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ON K; OF WITT VECTORS OF LENGTH TWO OVER FINITE
FIELDS

THOMAS GEISSER

ABSTRACT. We prove that for Wa(F;) the Witt vectors of length two over the finite
field Iy, we have Ks(Wa(F,1)) = (Z/p?) ® Z/(p¥ — 1) in characteristic at least

5 and Kz(Wa(Fsr)) = (2/9)1 1@(2/3)2@2/(32f —1) for (3, f) = 1. The result
is proved by using the identity Ka(W3(Fy)) = H3(SL(W2(Fs)})) and calculating
the right term with a group homology spectral sequence. Some information on the
spectral sequence is achieved by using the a,ctlon of the outer automorphlsm of SL
on the homology groups and Tecent results on K- “groups of local Tings and the Ting
of dual numbers over finite fields.

1. INTRODUCTION

Some of the higher algebraic K-groups which can be explicitly calculated are the
groups K;(O,/p") for O, a local field with prime p. The prime-to-p part is given by
the prime-to-p part of K;(O,/p) by Suslin [21]. The groups K2(O,/p™) have been cal-
culated by Dennis and Stein [5]. In the totally ramified case, the groups K;(F,[t]/t?)
have been determined by Hesselholt and Madsen [10] and in the unramified case,
Evens and Friedlander 7] proved Ki(Z/p*), = Z/p* for p > 5. In this paper we
extend this result in two ways. The main theorem is, see 6.2, 7.2:

Theorem 1.1. a) Let p > 5 then
e e v s K (W (Fpr)) = (2 /0D @ Z/(p - 1).
b) Let (3,f) =1 then
Ka(Wa(Fyr)) = (Z/9) ' @ (Z/3) ® Z /(3% - 1).

The characteristic 3 case is of particular interest. It is known that m3(im.J)s, the
homotopy group of the image of the J homomorphism, gives a direct summand Z/3
of K3(Z) = Z /48 and of K3(Z3,Z3) = Z3 & Z/3. On the other hand one knows
by Panin [15] that Ka(Z3,Z/3) = lim K3(Z/3",Z/3). So the question arises at which

Key words and phrases. Higher algebraic K-theory, Hochschild Serre spectral sequence, Charlap-
Vasquez theory, group cohomology, linear groups, local rings.
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level the image of J occurs for the first time in the inverse system. The above theorem
says that it arises at the earliest possible level n = 2.
The proof of the theorem uses the identity

Ks(W2(I,)) = Ha(SL(Wa(F,))).
The right hand term is then calculated as in [7], [1], [14] and [19], using the Hochschild

Serre spectral sequence to the extension
0=V = SL(Wy(F,)) - SL(F,) — 0.

Some E?-terms in this spectral sequence have been calculated by Lluis-Puebla [14]
and Friedlander and Parshall [8]. We need the following additional results.
On the one hand, a main lemma 4.2 tells us that the map K3(Oy, Z,) — K3(Oy/p?)
is surjective. This gives an upper bound on the number of generators of K3(O,/p?),
because the groups K3(O,, Z,) have been calculated by Levine [13] and Bokstedt and
e e e v a e e e m e v e e gt g e -
On the other hand, we use the action of the outer automorphism of SL on the terms
of the spectral sequence to show that some differentials vanish. Using the calculation
of Ka(F,[t]/t?) of [10], which admits a spectral sequence with the same E,-terms, this
suffices to calculate K3(O,/p?) in characteristic at least 5.
In characteristic 3 we have to calculate an explicit differential in the spectral sequence.
This takes the second half of the paper and follows ideas of [7].
Notation: F, denotes the field with ¢ = p/ elements, W, (R) the Witt vectors of
length n over R and W(R) all Witt vectors. For a group V, V* denotes the dual
group Hom(V,Q/Z) and V, the p-part of V. V,(F,) are the n X n-matrices of trace
zero over F,, and V/(F,) is the direct limit of the V,(F,). We will sometimes write ¥V
if the field in question is clear from the context. For an R-module V over the ring R,
ALV is the n-th exterior power and SRV the n-th symmetric power.
I would like to thank the following people for many helpful conversations and their
...patience in listening to me: B.Gross, L.Hesselholt, M.Levine, V.Snaith. I would also
like to thank C.Stahlke for his help with the computer calculations and the Harvard
Department of Mathematics for its hospitality during my stay.

