Lemma 2.39. We have the following, for some constant
C5: √

−1

∫

C−D

tr
(
u(ε)Λωε

G(h(ε))
)
dvolωε

+

∫

C−D

(
Φ(u(ε))Dλu(ε),Dλu(ε)

)
h(ε) dvolωε

≤ C5

C
(ε)
2

.

(In the case 1, we take any sequence {C(ε)
2 } such that C

(ε)
2 −→ ∞.) From this, we obtain the following

boundedness as in the proof of Lemma 2.39:
∫

C−D

∣∣Dλu(ε)
∣∣2
h(ε) dvolωε

< C10.

Let us take a sequence of C∞-isometries Fε : (E, h(ε)) −→ (E, h(0)) which converges to the identity of E, in
the C∞-sense locally on C−D. Remark that the sequence {Fε(D

λ)} converges to Dλ for ε→ 0 in the C∞-sense
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locally on C − D. The sequence {Fε(u
(ε))} is bounded on L2

1 locally on C − D. By going to an appropriate
subsequence, we may assume that the sequence {u(ε)} is weakly convergent in L2

1 locally on C −D, and hence
it is convergent in L2 on any compact subset Z ⊂ C −D. Let u∞ denote the weak limit. We have

∫
Z
|u(ε)| −→∫

Z |u∞|. Hence
∫

Z |u∞| 6= 0, when the volume of C − Z ∪ D is sufficiently small, due to the boundedness of{
sup |u(ε)|

∣∣ ε > 0
}
. In particular, u∞ 6= 0. Similarly, we obtain

∫
C−D

tr(u(ε)G(h(ε))) −→
∫

C−D
tr(u∞G(h(0))).

Since we can derive the almost everywhere convergence Φ(u(ε))Dλu(ε) −→ Φ(u∞)Dλu∞ and u(ε) −→ u∞, we
obtain

∫
C−D

(
Φ(u∞)Dλu∞,D

λu∞
)
≤ lim

∫
C−D

(
Φ(u(ε))Dλu(ε),Dλu(ε)

)
due to Fatou’s lemma. Thus the proof

of Lemma 2.43 is finished.

The rest of the proof of Lemma 2.42 is completely same as the argument for Proposition 2.38.

We have used the following lemma in the proof.

Lemma 2.44 For any positive number B, there exist positive constants Ci (i = 1, 2) with the following property:

• Let ε be any positive number such that ε < 1/2. For any non-negative function f such that ∆ωε
f ≤ B,

the inequality sup(f) ≤ C1 + C2

∫
f · dvolωε

holds.

Proof Let (UP , z) be as above for P ∈ D. On UP , the inequality ∆ωε
f ≤ B is equivalent to the following:

∆g0f ≤ B ·
(
ε2
|z|2ε

|z|2 + η2 |z|2η

|z|2
)
.

Here g0 := dz · dz. Then we obtain the following inequality on UP :

∆g0

(
f −B · φ

)
≤ 0, φ = |z|2ε + |z|2η.

For any point Q ∈ ∆(P, 1/2), we have the following:

(f − φ)(Q) ≤ 4

π

∫

∆(Q,1/2)

(f − φ) · dvolg0 .

Therefore there exist some constants Ci (i = 3, 4) which are independent of ε, such that the following holds:

f(Q) ≤ C3 + C4

∫
f · dvolωε

.

Thus we obtain the upper bound of f(Q), when Q is close to a point of D. We can obtain such an estimate
when Q is far from D, similarly and more easily.

2.5.6 Variant 2 of Proposition 2.38

We will use another variant. Let π : C −→ ∆ be a holomorphic family of smooth projective curves. Let D ⊂ C
be a relative divisor. Let (E,Dλ,F ) be a λ-flat parabolic bundle on (C,D). We denote the fiber π−1(t) by Ct

for t ∈ ∆. The restriction (E,Dλ,F )|Ct
is denoted by (Et,D

λ
t ,F t). Let ω be a metric of the relative tangent

bundle of C/∆ such that ω ∼ η2|z|2η−2dz · dz around D. Here η denotes a small positive number such that
10 rank(E)·η < gap(E,F ), and z is holomorphic function such that z−1(0) = D and dz 6= 0. The restriction ω|Ct

is denoted by ωt for t ∈ ∆. Let h be a C∞-hermitian metric of E adapted to F such that
∣∣Λωt

G(Dλ
t , ht)

∣∣
ht

≤ C1

for any t ∈ ∆, where a constant C1 is independent of t, and ht denotes the restriction h|Ct
. The following lemma

can be shown by an argument similar to the proof of Lemma 2.44.

Lemma 2.45 There exist positive constants Ci (i = 3, 4), which are independent of t, with the following
property.

• Let s(t) be an element of Pht
(Et) satisfying tr s(t) = 0, ‖s(t)‖ht,P < ∞ and

∣∣Λωt
G(Dλ

t , hte
s(t)

)
∣∣ ≤ C1.

Then the inequality sup |s(t)| ≤ C3 + C4 ·M(ht, hte
s(t)

) holds.
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2.6 The Integral of the Pseudo Curvature of Non-flat λ-connection on a Curve

Let Y be a smooth projective curve, and let D be a divisor. Let (E,F ) be a parabolic bundle on (Y,D). Let
Dλ be a C∞ λ-connection on E|Y −D . In this subsection, we do not assume Dλ is flat, i.e., (Dλ)2 may not be

0. But we assume that it is flat around an appropriate neighbourhood UP of each P ∈ D, and (E,F ,Dλ)|UP

is a parabolic λ-flat bundle. In particular, we have ResP (Dλ) ∈ End(E|P ). We assume that it is graded
semisimple, for simplicity. For the later use (the subsection 3.5), we calculate the integral of the trace of the
pseudo curvature.

For each P ∈ D, we have the generalized eigen decomposition E|P :=
⊕

P Eα of ResP (Dλ). We also have
the filtration PF of E|P . Let us take a holomorphic frame v of E|UP

, which is compatible with (P E, PF ). We

put α(vi) := degE(vi) and a(vi) := degF (vi). Let h be a C∞-metric of E|Y −D such that h(vi, vj) = |z|−2a(vi)

(i = j) and 0 (i 6= j). Let us decompose Dλ = d′′ + d′. Let us take a (1, 0)-operator d′0 such that d′′ + d′0
is C∞ λ-connection of E on Y . We also assume d′0v = 0. We put A := d′ − d′0, which is a C∞-section of
End(E) ⊗ Ω1,0(logD) on Y , and holomorphic around D. We have trResP (A) = trResP (Dλ).

Let h0 be a C∞-metric of E on Y such that h0(vi, vj) is 1 (i = j) or 0 (i 6= j) on UP (P ∈ D). Let s be the en-
domorphism determined by h = h0 ·s. Then s is described by the diagonal matrix diag

(
|z|−2a(v1), . . . , |z|−2a(vr)

)

with respect to the frame v on UP .
Although Dλ is not necessarily flat, we obtain the operators δ′h, δ′′h , ∂h, ∂h, θh and θ†h as in the subsection

2.2.1. We also have Dλ ?
h = δ′h − δ′′h . Then we put G(Dλ, h) := [Dλ,Dλ ?

h ] for the non-flat λ-connection Dλ.

Remark 2.46 Since Dλ is not assumed to be flat, G(h) = −
(
1 + |λ|2

)2
λ−1

(
∂hθh

)
does not hold in general.

Lemma 2.47 We have the following formula:

√
−1

2π

∫
trG(Dλ, h) = (1 − |λ|2) · deg(E) −

∑

P

(
2 Re(λ · tr ResP Dλ) + (1 + |λ|2) · wt(E,F , P )

)
. (29)

We also have the following formula:

√
−1

2π

∫

Y

∂ tr θ =
λ

1 + |λ|2
∑

P

(
λ−1 · tr ResP Dλ + wt(E,F , P )

)
. (30)

Proof By a direct calculation, we have Dλ ? = λ−1d′ − λd′′ − (1 + |λ|2) ·
(
λ−1 · θh + θ†h

)
. Hence we obtain

G(Dλ, h) = [Dλ,Dλ ?] =
1 − |λ|2

λ
[d′, d′′] + (1 + |λ|2) · Dλ(−λ−1θh + θ†h).

Therefore we have

√
−1

2π

∫

Y

trG(Dλ, h) =

√
−1

2π

(∫

Y

1 − |λ|2
λ

tr[d′, d′′] + (1 + |λ|2)
∫

(∂ + λ∂) tr
(
−λ−1θh + θ†h

))

=

√
−1

2π

(∫

Y

1 − |λ|2
λ

tr[d′, d′′] + (1 + |λ|2)
∫ (

−λ−1∂ tr θh + λ∂ tr θ†h
))

. (31)

Recall d′′ + λ−1d′0 gives the C∞-connection of (E,F ) in the usual sense. Hence λ−1 tr[d′′, d′0] gives the first
Chern class of E. Therefore we have

√
−1

2π

∫

Y

tr[d′, d′′] =

√
−1

2π

∫

Y

tr[d′0, d
′′] +

√
−1

2π

∫

Y

∂ trA = λ deg(E) +
∑

P

tr ResP Dλ. (32)

Let us consider the integral of ∂ tr θh. Let δ′h0
denote the (1, 0)-operator obtained from d′′ and h0 as in the

subsection 2.2.1. Then we have

θh =
1

1 + |λ|2 (d′ − λ · δ′h) =
1

1 + |λ|2 (d′0 − λ · δ′h0
) +

1

1 + |λ|2 (A− λ · s−1δ′h0
s).
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We would like to apply the Stokes formula to the integral of ∂ tr θh. If we do so, d′0 − λδ′h0
does not contribute,

because it is the C∞-section of End(E) ⊗ Ω1,0. We have
√
−1

2π

∫

Y

∂ tr(A) =
∑

P

trResP Dλ.

Since s−1δ′h0
s is described by diag

(
−a(v1), . . . ,−a(vr)

)
·dz/z with respect to v on UP (P ∈ D), we have

√
−1

2π

∫

Y

∂ tr(s−1δ′h0
s) =

∑

P

rankE∑

i=1

−a(vi) = −
∑

P

wt(E,F , P ).

Therefore, we obtain the following formula:
√
−1

2π

1 + |λ|2
λ

∫
∂ tr θh =

∑

P

(
λ−1 tr ResP Dλ + wt(E,F , P )

)
. (33)

In particular, we obtain (30).

Let us consider the integral of ∂ tr θ†h. Let δ′′0,h0
(resp. δ′′0,h) denote the operator obtained from d′0 and h0

(resp. h) as in the subsection 2.2.1. We have δ′′h = δ′′0,h −A†
h = δ′′0,h0

+ s−1δ′′0,h0
s−A†

h. (See the proof of Lemma

2.21 for the notation “A†
h”.) Hence we have

θ†h =
1

1 + |λ|2 (λd′′ − δ′′0,h0
) +

1

1 + |λ|2 (A†
h − s−1δ′′0,h0

s).

Again, we would like to apply the Stokes formula to the integral of ∂ tr θ†. Since λd′′ − δ′′0,h0
is a C∞-section of

End(E) ⊗ Ω0,1, the contribution is 0. As for the other terms, we have the following:
√
−1

2π

∫
∂ trA†

h = −
∑

P

tr ResP Dλ,

√
−1

2π

∫

Y

∂
(
tr s−1δ′′0,h0

s
)

=
∑

P

λwt(E,F , P ).

Hence we obtain the following formula:
√
−1

2π
(1 + |λ|2)λ

∫

Y

∂ tr θ†h = −
∑

P

(
λ · tr ResP Dλ + |λ|2 wt(E,F , P )

)
. (34)

The formula (29) immediately follows from (32), (33) and (34).

Remark 2.48 When Dλ is flat, we have the relation G(h) = −(1+ |λ|2)2λ−1∂hθh, and hence the formulas (29)
and (30) give some equality. But we obtain only the well known formulas.

deg(E) +
∑

Re
(
λ−1 tr ResP Dλ

)
= 0,

∑

P

Im(λ−1 trResP Dλ) = 0.

Such a consideration leads us some results in the surface case. See the subsection 3.5.

3 Ordinary metric and some consequences

We give a construction of an ordinary metric for a parabolic λ-flat bundle on a surface, and we give the estimate
for the pseudo curvature. The construction is essentially same as that for the parabolic Higgs bundle, given in
the section 4 of [30]. Namely, we give the constructions and the estimates around the intersection of the divisor
(the subsection 3.1) and the smooth point of the divisor (the subsection 3.2), and then we immediately obtain
a global construction and estimate (the subsection 3.3). However, we can derive some additional information
about the characteristic numbers in the case λ 6= 0. Hence we give the detail.

In the following of this paper, “parabolic” means “c-parabolic” for some tuple of real numbers c, and we
prefer to use the notation (E,F ) or E∗ to denote a parabolic bundle instead of (cE,F ) or cE∗, as is explained
in the subsection 2.1.6.
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3.1 Around the Intersection of the Divisor

3.1.1 Construction of a metric

We put X := ∆2, Di := {zi = 0}, and D := D1 ∪ D2. We use the metric ωε =
∑

i=1,2 ε
N+2|zi|2ε−2 · dzi · dzi

of X −D in this subsection. Let (E,F ,Dλ) be a graded semisimple λ-flat parabolic bundle on (X,D). Assume
10ε < gap(E,F ). We have the endomorphism Resi(D

λ) of E|Di
. We also have the naturally induced flat

λ-connection iDλ of E|Di
, i.e., for a section f of E|Di

, let us take a section f̃ of E such that f̃|Di
= f and

iDλf := Dλf̃|Di
.

When λ 6= 0, the eigenvalues of Resi(D
λ) are constant, since Resi(D

λ) is flat with respect to iDλ. We have
the generalized eigen decomposition E|Di

=
⊕

iEα. The tuple (1F, 2F, 1E, 2E) is compatible in the sense of [28],
i.e., we have the following:

iFa =
⊕

α

iFa ∩ iEα,
2Fa(E|O) =

⊕
2Fa(E|O) ∩ 2Eα(E|O).

Here we put 2F(a1,a2)(E|O) = 1Fa1 |O∩2Fa2 |O and 2E(α1,α2)(E|O) = 1Eα1 |O∩2Eα2 |O. Let us take a holomorphic
decomposition:

E =
⊕

(a,α)∈R2×C2

Ua,α such that iEα ∩ iFa =
⊕

qi(a)≤a
qi(α)=α

Ua,α |Di
, 2Eα ∩ 2Fa =

⊕

b≤a

Ub,α |O .

Let us take a holomorphic frame v of E compatible with the decomposition. We put α(vi) := i degE(vi) and
a(vi) := i degF (vi). Let h be a metric such that h(vi, vj) = δi,j |z1|−2a1(vi) · |z2|−2a2(vi), where δi,j denotes 1
(i = j) or 0 (i 6= j).

One of our main purpose of this subsection (Lemma 3.1) is to show the boundedness of G(h,Dλ) with respect
to ωε and h. However, we will also need more close estimate, which relate G(h,Dλ) and the pseudo curvatures
on the metrized λ-connection on the divisors, which we explain in the next subsubsection.

3.1.2 Objects on the divisors

Let 1 GrF (E|D1
) denote the graded bundle associated to the filtration 1F . We have the generalized eigen

decomposition 1 GrF,E
(a,α)(E|D1

) with respect to Res1(D
λ). We put 1Êu := 1 GrF,E

u (E|D1
), and 1Ê :=

⊕
1Êu. Due

to the graded semisimplicity assumption, the residue Res1(D
λ) induces the endomorphism

⊕
(a,α) α · id1 bE(a,α)

.

Since 1Dλ preserves 1F and 1E, the flat λ-connection 1D̂λ of 1Ê is induced. We put as follows:

1Ua,α :=
⊕

q1(a,α)=(a,α)

Ua,α.

Then we have the natural isomorphism 1Uu |D1
' 1Êu, which induces the identification of the holomorphic

bundles 1Ê ' E|D1
. Let 1h be a metric of E|D1

given by 1h
(
vi |D1

, vj |D1

)
:= δi,j |z2|−a2(vi). Then the λ-

connection 1D̂λ and the metric 1h induce the operators 1∂, 1θ and G(1D̂λ, 1h) on 1E. Similarly, we obtain the

metric 2h, 2∂, 2θ and G(2D̂λ, 2h) for E|D2
,

3.1.3 Estimate

Let us estimate G(h) = −(1 + |λ|2)2λ−1
(
∂

2

h + ∂hθh + θ2h
)

and ∂hθh. For the projection X −→ Di, we give the
isomorphism π∗

i E|Di
' E via the frames π−1

v|Di
and v. We put Γi :=

⊕
ai · idUa,α

and Qi :=
⊕
αi · idUa,α

.

Lemma 3.1 G(Dλ, h) is bounded with respect to (ωε, h). More closely, we have the following estimate:

G(Dλ, h) = π∗
1G(1Dλ, 1h) + π∗

2G(2Dλ, 2h) +O(|z1|3ε|z2|3ε). (35)
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In particular, ∂hθh is bounded with respect to (ωε, h). More closely, we have the following estimate:

∂hθh = π∗
1

(
1∂(1θ)

)
+ π∗

2

(
2∂(2θ2)

)
+O(|z1|3ε|z2|3ε). (36)

We also have the following estimate with respect to ωε and h:

θ =
∑

i=1,2

π∗
i

(
iθ
)

+
1

1 + |λ|2
∑

i=1,2

(Qi + λΓi) ·
dzi

zi
+O(1) (37)

Lemma 3.2 We put Yδ := {|z1| = δ, |z2| ≥ δ} ∪ {|z2| = δ |z1| ≥ δ}. Then we obtain the following:

lim
δ→0

∫

Yδ

tr
(
θ2h · θ†h

)
= 0.

The proof is given in the rest of this subsection.

3.1.4 Preliminary

The diagonal matrix valued functions Hk (k = 1, 2) are given by Hk := diag
(
|zk|−2ak(v1), . . . , |zk|−2ak(vr)

)
.

We also put H := H1 · H2, and then we have H =
(
h(vi, vj)

)
, and ∂hv = v · H−1∂H . We also have Hk =(

lh(vi |Dl
, vj |Dl

)
)

and l∂v|Dl
= v|Dl

·H−1
k ∂Hk, for l 6= k. We also remark H−1 ·

(
∂H/∂zk

)
= H−1

k ·
(
∂Hk/∂zk

)
.

The matrix-valued functions Ai are determined by Dλ
v = v

∑
Ai ·dzi/zi. Then Resi(D

λ)v|Di
= v|Di

·Ai |Di

and iDλ
v|Di

= v|Di
· Aj |Di

· dzj/zj for j 6= i. The diagonal matrix-valued function Ad
k (k = 1, 2) are given by

Ad
k := diag

(
αk(v1), . . . , αk(vr)

)
. We put Ni := Ai −Ad

i , and N =
∑
Ni · dzi/zi.

Lemma 3.3 Let Ni denote the endomorphism of E determined by Niv = v ·Ni.

• We have the estimate
∣∣Ni

∣∣
h

= O(|zi|5ε).

• Let F be an endomorphism of E of the form F =
⊕
κ(a,α) · idUa,α

, where κ(a,α) denote complex
numbers. Then we have

∣∣[F ,Ni

]∣∣
h

= O
(
|z1|5ε|z2|5ε

)
.

•
∣∣[N1,N2]

∣∣
h

= O(|z1|5ε · |z2|5ε).

Proof Ni |Dj
preserves jE and jF . If i = j, we have Ni |Di

(iFa) ⊂ iF<a due to the graded semisimplicity
assumption. Then the first claim follows. The third claim immediately follows from the first one. The second
claim follows from [F ,Ni]|Dk

(kFa) ⊂ kF<a for k = 1, 2.

Remark 3.4 In the following argument, the norm of the matrix is taken for the metric h. Namely, for a matrix
valued function B, we have the endomorphism FB determined by FB(v) = v · B. And, the norm of B with
respect to h means the norm of FB with respect to h.

Lemma 3.5 Lemma 3.3 can be restated as follows.

• Ni = O
(
|zi|5ε

)
with respect to the metric h.

• Let T be a constant diagonal matrix. Then [T,Ni] = O
(
|z1|5ε|z2|5ε

)
with respect to h.

• [N1, N2] = O
(
|z1|5ε|z2|5ε

)
with respect to h.

By a similar argument, we can show the following lemma.

Lemma 3.6 We have the following estimates for (i, j) = (1, 2) or (2, 1), with respect to (ωε, h):

∂Ni

∂zj
· dzj ·

dzi

zi
= O

(
|z1|5ε|z2|5ε

)dz1 · dz2
z1 · z2

,

The matrix-valued (1, 0)-forms Q(δ′h) and Q(∂h) are determined by δ′hv = v · Q(δ′h) and ∂hv = v · Q(∂h)
respectively. Then we have Q(δ′h) = H−1∂H and Q(∂h) = λ(1 + |λ|2)−1Q(δ′′h). The matrix-valued (0, 1)-
forms Q(δ′′h) and Θ are determined by δ′′hv = v · Q(δ′′h) and θhv = v · Θ respectively. Then we have Q(δ′′h) =

λH−1∂H −A†
h and Θ = (1 + |λ|2)−1(A− λQ(δ′h)), where A†

h = H−1tAH .
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3.1.5 Proof of the estimate (37) and Lemma 3.2

The estimate (37) is easy to see, as follows:

Θ =
1

1 + |λ|2
(
A− λQ(δ′h)

)
=

1

1 + |λ|2
(
Ad − λH−1∂H

)
+
∑

i=1,2

O(|zi|5ε)
dzi

zi

=
1

1 + |λ|2
∑

i=1,2

(Qi + λΓi)
dzi

zi
+
∑

i=1,2

O(|zi|5ε)
dzi

zi
. (38)

Then we obtain θ2 = O(|z1|5ε|z2|5ε) · dz1 · dz2
/
z1 · z2 with respect to h, from Lemma 3.5 and (38). Thus we

obtain the following estimate:

θ2θ† = O
(
|z1|5ε|z2|5ε

)dz1 · dz1

|z1|2
dz2
z2

+O
(
|z1|5ε|z2|5ε

)dz1
z1

dz2 · dz2

|z2|2

Then the claim of Lemma 3.2 immediately follows.

3.1.6 Proof of Lemma 3.1

Let us show that ∂
2

h is small. We have ∂
2

hv = v
(
∂Q(∂h) +Q(∂h) ◦Q(∂h)

)
. Let us see ∂Q(∂h):

∂Q(∂h) =
λ

1 + |λ|2
(
λ∂(H−1∂H) − ∂A†

h

)
=

−λ
1 + |λ|2 ∂A

†
h.

We have ∂A†
h = ∂

(
H−1tAH

)
= H−1∂(tA)H +

[
A†

h, H
−1∂H

]
= H−1t(∂N)H +

[
N †

h, H
−1∂H

]
. Then we know

the following estimate with respect to the metric h, due to Lemma 3.5 and Lemma 3.6:

∂N = O
(
|z1|5ε · |z2|5ε

)dz1 · dz2
z1 · z2

,
[
N,H−1∂H

]
= O

(
|z1|5ε · |z2|5ε

)dz1 · dz2
z1 · z2

.

Therefore we obtain ∂A†
h = O

(
|z1|3ε · |z2|3ε

)
with respect to (ωε, h). Let us see the term Q(∂h) ◦Q(∂h):

Q(∂h) ◦Q(∂h) =
1

2

(
λ

1 + |λ|2
)2 [

λH−1∂H −A†
h, λH

−1∂H −A†
h

]

=
1

2

(
λ

1 + |λ|2
)2 (

−2λ
[
H−1∂H, N †

h

]
+ 2
[
Ad †

h , N †
h

]
+ [N †

h, N
†
h]
)

(39)

As in the case of ∂Q(∂h), we obtain Q(∂h) ◦Q(∂h) = O(|z1|3ε|z2|3ε) with respect to (ωε, h), from Lemma 3.5.
We have (1 + |λ|2)2Θ ◦ Θ =

[
A − λH−1∂H, A − λH−1∂H

]
= 2

[
N,Ad − λH−1∂H

]
+ [N,N ]. This can be

estimated in the same way as Q(∂h) ◦Q(∂h), due to Lemma 3.5. Thus we obtain θh ◦ θh = O(|z1|3ε|z2|3ε).
Let us see ∂hθh. We have (∂hθh)v = v

(
∂Θ + [Q(∂),Θ]

)
. We have ∂Θ = −λ · (1 + |λ|2)−1 · ∂Q(δ′h) = 0 by a

direct calculation. We also have the following:

[Q(∂h),Θ] =
1

(1 + |λ|2)2
[
λQ(δ′′h), A− λQ(δ′h)

]
=

λ

(1 + |λ|2)2
[
λH−1∂H −A†

h, A− λH−1∂H
]

=
λ

(1 + |λ|2)2
([
λH−1∂H −Ad †

h , N
]
−
[
N †

h, A
d − λH−1∂H

]
− [N †

h, N ]
)
. (40)

The boundedness of the right hand side easily follows from Lemma 3.5. Moreover, we can see that the terms
containing dzi · dzj (i 6= j) are dominated as O(|z1|3ε|z2|3ε) with respect to (ωε, h).

Let us see the terms containing dzi ·dzi more closely. Let A2 =
∑
A2,u,u′ be the decomposition corresponding

to E =
⊕

1Uu. We put Ap
2 :=

∑
A2,u,u and Ar

2 := A2 −Ap
2. Then we have 1D̂λ

v|D1
= v|D1

·Ap
2 |D1

·dz2/z2. We

have the following with respect to h:

A2 = π∗
1(Ap

2|D1
) +O

(
|z1|5ε|z2|5ε

)dz2
z2
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Hence we obtain the following estimates:

[
λH−1∂2H − (A2)

†
h

dz2

z2
, A2

dz2
z2

− λH−1∂2H

]

= π∗
1

[
λH−1

2 ∂2H2 − (Ap
2 |D1

)†1h

dz2

z2
, Ap

2 |D1

dz2
z2

− λH−1
2 ∂2H2

]
+O

(
|z1|5ε|z2|5ε

)dz2 · dz2

|z2|2
. (41)

Here ∂2H denotes (∂H/∂z2)·dz2, and the meaning of ∂2H is similar. We have a similar estimate for
[
λH−1∂1H−

(A1)
†
h, A1 − λH−1∂1H

]
. On the other hand, we have the following formula for 1∂(1θ), as in the case of ∂hθh

(see (40), for example):

(
1∂(1θ)

)
v|D1

= v|D1

[
λH−1

2 ∂2H2 − (Ap
2 |D1

)†1h

dz2

z2
, Ap

2 |D1

dz2
z2

− λH−1
2 ∂2H2

]
. (42)

Thus we obtain the estimate (35). Since we have already shown that ∂
2

and θ2 are sufficiently small, we also
obtain (36).

3.2 Around the Smooth Part of the Divisor

3.2.1 Construction of a metric

Let Y be a complex curve, and let π : L −→ Y be a line bundle over Y . Let | · | denote a hermitian metric of
L. We use the same notation to denote the induced hermitian metric on π∗L. Let DL := {(y, s) | |s| ≤ 1} ⊂ L.
Let σ denote the canonical section L −→ π∗L.

Let JDL denote the natural complex structure of DL. We denote by ∂ and ∂ the natural (0, 1)-operator and
the (1, 0)-operator respectively. Let J denote a given integrable complex structure of DL such that JDL − J =

O(|σ|). We use the notation ∂̃ and ∂̃ to denote the corresponding (0, 1)-operator and (1, 0)-operator. We put

sY := ∂̃ − ∂ = −∂̃ + ∂. For any point Q ∈ Y , we take a holomorphic coordinate (UQ, z1, z2) around Q with
respect to J such that z−1

1 (0) = UQ ∩ Y . For a real coordinate (x1, x2, x3, x4) given by z1 = x1 +
√
−1x2,

z2 = x3 +
√
−1x4, we have the expression sY =

∑
fi,j ·dxj ·∂xi

+
∑
gj ·dxj , where fi,j and gj are C∞-functions

such that O(|z1|).
Let (E,F,Dλ) be a parabolic flat λ-connection on (DL, Y ) with respect to J , which is assumed to be graded

semisimple. We have the decomposition Dλ
E = d̃′′E + d̃′E . We put EY := E|Y . Because of λ 6= 0, the eigenvalues

of ResDλ are constant, and hence we have the decomposition EY =
⊕

Eα. We have the parabolic filtration F

of EY . We put ÊY,(a,α) := GrF,E
(a,α)(EY ) and ÊY :=

⊕
ÊY,(a,α). We have the surjection Eα ∩ Fa −→ ÊY,(a,α).

By taking a C∞-splitting for each (a, α), we obtain the C∞-identification EY ' ÊY . We put S′′ := d′′EY
− d′′

bEY
.

We can take a C∞-isomorphism Φ : E ' π∗EY for which T := Φ(d̃′′E)−d′′π∗EY
is small in the following sense.

(T is small) For each Q ∈ Y with the holomorphic coordinate (UQ, z1, z2) as above, we have the following
expression, where Fi,j and Gj are C∞-sections of End(π∗EY ) such that Fi,j |Y = Gj |Y = 0:

T =
∑

Fi,j · dxi ⊗
∂

∂xj
+
∑

Gj · dxj ,

In the following argument, we identify E and π∗EY via Φ. Let us take a C∞-metric hY,(a,α) of ÊY,(a,α), and
we put hY :=

⊕
(a,α) hY,a,α. We put as follows:

h′ = π∗hY =
⊕

π∗hY,(a,α), h =
⊕

π∗hY,(a,α) · |σ|−2a.

Let ω be a Kahler form with respect to J . We put ωε = ω +C · εN
√
−1∂̃∂̃|σ|2ε, where ε be a small positive

number such that 10 · ε < gap(E,F ).
Our main purpose of this subsection is to show that G(h,Dλ) is bounded with respect to h and ωε (Lemma

3.8). However, we would like to derive a more detailed estimate relating G(h,Dλ) and the pseudo curvature of
the λ-connection on Y , which we will explain in the next subsubsection.
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3.2.2 The induced λ-connection on the divisor

We will often use the index u to denote an element (a, α) ∈ R × C. We put Eu := π∗ÊY,u. We also put

Q :=
⊕
α · idEu

and Γ :=
⊕

(a,α) a · idEu
, We have the λ-connection D̂λ := Dλ − Q · ∂̃ log |σ|2, which is not

necessarily flat. It gives the map:

C∞(E) −→ C∞
(
E ⊗ Ω1,0(logY )

)
⊕ C∞(E ⊗ Ω0,1).

Lemma 3.7 D̂λ induces the λ-connection Dλ
bEY

of ÊY , which is also not necessarily flat.

Proof Let Q be a point of Y , and (U, z1, z2) be the holomorphic coordinate as above. Let f be a C∞-section
of E on UQ such that f|Y ∩UQ

∈ Fa(E). Let us decompose:

D̂λv = f1
dz1
z1

+ f1′dz1 + f2dz2 + f2′dz2.

Due to the graded semisimplicity assumption, we obtain the following:

f1 |Y ∩UQ
∈ F<a(E), fκ |Y ∩UQ

∈ Fa(E), (κ = 1′, 2, 2′).

Let us see that (f2 · dz2 + f2′ · dz2)|Y ∩UQ
is well defined, i.e., it is independent of a choice of the coordinate

(z1, z2). Let (w1, w2) be another coordinate such that w−1
1 (0) = Y ∩UQ. Then we have dz1/z1 = dw1/w1 + g1,

where g1 is a C∞-one form. We also have dz̄1 = dw̄1 + g1′ , where g1′ is C∞ such that g1′ |UQ∩Y = 0. Then the

claim immediately follows from g1′ |UQ∩Y = 0 and f1 |UQ∩Y ∈ F<a. Therefore the λ-connection Dλ
bEY

on ÊY are

induced.

3.2.3 Estimate

Lemma 3.8 G(Dλ, h) is bounded with respect to (ωε, h). More closely, we have the following estimate:

G(Dλ, h) = π∗G
(
Dλ

bEY
, hY

)
−
(
λQ + λQ + (1 + |λ|2)Γ

)
· ∂̃∂̃ log |σ|2 +O(|σ|5ε). (43)

We also have the following estimate with respect to (ωε, h):

∂E,hθE,h = π∗(∂ bEY ,hY
θ bEY ,hY

) +
1

1 + |λ|2 (Q + λΓ) · ∂̃∂̃ log |σ|2 +O(|σ|5ε) (44)

We also have the following estimate with respect to ωε and h:

θh = π∗θ bEY ,hY
+

1

1 + |λ|2 (Q + λΓ) · ∂̃ log |σ|2 +O(1). (45)

Lemma 3.9 We have the estimate θ2
E,h = O(|σ|5ε) with respect to (ωε, h). In particular, lim

δ→0

∫
Yδ

tr(θ2θ†) = 0,

where we put Yδ := {|σ| = δ}.

The proof of these lemmas are given in the rest of this subsection.

3.2.4 Preliminary

Let Dλ,f denote the associated connection to Dλ, i.e., Dλ,f = d′′E + λ−1d′E . Let D
λ,f
bEY

be similar. Let π∗D
λ,f
bEY

denote the connection of E induced by D
λ,f
bEY

. Then Dλ,f −π∗D
λ,f
bEY

is a C∞-section of End(E)⊗Ω1,0(logY ). We

have the expression Dλ,f − π∗D
λ,f
bEY

= λ−1Q · ∂̃ log |σ|2 +M . Then M is a C∞-section of End(E) ⊗Ω1,0(log Y ).

Moreover, we decompose it as follows, around Q ∈ Y :

M = M1 ·
dz1
z1

+M1′ · dz1

z1
+M2 · dz2 +M2′ · dz2, Mκ =

∑
Mκ,u,u′ , Mκ,u,u′ ∈ Hom(Eu, Eu′).
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Then we have Mκ,u,u′|Y ∩UQ
= 0 for any κ, unless a > a′ and α = α′, due to our construction of Dλ

π∗ bEY
.

Recall d̃′′E = d′′
π∗ bEY

+ T + π∗S′′. Hence we have Dλ f − π∗D
λ f
bEY

= T + π∗S′′ + λ−1
(
d̃′E − d′

π∗ bEY

)
, and we

obtain the following:
d̃′E = d′

π∗ bEY
+ Q · ∂̃ log |σ|2 + λ(M − T − π∗S′′).

Let T =
∑
Tu,u′ be the decomposition corresponding to E =

⊕
Eu. We put T p :=

∑
Tu,u and T r = T −T p.

Then T p is a differential operator of order 1, which satisfies the twisted Leibniz rule T p(fv) − fT p(v) =
sY (f)v, and T r is a C∞-section of

⊕
u6=u′ Hom(Eu, Eu′). Let T p◦

h be the operator determined by sY

(
h(u, v)

)
=

h
(
T pu, v

)
+ h(u, T p ◦

h v). We remark the twisted Leibniz rule T p ◦
h (fv) − fT p◦

h (v) = −sY (f)v. Similarly the
operator T p◦

h′ is defined from T p and h′. Then we have the relation:

T p◦
h = T p ◦

h′ + Γ · sY

(
log |σ|2

)
.

Since we have d̃′E = d′
π∗ bEY

− λT p − Q∂̃ log |σ|2 + λ
(
M − T r − π∗S′′

)
and d̃′′E = d′′

π∗ bEY
+ T p + T r + π∗S′′, we

obtain the following formula:

δ̃′′E,h = δ′′
π∗ bEY ,h′ − λT p ◦

h′ − Q̂∂̃ log |σ|2 − Γλ∂̃ log |σ|2 − λ(M − T r − π∗S′′)†h,

δ̃′E,h = δ′
π∗ bEY ,h′ + T p ◦

h′ − Γ∂̃ log |σ|2 − (T r + π∗S′′)†h.

3.2.5 Proof of the estimate (43)

We put as follows:
D1 := Dλ

π∗ bEY
+ (1 − λ)T p, D2 := Dλ ?

π∗ bEY ,h′ + (1 + λ)T p ◦
h′ ,

R1 := λM + (1 − λ)(T r + π∗S′′), R2 := −(1 − λ)(T r + π∗S′′)†h + λM †
h.

Then, we have the following equality:

G(Dλ, h) = [Dλ,Dλ ?
h ] =

[
D1 + Q∂̃ log |σ|2 + R1, D2 + Q∂̃ log |σ|2 − Γ(∂̃ − λ∂̃) log |σ|2 + R2

]
. (46)

Let us see the right hand side of (46). We have the following:

[D1,D2] = π∗G(Dλ
bEY
, hY ) +

[
(1 − λ)T p,Dλ ?

π∗ bE,h′

]
+
[
Dλ

π∗ bEY
, (1 + λ)T p ◦

h′

]
+
[
(1 − λ)T p, (1 + λ)T p ◦

h′

]
.

Since G(Dλ, h) and π∗G(Dλ
bEY
, hY ) are C∞-sections, it is easy to see that the summation of the last three terms

is also just a C∞-section of
⊕

End(Eu)⊗Ω2. Moreover it is O(|σ|5ε) with respect to ωε and h, since T is small.
By a direct calculation, we obtain the following equality:

[
D1, Q · ∂̃ log |σ|2 − Γ(∂̃ − λ · ∂̃) log |σ|2

]
+
[
Q∂̃ log |σ|2, D2

]

=
(
λ∂̃ + ∂̃

)
∂̃ log |σ|2 · Q − (λ∂̃ + ∂̃)(∂̃ − λ · ∂̃) log |σ|2 · Γ + (∂̃ − λ∂̃)∂̃ log |σ|2 · Q

= −
(
λQ + λQ + (1 + |λ|2)Γ

)
· ∂̃∂̃ log |σ|2. (47)

We decompose Ri =
∑Ri,u,u′ corresponding to

⊕
Eu, and we decompose Ri,u,u′ as follows:

Ri,u,u′ = Ri,u,u′;1
dz1
z1

+ Ri,u,u′;1′

dz1

z1
+ Ri,u,u′ ;2dz2 + Ri,u,u′ ;2′dz2.

Let us see R1. Then R1,u,u′;κ is a C∞-section of Hom(Eu, Eu′ ), and we have R1,(a,α),(a′,α′);κ |Y ∩UQ
= 0

unless a > a′ and α = α′. Hence we obtain R1 = O(|σ|5ε) with respect to (ωε, h), and it is easy to check
[D2,R1] = O(|σ|5ε) with respect to (ωε, h). On the other hand, R2,u,u′;κ = R′

2,u,u′;κ·|σ|−2(a−a′), where R′
2,u,u′;κ

are C∞-sections of Hom(Eu, Eu′) and R′
2,(a,α),(a′,α′);κ |Y ∩UQ

= 0 unless a < a′ and α = α′. Hence we can easily
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obtain R2 = O(|σ|5ε) and [D1,R2] = O(|σ|5ε) with respect to (ωε, h). In particular, we also obtain the following
estimate with respect to (ωε, h):

[R1,R2] = O(|σ|5ε), [λ · Q · ∂̃ log |σ|2,R2] = O(|σ|5ε),

[
R1, λ · Q · ∂̃ log |σ|2 − Γ(∂̃ − λ∂̃) log |σ|2

]
= O(|σ|5ε).

In all, we obtain (43).

3.2.6 Proof of the estimates (44) and (45)

We put S1 := −λ
(
T p + T p◦

h′ −M + T r + π∗S′′ + (T r + π∗S′′)†h

)
. Then θE,h can be described as follows:

θE,h =
1

1 + |λ|2 (d̃′E − λδ̃′E,h) = π∗θ bEY ,hY
+

1

1 + |λ|2
(
(Q + λΓ) · ∂̃ log |σ|2 − S1

)
. (48)

We put as follows:

D3 := ∂π∗ bEY ,h′ +
1

1 + |λ|2 (T p − |λ|2 · T p ◦
h′ ), S2 :=

1

1 + |λ|2
(
T r + π∗S′′ − |λ|2(M − T r − π∗S′′)†h

)
.

Then ∂E,h is described as follows:

∂E,h =
1

1 + |λ|2 (d̃′′E + λδ′′h) = D3 −
1

1 + |λ|2
(
Q + λΓ

)
∂̃ log |σ|2 + S2.

Therefore we obtain the following:

∂E,hθE,h =
[
D3, π

∗θ bEY ,hY

]
+

1

1 + |λ|2
(
Q + λΓ

)
· ∂̃∂̃ log |σ|2 +

[
D3,S1

]

− 1

1 + |λ|2
[
(Q + λΓ)∂̃ log |σ|2,S1

]
+
[
S2, π

∗θ bEY ,h1

]
+

1

1 + |λ|2
[
S2, (Q + λΓ)∂̃ log |σ|2

]
+ [S2,S1]. (49)

We have [D3, π
∗θ bEY ,hY

] = π∗(∂ bEY
θ bEY ,h1

)+(1+ |λ|2)−1
[
T p−|λ|2 ·T p ◦

h′ , π∗θ bEY ,hY

]
. Since T is small, the second

term is O(|σ|5ε) with respect to (ωε, h). Since S1 is a sum of the small diagonal term T p + T p ◦
h′ and the term

of the forms which are similar to R1 and R2, we can obtain S1 = O(|σ|5ε) and [D3,S1] = O(|σ|5ε) with respect
to (ωε, h) similarly. In particular, we obtain (45) from (48). We obtain a similar estimate for S2. Hence the
remaining terms are also O(|σ|5ε) with respect to (ωε, h). In all, we obtain (44), and thus the proof of Lemma
3.8 is finished.

3.2.7 Proof of Lemma 3.9

We have (π∗θ bE,h1
)2 = 0 due to dimY = 1, and hence we obtain the following from (48):

θ2E,h = 2[π∗θ bEY ,hY
,S1] + 2(1 + |λ|2)−1[(Q + λΓ)∂̃ log |σ|2,S1] + [S1,S1].

Thus we obtain Lemma 3.9.

3.3 Global Construction of a Metric

3.3.1 Setting

Let X be a smooth projective surface, and D be a simple normal crossing divisor with the irreducible decompo-
sition D =

⋃
i∈S Di. Let L be an ample line bundle on X , and ω be a Kahler form which represents c1(L). For

any point P ∈ Di ∩Dj , we take a holomorphic coordinate (UP , zi, zj) around P such that UP ∩Dk = {zk = 0}
(k = i, j) and UP ' ∆2 by the coordinate. Let us take a hermitian metric gi of O(Di) and the canonical section
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O −→ O(Di) is denoted by σi. We may assume |σk |2gk
= |zk|2 (k = i, j) on UP for P ∈ Di ∩Dj . Let us take

a hermitian metric g of the tangent bundle TX such that g = dzi · dz̄i + dzj · dz̄j on UP . It is not necessarily
same as ω, and not necessarily Kahler. The metric g induces the exponential map exp : TX −→ X .