2. IK-GROUPS AND GROUP COHOMOLOGY

For any ring R and n > 1 the K-groups are defined to be
K.(R) = m(BGLT(R)),

where GL(R) = lim G Ln(R), B is the classifying space and + Quillen’s plus-construction.

As BSL(R)* is the universal covering of BGLT(R), we get for n > 2: K,(R) =
m(BSLY(R)).
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If K2(R), = 0, we get from the spectral sequence to the exact sequence 0 — K,(R) —
St(R) —» SL(R) - 0:
Ka(R), = Ha(SU(R)), = Ha(SL(R)),
Ks(R,Z/p) = Hs(St(R),Z/p) = H3(SL(R),Z/p)

and the latter sequence determines the number of generators of the former. Thus we
will be interested in the low dimensional homology groups of SL(R).
Note that by duality we have

Ho(SL(R),Z/[p) = H™(SL(R),Z/p)".

If ¢ is torsion, we get from the long exact sequence to the short exact sequence
0= Z— Q— Q/Z — 0 and duality that H'(G) = 0 and that for n > 2

HYG) = HY(G,Q/Z) = Hay(G)".

If. R.is.finite, .the,groups.S L. (R) are finite.and thus SL(R) is, torsion, so,we can also

use cohomology groups to calculate K-groups.
For V an abelian group, we have [3, theorem 6.6]

{(V,Z/p)= @ A3,V 05,V
a+2b=n

If V is p-torsion, we have H{(V) = V, Hy(V) = A?V [3, V 6.4]. From the long
cohomology sequence to the sequence 0 =+ Z — Z — Z /p — 0 we get

V' = H\(V,Z/p) S HY(V),
and the two dual sequences

0 — HA(V)=6V* = HX(V,Z/p) > HY (V) = A2V" 550

and
e a0 = Hy (V) = AV B Hy(V,Z/p) 2 H (V) =V = 0.
In terms of the bar resolution the map p is given by p(u A v) = [u]v] — [v]u] for

uAv € A*V = Hy(V) and 8 is given by Oulv] = =Lt The map p is split by

[ulv] = 2% and 3 is split by p : [v] = Ef;é[ﬂjv].
Finally we get
Hz(V) = ANV e SV = HY(V)".

As we are interested in Witt vectors of length two W,(F,) over finite fields, we will
consider the low terms of the spectral sequences associated to the short exact sequence
induced by reduction modulo p:

0 = K = SL(W,(F,)) = SL(F,) = 0.
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One easily verifies that X = 1 4 pX identifies matrices of trace zero V(IF,) with K.
We will sometimes switch between the additive and multiplicative notation for K.
The sequence gives rise to the Hochschild-Serre spectral sequences

By o(Z) = Hy(SL(Fy), Hy(V(F,))) = Hpio(SL(W(F,)))
By (Z/p) = Hy(SL(F,), Hy(V(F,),Z/p)) = Hpio(SL(W2(F,)), Z/p)
and similarly for cohomology.

Lemma 2.1. Let M be the group of all malrices over B, and V be the trace zero
matrices.

a)
b)

H.(GL(F,), M) = H.(SL(EF,), M)

H.(GL(F,), M) = H.(GL(F,), V) ® H.(GL(F,),F,)

_.Proof:a) If (n,q—1),= 1, themap det ;: GL.(F,) = F; is split by = — diag(z,z,...,z)
and the action of F, on H (SL (F ) Mn) induced by conjtlgatlon is trivial. As IB‘*
has order prime to p and M, is p—torsion the spectral sequence

Hi(F;, Hy(SLa(E, ), Ma) = Hiy;(GLo(F,), M)

shows that H.(GLn(F,), M) = (SL (¥,), M,) and this carries over to the limit.
b) If (n,p) = 1, then the trace map is spht as a GL(IF;)-map by z — diag(Z,... ),
and we have

H.(GL,(F,), M) = H(GL.(F,), ;) ® H(GL,(F,),F,),

which again carries over to the limit. a

The following terms of the above spectral sequence are known:

Proposition 2.2.

) _H(SLE)Z)= 0 i>0
b) H,(SL(F,),V)= (Z/p)! i>2 even
0 otherwise
c) Hi{(SL(F,),A*V)= 0 :=0,1
d) Ho(SL(E),S*V) = (Z/p)!
&) Ho(SL(E,),AV) = (Z/p)!