Let NDi
X denote the normal bundle of Di in X . We can take a sufficiently small neighbourhood U ′

i of Di

in NDi
X such that the restriction of exp|U ′

i
gives the diffeomorphism of U ′

i and the neighbourhood Ui of Di in

X . We may assume Ui ∩ Uj =
∐

P∈Di∩Dj
UP and Ui =

{
|σi|gi

< 1
}
.

Let pi denote the diffeomorphism exp|Ui
: Ui −→ U ′

i . Let πi denote the natural projection U ′
i −→ Di. Via

the diffeomorphism pi, we also have the C∞-map Ui −→ Di, which is also denoted by πi. On UP , πi is same as
the natural projection (zi, zj) 7−→ zj .

Via pi, we have two complex structure JU ′
i

and JUi
on Ui. Due to our choice of the hermitian metric g, pi

preserves the holomorphic structure (i.e., JU ′
i
−JUi

= 0) on UP . The derivative of pi gives the isomorphism of the

complex bundles T (NDi
(X))|Di

' TDi⊕NDi
X ' TX|Di

onDi. Hence we have the estimate JU ′
i
−JUi

= O
(
|σi|
)
.

Let ε be any number such that 0 < ε < 1/2. Let us fix a sufficiently large number N , for example N > 10.
We put as follows, for some positive number C > 0:

ωε := ω +
∑

i

C · εN ·
√
−1∂∂|σi|2ε

gi
. (50)

It can be shown that ωε are Kahler metrics of X −D for any 0 < ε < 1/2, if C is sufficiently small,

Remark 3.10 Let τ be a closed 2-form on X − D which is bounded with respect to ωε. Then the following
formula holds: ∫

X−D

ω · τ =

∫

X−D

ωε · τ.

In particular, we also have
∫

X−D ω2 =
∫

X−D ω2
ε .

In the case ε = 1/m for some positive integer m, it can be shown that the metric ωε satisfies Condition
2.28. The Kahler forms ωε behave well around any point of D in the following sense, which is clear from the
construction:

• Let P be any point of Di ∩Dj . Then there exist positive constants Ci(ε) (i = 1, 2) such that the following
holds on UP , for any 0 < ε < 1/2

C1 · ωε ≤
√
−1 · εN+2 ·

(
dzi · dz̄i

|zi|2−2ε
+
dzj · dz̄j

|zj |2−2ε

)
+
√
−1
(
dzi · dz̄i + dzj · dz̄j

)
≤ C2 · ωε.

• Let Q be any point of Di \
⋃

j 6=i Dj , and (U,w1, w2) be a holomorphic coordinate around Q such that
U ∩Di = {w1 = 0}. Then there exist positive constants Ci (i = 1, 2) such that the following holds for any
0 < ε < 1/2 on U :

C1 · ωε ≤
√
−1 · εN+2 ·

(
dw1 · dw̄1

|w1|2−2ε

)
+
√
−1
(
dw1 · dw̄1 + dw2 · dw̄2

)
≤ C2 · ωε.

3.3.2 Construction of a metric

Let (E,F ,Dλ) be a graded semisimple parabolic λ-flat bundle. For simplicity, we consider only the case λ 6= 0.
We will recall the construction of an ordinary metric h0 for (E,F ) ([30], for example). For each point P ∈
Di ∩Dj , we may assume that there is a decomposition, as in the subsection 3.1:

E|UP
=
⊕

PUa,α. (51)

We take a holomorphic frame v of E|UP
compatible with the decomposition (51) for each P . We can take a

C∞-isomorphism iΦ : π∗
i

(
E|Di

)
' E on Ui, satisfying the following:

34



• iΦ(d′′π∗
i (E|Di

)) − d′′E is small in the sense of the subsection 3.2.1.

• The restriction of iΦ to Di is the identity.

• For P ∈ Di ∩Dj , the restriction of iΦ to UP is holomorphic such that iΦ
(
π∗

i (v|Di∩UP
)
)

= v.

We take the C∞-decomposition E|Ui
=
⊕

iEu, as in the subsection 3.2. We may assume the following on UP :

iEu |UP
=

⊕

qi(a,α)=u

PUa,α.

Here (a,α) denotes an element (ai, aj , αi, αj) ∈ R
2 × C

2, and qi(a,α) denotes (ai, αi).
We can take a hermitian metric h′0 of E satisfying the following conditions:

• We have h′0(vk, vl) = δk,l, i.e., it is 1 (k = l) or 0 (k 6= l) on UP for P ∈ Di ∩ Dj . In particular, the
decomposition E|UP

=
⊕

PUa,α is orthogonal.

• E|Ui
=
⊕

iEu is orthogonal with respect to h′0. Thus we have the decomposition h′0 =
⊕

ih′u on Ui.

• We put h′0 Di
:= h′0 |Di

. Then we have iΦ(π∗
i h

′
0 Di

) = h′0 on Ui. Note that we have the decomposition

h′0 Di
=
⊕
h′u Di

.

We put D◦
i := Di \

⋃
j 6=i Dj . By modifying h′0 Di

, we take a C∞-hermitian metric h0 Di
of E|D◦

i
satisfying

the following:

• The decomposition E|D◦
i

=
⊕

iEu |D◦
i

is orthogonal. Hence we have the decomposition h0 Di
=
⊕
hu Di

.

• For P ∈ Di ∩Dj , we have h0 Di
(vk |Di

, vl |Di
) = δk.l|zj |−2aj(vk) on UP ∩D◦

i .

Then we can take a C∞-metric h0 of E on X −D satisfying the following conditions:

• h0(vk, vl) = δk,l|zi|−2ai(vk)|zj |−2aj(vk) on UP \D for P ∈ Di ∩Dj .

• The decomposition E|Ui\D =
⊕

iUa,α |Ui\D is orthogonal with respect to h0. In particular, we have the
decomposition h0 =

⊕
ihu on Ui \D.

• ih(a,α) = π∗
i h(a,α),Di

· |σi|−2a
gi

.

Such a hermitian metric h0 is called an ordinary metric of (E, θ).

3.3.3 Estimate and some formula

We put Qi :=
⊕

(a,α) α · idiEa,α
and Γi :=

⊕
(a,α) a · idiEa,α

on Ui. We put Êu Di
:= i GrF,E

u (E|Di
) and

ÊDi
:=
⊕
Êu Di

. Now it has been identified with E|Di
in the C∞-category. Recall that we also obtain the

λ-connection D̂λ
Di

of ÊDi
, which is constructed as in the subsubsection 3.2.2. It is flat around P ∈ Di ∩Dj . As

before, D̂λ
Di

and the metric h0,Di
induce the operators i∂ and iθ of ÊDi

.
Let ε be a sufficiently small positive number such that 10 ·ε < gap(E,F ). Combining Lemma 3.1 and Lemma

3.8, we obtain the following proposition.

Proposition 3.11 G(Dλ, h0) is bounded with respect to (ωε, h0). Moreover, we have the following estimate with
respect to (ωε, h0), on Ui \ (

⋃
UP ∪D):

G(Dλ, h0) = π∗
i G
(
D̂λ

Di
, h0 Di

)
−
(
λQi + λQi + (1 + |λ|2)Γi

)
· ∂∂ log |σi|2gi

+O(|σi|3ε
gi

),

∂h0θh0 = π∗
i

(
i∂(iθ)

)
+

1

1 + |λ|2 (Qi + λΓi) · ∂∂ log |σi|2 +O(|σi|3ε
gi

).

θh0 = π∗
i

(
iθ
)

+
1

1 + |λ|2
(
Qi + λΓi

)
∂ log |σi|2 +O(1).
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On UP \D for P ∈ Di ∩Dj, we have the following estimate:

G(Dλ, h0) = π∗
iG
(
D̂λ

Di
, h0 Di

)
+ π∗

jG
(
D̂λ, h0 Dj

)
+O(|σi|3ε|σj |3ε),

∂h0θh0 =
∑

k=i,j

π∗
k

(
k∂(kθ)

)
+O

(
|σi|3ε|σj |3ε

)
.

θh0 =
∑

k=i,j

π∗
k

(
kθ
)

+
∑

k=i,j

1

1 + |λ|2 (Qk + λΓk) · ∂ log |σk|2.

We remark ∂∂ log |σi|2gi
= 0 on UP \D for P ∈ Di ∩Dj.

From the lemmas 3.2 and 3.9, we obtain the following proposition.

Proposition 3.12 We put Yδ :=
{
x ∈ X

∣∣ mini |σi|(x) = δ
}
, and then we have

∫
Yδ

tr
(
θ2h0

· θ†h0

)
−→ 0 for

δ −→ 0.

Corollary 3.13 The following equality holds:
∫

X−D

tr
(
R(h0)

2
)

=
1

(1 + |λ|2)2
∫

X−D

tr
(
G(h0)

2
)
.

As a result, we have the following formula:

(√
−1

2π

)2
1

(1 + |λ|2)2
∫

X−D

tr
(
G(h0)

2
)

=

∫

X

par-ch2(E,F ). (52)

Proof The second equality follows from the first equality and the proof of Proposition 4.4 of [30]. Due to

Lemma 2.25, we have only to show the vanishing
∫
∂ tr
(
θ2h0

θ†h0

)
= 0, which is given in Proposition 3.12.

Remark we can show the following equality similarly:

(√
−1

2π

)2 ∫

X−D

(
trG(h0)

1 + |λ|2
)2

=

(√
−1

2π

)2 ∫

X−D

(
trR(h0)

)2
=

∫

X

par-c1(E,F )2.

Corollary 3.14 Let τ be any C∞ two form on X. Then we have the following equalities:

√
−1

2π

∫

X−D

trR(h0) · τ =

∫

X

(
par-c1(E,F ) · [τ ]

)
=

∫

X

(
c1(E) · τ −

∑

i∈S

wt(E,F , i) · [Di] · τ
)
.

√
−1

2π

∫

X−D

trG(h0)

1 + |λ|2 · τ = −
∫

X

∑

i∈S

(
λ−1 tr Resi Dλ + wt(E,F , i)

)
· [Di] · τ.

Proof The first equality follows from the estimate of trR(h0) given in the proof of Lemma 4.28 of [30]. The
second equality follows from the relation of G(h0) and ∂θ0 and the estimates of θ0 given in Proposition 3.11.

Corollary 3.15

par-degω(E,F ) =

√
−1

2π

∫

X−D

trR(h0) · ωε =

√
−1

2π

∫

X−D

trG(h0)

1 + |λ|2 · ωε.

Proof The second follows from Lemma 2.24. The first equality follows from Lemma 4.18 of [30] and Corollary
3.14.

In particular, we obtain the following equality of the cohomology classes from Corollary 3.14:

c1(E) +
∑

i∈S

Re
(
λ−1 trResi Dλ

)
· [Di] = 0,

∑

i∈S

Im
(
λ−1 tr Resi Dλ

)
· [Di] = 0. (53)
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The first equality implies the following:

par-c1(E∗) = −
∑(

Re
(
λ−1 tr Resi(D

λ)
)

+ wt
(
E∗, i

))
· [Di]. (54)

Especially, we obtain the following formula:

par-degω(E∗) = −
∑

i

Re
(
λ−1 tr Resi(D

λ)
)

+ wt
(
E∗, i

))
· (Di, ω). (55)

Remark 3.16 It can be shown that these equalities hold for any parabolic λ-flat bundle (E,F ,Dλ) which are
not necessarily graded semisimple, by using the method of perturbation of the parabolic structures. They can
also be derived from a similar formula for the curve case and the fact that the Neron-Severi group NS1(X)⊗R

can be embedded into the rational cohomology group H2(X,R).

3.3.4 The relation between the pseudo curvature and the data at the divisor

Recall
∫

X
trG(h)l = 0, when X is compact ([36]). In the case where X is not compact, such a vanishing does

not hold, in general. But we can derive some formulas for
∫

X−D tr
(
G(h0)

2
)

by the same way. For simplicity of
the description, we put as follows:

u = (a, α), r(i, u) := rankDi
Êu Di

= rankDi

i GrF,E
u (E|Di

), d(i, u) := degDi
Êu Di

. (56)

We also put r(P, ui, uj) := rank P GrF,E
(ui,uj)

(E|P ). Let KMS(i) denote the set of the KMS-spectrum of (E,F ,Dλ)

at Di. Let KMS(P ) denote the set of the KMS-spectrum at P ∈ Di ∩ Dj . (See the subsection 2.1.2 for the
KMS-spectrum.)

Lemma 3.17 We have the following formula:

(√
−1

2π

)2 ∫
trG(h0)

2 =

∑

i∈S

∑

u∈KMS(i)

−
(
λ−1α+ λα+ (1 + |λ|2)a

)(
(1 − |λ|2) · d(i, u) − r(i, u) ·

(
(1 + |λ|2)a+ 2 Re(λα)

)
[Di]

2
)

+
∑

i∈S

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(P )

(
λ−1αi + λαi + (1 + |λ|2)ai

)
·
(
(1 + |λ|2)aj + 2 Re(λαj)

)
· r(P, ui, uj). (57)

Proof Since we have DλG(h0) = 0 and G(h0) = (1+|λ|2)·Dλ
(
−λ−1θh0 +θ†h0

)
, we obtain the following equality:

tr
(
G(h0)

2
)

= (1 + |λ|2) · (∂ + λ∂) tr
(
(−λ−1θh0 + θ†h0

) ·G(h0)
)
.

We decompose G(h0) = G2,0 +G1,1 +G0,2, where Gp,q are (p, q)-forms. Then we have the following:

trG(h0)
2

1 + |λ|2 = d tr
(
−λ−1θh0 ·G1,1

)
− d tr

(
θh0 ·G0,2

)
+ d tr

(
λθ†h0

·G1,1
)

+ d tr
(
θ†h0

·G2,0
)
.

We would like to apply the Stokes formula to the integral of trG(h0)
2. Since G(h0) is bounded with respect to

h0 and ωε, and since we need (1, 1)-form for the integration over complex curves Di, it is easy to see that the

only terms d tr
(
−λ−1θh0 ·G1,1

)
and d tr

(
λθ†h0

·G1,1
)

can contribute. Namely, we have the following equality:

∫
tr
(
G(h0)

2
)

= (1 + |λ|2)
∫
d tr
((

−λ−1θh0 + λθ†h0

)
·G1,1

)
.

We also remark the following estimate on Ui \UP with respect to (ωε, h0), which follows from Proposition 3.11:

−λ−1θh0 + λ · θ†h0
=

1

1 + |λ|2
(
(−λ−1Qi − Γi) · ∂ log |σi|2gi

+
(
λQi + |λ|2Γi

)
· ∂ log |σi|2gi

)
+O(1).
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Similarly, on UP (P ∈ Di ∩Dj), we have the following:

−λ−1θh0 + λ · θ†h0
=

1

1 + |λ|2
∑

k=i,j

(
(−λ−1Qk − Γk) · ∂ log |σk|2gk

+
(
λQk + |λ|2Γk

)
· ∂ log |σk |2gk

)
+O(1).

Then we obtain the following equality due to Proposition 3.11:

(√
−1

2π

)2 ∫
tr
(
G(h0)

2
)

=
∑

i∈S

∑

u∈KMS(i)

(
−λ−1α− λα− (1 + |λ|2)a

)
×

√
−1

2π

(∫

Di

trG
(
D̂λ

bEDi,u
, hu Di

)
− r(i, u) ·

(
λα + λα+ (1 + |λ|2)a

) ∫

Di

∂∂ log |σi|2gi

)
. (58)

Recall we have
√
−1 · (2π)−1

∫
Di
∂∂ log |σi|2gi

= [Di]
2. Due to the formula (29), the right hand side of (58) is

rewritten as follows:

−
∑

i,u

(
λ−1α+ λα+ (1 + |λ|2)a

)
·
(
(1 − |λ|2) · d(i, u) − r(i, u) ·

(
(1 + |λ|2)a+ 2 Reλα

)
· [Di]

2
)

+
∑

i,u

∑

P∈Di

(
λ−1α+ λα+ (1 + |λ|2)a

)
·
(
2 Re(λ tr ResP Dλ

bEDi,u
) + (1 + |λ|2) wt

(
ÊDi,u ∗, P

))
. (59)

Here ÊDi u ∗ denotes the parabolic bundle which is a pair of the vector bundle EDi u ∗ with the naturally induced
parabolic structure. We remark the following equality:

∑

i∈S

∑

u∈KMS(i)

∑

P∈Di

(
λ−1α+ λα+ (1 + |λ|2)a

)
·
(
2 Re(λ trResP Dλ

bEDi,u
) + (1 + |λ|2) wt

(
ÊDi,u ∗, P

))

=
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(P )

(
λ−1αi + λαi + (1 + |λ|2)ai

)
·
(
(1 + |λ|2)aj + 2 Re(λαj)

)
· r(P, ui, uj). (60)

Then we obtain (57).

Lemma 3.18 We have the following equality:

tr
(
G(h0)

2
)

= λ−2 · (1 + |λ|2)4 · ∂ tr(θh0 · ∂h0θh0). (61)

Proof We have tr
(
G(h0)

2
)

= (1 + |λ|2)4 · λ−2
(
tr(∂h0θh0)

2 + 2 tr(∂
2

h0
· θ2h0

)
)
. We also have the following:

∂ tr
(
θh0 · ∂h0θh0

)
= tr

(
(∂h0θh0)

2
)
− tr

(
θh0 · [∂

2

h0
, θh0 ]

)
= tr

(
(∂h0θh0)

2
)

+ 2 tr
(
∂

2

h0
· θ2h0

)
,

Then (61) follows.

Lemma 3.19 The following formula holds:

(√
−1

2π

)2 ∫
tr(G(h0)

2)

(1 + |λ|2)2 =
∑

i∈S

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(P )

(λ−1αi + ai)(λ
−1αj + aj) · r(P, ui, uj)

+
∑

i∈S

∑

u∈KMS(i)

r(i, u) · (λ−1α+ a)2 · [Di]
2. (62)

Proof From Proposition 3.11, we obtain the following:

(√
−1

2π

)2 ∫
∂ tr
(
θh0 ·∂h0θh0

)
=
∑

i

∑

u

α+ λa

1 + |λ|2
√
−1

2π

(∫

Di

tr(i∂iθu) +
α+ λa

1 + |λ|2 · r(i, u) ·
∫

Di

∂∂ log |σi|2
)

(63)
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By using (30), the right hand side hand can be rewritten as follows:

∑

i

∑

u

α+ λa

(1 + |λ|2)2

(
∑

P

(
trResP

iDλ
u + λwt(ÊDi u ∗, P )

)
+ (α+ λa) · r(i, u) · [Di]

2

)

=
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(P )

(αi + λai)(αj + λaj)

(1 + |λ|2)2 · r(P, ui, uj)

+
∑

i

∑

u∈KMS(i)

(α+ λa)2

(1 + |λ|2)2 · r(i, u) · [Di]
2. (64)

Then (62) follows from (61).

3.4 Preliminary Existence Result of a Hermitian-Einstein Metric

3.4.1 Hermitian-Einstein metric for graded semisimple λ-flat parabolic bundle on surface

We use the setting in the subsection 3.3.1. LetX be a smooth projective surface with an ample line bundle L and
a simple normal crossing divisor D. Let (E,F ,Dλ) be a λ-flat bundle on (X,D), which is graded semisimple
and µL-stable. Let ω be the Kahler form representing c1(L). Let ε be a small positive number such that
10 · ε < gap(E,F ). The metric ωε is given by (50). Let h0 be an ordinary metric constructed in the subsection
3.3.2.

Lemma 3.20 We can construct a hermitian metric hin for E|X−D which satisfies the following conditions:

• hin is adapted to the parabolic structure F .

• G(hin,D
λ) is bounded with respect to hin and ωε.

• Let V be any saturated coherent subsheaves E|X−D, and let πV denote the orthogonal projection of E|X−D

onto V , which is defined outside a finite subset. Then DλπV is L2 with respect to hin and ωε, if and only
if there exists a coherent subsheaf Ṽ of E such that Ṽ|X−D = V . Moreover we have par-degω(Ṽ ,F V ) =
degωε

(V, hin,V ).

• trG(hin,D
λ) · ωε = (1 + |λ|2) · a · ω2

ε for some constant a. The constant a is determined by the following
condition:

a ·
√
−1

2π

∫

X−D

ω2
ε = a ·

√
−1

2π

∫

X

ω2 = par-degω(E,F ). (65)

• The following equalities hold:

(√
−1

2π

)2 ∫

X−D

tr
(
G(hin)2

)

(1 + |λ|2)2 =

∫

X

2 par-ch2(E,F ),

(√
−1

2π

)2 ∫

X−D

tr
(
G(hin)

)2

(1 + |λ|2)2 =

∫

X

par-c2
1(E,F ).

• Let s be determined by hin = h0 · s. Then s and s−1 is bounded, and Dλs is L2 with respect to h0 and ωε.

Due to the third condition, (E, hin, θ) is analytic stable with respect to ωε, if and only if (E,F ,Dλ) is µL-stable.
The metric hin is called an initial metric.

Proof We have only to modify an ordinary metric h0 to h0 · eχ for some positive scalar function χ so that
trG(h0) · ωε = a · ω2

ε holds. Once we have obtained the estimate as in Proposition 3.11, it can be shown by the
argument given in the subsection 6.1.3 of [30]. (In the case λ 6= 0, we can use Lemma 2.7 for the prolongation
of subsheaves to show the third property, and hence the proof is a little easier.)

Proposition 3.21 There exists a hermitian metric hHE of (E,Dλ) with respect to ωε satisfying the following
properties:
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• Hermitian-Einstein condition Λωε
G(hHE) = a holds for the constant a determined by (65).

• par-degL(E,F ) = degω(E, hHE).

• We have the following formulas:

(√
−1

2π

)2 ∫

X−D

tr
(
G(hHE)⊥ 2

)

(1 + |λ|2)2 =

∫

X

(
2 par-ch2(E,F ) − par-c2

1(E,F )

rankE

)
(66)

(√
−1

2π

)2 ∫

X−D

tr
(
G(hHE)2

)

(1 + |λ|2)2 =

∫

X

2 par-ch2(E,F ). (67)

• hHE is adapted to the parabolic structure F . More strongly, let s be determined by hHE = hin · s. Then s
and s−1 are bounded with respect to hin, and Dλs is L2 with respect to hin and ωε.

Proof It follows from Lemma 3.20 and Proposition 2.31.

3.4.2 Bogomolov-Gieseker inequality

Let Y be a smooth projective variety of any dimension Let L be an ample line bundle on Y , and let D be a
simple normal crossing divisor.

Corollary 3.22 Let (E∗,D
λ) be a µL-stable regular filtered λ-flat bundle on (Y,D) in codimension two. Then,

Bogomolov-Gieseker inequality holds for E∗. Namely, we have the following inequality:

∫

Y

par-ch2,L(E∗) ≤
∫

Y
par-c2

1,L(E∗)

2 rankE
.

Proof Similar to Theorem 6.1 of [30]. Namely, since we have the Mehta-Ramanathan type theorem (Proposi-
tion 2.8), we have only to prove the claim in the case dim Y = 2. Due to the method of perturbation of parabolic
structure, we have only to prove the inequality in the case (E,F ,Dλ) is a graded semisimple µL-stable parabolic
λ-flat bundle on (Y,D). Then we can take a Hermitian-Einstein metric hHE as in Proposition 3.21, for which
we have the standard inequality (See Proposition 3.4 of [34]):

∫

Y −D

tr
(
G(hHE ,D

λ)⊥ 2
)
≥ 0. (68)

Here G(hHE ,D
λ)⊥ denotes the trace free part of G(hHE ,D

λ). Hence we obtain the desired inequality from
(68).

3.5 Some Formulas and Vanishings of Characteristic Numbers

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X . We obtained
some formulas for

∫
X par-ch2(E,F ) when (E,F ,Dλ) is a graded semisimple parabolic λ-flat bundle on (X,D).

By using them, we will derive some formulas and vanishings for (E,F ,Dλ) which is not necessarily graded
semisimple in this subsection. We will use the notation given by (56).

Remark 3.23 We restrict ourselves to the case dimX = 2 just for simplicity. The formula can be obviously
generalized for

∫
X

par-ch2,L(E,F ) of regular λ-flat parabolic bundles (E,F ,Dλ) on (X,D) in codimension two

for dimX > 2, where L denotes a line bundle on X.
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3.5.1 Formulas of
∫

X
par-ch2(E,F ) in terms of the data at the divisor

To begin with, we remark that we have only to show such formulas for graded semisimple parabolic λ-flat
bundles, due to the method of perturbation of the parabolic structure (the subsection 2.1.5). We will use it
without mention in the following argument.

Proposition 3.24

∫

X

2 par-ch2(E,F ) =
∑

i∈S

∑

u∈KMS(i)

(
Re(λ−1α) + a

)2 · r(i, u) · [Di]
2

+
∑

i∈S

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(P )

(
Reλ−1αi + ai

)(
Reλ−1αj + aj

)
· r(P, ui, uj). (69)

We also have the following:

2 par-ch2(E,F ) =
∑

i∈S

∑

i∈KMS(i)

Re
(
λ−1α+ a

)
· par-deg(Eu Di ∗). (70)

Here Eu Di ∗ denote the parabolic bundle which is the pair of Eu Di
with the naturally induced parabolic structure.

Proof From (52) and (57), we obtain the following equality:

∫

X

2 par-ch2(E,F ) = −
∑

i,u

(
λ−1α+ λα

1 + |λ|2 + a

)(
1− |λ|2
1 + |λ|2 · d(i, u) − r(i, u) ·

(
a+

2 Reλα

1 + |λ|2
)
· [Di]

2

)

+
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

(
λ−1αi + λαi

1 + |λ|2 + ai

)(
2 Reλαj

1 + |λ|2 + aj

)
· r(P, ui, uj)

= −
∑

i,u

(
λ−1α+ |λ|2λ−1α

1 + |λ|2 + a

)(
1 − |λ|2
1 + |λ|2 d(i, u) − r(i, u) ·

(
a+

2|λ|2 Reλ−1α

1 + |λ|2
)
· [Di]

2

)

+
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

(
λ−1αi + |λ|2λ−1αi

1 + |λ|2 + ai

)(
2|λ|2 Reλ−1αj

1 + |λ|2 + aj

)
r(P, ui, uj). (71)

By taking the real part, we obtain

∫

X

2 par-ch2(E,F ) = −
∑

i,u

(Reλ−1α+ a)

(
1 − |λ|2
1 + |λ|2 d(i, u) − r(i, u)

(
a+

2|λ|2 Re(λ−1α)

1 + |λ|2
)

[Di]
2

)

+
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

(
Reλ−1αi + ai

)( 2|λ|2
1 + |λ|2 Reλ−1αj + aj

)
r(P, ui, uj)

= −
∑

i,u

(
Re(λ−1α) + a

)(1 − |λ|2
1 + |λ|2 d(i, u) − r(i, u)

(
a+ Reλ−1α− 1 − |λ|2

1 + |λ|2 Reλ−1α

)
[Di]

2

)

+
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

(Reλ−1αi + ai)

((
1 − 1 − |λ|2

1 + |λ|2
)

Reλ−1αj + aj

)
· r(P, ui, uj) (72)

Let us make the following observation. For the decomposition Dλ = d′′ + d′, we put Dλ1 := d′′ + (λ1/λ)d
′.

Then Dλ1 is the flat λ1-connection of the parabolic bundle (E,F ). If (a, α) is a KMS-spectrum for Dλ, then
(a′, α′) = (a, λ1α/λ) is a KMS-spectrum for Dλ1 . Under the correspondence, we have λ−1α = λ−1

1 α′. (Indeed,
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it is the eigenvalues of the residue of the associated flat connection Dλ f .) Therefore, we obtain the following
formula by considering the formula (72) for λ1 6= 0:

∫

X

2 par-ch2(E,F ) =
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

(Reλ−1αi + ai)

((
1 − 1 − |λ1|2

1 + |λ1|2
)

Reλ−1αj + aj

)
· r(P, ui, uj)

−
∑

i,u

(
Re(λ−1α) + a

)(1 − |λ1|2
1 + |λ1|2

· d(i, u) − r(i, u)

(
a+ Reλ−1α− 1 − |λ1|2

1 + |λ1|2
Reλ−1α

)
[Di]

2

)

(73)

We can regard the formula (73) as a polynomial of t = (1− |λ1|2)(1 + |λ1|2)−1. Therefore we obtain (69) by
taking the degree 0-part of (73). By considering the coefficients of the degree one part of (73), we obtain the
following:

∑

i,u

Re(λ−1α+ a)
(
d(i, u) + r(i, u) · Re(λ−1α)[Di]

2
)

+
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

(
Re(λ−1αi) + ai

)
Re(λ−1αj) · r(P, ui, uj) = 0. (74)

Subtracting (74) from (69), we obtain (70).

Remark 3.25 The formula (69) can be regarded as the equality of parabolic second Chern character numbers
for (E,F ,Dλ) and the corresponding filtered local system. See the section 6.

3.5.2 Some vanishing

Proposition 3.26 We have the following vanishing:

∑

i∈S

∑

u∈KMS(i)

Im(λ−1α)
(
d(i, u) + r(i, u) · Re(λ−1α) · [Di]

2
)

+
∑

i∈S

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(P )

Im(λ−1αi) · Re(λ−1αj) · r(P, ui, uj) = 0. (75)

We also have the following vanishing:

∑

i

∑

u

Im(λ−1α) ·
(
deg Êu Di,∗ − r(i, u) · a · [Di]

2
)

= 0. (76)

Proof We obtain the following, by taking the imaginary part of (71):

∑

i

∑

u

−
(

1 − |λ|2
1 + |λ|2 Im(λ−1α)

)(
1 − |λ|2
1 + |λ|2 d(i, u) − r(i, u)

(
a+

(
1 − 1 − |λ|2

1 + |λ|2
))

Reλ−1α · [Di]
2

)

+
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

1 − |λ|2
1 + |λ|2 Imλ−1αi

((
1 − 1 − |λ|2

1 + |λ|2
)

Reλ−1αj + aj

)
r(P, ui, uj) = 0. (77)

By the same consideration, we can regard (77) as a polynomial of t = (1 − |λ|2)(1 + |λ|2)−1. By taking the
degree two part, we obtain (75). By taking the degree one part, we obtain the following:
∑

i

∑

u

Im(λ−1α) · r(i, u) ·
(
a+ Reλ−1α

)
· [Di]

2 +
∑

i

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)

Im(λ−1αi)
(
aj + Reλ−1αj

)
· r(P, ui, uj) = 0.

(78)
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From (75) and (78), we obtain the following:

∑

i

∑

u

Im(λ−1α) ·
(
d(i, u) − r(i, u) · a · [Di]

2
)
−
∑

i

∑

j 6=i

∑

(ui,uj)

(Imλ−1αi) · aj · r(P, ui, uj) = 0. (79)

It is equivalent to (76).

Proposition 3.27 We have the following formula:

∑

i

∑

j 6=i

∑

(ui,uj)

Im(λ−1αi) · Im(λ−1αj) · r(P, ui, uj) +
∑

i

∑

u

(
Im(λ−1α)

)2
r(i, u) · [Di]

2 = 0. (80)

Proof From (52) and (62), we obtain the following:

∫

X

2 par-ch2(E,F ) =
∑

i

∑

j 6=i

∑

(ui,uj)

(λ−1αi + ai)(λ
−1αj + aj) · r(P, ui, uj)

+
∑

i

∑

u∈KMS(i)

(λ−1α+ a)2 · r(i, u) · [Di]
2. (81)

Let us take the real part of (81), and compare it with (69). Then we obtain (80).

3.5.3 Remark on the vanishing of the parabolic Chern character numbers

Recall the formulas for
∫

X par-ch2(E,F ) (Proposition 3.24, for example) and the formula for par-c1(E,F ) (see
(55) and Remark 3.16). Then we immediately obtain the following corollary.

Corollary 3.28 When a+Reλ−1α = 0 for any KMS-spectrum (a, α) of (E,F ,Dλ), the characteristic numbers
par-degω(E,F ) and

∫
X

par-ch2(E,F ) automatically vanish.

Remark 3.29 Let E be a vector bundle on X −D with a flat connection ∇. We have the Deligne extension
(Ẽ,∇). (See the subsection 2.1.3, for example.) Then we have the canonically defined parabolic structure F

such that Reα+ a = 0 for any KMS-spectrum. In that case, the stability of (Ẽ,F ,∇) and the semisimplicity of

(E,∇) is equivalent. The corollary means
∫

X
par-c2(Ẽ,F ) = par-degω(Ẽ,F ) = 0.

When (E,∇) is semisimple, we know that there exists the Corlette-Jost-Zuo metric of (E,∇) which is a
pure imaginary tame pluri-harmonic metric adapted to the parabolic structure F (See [2] for the case D = ∅
and [14] for the general case. See also [29].) To show such an existence theorem from the Kobayashi-Hitchin
correspondence, we have to show the vanishing of the characteristic numbers which is “the obstruction on the
way from harmonicity to pluri-harmonicity”. Corollary 3.28 clarifies the point.

4 Continuity of some families of harmonic metrics

4.1 Statements

In this section, we will show continuity of two kinds of families of harmonic metrics on curves, i.e., Proposition
4.1 and Proposition 4.2. We will give a detailed proof of the first one. Because the second one can be proved
similarly and more easily, we just give some remarks in the end of this section.

4.1.1 Continuity for ε-perturbation

Let C be a smooth projective curve with a simple divisor D. Let (E,F ,Dλ) be a parabolic flat λ-connection over

(C,D), which is stable and par-deg(E,F ) = 0. Let F
(ε) be the ε-perturbation of the parabolic structures. (See

the subsection 2.1.5.) We remark det(E,F ) = det(E,F (ε)). Let h(ε) be the harmonic metric for (E,F (ε),Dλ)
for 0 ≤ ε ≤ ε0. Let θ(ε) denote the Higgs fields for the harmonic bundles (E,Dλ, h(ε)).
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Proposition 4.1 The sequences {h(ε) | ε > 0} and
{
θ(ε)
}

converge to h(0) and θ(0) respectively, in the C∞-sense
locally on C −D.

The proof is given in the subsection 4.5 after the preparation given in the subsections 4.2–4.4. Before going
into the proof of Proposition 4.1, we give a similar statement for another family in the next subsubsection.

4.1.2 Continuity for a holomorphic family

Let C −→ ∆ be a holomorphic family of smooth projective curve, and D −→ ∆ be a relative divisor. Let
(E,F ,Dλ) be a parabolic flat bundle on (C,D). Let t be any point of ∆. We denote the fibers by Ct and Dt,
and the restriction of (E,F ,Dλ) to (Ct,Dt) is denoted by (Et,F t,D

λ
t ). We assume par-deg(Et,F t) = 0 and

that (Et,F t,D
λ
t ) is stable for each t. For simplicity, we also assume that we are given a pluri harmonic metric

hdet(E) of det(E,Dλ)|C−D which is adapted to the induced parabolic structure.

Let hH,t be a harmonic metric of (Et,F t,D
λ
t ) such that det(hH,t) = hdet(E) | Ct

. They give the metric hH of

E. Let θH,t be the Higgs filed obtained from (Et,D
λ, h(εt)), which is a section of End(Et)⊗Ω1,0

Ct
(logDt). They

give the section θH of End(E) ⊗ Ω1,0
C/∆(logD), where Ω1,0

C/∆(logD) denotes the sheaf of the logarithmic relative

(1, 0)-forms.

Proposition 4.2 hH and θH are continuous. Their derivatives of any degree along the fiber directions are
continuous.

Since Proposition 4.2 can be proved similarly and more easily, we will not give a detailed proof. See Remark
4.14.

4.2 Preliminary from Elementary Calculus

For any z ∈ ∆∗ =
{
z ∈ C

∣∣ |z| < 1
}

and ε > 0, we put as follows:

Lε(z) :=
|z|−ε − |z|ε

ε
, Kε(z) :=

|z|−ε + |z|ε
2

, Mε(z) := |z|4ε(1 − log |z|4ε).

We also put L0(z) := − log |z|2, K0(z) = 1 and M0(z) = 1. Then they are continuous with respect to
(z, ε) ∈ ∆∗ × R≥ 0.

Lemma 4.3 For any (z, ε) ∈ ∆∗ × R≥ 0, we have L0(z) ≤ Lε(z).

Proof We put g(ε) := a−ε − aε + ε · log a2 for 0 < a < 1 and 0 ≤ ε. Taking the derivative with respect to ε, we
obtain the following:

g′(ε) = −
(
a−ε + aε

)
log a+ log a2, g′′(ε) = (a−ε − aε)(log a)2 ≥ 0.

Since we have g(0) = g′(0) = 0, the claim of the lemme follows.

Lemma 4.4 (Kε(z)−1)·
(
Lε(z)

2 ·ε2 ·|z|ε
)−1

are bounded on ∆∗, independently of ε. We also have Kε(z)−1 ≥ 0.

Proof The second claim is clear. Let us check the first claim. We put as follows, for 0 < a < 1 and 0 ≤ ε ≤ 1:

g1(ε) := a−ε − 2 + aε, g2(ε) := (a−ε − aε)2aε = a−ε − 2aε + a3ε.

We have only to show that g2(ε) ≥ g1(ε). We put g(ε) := g2(ε)− g1(ε) = 2+ a3ε − 3aε. By taking the derivative
with respect to ε, we obtain the following:

g′(ε) = 3a3ε · log a− 3aε · log a = 3(−a3ε + aε)(− log a) ≥ 0.

Since we have g(0) = 0, we obtain g(ε) ≥ 0. Thus we are done.
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Lemma 4.5
(
1−Mε(z)

)
·
(
Lε(z)

2 ·ε2·|z|ε
)−1

are bounded on ∆∗, independently of ε. We also have 1−Mε(z) ≥ 0.

Proof We have only to show the following inequalities for 0 < a < 1 and 0 ≤ ε < 1:

0 ≤ 1 − a4ε(1 − log a4ε) ≤ 3(a−ε − aε)2aε.

To show the left inequality, we put h(ε) := 1 − a4ε(1 − log a4ε). By taking the derivative with respect to ε, we
have h′(ε) = −a4ε log a4(1 − log a4ε) + a4ε log a4 = εa4ε(log a4)2 ≥ 0. We also have h(0) = 0. Hence we obtain
h(ε) ≥ 0. To show the right inequality, we put as follows:

g(ε) := a−4ε
(
3(a−ε − aε)2aε −

(
1 − a4ε(1 − log a4ε)

))
= 3(a−5ε − 2a−3ε + a−ε) + (1 − log a4ε) − a−4ε.

By taking the derivative with respect to ε, we obtain the following:

g′(ε) = 3
(
a−5ε(−5 loga) − 2a−3ε(−3 loga) + a−ε(− log a)

)
− 4 loga− a−4ε(−4 log a)

g′′(ε) =
(
75a−5ε − 16a−4ε − 54a−3ε + 3a−ε

)
· (log a)2.

It is easy to check g′′(ε) ≥ 0 by using a−5ε ≥ a−kε (k = 3, 4). Since we have g′(0) = g(0) = 0, we obtain
g(ε) ≥ 0. Thus we are done.

Lemma 4.6 Let P (t) be a polynomial with variable t, and let b be any fixed positive number. Then we have the
boundedness of |z|bεP

(
εL0(z)

)
on ∆∗, independently of 0 ≤ ε ≤ 1/2.

Proof We put u := |z|ε, and then |z|bεP (εL0(z)) = ub ·P
(
L0(u)

)
. Hence we have only to show the boundedness

of ub · P
(
L0(u)

)
when 0 < u < 1, but it is easy.

4.3 A Family of the Metrics for Logarithmic flat λ-bundle of Rank Two on a Disc

4.3.1 Construction of a family of metrics

We put X = ∆ = {z
∣∣ |z| < 1}. Let O denote the origin, and we put X∗ := X − {O}. We use the Kahler form

ωε := ε2|z|εdz · dz/|z|2 + dz · dz in this subsection. We will use the notation in the subsection 4.2.
To begin with, we recall an example of a harmonic bundle on a punctured disc. Let E = OX · v1 ⊕OX · v2

be a holomorphic vector bundle on a disc. Let θ be a Higgs bundle such that θ · v1 = v2 · dz/z and θ · v2 = 0.
Let h be the metric of E|X∗ such that h(v1, v1) = L0, h(v2, v2) = L−1

0 and h(vi, vj) = 0 (i 6= j). Recall

that the tuple (E, ∂E , θ, h) is a harmonic bundle. Let us see the associated λ-connection. We put u1 := v1
and u2 := v2 − λ · L−1

0 · v1. Then it can be shown by a direct calculation that (∂E + λθ†)ui = 0 (i = 1, 2),
Dλu1 = u2 · dz/z and Dλu2 = 0. We also have the following:

h(u1, u1) = L0, h(u2, u2) = (1 + |λ|2) · L−1
0 , h(u1, u2) = −λ, h(u2, u1) = −λ.

Motivated by this example, we consider the following family of the metrics hε on the λ-connection (E,Dλ)
given as follows:

hε(u1, u1) = Lε, hε(u2, u2) =
(
1 + |λ|2

)−1 · Lε, hε(u1, u2) = −λ ·Mε, hε(u2, u1) = −λ ·Mε.

The λ-connection Dλ and the metric hε induce the operators ∂ε and θε (the subsection 2.2.1). The main purpose
of this subsection is to show the following proposition.

Proposition 4.7 There exists a some positive constant C such that
∣∣∂εθε

∣∣
hε,ωε

≤ C for any 0 ≤ ε < 1/2.

Although the proof of the proposition is just a calculation, we will give the detail in the rest of this subsection.

Remark 4.8 Let h′ε be the metric determined by h′ε(u1, u1) = Lε, h
′
ε(u2, u2) = L−1

ε and h′ε(ui, uj) = 0 (i 6= j).
Then there exist positive constants Ci (i = 1, 2) such that C1 · h′ε ≤ hε ≤ C2 · h′ε for any 0 ≤ ε ≤ 1/2. Hence we
have only to consider the norms for h′ε instead of those for hε.
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4.3.2 Preliminary

Let Hε be the hermitian matrix valued function given by Hε := H(hε,u), i.e.,

Hε :=

(
Lε −λ ·Mε

−λ ·Mε (1 + |λ|2)L−1
ε

)
.

Let N be determined by Dλ
u = u ·N · dz/z, and let N †

ε denote the adjoint of N with respect to the metric Hε,
i.e.,

N =

(
0 0
1 0

)
, N †

ε = H
−1

ε · tN ·Hε =
1

1 + |λ|2(1 −M2
ε )

(
−λ(1 + |λ|2)L−1

ε Mε (1 + |λ|2)2L−2
ε

−λ2
M2

ε λ(1 + |λ|2)MεL
−1
ε

)
.