Proof: a) [16, theorem 6]
b) By lemma 2.1, a) and duality we have

Hi(SL(F,),V) = Hi(GL(F,),V) = H{(GL(F,), M) = H'(GL(F,), M*)".

As M = M*, we get the claimed result from [8, prop. 1.6]
c) (14, theorems 2.3e, 2.4b] or [12, théoréme 3.4]



ON Kz OF WITT VECTORS OF LENGTH TWO OVER FINITE FIELDS 5

d), €) [14, theorem 2.4c] a

Remark: As [14] only contains sketches of proofs, we like to mention that the results
of this paper remain valid if in d) and e) we only know that the homology groups
have p-rank at least f.

But we have the SL(F,)-invariant linear forms §?V Sy i F, — Z/3 and
A3y ebes Uy |y 7./3, proving that HO(SL(F,), S?V*) and HO(SL(F,), A*V*)
have dimension at least f over Z/p.

If we denote Ho(SL(F,), A*V) by H we thus get

Corollary 2.3. a) The low terms in the spectral sequence H,(SL(F,), H,(V)), =
Hyro(SL(WA(E,))y are

3| (Z/p)¥
5T 0 (0] H
R N e I Rk e .(Z‘Yﬁ)!u 0 ,(ZY
of Z 10| o [0 o

0 (1] 2 (3| 4

b) The low terms in the spectral sequence H,(SL(F,), H{(V,Z/p)) = Hpr(SL(W2(F,)),Z/p)

are

3| (Z/p)™

2 0 0| (Z/p) & H

1 0 0] (@/py [0](Z/p)

o Z/p |0 0 01 0
0 1 2 3] 4

3. K-GROUPS OF LOCAL RINGS

In this section we will recall some results on K-groups ol dual numbers and local rings
and relate them to the Lichtenbaum-Quillen conjectures.
By Suslin [21] we know that for a local ring O, with quotient field F, and m prime
to p we have
KOy, Z[/m) = Ki(Fy,Z/m).
Thus we will be only interested in the p-part of K-groups, as the prime to p-part is
known by Quillen [16, theorem 8].

Similarly, Panin [15] has shown that
Ki(Op,Z/p") = imKi(Oy /0", Z/p"),

which allows us to relate K-groups of local rings to K-groups of their quotients.
The following two theorems have been proved by comparison of K-theory with topo-
logical cyclic homology:

—)‘f i M m st Ao A RS REAL RRORE ol e AW 6 e e
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Theorem 3.1. [10] Let k be a finite field of characteristic p # 2, then
Kan(K[t]/ (%)), = 0
Kon-1(K[t]/(1))s = €D Wi(k).

{(#,2)=1
Here s; is given by ip®~! < n < ip%,

Theorem 3.2. [2] Let O, be an unramified cxtension of Zy, p 2 3, of degree f. Then
we have

:Kzn(or,, Zp) = ﬂ'gn_](im J)p
Kgn_l(Op, Zp) = Z;{ ¢ wzﬂ_l(im J)p

Here im J is the image of the J-spectrum, i.e. man_1(imJ), = (Z/d,),, where d,, is
the denominator of the Bernoulli-number %—ﬂ.

v e lore iy mthe#lasttheorem-has-alsocbeen-proven-by-Levine-[13]. .- v oo L L0 L
Let compare the last theorem with the Lichtenbaum-Quillen conjectures:
Since we have by the localization sequence for n > 2

Kn(Oy, Z,) = Kn(Kp, Z,)

for Ky the quotient field of Oy, we can consider the K-groups of K.
One formulation of the Lichtenbaum-Quillen conjectures in this case is that that
natural surjection [6]

p: Ki(IK,, Z,) = K&(K,)

is an isomorphism for sufficiently large :. By the splitting of the Dwyer-Friedlander
spectral sequence for K¢, [20, theorem 1], we have

Kon(Ky) = HO (K, Zy(n) © H*(Ky, Zy(n + 1))
Ke,(Ky) = (I, Zy(m).
~"*Now"one can-conclude-from-the results-in-[17, par. 3] that
H°(K}, Zy(n)) = 0
H' (I, Zo(n)) = 2,0 @ ./ 0nl( )
H*(Ky, Zy(n + 1)) = HY(Kp, Qp/Z(~n))" = L[ w_n( ).
Here wa(Iy) = max{p’ : [Ky(sip) : Kyl

-~

Conjecture 3.3. (Lichtenbaum-Quillen conjecture for local fields)
I<2n(op7 Zp) = Z/wﬂ([{P)
I{Qn_l(Op, Zp) = Zg 69 Z/'{Un(fr\,p).
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If the field Kj is unramified, we have [Kp(p,) 0 K] = (p— 1)p’™!, so that

i . 1 for (p—1) fn
wp(Kp) = #mon_(im J), = {Pordp(ﬂ)-l-l for (p—1)|n

In particular we see that the above surjections p must be isomorphisms.