Recall the calculation given in the subsubsection 2.2.2. Then ∂ε and θε can be described with respect to u as
follows:

∂εu = u · λ

1 + |λ|2
(
λ ·H−1

ε ∂Hε −N †
ε

dz

z

)
, θεu = u

1

1 + |λ|2
(
N
dz

z
− λH

−1

ε ∂Hε

)
.

Therefore ∂ε(θε) is described by the following 2 × 2-matrix valued 2-form with respect to u:

1

1 + |λ|2 ∂
(
−λH−1

ε ∂Hε

)
+

λ

(1 + |λ|2)2
([
λ ·H−1

ε ∂Hε, N
dz

z

]
−
[
N †

ε

dz

z
, N

dz

z

]
+
[
N †

ε

dz

z
, λH

−1

ε ∂Hε

])
. (82)

Here we have used
[
H

−1

ε ∂Hε, H
−1

ε ∂Hε

]
= 0, which can be checked easily.

Lemma 4.9 To show Proposition 4.7, we have only to show the uniform boundedness of (1, 1)-entry, (2, 2)-
entry, Lε× (1, 2)-entry and L−1

ε × (2, 1)-entry, in the matrix valued function (82).

Proof It follows from Remark 4.8.

In the following calculation, we often use the notation L and M instead of Lε and Mε, if there are no

confusion. Let us see H
−1

ε ∂Hε. We have the following equality:

H
−1

ε =
1

1 + |λ|2(1 −M2
ε )

(
(1 + |λ|2) · L−1

ε λ ·Mε

λ ·Mε Lε

)
, ∂Hε =

(
∂Lε −λ · ∂Mε

−λ · ∂Mε (1 + |λ|2) · ∂L−1
ε

)
.

Then we obtain the following formula for H
−1

ε ∂Hε:

H
−1

ε ∂Hε =
1

1 + |λ|2(1 −M2
ε )

(
(1 + |λ|2)L−1∂L− |λ|2M∂M λ(1 + |λ|2)

(
−L−1∂M +M∂L−1

)

λ(M∂L− L∂M) (1 + |λ|2)L∂L−1 − |λ|2M · ∂M

)
. (83)

We also have a similar formula for H
−1

ε ∂Hε. We obtain the following formula for ∂
(
H

−1

ε ∂Hε

)
:

∂
(
H

−1

ε ∂Hε

)
=

2|λ|2M∂M

1 + |λ|2(1 −M2)
H

−1

ε ∂Hε

+
1

1 + |λ|2(1 −M2)

(
(1 + |λ|2)∂∂ logL− 2−1|λ|2∂∂M2 λ(1 + |λ|2)(M∂∂L−1 − L−1∂∂M)

λ(M∂∂L− L∂∂M) (1 + |λ|2)∂∂ logL−1 − 2−1|λ|2∂∂M2

)
. (84)

The commutator of H
−1

ε ∂Hε and N · dz/z is as follows:

[
H

−1

ε ∂Hε, N · dz
z

]
=

(1 + |λ|2)
1 + |λ|2(1 −M2)

(
λ(−L−1∂M +M∂L−1) 0

2L∂L−1 −λ(−L−1∂M +M∂L−1)

)
dz

z
. (85)

Let us see the commutator of H
−1

ε ∂Hε and N †
ε . By direct calculations, we have the following equality:

H
−1

ε ∂Hε ·N †
ε =

1

1 + |λ|2(1 −M2)

(
−λ(1 + |λ|2)L−2M∂L (1 + |λ|2)2L−3∂L

λ
2 ·M∂M −λ(1 + |λ|2)L−1∂M

)

+
1

(
1 + |λ|2(1 −M2)

)2

(
2|λ|2λ(1 + |λ|2)M2L−1∂M −2|λ|2(1 + |λ|2)2ML−2∂M

2M3∂Mλ
2|λ|2 −2λ|λ|2(1 + |λ|2)M2L−1∂M

)
. (86)
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We also have the following:

N †
ε ·H−1

ε ∂Hε =
1

1 + |λ|2(1 −M2)

(
−λ(1 + |λ|2)L−1∂M (1 + |λ|2)2L−1∂L−1

−λ2
M∂M λ(1 + |λ|2)M∂L−1

)
. (87)

Therefore we obtain the following formula:

[
N †

ε

dz

z
,Hε∂Hε

]

=
1

1 + |λ|2(1 −M2)

dz

z

(
−λ(1 + |λ|2)(L−1∂M − L−2M∂L) −2(1 + |λ|2)2L−3∂L

−2λ
2
M∂M λ(1 + |λ|2)(M∂L−1 + L−1∂M)

)

− 2|λ|2
(
1 + |λ|2(1 −M2)

)2
dz

z

(
λ(1 + |λ|2)M2L−1∂M −(1 + |λ|2)2ML−2∂M

λ
2
M3∂M −λ(1 + |λ|2)M2L−1∂M

)
(88)

The commutator of N and N †
ε is as follows:

[
N †

ε , N
]

=
1

1 + |λ|2(1 −M2)

(
(1 + |λ|2)2L−2 0

2λ(1 + |λ|2)ML−1 −(1 + |λ|2)2L−2

)
. (89)

4.3.3 Estimate

We have the following:

∂Lε = −Kε
dz

z
, ∂Kε = −ε

2

4
Lε
dz

z
, ∂Mε = 4ε2 · |z|4ε · L0 ·

dz

z
. (90)

In particular, we have the following estimate:

Mε∂Mε = O
(
ε2 · |z|8ε · L0 ·

(
1 + εL0

)dz
z

)
.

Let us see the first term in the right hand side of (84):

2|λ|2Mε∂Mε

1 + |λ|2(1 −M2
ε )
H−1

ε ∂Hε (91)

For the (1, 1)-entry and (2, 2)-entry, we have the following estimates:

Mε∂Mε · L−1
ε ∂Lε = O

(
ε2 · L0 · |z|8ε(1 + εL0)

Kε

Lε

)
dz · dz
|z|2 = O

(
|z|5ε(1 + εL0)

L0

Lε

)
· ωε

Mε∂Mε ·Mε∂Mε = O
(
ε4 · |z|16ε · (1 + εL0)

2L2
0

)dz · dz
|z|2 = O

(
|z|15ε · (1 + εL0)

2(εL0)
2
)
· ωε.

They are bounded with respect to ωε due to Lemma 4.3 and Lemma 4.6. Hence the (1, 1)-entry and the (2, 2)-
entry of (91) are bounded independently of ε. Let us see the (1, 2)-entry. Recall Lemma 4.9. Hence we have
only to see the following:

Lε × (Mε∂Mε) ·
(
L−1

ε ∂Mε −Mε∂L
−1
ε

)
= Mε∂Mε∂Mε +M2

ε ∂MεL
−1
ε ∂Lε.

Both terms in the right hand side can be estimated as in the previous case, by using Lemma 4.3 and Lemma
4.6:

Mε∂Mε∂Mε = O
(
|z|10ε(1 + εL0)(εL0)

2
)
· ωε = O(1) · ωε.

M2
ε ∂MεL

−1
ε ∂Lε = O

(
|z|11ε(1 + εL0)

2L0

Lε

)
· ωε = O(1) · ωε
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The (2, 1)-entry can be estimated similarly:

L−1
ε × (Mε∂Mε)

(
Mε∂Lε − Lε∂Mε

)
= M2

ε L
−1
ε ∂Mε∂Lε −Mε · ∂Mε∂Mε = O(1) · ωε.

Let us see the second term in the right hand side of (84):

1

1 + |λ|2(1 −M2)

(
(1 + |λ|2)∂∂ logL− 2−1|λ|2∂∂M2 λ(1 + |λ|2)(M∂∂L−1 − L−1∂∂M)

λ(1 + |λ|2)(M∂∂L− L∂∂M) (1 + |λ|2)∂∂ logL−1 − 2−1|λ|2∂∂M2

)
. (92)

It is easy to see the following estimate:

∂∂M2
ε = O

(
ε2 · |z|6ε(1 + εL0)

2
)
· ωε = O(ε2) · ωε. (93)

Hence it is bounded with respect to ωε independently of ε. We remark that L−1
ε Mε∂∂Lε is also bounded

independently of ε:

L−1
ε Mε · ∂∂Lε =

ε2

4
Mε ·

dz · dz
|z|2 = O(1) · ωε.

Hence we have the following, modulo the uniformly bounded term with respect to (hε, ωε):

∂
(
H

−1

ε ∂Hε

)
≡ (1 + |λ|2)

1 + |λ|2(1 −M2
ε )

(
∂∂ logLε λMε∂∂L

−1
ε

0 −∂∂ logLε

)
. (94)

Let us see (85). By the same argument, we have the following uniform boundedness:

L−1
ε ∂Mε ·

dz

z
= O

(
ε2|z|4εL0

Lε

)
· dz · dz|z|2 = O(1) · ωε.

Hence we have the following, modulo the uniformly bounded terms with respect to (hε, ωε):

[
H

−1

ε ∂Hε, N · dz
z

]
≡ (1 + |λ|2)

1 + |λ|2(1 −M2
ε )

(
λMε∂L

−1
ε 0

2Lε∂L
−1
ε −λMε∂L

−1
ε

)
· dz
z
. (95)

Let us see (88). We remark the following, for any k ≥ 1:

dz

z

Mk
ε ∂Mε

Lε
= O

(
ε2|z|4(k+1)ε(1 + εL0)

kL0

Lε

)
· dz · dz|z|2 = O(1) · ωε.

Hence the terms containing ∂M in the right hand side of (88) can be ignored. Hence we obtain the following,
modulo the uniformly bounded terms with respect to (hε, ωε):

[
N †

ε

dz

z
, H

−1

ε ∂Hε

]
≡ (1 + |λ|2)

1 + |λ|2(1 −M2
ε )

dz

z

(
λL−2

ε Mε∂Lε −2(1 + |λ|2)L−3
ε ∂Lε

0 λMε∂L
−1
ε

)
. (96)

In all, (82) is same as the following, modulo uniformly bounded terms due to (89), (94), (95) and (96):

1

1 + |λ|2(1 −M2
ε )

(
−λ∂∂ logLε −λ2Mε · ∂∂L−1

ε

0 λ∂∂ logLε

)

+
1

1 + |λ|2(1 −M2
ε )

|λ|2
1 + |λ|2

dz · dz
|z|2

(
λ ·Mε ·Kε · L−2

ε 0
2Kε · L−1

ε −λ ·Mε ·Kε · L−2
ε

)

+
1

1 + |λ|2(1 −M2
ε )

λ2

1 + |λ|2
dz · dz
|z|2

(
−λ ·Mε ·Kε · L−2

ε 2(1 + |λ|2)L−3
ε ·Kε

0 λ ·Mε ·Kε · L−2
ε

)

− λ

1 + |λ|2(1 −M2
ε )

dz · dz
|z|2

(
L−2

ε 0

2λ(1 + |λ|2)−1Mε · L−1
ε −L−2

ε

)
. (97)
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The summation of the last three term in (97) is as follows:

1

1 + |λ|2(1 −M2
ε )

dz · dz
|z|2

(
−λL−2

ε 2λ2L−3
ε Kε

2|λ|2(1 + |λ|2)−1(Kε −Mε)L
−1
ε λL−2

ε

)
. (98)

By a direct calculation, we can show the following equalities:

∂∂ logLε = − 1

L2
ε

dz · dz
|z|2 , ∂∂L−1

ε =
2

L3
ε

dz · dz
|z|2 − ε2

2

1

Lε

dz · dz
|z|2 .

Therefore, (97) can be rewritten as follows:

1

1 + |λ|2(1 −M2
ε )

(
0 2λ2L−3

ε (Kε −Mε)
2|λ|2(1 + |λ|2)−1L−1

ε (Kε −Mε) 0

)
· dz · dz|z|2

+
1

1 + |λ|2(1 −M2
ε )

(
0 λ2ε2Mε(2Lε)

−1

0 0

)
· dz · dz|z|2 . (99)

Due to Mε = O
(
|z|4ε(1 + εL0)

)
, the second term in (99) can be ignored. Due to Lemma 4.5 and Lemma 4.4,

we have the uniform boundedness of (Mε − 1) ·L−2
ε · dz · dz/|z|2 and (Kε − 1) ·L−2

ε · dz · dz/|z|2. Thus the proof
of Proposition 4.7 is finished.

4.4 A Family of Metrics of a Parabolic Flat Bundle on a Disc

4.4.1 Simple case

We put X := ∆ = {z ∈ C | |z| < 1} and X∗ := ∆ − {O}. Let Vl be a vector space over C with a base
e = (e1, . . . , el), and let Nl be the nilpotent endomorphism of Vl given by Nl · ei+1 = ei for i = 1, . . . , l− 1 and
Nl ·el = 0. We put El := OX⊗Vl. Then ei naturally induce the frame of El, which we denote by v = (v1, . . . , vl).
The fiber E|O is naturally identified with V , and we have v|O = e. We have the logarithmic λ-connection Dλ

l

of El given by Dλ
l vi = vi+1 · dz/z for i = 1, . . . , l − 1 and Dλ

l vl = 0. The residue Res(Dλ) is given by Nl. We
have the weight filtration W of E|O with respect to Nl.

We have the trivial parabolic structure F of El. Take a sufficiently small positive number ε. The ε-

perturbation F (ε) is given by F
(ε)
kε = Wk for k = −l+ 1,−l+ 3 . . . , l − 1 in this case.

Let us fix a sufficiently small positive number ε0 such that rankE · ε0 < η/10. In the previous subsection,

we have constructed a family of metrics h
(ε)
2 (0 ≤ ε ≤ ε0). It induces the metric of Syml−1(E2,D

λ
2 ) ' (El,Dl),

which we denote by h
(ε)
l . The following property can be shown by reducing to the case l = 2.

• h
(0)
l is the harmonic metric.

• h
(ε)
l −→ h

(0)
l for ε→ 0, in the C∞-sense locally on X∗.

•
∣∣Λωε

G(h
(ε)
l )
∣∣
h
(ε)
l

< C.

• h
(ε)
l is adapted to the parabolic structure F

(ε)
l .

• Let tε := det(h
(ε)
l )
/

det(h
(0)
l ). Then tε and t−1

ε are bounded, independently of ε.

Lemma 4.10 Let Hε =
(
h(ε)(vi, vj)

)
. Then, we have the following estimate with respect to h

(ε)
l :

H
−1

ε ·
(
∂ + λ∂

)
Hε = O(1) · dz

z
+O(1) · dz

z

Proof We see only H
−1

ε ∂Hε. The term H
−1

ε ∂Hε can be discussed in the same way. We have only to check
the case l = 2. As in Lemma 4.9, we have only to see the (1, 1)-entry, (2, 2)-entry, Lε× (1, 2)-entry and L−1

ε ×
(2, 1)-entry in the matrix valued function (83). As is seen in the subsubsection 4.3.3, the term containing
∂Mε is bounded with respect to ωε, and hence we can ignore them. Therefore we have only to show that
L−1

ε ∂Lε = −Lε∂L
−1
ε is O(1) · dz/z, but it can be checked by a direct calculation.
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4.4.2 General case

Let (E,F ,Dλ) be a parabolic flat λ-connection on (X,O). Take a positive number η such that 10·η < gap(E,F ).
We will use the metrics:

ωε = ε2|z|ε dz · dz|z|2 + |z|2η dz · dz
|z|2 . (100)

Here ε will be a small positive number such that 10 rank(E) · ε < η. We take the ε-perturbation F
(ε) as in the

subsection 2.1.5.
We have the endomorphism Res(Dλ) of GrF

a . It induces the generalized eigen decomposition GrF
a (E) =⊕

α∈C
GrF,E

a,α(E). On GrF,E
u (E), the endomorphism Res(Dλ) is decomposed as α · id +Nu, where u = (a, α) ∈

R × C. Let W be the weight filtration of Nu on GrF,E
u (E). They induce the filtration W of GrF

a (E). Recall
that the ε-perturbation is constructed from W and F .

For u ∈ R × C, we put Vu := GrF,E
u (E) with the induced nilpotent map Nu. Then we can take an

isomorphism:

(Vu, Nu) '
m(u)⊕

i=1

(
Vl(u,i), Nl(u,i)

)
.

We put (Eu,D
λ
u) :=

⊕(
El(u,i),D

λ
l(u,i)

)
. Let h

′ (ε)
u denote the metric ofEu induced by h

(ε)
l(u,i) (see the subsubsection

4.4.1).
Let Q(u) denote harmonic bundle of rank one for u = (a, α), which is given by OX ·e with the λ-connection

Dλe = e·α·dz/z and the metric h′′u(e, e) = |z|−2a. Then we obtain the vector bundle E0 with the λ-connection
Dλ

0 and the parabolic structure F , as follows:

(E0,D
λ
0 ) =

⊕

u

(
Eu,D

λ
u

)
⊗Q(u), Fb(E0 |O) =

⊕

a≤b

E(a,α) ⊗Q(a, α)|O.

The metrics h
′ (ε)
u and h′′u induce the metric h

(ε)
u of Eu ⊗Q(u). Let h

(ε)
0 denote the direct sum of them. We can

take a holomorphic isomorphism Ψ : E0 −→ E satisfying the following conditions:

• It preserves the filtration F .

• GrF (Ψ) ◦ GrF ResDλ = GrF Res Dλ
0 GrF (Ψ).

We identify E0 and E via Ψ. The naturally induced metric is denoted by the same notation h
(ε)
0 .

Lemma 4.11 The family
{
h

(ε)
0

∣∣ 0 ≤ ε ≤ ε0
}

of the hermitian metrics has the following properties:

• G(Dλ, h
(ε)
0 ) is uniformly bounded with respect to (ωε, h

(ε)
0 ).

• {h(ε)
0 | ε > 0} converges to h

(0)
0 in the C∞-sense locally on X∗.

• h
(ε)
0 is adapted to the perturbed parabolic structure F (ε).

• Let tε be determined by det(h
(ε)
0 )
/

det(h
(0)
0 ). Then tε and t−1

ε are bounded, independently of ε.

Proof We check only the first claim. The other claims are easy to see. Let f be determined by f · dz/z =

Dλ − Dλ
0 , and we put f †

ε := f †
h(ε) . We put Dλ ?

ε := Dλ ?
h(ε) and Dλ ?

0,ε := Dλ ?
0,h(ε) . Then we have the following:

G(Dλ, h
(ε)
0 ) =

[
Dλ,Dλ ?

ε

]
=
[
Dλ

0 + f
dz

z
, Dλ ?

0,ε + f †
ε

dz

z

]

= G(Dλ
0 , h

(ε)
0 ) + Dλ ?

0,ε(f)
dz

z
+ Dλ

0 (f †
ε )
dz

z
+ [f, f †

ε ]
dz · dz
|z|2 . (101)
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We have the decomposition f =
∑
fu,u′ , where fu,u′ ∈ Hom

(
Eu ⊗ Q(u), Eu′ ⊗Q(u′)

)
. We have fu,u′ |O = 0

unless α = α′ and a > a′. Hence there exist positive constants C and N such that the following holds for
0 < ε < ε0:

|f |
h
(ε)
0

≤ C · |z|2ηLN
ε ,

Here N · ε is sufficiently smaller than η. Hence, we have the following:

|f |
h
(ε)
0

≤ C · |z|η, [f, f †
ε ] = O

(
|z|2η

)
.

We have the induced frames vu of Eu ⊗Q(u). They induce the frame v of E0. Let B and A0 be determined
by Fv = v ·B · dz/z and Dλ

0v = vA0 · dz/z. Then we have the following:

[
Dλ

0 , F
†
]
v = v

(
DB†

ε

dz

z
+ [A0, B

†
ε ]
dz · dz
|z|2

)
.

Here we put D = ∂ + λ∂ and B†
ε = H

−1

ε · tB · Hε, where H = H(h
(ε)
0 ,u). Since B†

ε is sufficiently small with

respect to (ωε, h
(ε)
0 ), [A0, B

†
ε ] is also sufficiently small. Corresponding to the decomposition f =

∑
fu,u′ , we

have B =
∑
Bu,u′ . Then the following holds:

(
B†

ε

)
u,u′ = H

−1

u′,ε
tBu′,uHu,ε.

Here Hu,ε := H(h
(ε)
u ,vu). Hence we obtain the following:

DB†
u,u′

dz

z
= H

−1

u′,ε(DtBu′,u)Hu,ε −H
−1

u′,εDHu′,ε(B
†
ε )u,u′ + (B†

ε )u,u′H
−1

u,εDHu,ε.

Since B is holomorphic, we have H
−1

u′,ε ·
(
DtBu′,u

)
·Hu,ε · dz/z = 0. We put H ′

u ε := H(h
′ (ε)
u ,vu). Then we have

Hu,ε = |z|−2aH ′
u,ε, and the following holds with respect to h

(ε)
0 due to Lemma 4.10:

H
−1

u,εDHu,ε = −a
(
λ
dz

z
+
dz

z

)
+H

′ −1

u,ε DH ′

u,ε = O(1)
dz

z
+O(1)

dz

z
.

Since (B†
ε )u,u′ is small with respect to (ωε, h

(ε)
0 ), (B†

ε )u,u′ · H−1

u,ε∂Hu,ε is also small. Therefore, Dλ
0F

† · dz/z is

small with respect to (ωε, h
(ε)
0 ). It also follows that Dλ ?

0,εF · dz/z is small. Thus we are done.

4.5 Proof of Proposition 4.1

4.5.1 Construction of a family of initial metrics

Let η be a small positive number such that η < gap(E,F )/10. Let ε0 be a small positive number such that
rankE · ε0 < η. For any 0 < ε < ε0, let us take ωε be the Kahler forms of C −D with the following properties:

• Let (UP , z) be a holomorphic coordinate around P ∈ D such that z(P ) = 0, and then ωε is given by (100).

• ωε −→ ω0 for ε −→ 0 in the C∞-sense locally on X −D.

Lemma 4.12 We can construct a family of metrics h
(ε)
0 of E|C−D with the following properties:

• h
(ε)
0 is adapted to the perturbed parabolic structure F

(ε).

• h
(ε)
0 −→ h

(0)
0 in the C∞-sense locally on C −D.

• G(h
(ε)
0 ) is uniformly bounded with respect to (ωε, h

(ε)
0 ).

• We put tε := det(h
(ε)
0 )
/

det(h
(0)
0 ). Then tε and t−1

ε are bounded independently of ε.
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Proof We construct a C∞-metric of E on
⋃

P∈D(UP − {P}), by applying the construction given in the sub-

section 4.4.2 to (E,F ,Dλ)|UP
for each P ∈ D, and then we prolong it to a C∞-metric of E on C −D.

Let R(deth
(0)
0 ) denote the curvature of the metrized holomorphic bundle det(E, d′′, h

(0)
0 ), where d′′ denote

the (0, 1)-part of Dλ. Since deth
(0)
0 gives the harmonic metric around D due to our construction, R(deth

(0)
0 )

vanishes around D. We also have
∫
R(deth

(0)
0 ) = −2π

√
−1 · par-deg(E,F ) = 0. Let us take the C∞-function

χ0 on C and satisfies the equality rank(E) · ∂∂χ0 + R
(
det(h

(0)
0 )
)

= 0. We put h
(0)
in := h

(0)
0 · exp

(
χ0

)
. Then

R
(
deth

(0)
in

)
= 0, i.e., deth

(0)
in is a harmonic metric of det(E,Dλ). Let χε be the functions determined by

det(h
(0)
in ) = det(h

(ε)
0 ) · exp

(
rank(E) · χε

)
. The following claims immediately follows from Lemma 4.12.

• χε and −χε are bounded on C, independently of ε.

• χε −→ 0 in the C∞-sense on C −D.

We put h
(ε)
in := h

(ε)
0 · exp

(
χε

)
, which is the metric of E|C−D.

Lemma 4.13 The following claims are easy to check.

• h
(ε)
in is adapted to the parabolic structure F

(ε).

• h
(ε)
in −→ h

(0)
in in the C∞-sense locally on C −D.

• G(h
(ε)
in ) is uniformly bounded with respect to (ωε, h

(ε)
in ).

• det h
(ε)
in is harmonic, and we have deth

(ε)
in = deth

(0)
in .

In other words, they give initial metrics for (E,F (ε),Dλ) in the sense of Lemma 3.20, and their pseudo curvature
satisfy some uniform finiteness.

4.5.2 L2
1-finiteness of the sequence

Due to Proposition 2.31, we obtain harmonic metrics h(ε) for (E,F (ε),Dλ). Due to Lemma 2.32, we have the
following inequalities for any ε:

Mωε
(h

(ε)
in , h

(ε)) ≤ 0. (102)

Let s(ε) be determined by h(ε) = h
(ε)
in s

(ε). Due to Lemma 2.42, (102) and det s(ε) = 1, there exists a positive
constant A which is independent on ε, with the following property:

∣∣s(ε)
∣∣
h
(ε)
in

≤ A,
∣∣s(ε)−1

∣∣
h
(ε)
in

≤ A. (103)

Let Dλ ?
in be the operator obtained from Dλ, ωε and h

(ε)
in as in the subsection 2.2.1. We have the following

equalities:

∆λ
ωε

tr s(ε) = −
√
−1 tr

(
s(ε)Λωε

G(h
(ε)
in )
)

+
√
−1 tr

(
Λωε

Dλs(ε) · (s(ε))−1 · Dλ ?
in s

(ε)
)
.

See Remark 2.20 for ∆λ
ωε

. Since we have
∫

∆λ
ωε

tr s(ε) = 0, there exists a positive constant A′ such that the
following holds: ∫

|Dλs(ε) · s(ε)−1/2|2
h
(ε)
in ,ωε

dvolωε
≤ A′. (104)

In particular, we obtain
∥∥Dλs(ε)

∥∥
L2,ωε,h

(ε)
in

is bounded for 0 < ε < ε0.
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4.5.3 The end of the proof of Proposition 4.1

Let Q be a point of C − D. Let (U, z) be a holomorphic coordinate around Q such that z(Q) = 0 and
U ' ∆ = {z | |z| < 1}. We use the standard metric g = dz · dz of U . The harmonic bundle (E,Dλ, h(ε)) induces
the Higgs bundle (E, ∂ε, θε). We have θε = fε · dz on U . On the other hand, we also obtain ∂in,ε and θin,ε from

(E,Dλ, h
(ε)
in ), although ∂in,ε

(
θin,ε

)
= 0 is not satisfied, in general. Let δ′in,ε be the (1, 0)-operator obtained from

h
(ε)
in and d′′, as in the subsubsection 2.2.1. Then we have the relation:

θε = θin,ε −
λ

1 + |λ|2
(
s(ε)−1 · δ′in,εs

(ε)
)
. (105)

Due to (103), (104) and (105), there exists a positive constant C0 such that
∫

U
|fε|2 · dvolg < C0 holds for

any 0 < ε < ε0. Hence the following inequality holds for some positive constants Ci (i = 1, 2, 3) and for any
0 < ε < ε0: ∫

U

log |fε|2 · dvolg ≤ C1 +

∫

U

C2 · |fε|2 · dvolg ≤ C3. (106)

Recall the fundamental inequality for the Higgs field of a harmonic bundle ([35]):

∆g log |fε|2 ≤ −
∣∣[fε, f

†
ε ]
∣∣2

|fε|2
≤ 0. (107)

Due to (106) and (107), there exists a positive constant C4 such that the following holds for any Q′ ∈ U(1/2) :=
{|z| < 1/2}:

|fε(Q
′)|2

h
(ε)
in

≤ C4. (108)

By using (105), we obtain that δ′in,εs
(ε) is uniformly bounded with respect to (ωε, h

(ε)
in ) on U(1/2).

Since θ†ε is the adjoint of θε, we obtain the uniform boundedness of θ†ε on U(1/2). Let δ′′in,ε be the operator

obtained from h
(ε)
in and d′ as in the subsubsection 2.2.1, where d′ denotes the (1, 0)-part of Dλ. Then we also

obtain the uniform boundedness of δ′′in,εs
(ε) on U(1/2). Hence Dλ ?

in,εs
(ε) is uniformly bounded on U(1/2), where

Dλ ?
in,ε = δ′in,ε − δ′′in,ε. Since we have d′′ = λ

−1(
δ′′in,ε + (1 + |λ|2)θ†in,ε

)
and d′ = λδ′in,ε + (1 + |λ|2)θ, we also obtain

Dλs(ε) is uniformly bounded on U(1/2). Recall the formula DλDλ ?
in s

(ε) = s(ε) ·G(h
(ε)
in ) + Dλs(ε) · s(ε)−1 ·Dλ ?

in s
(ε).

Thus DλDλ ?
in s

(ε) is also uniformly bounded on U(1/2). Therefore {s(ε)} is Lp
2-bounded for any p > 1 and U(1/2).

By taking an appropriate subsequence (εi), s
(εi) weakly converges to some s̃ in Lp

2 locally on C −D.

It is easy to see that h
(0)
in · s̃ is a harmonic metric. We have det s̃ = 1. We also have the boundedness of s̃

and s̃−1 with respect to h
(0)
in . Thus we have h

(0)
in · s̃ = h(0), i.e., the sequence {h(εi)} converges to h(0) weakly in

Lp
2 locally on C −D.

Although we take a subsequence in the above argument, we can conclude that h(ε) converges to h(0) weakly
in Lp

2 locally on C − D, due to a general argument. We can also obtain the C∞-convergence by a standard
bootstrapping argument. In the above argument, the convergence of {θ(ε)} is also proved.

Remark 4.14 As for the proof of Proposition 4.2, we take a C∞-metric hin of (E,F ,Dλ) such that each
restriction hin |Ct

is an initial metric. Let s be determined by hH = hin · s. By applying the same argument, we

obtain the continuity of s. Similarly for θH .

5 The existence of a pluri-harmonic metric

We will prove our main existence theorem of pluri-harmonic metric for parabolic λ-flat bundle, which is adapted
to the parabolic structure. (See the subsection 3.3 of [30] for the adaptedness.)
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5.1 Preliminary

Let C be a smooth projective curve with a simple effective divisor D. Let (E,F ,Dλ) be a stable parabolic λ-flat
bundle on (C,D) with par-deg(E,F ) = 0. For each P ∈ D, let (UP , z) be a holomorphic coordinate around P

such that z(P ) = 0. Let F
(ε) be an ε-perturbation. We have h

(εi)
0 be a harmonic metric for (E,F (ε),Dλ) for

some sequence {εi} such that εi −→ 0. For simplicity of the description, we use ε instead of εi. We assume

deth
(ε)
0 = deth

(0)
0 . Let N be a large positive number, for example N > 10. In this subsection, we use Kahler

metrics gε (ε ≥ 0) of C −D which are as follows on UP for each P ∈ D:

(
εN+2|z|2ε + |z|2

)dz · dz
|z|2 .

We assume that {gε} converges to g0 for ε −→ 0 in the C∞-sense locally on C −D.

Proposition 5.1 Let h(ε) (ε > 0) be hermitian metrics of E|C−D with the following properties:

1. Let s(ε) be determined by h(ε) = h
(ε)
0 ·s(ε). Then s(ε) is bounded with respect to h

(ε)
0 , and we have det s(ε) = 1.

We also have the finiteness
∥∥Dλs(ε)

∥∥
2,h

(ε)
0 ,gε

<∞. (The estimates may depend on ε.)

2. We have ‖G(h(ε))‖2,h(ε),gε
<∞ and limε→0 ‖G(h(ε))‖2,h(ε),gε

= 0.

Then the following claims hold.

• The sequence {s(ε)} is weakly convergent to the identity in L2
1 locally on C −D.

•
{
supP∈C−D |s(ε)|P |

h
(ε)
0

∣∣ ε > 0
}

and
{
supP∈C−D |s(ε)−1

|P |
h
(ε)
0

| ε > 0
}

are bounded.

Proof To begin with, we remark that we have only to show the existence of a subsequence {s(εi)} with

the desired properties as above. We put ‖s(ε)‖
∞,h

(ε)
0

:= supP∈C−D

∣∣s(ε)|P

∣∣
h
(ε)
0

. For any point P ∈ C − D, let

SE(s(ε))(P ) denote the maximal eigenvalue of s
(ε)
|P . There exists a constant 0 < C1 < 1 such that C1 · |s(ε)|P |

h
(ε)
0

≤
SE(s(ε))(P ) ≤ |s(ε)|P |

h
(ε)
0

. We have det s
(ε)
|P = 1. Hence it is easy to see log tr s

(ε)
|P ≥ log r ≥ 0. We also have

SE(s(ε))(P ) ≥ 1 for any P .

Let us take bε > 0 satisfying 2 ≤ bε · supSE(s(ε))(P ) ≤ 2 + ε. We put s̃(ε) = bεs
(ε) and h̃(ε) := h

(ε)
0 · s̃(ε).

Then s̃(ε) are uniformly bounded with respect to h
(ε)
0 . We remark G(h̃(ε)) = G(h(ε)). We also remark that h(ε)

and h̃(ε) induce the same metric of End(E).

Lemma 5.2 After going to an appropriate subsequence,
{
s̃(εi)

}
converges to a positive constant multiplication,

weakly in L2
1 locally on C −D.

Proof We have the following (the subsection 2.2.5):

∆λ

g0,h
(ε)
0

s̃(ε) = s̃(ε)
√
−1Λg0G(h̃(ε)) +

√
−1Λg0D

λs̃(ε)
(
s̃(ε)−1

)
Dλ ?

h
(ε)
0

s̃(ε). (109)

Since we have
∫

∆λ
g0

tr s̃ ·dvolg0 = 0, we obtain the following inequality from (109) and the uniform boundedness

of s̃(ε):

∫ ∣∣Dλs̃(ε) · s̃(ε)−1/2
∣∣2
g0,h

(ε)
0

dvolg0 ≤ A ·
∫ ∣∣tr Λg0G(h̃(ε))

∣∣ · dvolg0

= A ·
∫ ∣∣trΛgε

G(h̃(ε))
∣∣ · dvolgε

≤ A′ ·
∥∥G(h̃(ε))

∥∥
2,eh(ε) ,gε

. (110)

In particular, we obtain the uniform finiteness
∥∥Dλs̃(ε)

∥∥
2,g0,h

(ε)
0

≤ A′′ ·
∥∥G(h̃(ε))

∥∥
2,eh(ε),gε

. Therefore the sequence
{
s̃(ε)
}

is L2
1-bounded on any compact subset of C − D. By taking an appropriate subsequence, it is weakly
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L2
1-convergent locally on C −D. Let s̃(∞) denote the weak limit. We obtain Dλs̃(∞) = 0. We also know that

s̃(∞) is bounded with respect to h
(0)
0 . Therefore s̃(∞) gives an automorphism of (E,F ,Dλ). Due to the stability

of (E,F ,Dλ), s̃(∞) is a constant multiplication.
We would like to show s̃(∞) 6= 0. Let us take any point Qε ∈ C −D satisfying the following:

SE(s(ε))(Qε) ≥
9

10
· sup

P∈C−D
SE(s(ε))(P ).

Then we have log tr s̃(ε)(Qε) ≥ log(9/5). By taking an appropriate subsequence, we may assume the sequence
{Qε} converges to a point Q∞. We have two cases (i) Q∞ ∈ D (ii) Q∞ 6∈ D. We discuss only the case (i). The
other case is similar and easier.

We use the coordinate neighbourhood (U, z) such that z(Q∞) = 0. For any point P ∈ U , we put ∆(P, r) :=
{Q ∈ U | |z(P ) − z(Q)| < r}. When ε is sufficiently small, Qε is contained in ∆(Q∞, 1/2) = {|z| < 1/2}. Let
g = dz · dz denote the standard metric of U . We have the following inequality on U (see the subsubsection
2.2.5):

∆λ
g log tr s̃(ε) ≤

∣∣ΛgG(h̃(ε))
∣∣
eh(ε) .

Let B(ε) be the endomorphism of E determined as follows:

G(h̃(ε)) = G(h(ε)) = B(ε) · dz · dz|z|2 ,

Then we have the following estimate, which is independent of ε:
∫ ∣∣B(ε)

∣∣2
eh

(ε)
0

(
εN+1|z|2ε + |z|2

)−1 dvolg
|z|2 ≤ A

∫ ∣∣G(h̃(ε))
∣∣2
eh(ε),gε

· dvolgε
.

Here A denotes a constant independent of ε. Due to Proposition 2.5 in our previous paper [30], there exist v(ε)

such that the following inequalities hold for some positive constant A′ which is independent of ε:

∂∂v(ε) =
∣∣B(ε)

∣∣
eh(ε)

dz · dz
|z|2 ,

∣∣v(ε)(z)
∣∣ ≤ A′ ·

(
ε(N−1)/2|z|ε + |z|1/2

)
·
∥∥G(h̃(ε))

∥∥
2,eh(ε),gε

Then we have ∆λ
g

(
log tr s̃(ε) − v(ε)

)
≤ 0. Therefore, we obtain the following:

log tr s̃(ε)(Qε) − v(ε)(Qε) ≤ A′′ ·
∫

∆(Qε,1/2)

(
log tr s̃(ε) − v(ε)

)
· dvolg .

Here A′′ denotes a positive constant which is independent of ε. Then we obtain the following inequalities, for
some positive constants Ci (i = 1, 2) which are independent of ε:

log(9/5) ≤ log tr s̃(ε)(Qε) ≤ C1 ·
∫

∆(Qε,1/2)

log tr s̃(ε) · dvolg +C2.

Recall that log tr s̃(ε) are uniformly bounded from above. Therefore there exists a positive constant C3 such
that the following holds for any sufficiently small ε > 0:

∫

∆(Qε,1/2)

−min(0, log tr s̃(ε)) · dvolg ≤ C3.

Due to Fatou’s lemma, we obtain the following:
∫

∆(Q∞,1/2)

−min
(
0, log tr s̃(∞)

)
· dvolg ≤ C3.

It means s̃(∞) is not constantly 0 on ∆(Q∞, 1/2). In all, we can conclude that s̃(∞) is a positive constant
multiplication. Thus the proof of Lemma 5.2 is accomplished.
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Let
{
s̃(εi)

}
be a subsequence as in Lemma 5.2. It is almost everywhere convergent to some constant multi-

plication. Then we obtain that the sequence
{
det s̃(εi) = brankE

εi
· iddet(E)

}
converges to the positive constant.

In particular, {bεi
} is convergent. Therefore, the sequence

{
s(εi)

}
is convergent to the identity. Thus we are

done.

Corollary 5.3

• The sequence
{
h(ε)
}

is convergent to h
(0)
0 weakly in L2

1 locally on C −D.

• The sequence
{
Dλs(ε)

}
is weakly convergent to 0 in L2 locally on C −D.

• The sequence {θ(ε)} converges to θ(0) is weakly convergent to 0 in L2 locally on C −D.

• In particular, the sequences are convergent almost everywhere.

5.2 The Surface Case

5.2.1 Statement

Let X be a smooth projective surface with an ample line bundle L, and let D be a simple normal crossing
divisor with the irreducible decomposition D =

⋃
i∈S Di. We put X∗ := X − D. Let c be any element of

R
S . Let (E,F ,Dλ) be a µL-stable c-parabolic flat λ-connection on (X,D) with trivial characteristic num-

bers par-degL(E,F ) =
∫

X
par-ch2(E,F ) = 0. Recall that we have already known par-c1(E,F ) = 0 due to

Bogomolov-Gieseker inequality and Hodge index theorem (See Corollary 6.2 of [30].) Hence we can take the
pluri-harmonic metric hdet(E) of the determinant bundle det(E,F ,Dλ). The purpose of this subsection is to
show the following existence theorem.

Theorem 5.4 There exists a tame pluri-harmonic metric h of (E,Dλ)|X∗ with det(h) = hdet E which is adapted
to the parabolic structure.

The proof will be given in the rest of this subsection.

5.2.2 The sequence of Hermitian-Einstein metrics for the ε-perturbations

Let F
(ε) be an ε-perturbation as in the subsection 2.1.5. If ε is sufficiently small, (E,F (ε),Dλ) is also µL-stable.

We also have par-c1(E,F
(ε)) = par-c1(E,F ) = 0. Since (E,F (ε),Dλ) is graded semisimple, we can apply

Proposition 3.21. Let h(ε) be the Hermitian-Einstein metric for (E,F (ε),Dλ) with respect to ωε, such that
deth(ε) = hdet(E) and Λωε

G(h(ε)) = 0 (Proposition 3.21).

Remark 5.5 Since gap(E,F (ε)) ∼ ε, we have to take a smaller number ε1, for example ε/100, and use ωε1 .
However, we use the notation ωε for simplicity.

Since hdet(E) is pluri-harmonic, we also have trG(h(ε)) = 0. Therefore, we have the following convergence:

(√
−1

2π

)2 ∫ ∣∣G(h(ε))
∣∣2
h(ε),ωε

· dvolωε
=

(√
−1

2π

)2 ∫
tr
(
G(h(ε))2

)
= 2
(
1 + |λ|2

)2 · par-ch2(E,F
(ε)) −→ 0. (111)

We would like to discuss the limit of h(ε) for ε→ 0.

5.2.3 Convergence on almost every curve

Let Lm be sufficiently ample. We put Pm := P
(
H0(X,Lm)∨

)
. For any s ∈ Pm, we put Xs := s−1(0). Recall

Proposition 2.8, and let U denote the Zariski open subset of Pm which consists of the points s with the following
properties:

• Xs is smooth, and Xs ∩D is a simple normal crossing divisor.
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• (E,F ,Dλ)|Xs
is µL-stable.

We will use the notation X∗
s := Xs \D and Ds := Xs ∩D. We have the metric ωε,s of X∗

s , induced by ωε.

The induced volume form is denoted by dvols. We put (Es,F s,D
λ
s ) := (E,F ,Dλ)|Xs

. We have the metric h
(ε)
|X∗

s

of Es |X∗
s
. Since (Es,F

(ε)
s ,Dλ

s ) is stable for any point s ∈ U , we have the harmonic metric h
(ε)
s of (Es,F

(ε)
s ,Dλ

s )

with deth
(ε)
s = hdetE |X∗

s
. Let u

(ε)
s be the endomorphism of E|X∗

s
determined by h

(ε)
|X∗

s
= h

(ε)
s · u(ε)

s . For a point

x ∈ X∗, we put Ux := {s ∈ U |x ∈ Xs}. We put Z := {x ∈ X∗
∣∣Ux = ∅}. We remark that Z is a finite set. Let

us fix a sequence εi −→ 0. We often use the notation “ε” instead of “εi”, for simplicity of the description.

Lemma 5.6 For almost every s ∈ U , the following holds:

• We have the following convergence when εi −→ 0:

∫

Xs

∣∣G(h
(ε)
|Xs

)
∣∣2
h
(ε)
s ,ωε

dvols −→ 0. (112)

• For each εi, we have the finiteness: ∥∥Dλ
X∗

s
u(ε)

s

∥∥
L2,h

(ε)
s ,ωε

<∞. (113)

Let Ũ denote the set of s for which both of (112) and (113) hold.