We also have an action of Adams operators on both the K-groups and on the con-
stituents of the Dwyer-Friedlander spectral sequence. The Adams operator %* acts
like k™ on H(K,, Zy(n)) = By~ = Ei-® see [20, prop. 2, theorem 1], so we get:

Proposition 3.4. Let O, be an unramified extension of Z, and p > 3. Then we have

Kon(Op, Zp) = Kon(Op, Z,)" Y
Kan1(Op, Z,) = Kan1(Op, Z,)™

"4 THE COKERNEL OF K3(Op/p") = K3(Op/p™) 7 7 ™"
Let O, be a finite extension of Z, with ramification index e and residue degree
f. We will examine the cokernel C7 of the maps K3(O,/p") — Ks(Op/p"). We

assume for simplicity K,(Op/p") = 0, which is for example true in case O, does
not contain p-th roots of unity or if r < -E-e, [5, theorem 5.1]. This implies that

Ks(Op/p") = Hs(SL(Op/p")) and mmnlarly f01 K3(Op/p™).

Proposition 4.1. Letn <r < 2n and Ky(O,/p") = 0. Then the cokernel of the map
Ks(Op/p™) — K3(Op/p™) equals Qo jpm Qo,pm 07 /0" = Op/p°, where ¢ = min(r —
n,d,(n — 1) + vy(n)), d the exponent of the discriminant of O,.

Proof: Consider the spectral sequence of homology groups for the short exact se-
quence of groups

e = i e Qe n N = SL(O [97) 2 SL(Op/p™) — 0

Since r < 2n, the map A — 1 + A induces an isomorphism between V(p™/p”), the
trace zero matrices with entries in p™/p”, and NI. Thus H;(N]) = V(p*/p") and we
have Ho(NL) = A*V(p™/p"), [3, theorem 6.4]. This gives us

Ely = Hi(SL(Oy/p")) = S '(Op/P”)ab =

By = Ho(SL(Op/p")) = Ko Op/p") =

E}o = Hs(SL(Op/p")) = Ka(Op/p")

Eg, = Ho(SL(Op/p™),V(p"/p")) =0 [12, prop. 1.2]
( )

Egz = Ho(SL(Oy/p™), A2V (p™/p7)) = 0 [12, théoreme 3.4]
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2] 0

1[0 [E7,

0[Z] 0 |0]Ka(0,/p")
0] 1 |2 3

So we get the short exact sequence

43
Ks(Op/b") — Ks(Op/p™) =2 EF | — 0.
By [12, théoréme 2.16] we have:
EY = H(SL(Op/p™), V(" /0")) = Qo jpm @0, /pm 0" /9"

For the last equation of the proposition we have Qo, = O,/p%dn for m a uniformizer
of Oy, d the valuation of the discriminant, and e — 1 < d < e —1 + vy(e), {18,
prop.13,14]. We have the exact sequence

“

e et Dy e et e AR s s = (== a1 gy Aam g e asimay me e %t ae
p'n./p2n -— QOp ®Op Op/pn — Qop/pn — 0,
where §(z) = dz ® 1. From dr"™ = nn"~ldr we get

Opdﬂ'" ® 1 -

QOp/p“ — Op/pmin(n,d,(n—-l)+vp(n))

hence

Qo,/pm @P"/p" = Op/p°
with ¢ = min(n,r — n,d,(n — 1) + vy(v)) = min(r —n,d, (n — 1) + vy(n)) as r < 2n.
O

Corollary 4.2. If O, ts unramified, then K3(Op/p") = K3(Op/p") is surjective for
all v > n. Consequently K3(Oy, Z,) surjects onto K3(Op/p™),.