Proof We discuss only the condition (112). The other one can be discussed similarly by using the fourth
property in Proposition 3.21. Let us fix s1 ∈ U . We take generic si ∈ U (i = 2, 3), i.e., Xs1 is transversal with
Xsi

(i = 2, 3) and Xs1 ∩Xs2 ∩Xs3 = ∅. We also fix the lifts of si to H0(X,Lm), and denote them by the same

notation. Take open subsets W
(j)
i (j = 1, 2) such that Xs1 ∩Xsi

⊂W
(1)
i ⊂W

(2)
i . Moreover, we assume that the

closure of W
(1)
i in X are contained in W

(2)
i . Take an open neighbourhood U1 of s1, which is relatively compact

in U , with the following property:

• For any s′ ∈ U1, Xs′ is transversal with Xsi
(i = 2, 3) and Xs′ ∩Xsi

⊂W
(1)
i .

We also take an embedding U1 −→ H0(X,Lm) which is a lift of Ui ⊂ U , compatible with the lift of s1.
We have the line bundle q∗1L

m ⊗ q∗3OP1(1) on X × U1 × P1, where qi denote the projections onto the i-th
components. We have the section Ψ of q∗1L

m given by Ψ(x, s′, p) = s′(x). The section Φ of q∗1L
m ⊗ q∗3OP1(1) is

given by Φ = q∗3t0 · q∗1s2 + q∗3(t∞ − t0) · q∗1Ψ, where [t0 : t∞] is a homogeneous coordinate of P1. Then Z2 denote
the zero set of Φ. In other words, we put Z2 :=

{
(x, s′, t) ∈ X × U1 × P1

∣∣ (ts2 + (1 − t)s′)(x) = 0
}
. The fiber

over s′ ∈ U1 via q2 | Z2
is the Lefschetz pencil of s′ and s2.

We fix any Kahler forms ωU1 and ωP1 of U1 and P1. The induced volume forms are denoted by dvolU1 and
dvolP1 . Then we have the following convergence for ε→ 0:

∫

Z2

q∗1

(∣∣G(h(ε))
∣∣2 · dvolX

)
· dvolU1 −→ 0.

We put Z ′
2 := Z2 \ q−1

1 (W
(2)
2 ). Then the following convergence is obtained, in particular:

∫

Z′
2

q∗1

(∣∣G(h(ε))
∣∣2 · dvolX

)
· dvolU1 −→ 0. (114)

Let ψ : Z2 −→ U1 × P1 denote the projection. For (s′, t) ∈ U1 × C, we put X(s′,t) := ψ−1(s′, t) =(
ts2 + (1 − t)s′

)−1
(0) = Xts2+(1−t)s′ . On X(s′,t), we have the induced volume forms dvol(s′,t). The family

{dvol(s′,t) | (s′, t) ∈ U1 × C} gives the C∞-relative volume form dvolZ′
2/U1×P1 of Z ′

2 −→ U1 × P1. There exists

a constant A such that the following holds on U1 × P1, under the isomorphism:

A · q∗1
∣∣G(h(ε))

∣∣2 · dvolX ≥
∣∣G(h

(ε)
|X(s′ ,t)

)
∣∣2 · dvolZ′

2/U1×P1 · dvolP1 .
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Therefore, we obtain the following convergence for almost every (s′, t) ∈ U1 × P1, from (114):

∫

X∗
(s′,t)

\W
(2)
2

∣∣G(h
(ε)
X(s′ ,t)

)
∣∣2 · dvol(s′,t) −→ 0. (115)

Let S denote the set of the points (s′, t) ∈ U1 × P1 such that the above convergence (115) does not hold. The
measure of S is 0 with respect to dvolU1 × dvolP1 .

Let J : U1 × P1 −→ Pm denote the map given by (s′, t) 7−→ ts2 + (1 − t)s′. We have the open subset
J−1(U1) ⊂ U1×P1 and the measure of S∩J −1(U1) is 0 with respect to dvolU1 · dvolP1 . We have S∩J −1(U1) =
J−1

(
J (S) ∩ U1

)
, and hence the measure of π(S) is 0 with respect to ωU1 . Namely, we have the following

convergence for almost every s ∈ U1:

∫

X∗
s \W

(2)
2

∣∣G(h
(ε)
|X∗

s
)
∣∣2 · dvols −→ 0.

Similarly, we can show the following convergence for almost every s ∈ U1:

∫

X∗
s \W

(2)
3

∣∣G(h
(ε)
|X∗

s
)
∣∣2 · dvols −→ 0

Now the claim of the lemma immediately follows.

We obtain the following claims from Proposition 5.1 and Corollary 5.3.

Corollary 5.7 For any s ∈ Ũ , the sequence {h(ε)
|X∗

s
} converges to h

(0)
s weakly in L2

1 locally on X∗
s , and {θ(ε)|X∗

s
}

converges to θ
(0)
s weakly in L2 locally on X∗

s . In particular, they are almost everywhere convergent.

Proof It follows from Lemma 5.6 and Proposition 5.1

5.2.4 The construction of a metric defined almost everywhere

Let us take any Kahler form ωPm
of Pm. Then we obtain the induced metric of X ×Pm. We put Z := {(s, x) ∈

U ×X∗ |x ∈ Xs}. Then we have the induced metric of Z . The induced volume form is denoted by dvolZ . Let

T denote the set of (s, x) ∈ Ũ ×X such that (s, x) ∈ Z and limε→0 h
(ε)
|x = h

(0)
s|x.

Lemma 5.8 The measure of T c := Z − T is 0 with respect to dvolZ .

Proof Let us consider the naturally defined fibration Z −→ U . Then the claim follows from Corollary 5.7 and
Fubini’s theorem.

Lemma 5.9 For almost every x ∈ X∗ and almost every s ∈ Ux, the sequence {h(ε)
|x } converges to h

(0)
s |x.

Proof Let us consider the naturally defined fibration T −→ X∗. Then the claim follows from Lemma 5.8 and
Fubini’s theorem.

Let V denote the set of x ∈ X∗ such that the sequence {h(ε)
|x } converges to h

(0)
s |x for almost s ∈ Ux. For any

x ∈ V , let Ũx denote the set of s such that {h(ε)
|x } converges to h

(0)
s |x.

Lemma 5.10 For any x ∈ V and for any si ∈ Ũx (i = 1, 2), we have h
(0)
s1 |x = h

(0)
s2 |x.

Proof Both of them are same as the limit limε→0 h
(ε)
x .

Let us take any x ∈ V and any s ∈ Ũx. Then the metric hx of E|x is given by hx := hs |x. Due to Lemma
5.10, it is well defined. Thus we obtain the metric hV := (hx |x ∈ V) of E|V .
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5.2.5 The C1-property

We would like to show that hV is C1 on X∗ − Z in other words, we would like to show the existence of a
C1-metric h of E|X∗−Z such that h = hV on V . Let us begin with a preparation.

Lemma 5.11 Let x ∈ X∗ − Z. Let us take any s ∈ Ux. Then there exists a Lefschetz fibration ϕ : X̃ −→ P1

with the following properties:

• x is not a singular point of ϕ.

• ϕ−1(0) = Xs.

• Almost every t ∈ P1 belongs to Ũ .

Proof Let M denote the set of the lines ` of Pm which contain s. We put as follows:

P̂m =
{
(`, s′) ∈ M× Pm

∣∣ s′ ∈ `
}
⊂ M× Pm.

It is the blow up of Pm at s. We have the projection π2 : P̂m −→ Pm. We put Û := π−1
2 (U) and

̂̃U := π−1
2 (Ũ).

Since U − Ũ has measure 0, the measure of P̂m − ̂̃U is also 0. Let us consider the projection π1 : P̂m −→ M,

and apply Fubini’s theorem. Then we obtain s1 ∈ ̂̃U for almost every ` ∈ M and for almost every s1 ∈ `. Thus
we are done.

Let x be any point of X∗ − Z. Let us take a Lefschetz fibration πi : X̃i −→ P1 (i = 1, 2) with the following
properties:

• Both of them satisfy the properties in Lemma 5.11.

• Around x, the fibers of π1 and π2 are transversal. Then two fibrations give the holomorphic coordinate
(z1, z2) of an appropriate neighbourhood Ux of x, such that {zi = a} = π−1

i (a) ∩ Ux.

For any ti ∈ P1, let Xti
:= π−1

i (ti). If ti are close to 0, (E,F ,Dλ)|Xti
are stable, and hence there exist tame

harmonic bundles hti
for (E,F ,Dλ)|Xti

such that det(hti
) = hdet(E)|Xti

. Let θti
denote the operator obtained

from Dλ
|Xti

and hti
as in the subsection 2.2.1.

Let us take an appropriate neighbourhoods Bi ⊂ P1 of 0. Recall Proposition 4.2. Then
{
ht1

∣∣ t1 ∈ B1

}
are

C∞-along z2, and it is continuous with respect to (z1, z2). The family
{
θt1

∣∣ t1 ∈ B1

}
has a similar property.

Thus we obtain a continuous metric h(1) and the continuous section θ(1) of End(E) ⊗Ω1,0 around x. Similarly{
ht2

∣∣ t2 ∈ B2

}
is C∞ along z1 and it is continuous with respect to (z1, z2). The family {θt2

∣∣ t2 ∈ B2} has a

similar property. Thus we obtain a continuous metric h(2) and the continuous section θ(2) of End(E) ⊗ Ω1,0

around x.
We remark that h(1) = hV = h(2) on Ux ∩ V due to our construction of hV . Since h(i) are continuous, we

obtain h(1) = h(2) on Ux. Then we obtain that h(i) are C1 on Ux, due to the continuity of θ(i).
Therefore we obtain the C1-metric h of E on X∗ − Z with the following properties:

• h|V = hV

• For any s ∈ U , we have h|X∗
s

= hs and θh |X∗
s

= θhs
.

5.2.6 Pluri-harmonicity

We would like to show that h is pluri-harmonic. By the formalism explained in the subsection 2.2.1, the
operators ∂h and θh are given on X − (D ∪ Z) from h and Dλ. Let us take any C∞ metric h′ of E on X −D,
and let s′ be the endomorphism determined by h = h′ · s′. Then s′ is C1, and we have the following relation:

∂h = ∂h′ +
λ

1 + |λ|2 s
′ −1δ′′h′s′, θh = θh′ − λ

1 + |λ|2 s
′ −1δ′h′s′.
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Then we obtain ∂hθh as a distribution:

∂hθh = ∂h′θh′ − λ

1 + |λ|2 ∂h′

(
s′ −1δ′h′s′

)
+

λ

1 + |λ|2
[
s′ −1δ′′h′s′, θh′

]
−
(

λ2

1 + |λ|2
)2 [

s′ −1δ′′h′s′, s′ −1δ′hs
′
]
.

Similarly, we obtain G(h) as a distribution.

Lemma 5.12 ∂hθh = 0.

Proof For any point x ∈ X∗ −D, let us take the holomorphic coordinate (z1, z2) as before. We remark that
the curves {zi = a} (i = 1, 2), {z1 + z2 = b}, {z1 +

√
−1z2 = c} can be regarded as parts of Xs′ for some s′ ∈ U .

We have the expression θ = f1 · dz1 + f2 · dz2, where fi are continuous sections of End(E). We have already
known ∂f1/∂z1 = ∂f2/∂z2 = 0. Thus we have only to show ∂fi/∂zj = 0 for i 6= j. Let us consider the change
of the coordinate given by w1 = z1 + z2 and w2 = z1 − z2. Then we have the following:

f1 · dz1 + f2 · dz2 =
1

2
(f1 + f2) · dw1 +

1

2
(f1 − f2) · dw2.

Thus we obtain the following:

0 =
∂

∂w1
(f1 + f2) =

1

2

(
∂

∂z1
+

∂

∂z2

)
(f1 + f2) =

1

2

(
∂f2
∂z1

+
∂f1
∂z2

)
. (116)

Let us consider the change of the coordinate given by u1 = z1 +
√
−1z2 and u2 = z1 −

√
−1z2. Then we have

the following:

f1 · dz1 + f2 · dz2 =
1

2

(
f1 +

1√
−1

f2

)
du1 +

1

2

(
f1 −

1√
−1

f2

)
du2.

Thus we obtain the following:

0 =
∂

∂u1

(
f1 +

1√
−1

f2

)
=

1

2

(
∂

∂z1
− 1√

−1

∂

∂z2

)(
f1 +

1√
−1

f2

)
=

1

2

(
1√
−1

∂f2
∂z1

− 1√
−1

∂f1
∂z2

)
. (117)

From (116) and (117), we obtain ∂fi/∂zj = 0 for i 6= j. Thus we obtain ∂hθh = 0, and the proof of Lemma
5.12 is accomplished.

Lemma 5.13 h is a harmonic metric for (E,Dλ) with respect to ω0 on X∗−Z. (Recall Z =
{
x ∈ X∗

∣∣Ux = ∅
}
.)

Proof Due to Lemma 5.12, we have ΛωG(h) = Λω(∂hθh) = 0. Hence we have only to show that h is C∞. We
obtain the following formula in the level of distribution, by the formalism explained in the subsection 2.2.5:

∆λ
h′,ω(s′) = s′

(
−ΛωG(h′)

)
+
√
−1ΛωDλs′ · s′ −1 · Dλ ?

h′ s′.

The right hand side is C0. Hence by using the elliptic regularity and the standard boot strapping argument,
we obtain that s′ is C∞. Thus we obtain Lemma 5.13.

Lemma 5.14 h is pluri-harmonic metric of E|X∗−Z .

Proof We have already shown ∂hθh = 0 in Lemma 5.12. Recall Corollary 2.23. Then we have only to
show θ2h = 0. Due to Corollary 5.7 and θh |Xs

= θs, we know that the sequence {θ(ε)} converges to θh almost

everywhere. In particular, we obtain the almost everywhere convergence of {θ(ε) 2} to θ2h. On the other hand, we

know the almost everywhere convergence G(h(ε)) −→ 0, due to (111). We have G(h(ε)) = ∂
(ε) 2

+∂
(ε)
θ(ε) +θ(ε) 2,

which is the decomposition into (2, 0), (1, 1) and (0, 2)-forms. Therefore we obtain θ2
h = 0, almost everywhere.

Thus we obtain Lemma 5.14.

Lemma 5.15 h gives a pluri-harmonic metric of E|X∗ .
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Proof We have only to check that h gives a C∞-metric of E|X∗ . Let Q be a point of Z. Let (U, z1, z2) be a

holomorphic coordinate around Q such that z1(Q) = z2(Q) = 0. The pluri-harmonic metric h of (E,Dλ)|U−{Q}

is given. We would like to show that h is naturally extended to the pluri-harmonic metric of (E,Dλ)|U .
We have θ = f1 ·dz1+f2 ·dz2 defined on U−{Q}. Let us consider the characteristic polynomials det(t−fi) for

i = 1, 2. The coefficients are holomorphic on U −{Q}, and thus on U due to the theorem of Hartogs. Hence the
eigenvalues of fi are bounded on U . Let us consider the restriction of (E,Dλ, h) to the discs C(aj) := {zj = aj}
(aj 6= 0) for j = 1, 2. Then it can be shown that the norms

∣∣fi |C(aj)

∣∣
h

≤ C (i 6= j) can be dominated
independently of aj . (See Lemma 2.7 in [36], for example.) Thus fi are bounded with respect to h on U −{Q}.
In other words, θ is bounded on U − {Q}.

Let E′ := E|U−{z1·z2=0}. Let us consider the sheaf �E′ on U of the sections satisfying the growth condition
|g|h = O(

∏ |zi|−ε) for any ε > 0 (the subsection 2.3.2). By using the result of the asymptotic behaviour of
tame harmonic bundle at λ ([28]), �E′ is locally free on U . Since �E′ and E|U−{Q} are naturally isomorphic on
U−{Q}, they are isomorphic on U . Let h′ be any C∞-metric of E|U , and let s′ be the endomorphism determined
by h = h′ · s′. Due to the norm estimate given in ([28]), the metrics h and h′ are mutually bounded. Hence
s′ and s′ −1 are bounded on U . Due to the boundedness of θ, s′ −1Dλs′ is also bounded on U − {Q} (See the
subsubsection 2.2.5, for example.) Since we have the formula ∆λ

h′,ω0
s′ = s′(−Λω0G(h′))+Λω0D

λ
h′s′ ·s′ −1 ·Dλ ?

h′ s′,
we can conclude that s′ is C∞ due to the standard bootstrapping argument. Namely, h is extended to the C∞-
metric of E|U .

5.2.7 The end of the proof of Theorem 5.4

Now, we have only to show that h is tame and adapted to the parabolic structure. Since h|Xs
= hs for any

s ∈ U , the tameness immediately follows from the curve test shown in [28]. Then we obtain the prolongment

Ẽ := cE|X∗ with the induced parabolic structure F (the subsection 2.3.2). We would like to show that (E,F ,Dλ)

and (Ẽ,F ,Dλ) are isomorphic. For that purpose, we see that the identity E|X∗ −→ E|X∗ can be prolonged to

the homomorphism Ψ : E −→ Ẽ. Let Q be any smooth point of Di ⊂ D. We take a holomorphic coordinate
(UQ, z1, z2) with the following property:

• The curve z−1
1 (0) is same as UQ ∩D.

• The curves C(b) := z−1
2 (b) are parts of Xs(b) for s(b) ∈ U .

Let f be a holomorphic section of E|U . Since the restriction h|Xs(b)
is same as hs(b), we have |f|C(b)|h =

O(|z1|−ci−ε) for any ε > 0. Then we obtain |f |h = O(|z1|−ci−ε) for any ε > 0, due to the result given in

[28]. Thus f naturally gives the section of Ẽ|X∗ on U . Therefore, we obtain the morphism E −→ Ẽ|X∗ on

X −
(
∪i6=jDi ∩Dj

)
. It naturally prolongs to the morphism E −→ Ẽ|X∗ .

Recall that the restriction of Ẽ = cE|X∗ to Xs is same as c(E|X∗
s
). (See [28].) Therefore, the restrictions of

Ψ to Xs are isomorphic, due to the hypothesis of the induction. Hence Ψ is isomorphic on X −
(
∪i6=jDi ∩Dj

)
,

and thus on X . By a similar argument, we can show that the parabolic structures are also same. Thus the
proof of Theorem 5.4 is finished.

5.3 Correspondences

5.3.1 Kobayashi-Hitchin correspondence in the higher dimensional case

Let X be a smooth projective variety of dimension n (n ≥ 3) with an ample line bundle L, and let D be a
simple normal crossing divisor with the irreducible decomposition D =

⋃
i∈S Di. Let (E∗,D

λ) be a µL-stable
regular filtered λ-flat bundle on (X,D) in codimension two with trivial characteristic numbers par-degL(E∗) =∫

X par-ch2,L(E∗) = 0, and we put (E,Dλ) := (E∗,D
λ)|X−D. Recall par-c1(E) = 0 due to the Bogomolov-

Gieseker inequality and the Hodge index theorem. For each c ∈ R
S , we have the determinant line bundle

det(cE) of torsion-free sheaf cE, on which we have the induced parabolic structure and the induced flat λ-
connection. Thus we obtain the canonically determined regular filtered λ-flat bundle

(
det E∗,D

λ
)

on (X,D)

of rank one. We also have par-c1

(
det E∗

)
= par-c1

(
E∗

)
= 0. Therefore, we can take a pluri-harmonic metric
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hdetE of (det(E),Dλ) which is adapted to the parabolic structure of det E∗. Recall that we have a subset Z ⊂ D
with codimX(Z) ≥ 3 such that (E∗,D

λ)|X−Z is a regular filtered λ-flat bundle.

Theorem 5.16 There exists the unique tame pluri-harmonic metric h of (E,Dλ) with the following properties:

• det(h) = hdetE.

• It is adapted on the parabolic structure of E∗ on X−Z. Namely, (E∗(h),D
λ)|X−Z ' (E∗,D

λ)|X−Z , where

(E∗(h),D
λ) denotes the regular λ-flat bundle on (X,D) obtained from (E,Dλ, h). (See the subsection 2.3.)

Proof Due to Mehta-Ramanathan type theorem (Proposition 2.8), the uniqueness can be easily reduced to
the dimX = 1 case, by considering the restriction to the generic curves C ⊂ X . We have already known it
(Proposition 2.27).

We will use the induction on the dimension n to show the existence. The case n = 2 has already been shown
(Theorem 5.4). Assume that Lm is sufficiently ample. We put Pm := P(H0(X,Lm)∨). For any s ∈ Pm, we put
Xs := s−1(0). Recall Proposition 2.8. Let U be the Zariski open subset of Pm which consists of s ∈ Pm with
the following properties:

• Xs is smooth, and Ds := Xs ∩D is a normal crossing divisor.

• The codimension of Ws = W ∩Xs in Xs is larger than 3.

• (E,Dλ)|Xs
is µL-stable.

We use the existence hypothesis in the (n − 1)-dimensional case of the induction. Then we may have the
tame pluri-harmonic metric hs of (E,Dλ)|Xs\D with det(hs) = hdet E |Xs\D which is adapted to the parabolic
structure on Xs \W . We also use the uniqueness result in the (n − 2)-dimensional case. Then we can show
the existence of a finite subset Z ′ ⊂ X −D and a metric h of E|X−D such that hs |P = h|P . By the arguments
given in the subsections 5.2.5–5.2.7, we can show that h is the desired metric. The only different point is the
argument to show the vanishing of G(h) = 0. Due to dimXs ≥ 2, it can be shown easier.

Theorem 5.17 Let X, D and L be as above. Let (E∗,D
λ) be a saturated µL-stable regular filtered λ-flat sheaf

on (X,D) with the trivial characteristic numbers par-degL(E∗) =
∫

X
par-ch2,L(E∗) = 0. We put (E,Dλ) :=

(E∗,D
λ)|X−D. Then there exists a pluri-harmonic metric h of (E,Dλ) such that the induced regular filtered λ-flat

bundle
(
E∗(h),D

λ
)

is isomorphic to (E∗,D
λ). Such a metric is unique up to positive constant multiplication.

In particular, E∗ is a filtered bundle.

Proof Since a saturated regular filtered λ-flat sheaf is a regular filtered λ-flat bundle in codimension two
(Lemma 2.11), we may apply Theorem 5.16. Then there exists a pluri-harmonic metric h and a subset W ⊂ D
with codimX(W ) ≥ 3 such that the induced regular filtered λ-flat bundle (E∗(h),D

λ) is isomorphic to (E∗,D
λ)

on X −W . Since both of (E∗(h),D
λ) and (E∗,D

λ) are saturated, they are isomorphic on X .

5.3.2 The equivalence of the categories

Let Cpoly
λ denote the category of µL-stable regular filtered λ-flat bundles (E∗,D

λ) on (X,D) with the trivial
characteristic numbers par-degL(E∗) =

∫
X

par-ch2,L(E∗) = 0. Morphisms f : (E1 ∗,D
λ
1 ) −→ (E2 ∗,D

λ
2 ) are

defined to be OX -homomorphism f : E1 −→ E2 satisfying Dλ
2 ◦ f = f ◦ Dλ

1 and f
(
cE1

)
⊂ cE2 for any c.

Corollary 5.18 Let λi (i = 1, 2) be two complex numbers. We have the natural functor Ξλ1,λ2 : Cpoly
λ1

−→ Cpoly
λ2

,
which is equivalent. It preserves direct sums, tensor products and duals.

Proof Let (Eλ1
∗ ,Dλ1) be an object of Cpoly

λ1
. We put Eλ1 := E

λ1

|D. Then we have a pluri-harmonic metric h

of (Eλ1 ,Dλ1), which is adapted to the parabolic structure. Then we obtain the operators ∂h, ∂h, θh, θ
†
h, as in

the subsection 2.2.1. Note that the holomorphic structure of Eλ1 is given by ∂h + λ1θ
†
h. The (0, 1)-operator

∂h + λ2θ
†
h also gives a holomorphic structure of C∞-bundle Eλ1 . To distinguish them, we use the notation
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Eλ2 , when we consider the holomorphic structure ∂h + λ2θ
†
h. We put Dλ2 := ∂h + θh + λ2(∂h + θ†h), which

gives a flat λ2-connection of Eλ2 . The metric h is pluri-harmonic for (Eλ2 ,Dλ2). Since the corresponding Higgs
bundle for (Eλ1 ,Dλ1 , h) and (Eλ2 ,Dλ2 , h) are same, we obtain the tameness of (Eλ2 ,Dλ2 , h). Therefore, we
obtain the prolongment (Eλ2 ,Dλ), which are µL-polystable regular filtered λ2-flat bundle on (X,D) with trivial
characteristic numbers (Proposition 2.26).

We remark that (Eλ2 ,Dλ2) is independent of a choice of h, due to the uniqueness in Proposition 2.27.
Therefore we put Ξλ1,λ2(E

λ1 ,Dλ1) := (Eλ2 ,Dλ2). It is easy to see that Ξλ1,λ2 gives a functor. It is also easy to

see that Ξλ2,λ1 ◦Ξλ1,λ2(E
λ1 ,Dλ1) is naturally isomorphic to (Eλ1 ,Dλ1). The compatibility with the direct sums,

duals and tensor products are obtained from the corresponding compatibility statements of the prolongments
for tame harmonic bundles ([28]).

Remark 5.19 From a λ1-connection Dλ1 = d′′ + d′, a λ2-connection is given d′′ + (λ2/λ1) · d′. Hence we have

the obvious functor Obv : Cpoly
λ1

−→ Cpoly
λ2

. This is not same as the above functor Ξλ1,λ2 .

6 Filtered local system

6.1 Definition

6.1.1 Filtered structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D =

⋃
i∈S Di. We will use the notation D[2] :=

⋃
i6=j Di ∩Dj and D◦

i := Di \
⋃

j 6=i Dj . Let L be a local system

on X − D. A filtered structure of L at D is a tuple of increasing filtrations iF (i ∈ S) of L|Ui\D indexed by
R, where Ui denotes an appropriate open neighbourhood of Di. Let U ′

i be an open neighbourhood of Di such
that U ′

i ⊂ Ui, then we have the induced filtration iF|U ′
i
, and the filtration iF can be reconstructed from iF|U ′

i
.

Hence we define two filtered structures (iF , Ui | i ∈ S) and (iF ′, U ′
i | i ∈ S) are equivalent, if there exists an

open neighbourhood U ′′
i of Di such that U ′′

i ⊂ Ui ∩ U ′
i and iF|U ′′

i
= iF ′

|U ′′
i
. A tuple of a local system L and an

equivalence class of filtered system (iF , Ui) is called a filtered local system, and it is denoted by L∗. We do not
have to care about a choice of open neighbourhoods Ui.

Morphisms of filtered local systems f : L1 ∗ −→ L2 ∗ are defined to be a morphism f : L1 −→ L2 of local
systems preserving the filtered structures in an obvious sense. We denote by C̃(X,D) the category of filtered
local systems on (X,D).

6.1.2 Characteristic numbers

We put U∗
i := Ui \ D and i GrFa (L|U∗

i
) := iFa(L|U∗

i
)
/

iF<a(L|U∗
i
). Since the local monodromy around Di

preserves the filtration iF , we obtain the induced endomorphism of i GrFa (L|U∗
i
), and thus the generalized eigen

decomposition:
i GrFa (L|U∗

i
) =

⊕

ω

i GrF ,E
(a,ω)(L|U∗

i
).

We put as follows:

Par
(
L∗, i

)
:=
{
a ∈ R

∣∣ i GrFa
(
L|U∗

i

)
6= 0
}
, KMS

(
L∗, i

)
:=
{
(a, ω) ∈ R × C

∗
∣∣ i GrF ,E

(a,ω)

(
L|U∗

i

)
6= 0
}
.

The parabolic first Chern class is defined as follows:

par-c1(L∗) := −
∑

i∈S

wt(L∗, i) · [Di] ∈ H2(X,R), wt(L∗, i) :=
∑

a∈Par(L∗,i)

a · rank i GrFa (L|U∗
i
). (118)

Here [Di] denotes the cohomology class representing Di.
Let Irr(Di ∩ Dj) denote the set of the irreducible components of Di ∩ Dj . For each P ∈ Irr(Di ∩ Dj), let

UP be an appropriate open neighbourhood of P in X such that UP ⊂ Ui ∩Uj . We put U∗
P := UP \D. We have
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the two filtrations iF and jF of L|U∗
P
. The naturally induced graded local system is denoted as follows:

P GrF(L|U∗
P
) =

⊕

(ai,aj)∈R2

P GrF(ai,aj)(L|U∗
P
), P GrF(ai,aj)(L|U∗

P
) :=

iFai
∩ jFaj∑

(bi,bj)�(ai,aj)
iFbi

∩ jFbj

.

Here (bi, bj) � (ai, aj) means “bi ≤ ai, bj ≤ aj and (bi, bj) 6= (ai, aj)”. We have the two endomorphisms
induced by the local monodromies around UP ∩Di and UP ∩Dj , which are commutative. Hence we obtain the
generalized eigen decomposition:

P GrFa (L|U∗
P
) =

⊕

ω∈C∗ 2

P GrF ,E
a,ω(L|U∗

P
).

We put as follows:
Par(L∗, P ) :=

{
(ai, aj) ∈ R

2
∣∣ P GrF(ai,aj)(L|U∗

P
) 6= 0

}
,

KMS(L∗, P ) :=
{
(a,ω) ∈ R

2 × C
∗ 2
∣∣ P GrF ,E

(a,ω)(L|U∗
P
) 6= 0

}
.

The parabolic second Chern character is defined as follows:

par-ch2(L∗) :=
1

2

∑

i∈S

∑

a∈Par(L∗,i)

a2 · rank i GrFa (L) · [Di]
2

+
1

2

∑

i∈S

∑

j 6=i

∑

P∈Irr(Di∩Dj)

∑

(ai,aj)∈Par(L∗,P )

ai · aj · rank P GrF(ai,aj)

(
L|U∗

P

)
· [P ]. (119)

When X is a smooth projective variety with an ample line bundle L, we put as follows:

par-degL(L∗) :=

∫

X

par-c1(L∗) · c1(L)dim X−1, µL(L∗) :=
par-degL(L∗)

rankL .

Then the notion of µL-stability, µL-semistability, and µL-polystability for filtered local systems on (X,D) are
defined in the standard manner. We also put as follows:
∫

X

par-c2
1,L(L∗) :=

∫

X

par-c1(L∗)
2 · c1(L)dimX−2,

∫

X

par-ch2,L(L∗) :=

∫

X

par-ch2,L(L∗) · c1(L)dimX−2.

6.2 Correspondence

In this subsection, we give the correspondence of filtered local systems on (X,D) and saturated regular filtered
λ-flat sheaves (λ 6= 0). See the subsection 2.1.4 for saturated regular filtered λ-flat sheaves. Since we have the
obvious correspondence between flat λ-connection and flat 1-connection, we only discuss the case λ = 1, i.e.
ordinary flat connections.

Let Csat
1 (X,D) denote the category of saturated regular filtered flat sheaves on (X,D). Let us see briefly

that we have the equivalent functor Φ : C̃(X,D) −→ Csat
1 (X,D). Since it is given by Simpson in [35] essentially

in the curve case, we give only an outline.

6.2.1 Construction of Φ

First we give a construction of Φ. Let L∗ be a filtered local system on (X,D). Let (E,∇) be the corresponding

flat bundle on X − D. We have the Deligne extension (Ẽ,∇) on (X,D). We put E := Ẽ ⊗ O(∗D). Thus
we have only to give the way of the construction of the OX -coherent submodules aE ⊂ E such that ∇aE ⊂
aE ⊗ Ω1,0(logD) and

⋃
a∈RS aE = E. Let us consider the case X = ∆n = {(z1, . . . , zn) | |zi| < 1} and

D = {z1 = 0}. Then the construction is essentially same as that for the case dimX = 1 given by Simpson [35].
We briefly recall it. Let H(L) denote the space of the multi-valued flat sections of L. We have the induced
filtration FH(L) and the generalized eigen decomposition H(L) =

⊕
ω Eω(H(L)), which are compatible in the

sense Fa =
⊕

ω Fa ∩ Eω . Let u = (u1, . . . , ur) be a frame compatible of H(L), compatible with (F ,E). Then
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for each ui, the numbers ω(ui) ∈ C and a(ui) ∈ R are determined by ui ∈ Eω(ui) and ui ∈ Fa(ui) − F<a(ui).
The complex number α(ui) is determined by the conditions exp(−2πα(ui)) = ω(ui) and 0 ≤ Reα(ui) < 1. Let
Mu denote the endomorphism of H(L) or L, which is the unipotent part of the monodromy around D, and
we put N := −(2π

√
−1)−1 logMu. We regard ui as a multi-valued C∞-section of E. Then it is standard that

vi := exp
(
log z1(α(ui)+N)

)
·ui gives a holomorphic section of E. Moreover, v = (v1, . . . , vr) gives a frame of the

Deligne extension Ẽ. Let b be any real number. Then we put n(b, ui) := max
{
n ∈ Z

∣∣a(ui)−Reα(ui)+n ≤ b
}
,

and we put vi(b) := z
−ni(b,ui)
1 · vi. Let bE denote the OX -submodule of E generated by v1(b), . . . , vr(b). It is

easy to check that bE is locally free and independent of a choice of u. It is also easy to see E =
⋃

b∈R bE.
Thus we obtain the filtration in the case X = ∆n and D = {z1 = 0}. It can be checked that the filtration is
independent of a choice of the coordinate (z1, z2, . . . , zn) satisfying D = {z1 = 0}. Then we obtain the aE on
X −D[2] by gluing them. The subsheaves aE are determined by the condition (4). It is easy to see that aE

is the saturation of a finitely generated submodules of Ẽ ⊗OX(N ·D) for some large integer N , and hence we
have the OX -coherence of aE.

Let f : L1 ∗ −→ L2 ∗ be a morphism. Let (Ei ∗,∇i) := Φ(Li). We have the induced map f̃ : E1 −→ E2. It
is easy to see that cE1 |X−D[2] −→ cE2 |X−D[2] is induced. Due to saturatedness of (E2 ∗,∇), we obtain maps

cE1 −→ cE2, and thus Φ(f) : (E1 ∗,∇1) −→ (E2 ∗,∇2).

6.2.2 Equivalence

Let us show that Φ is equivalent. To begin with, we consider the case X = ∆n and D = {z1 = 0}. Let Cvb
1 (X,D)

denote the category of regular filtered flat bundles on (X,D), which is the subcategory of Csat
1 (X,D). By the

construction, the image of Φ is contained in Cvb
1 (X,D). The following lemma can be shown as in [35].

Lemma 6.1 The functor Φ gives the equivalence of C̃1(X,D) and Cvb
1 (X,D). It is also compatible with direct

sums, duals, and tensor products.

Lemma 6.2 In the case X = ∆n and D = {z1 = 0}, we have Cvb
1 (X,D) ' Csat

1 (X,D) naturally. In particular,

Φ gives the equivalence C̃1(X,D) ' Csat
1 (X,D).

Proof Let (E∗,∇) be a saturated regular filtered flat sheaf on (X,D). We put (E,∇) := (E∗,∇)|X−D, and
let L denote the corresponding local system on X − D. Let H(L) denote the space of the multi-valued flat
sections of L.

Recall that there exists a subset W ⊂ D with codimX(W ) ≥ 3 such that (E∗,∇)|X−W is regular filtered
flat bundle on (X −W,D −W ) (Lemma 2.11). Let P be any point of D −W , and let (UP , z1, . . . , zn) be a
holomorphic coordinate neighbourhood such that z−1

1 (0) = UP ∩D and UP ∩W = ∅. Due to Lemma 6.1, we
have the unique filtration F of H(L|UP \D) ' H(L) corresponding to (E∗,∇)|UP

. Due to the uniqueness, it is
independent of a choice of P and UP .

Let u = (u1, . . . , ur) be a frame of H(L) compatible with the filtration F and the generalized eigen de-
composition with respect to the monodromy around D. For any real number b ∈ R, we construct v(b) =(
v1(b), . . . , vr(b)

)
as above. Then, for any P ∈ D −W , v(b) gives a holomorphic frame of bE|UP

compatible
with the filtration due to Lemma 6.2. Hence each vi(b) gives a section of bE|X−W . Due to the saturatedness of

(E∗,D
λ), vi(b) gives a section of bE on X . Now it is easy to see that v(b) gives a frame of bE, and in particular,

bE is locally free. Hence (E∗,D
λ) is a regular filtered flat bundle on (X,D).

Now, it is easy to see that Φ is equivalent for general (X,D). Let us see the fully faithfulness of Φ. The
faithfulness is obvious. Let f : Φ(L1 ∗) −→ Φ(L2 ∗) be a morphism in Csat

1 (X,D). We have the map g : L1 −→ L2

corresponding to f . We would like to check that g preserves the filtrations iF . Let P be any point of D◦
i , and

(U, z1, . . . , zn) be any coordinate neighbourhood such that U ∩ D = z−1
1 (0). Applying Lemma 6.2, we obtain

that g preserves the filtration iF on U \Di. Thus we obtain the fully faithfulness.
Let us show the essential surjectivity. Let (E∗,∇) be a saturated filtered flat sheaf on (X,D). Let L denote

the local system corresponding to (E∗,∇)|X−D. We have only to construct appropriate filtrations iF of L|Ui\D

on appropriate neighbourhoods of Di. Let P be any point of D◦
i , and (UP , z1, . . . , zn) denote any coordinate

neighbourhood around P such that z−1
1 (0) = UP ∩D. Due to Lemma 6.1, we obtain the unique filtration iF
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of L|UP \D. We obtain the filtration iF on
⋃

P∈D◦
i
UP by gluing them, due to the uniqueness. Thus we obtain

that Φ is essentially surjective, and hence equivalent.

6.2.3 The parabolic first Chern class

We have the Z-action on R×C given by n · (a, α) = (a+n, α−n). It induces the action of Z on KMS(E∗, i).
The following lemma is clear from the construction of Φ.

Lemma 6.3 We have the bijective correspondence of the sets KMS(Φ(L∗), i)/Z and KMS(L∗, i), which is

given by (a, α) 7−→ (b, ω) =
(
a+Reα, exp

(
−2π

√
−1α

))
for (a, α) ∈ KMS(Φ(L∗), i). Moreover, rank i GrF,E

(a,α) =

rank i GrF ,E
(b,ω).

Corollary 6.4 We have the equality of the parabolic first Chern class par-c1(L∗) = par-c1(Φ(L∗)). In particu-
lar, when X is a smooth projective variety with an ample line bundle L, the µL-stability of L∗ and µL-stability
of Φ(L∗) are equivalent.

Proof Recall the formula (54). It is shown for the case where (E∗,∇) is graded semisimple and dimX is two
dimensional. However, the graded semisimplicity condition is not necessary as is explained in Remark 3.16.
The assumption dimX = 2 is also not necessary, due to the Lefschetz theorem. Then the claim of the corollary
follows from the formula (54) and the correspondence of the KMS-spectrums given in Lemma 6.3.

6.2.4 The second parabolic Chern character

Lemma 6.5 Let X = ∆n = {(z1, . . . , zn) | |zi| < 1}, and D = D1 ∪D2, where Di = {zi = 0}. Let (E∗,∇) be a
saturated regular filtered flat sheaf on (X,D).

• (E∗,∇) is a regular filtered flat bundle on (X,D).

• Let c be any element of R
2, and let cE denote the c-truncation. Let L∗ be the corresponding filtered local

system on (X,D). Then we have the equality:

rank 2 GrF ,E
(b,ω)(L) = rank 2 GrF,E

(a,α)(cE).

Here the meaning of the notation is as follows:

– b = (b1, b2) and ω = (ω1, ω2) denote elements of R
2 and C

∗ 2 respectively.

– a = (a1, a2) and α = (α1, α2) denote elements of R
2 and C

2 respectively, determined by the condi-
tions ci − 1 < ai ≤ ci, exp(−2π

√
−1αi) = ωi and ai + Reαi = bi.

Proof Let L∗ = (L, 1F , 2F) be as above. Let u be a frame of H(L) compatible with 1F and 2F . For each
uj and the divisor Dk, the complex number αk(uj) and ak(uj) are determined as before. For the monodromies
around Dk, we obtain the nilpotent endomorphism Nk as before. The holomorphic section vj is given by

vj := exp
(∑

log zk

(
αk(uj) +Nk

))
. Let nk(uj) be the numbers determined by the condition ck − 1 < nk(uj) +

ak(uj)−Reαk(uj) ≤ ck. We put ṽj :=
∏
z
−nk(uj)
k · vj . Then ṽ = (ṽ1, . . . , ṽr) gives the frame of cE|X−(D1∩D2).

Due to the saturatedness, ṽ = (ṽ1, . . . , ṽr) gives the frame of cE, and hence cE are locally free. Thus the first
claim is proved. The frame ṽ is compatible with iE and iF , and we have k degF (ṽj) = ak(uj)−Reαk(uj)+nk(uj)
and ṽj |Dk

∈ kE(αk(uj) − nk(uj)). Thus the second claim follows.

Corollary 6.6 Let X be a complex manifold, and let D be a simple normal crossing divisor. Let (E∗,∇) be a
saturated regular filtered flat sheaf on (X,D). Then it is a regular filtered flat bundle in codimension two, and
we have the equality of the parabolic second Chern character numbers

∫
X

par-ch2,L(L∗) =
∫

X
par-ch2,L(E∗).

Here L∗ denotes the corresponding filtered local system.
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Corollary 6.7 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let L∗ be a µL-stable filtered local system on (X,D). Then the Bogomolov-Gieseker inequality
for L∗ holds: ∫

X

par-ch2,L(L∗) ≤
∫

X
par-c2

1,L(L∗)

2 rankL .

Proof Recall that saturated regular filtered flat shaves are regular filtered flat bundles in codimension two
(Lemma 2.11). Hence the claim follows from Corollary 6.4, Corollary 6.6 and Corollary 3.22.

Corollary 6.8 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let Cpoly

1 be the category of µL-polystable regular filtered flat bundle on (X,D) with trivial

characteristic numbers, and let C̃poly
1 be the category of µL-polystable filtered local system on (X,D) with trivial

characteristic numbers. Then the functor Φ naturally gives the equivalence of them.

Proof We have only to remark that saturated µL-stable regular filtered flat sheaves are regular filtered bundles
(Theorem 5.17).

Remark 6.9 Due to the result in [28] and the existence of a pluri-harmonic metric for Φ(L∗), the filtrations
iF for µL-stable filtered local systems L∗ satisfy some compatibility around the intersection points of D.
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