Proof: Since ﬁg;;"(T,*Eﬁémﬁ'iégK;(Op]p"‘*‘l')ﬂ—‘; Ka(O,/p™) is surjective and the first
claim follows. As the map is an isomorphism outside p and for the p-part surjectiv-
ity and surjectivity mod p are equivalent, the second claim follows from (see {15])
Ka(Op, Zp)[p = K3(0p, Z/p) = imK3(O, /0", Z/p) = lim K3(O,/p"}/p, because if all
maps in an inverse system are surjective then the map from the inverse limit to a
member of the system is surjective. O

More generally, for r not necessarily less than or equal 2n, the term E2,/imd}, =
Ho(SL(Op/p™), Ho(V(p™/p7)))/ imd3 | gives an extra contribution to the cokernel.
For example for e > r, the groups C7 grow regularly by (Z/p)/ for r = n +
1,...,min(2n,2n — 1 4+ vy(n)) (because O,/p° = F) until they reach Frin(rn-1+vs(m))
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and the Ej -contribution is exhausted. Then there is an irregular contribution com-
ing from Eo/imd3,. In case O, sufficiently ramified (i.e. € > ), we eventually get
K3(O,/p™) = C7, and the precise pattern can be read of from [11, 3.4].

For example C7 grows for the following r:

p=3, n=5:  67,8,9,12,18,27,81
p=3, n=9:  10,11,12,13,14,15,16,17,18,21,24, 27, 36,45, 54, 81
p=5 n=5:  67,89,10,15, 20,25
p=5 n=6: 7,89,10,11,15,20,25 50,125

5. THE OUTER AUTOMORPHISM

Sotedm Hads eiim mmakr i AR cmm s a4 Feaba s dmamd ) ) MRains b il R 0y

T:SL(R) —» SL(R)
A tAT!

induces an automorphism of order 2 on homology groups with coefficients in any
self-dual representation. For R = F, and as coefficients the homology groups of
the adjoint representation V, the automorphism is compatible with the stabilization
maps SLn(R) = SLawi(R).

For the extension 1 — V(F,) — SL(W(F,)) —» SL(F,) — 1 the induced action
on V is given by A = —!A. The automorphism induces a map on the spectral se-
quences, all terms of the spectral sequence decompose into +- and —-eigenspaces and
the differentials respect this decomposition. The action corresponds to the Adams
operator i_; on K-groups, because changing the R-module structure on a projective
module-by..mcorresponds.to.going.to.the dual module. Thus the +-eigenspaces under
T correspond to even Adams eigenspaces and the —-eigenspaces correspond to odd
Adams eigenspaces.

We will determine the action of 7 on some of the F£;-terms:

Proposition 5.1. a) The automorphism 7 acts like +1 on Ho(SL(F,),A*V) and on
Ho(SL(F,), S*V).
b) Forn>2 and p 2> n, 7 acts ltke (—1)" on Han_o( SL(F,),V) = F,.

Proof: a) We prove the dual cohomological result. The stabilization maps

HO(SLn(F,), A%V;) — HO(SLa(E,), A%V;)
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are isomorphisms, as one sees with the diagram

A3V2 abc-bac) V‘Z ir N IFq ) Z/3
3 abc—bac, tr
AV, > Va > F, y Z/3

and similarly for S?2V*. But on the SL,-level 7 is an inner automorphism, thus the
action must be trivial.

b) Will be proved in the remainder of this section.

By [19, theorem 7.6] we can always go to a bigger field and thus assume that 2n—2 <
f(2p —3) — 2. By duality and lemma 2.1 we have

Han—2(SL(F,), V) = H"(SL(F,), V*)" = H*"*(GL(F,), M)’
and since we assume 2n — 2 < min(2p—1, f(2p—3) —2) we know by [8] that we have

H™ }(GL(F,), M) = H""*(B,(F,), M,) = F,,

where B, (F,) is the Borel subgroup of upper triangular matrices.

Instead of 7 we consider the composition o of 7 with conjugation by g, where g = (a; ;)
with a;; = 1 for 47 = n+1 and 0 otherwise, because o respects the Borel subgroup.
An easy calculation shows that ¢ acts on M, = ker GL,(Wy(F,)) = GL.(F,) by
(@i;) = (—ans1-jns1-i) (i.e. —1 times the reflection on the diagonal (1,n)...(n,1)),
since 7(a;;) = —(ai;)! and Intg induces a turn by 180 degree.

We define the following o-invariant descending filtration on M,:

F*M, = {(a;ij)la;; =0 for i—j2>2n-—s}
The associatec graded pieces are isomorphic to

g[’" M, = {(a.-‘j)|a,~'j =0 for = —j 7& n—s8— l}.
Lemima 5., Tt e e
F, for s=2n-2

H?n-—'Z Bn, ’Mn —
( gt ) {0 otherwise

Proof: To compute the cohomology of B, with coefficients in the graded pieces we
use the ”symbolic weight equations” of [8]:
First note that for U/, the unipotent subgroup of B, and T;, its torus, we have

H™ (B, gr" M,) = H*™*(U,,gr* M) = (H**(U,.,F,) ®r, gr* M) ™.

The first equation follows because the order of 1, is prime to p and gr' M, is a
p-torsion group. The second equation follows because U, acts trivially on gr® M,.

Ll
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In [8] one sees that U, admits a filtration such that we have for the graded pieces
gr U = F2(*=1/2 and for the cohomology H**~*(U,,F,) = H**(gr U,,F,). On the
other hand the cohomology of gr U, is given by

A (grUs, ) = Ap (V2) @, Sp, (W),

where V,, has a basis {a;?’j[l <i1<3<n,0<s< f}andis of degree 1, and W, has
a basis {b i1 €£4<3j<n0<s < f}and is of degree 2. The Ty-action on this
ring is given by the conchluon that a] ; and b} ; have weight —p’«; ;, where «; ; is the
character (t1,...,t,) — t;/t;. We write this qymbollcally as

[af ;] = [6];] = ~p°[t] + p°[3).

The T-action on ey, € gr* M, (u—v =n—s—1) is given by o, so it has symbolic
weight [u] — [v]. We want to determine

(H*"%(gr U, F,) ®r, gr° My)"™.

W0 BT e SRR T B i € LAY G Sk H ey & AR RIS et e R T DT MAP I o A YRS Y L o T h ok 48 A4 Ve Bt et A Ty Ml »-MM R LT S T A LR LT

As T, acts like scalars on all basis elements of H2"—2 (gr U,,, F,) and gr* M, it suffices
to consider monomials of the form
z=all N NG @b, ® b, Beuy € AR VL ® S Wa@gr" My

tmyJm

form+2r =2n —2and v —v=n-—s~1in order to get all T,-invariant elements.
The monomial z has symbolic weight

[z] = =p" [) + p" () — - + P (L] + [ - ch[e

Obviously the sum of the positive ¢g. equals minus the sum of the negative g.. In
order for z to be Ty-invariant, we need g. = 0 mod p/ —1 for all e,

Let [; be the smallest subscript occurring. If g;, = 0, we must have u = [; and the
only a and b occurring with [/, as the first subscript is af, , or b , for some ;.
In this case let 75 be the next smallest subscript occurring. Again, if g, = 0, then
I ="k; and there is at most one af, p,"6r by, i o¢curring for some ky. Continuing in
this fashion, we either find a smallest { such that g; # 0 , and all but one coefficients
of [I] are negative (and the positive coefficient can only be 1), or all g. =0 and z is

IR I

made from elements ¢, .., ¢}, ., v 5¢ g, Withu =1 <y <lpyy = v, Clearly
m-+1 < lpq1 € n, on the other hand deg z = 2n—2 < 2m, so we conclude m = n—1,
{; =1 and

z=b,8 - @b_,,® €1

Thus we find a unique basic element in H*"~%(B,,gr®* M) for s = 2n — 2.
In case there is a smallest [ such that g # 0 we similarly find a largest 7 such that
g; # 0, and all but one coeflicients of j are positive (and the one exception can only

be —1).
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Consider the minimal p-adic expression
J-t
|ge| = Z GewD",
v=0

where minimal means that 3~ g., 1s minimal. We have

f-1
—gi=_ gp' =0 modp/ —1.

v=0

Because g; # 0 and z has 2n — 2 factors with coefficients at most p/~!, we have

—g < (2n-2)p/ 7t < (2p-2)p/7t < 2(pf —1). So —g = p/ —1 and we can conclude

> g = f(p—1). Similarly we get 3 g;, > f(p —1).

Let  be the number of factors of z of the form af ; and 4] ;, then the sum of degrees of

these terms is f+2(/ — f), as there are at most f factors of this form of cohomological
i rire e msinms degree-~l—Since~the-number-of-factors. with-an-l-oecusring-as-a-subscripteiseat deast -« = -

2 G, we get
n—2=degz > (Lo — 1)+ (L g —1)+(F+20- ) 2 f2p-3),
contradicting 2n — 2 < f(2p — 3) — 2. O

We now consider the spectral sequence to the filtration F*M,,,

EPt = HYY(B,, gr* M,)) = H*YY(B,, M,).

From
Ho2(B,, gr* M,) = F, for s : 2n—2
0 otherwise
cur o wwe-conclude.that-we.have.. co o oo oo

HZn—2(Bn,gr‘2n—-2 M ) EZn—ZO E?n 2,0 f12n 2(BmM ) F

and we can calculate the action of o on H* %(B,,gr’ M,,).
But as H*""2(B,, M,,) = H**"*(B,,,F,e,,) is generated by the cocycle

z= bll)p? ® e ® bo—l,n ® el;n’

we have to calculate the action of o on z. An easy calculation shows that o(e; ) =
—ey,n and o(bi;) = —bnyi—jnt1-i. As the b;; commute we get o(z) = (=1)*"tz,
which was to be proven. O
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6. K3(W,(F,)) FOR CHAR F, # 3

Proposition 6.1. For p > 3 we have the following +-eigenspaces under T in the
spectral sequence Hy(SL(Fpr ), Hy(V'))p = Hiyj(SL(Wo(F,1)))p:

3| (Z/p)

2] 0 |o[(z/p)

Il 0 |0[(Z/p)7[0]0

0 Z |0] 0 |0/0
0 (1] 2 (314

Proof: This is an immediate consequence of 2.3 and 5.1 except from the identity
(E2,)* = HY = (Z/p)/. For this consider the extension

0=V — SL(F,[t]/t*) = SL(F,;) — 0.

samna - wi-seslhe-correspondingespectralsequence.has.the.same Joo-terms.as.the.spectral.sequence .
to the extension 0 — V' — SL{(Wy(F,;)) — SL(F,s) — 0, since the action of SL(F,)
on V is the adjoint action in both cases. The differentials are different, however, as
the latter sequence does not split whereas the former does.

From # Ka(F,s(t]/t?) = p*/ we conclude that ES%

(Z/p)! and thus that d3, has

rank f. On the other hand we know that Ky(F,/{t]/t*) = 0, so ES% = 0. As there
are no nonzero differentials ending in Ej 5, we conclude H* = (Z/p)’. O

Theorem 6.2. Let p > 5 then

Ka(Wa(F,r)) = (/5% @ Z/(p* - 1).

Proof: By Suslins result the prime to p-part is the same as for F,. For the p-part let
us first determine the +-eigenspaces. By 4.2 and 3.2 we know that K3(W>(F,s)), has
o emen o tnnost ofgenerators..This.forces-the.differential d3 , in 6.1 to be injective. Thus we

are left with a group with f generators and two graded pieces isomorphic to (Z/p)/,
giving the desired result for the 4--eigenspaces.
As K3(W,(F,s)), has at most f generators and the +-eigenspace already has f gen-
erators, we conclude that the —-eigenspace is trivial.

a

7. K3(W>(F,)) FOR CHAR F, =3

In this section we determine K3(Wa(Fsr)) for (3, f) = 1. The problem in characteristic
3 is that there might be f+1 generators instead of f generators and so the differential
dgﬂ in 6.1 may not be injective (and similar in the mod 3 spectral sequence).
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It turns out that cohomological calculations are easier than homological calculations,
so from now on we work with cohomology groups. The dual of 6.1 gives us the
following E,-terms in the spectral sequences:

31 (2/3)Y
_ | 21 0 [0[@/3)¥
HY(SL(Fs ), H(V,Z/3)) : 1) 0 [o]@/3) 0o
0, z o] 0 (o]0
0 [I] 2 [3]4
4 (z/3)"
3] 0 [o](@/3)
; : 210 lo[(@&/3) o]0
HY(SL(Fas ), H (V)3 : 1o ( 6) 3100
o o] z fo] o fofofo
. o I3 el [ AW 1T % L HIFA AT e 0 ,»1..._,.,.2.._“4-3., ,.4.,.57.t-u-'rr.--. -

In order to determine H3(SL(W3(Fs)),Z/3) and H'(SL(W,(Fss
calculate the differentials

dy” : HO(SL(Fyr), HY(V,Z[3)) —— H*(SL(Fss), H(V,Z/3))

=[s Js

& HY(SL(Fay), HY (V)  ——  HY(SL(Fys), H¥(V))

L

))s, we have to

The calculations will be similar to the calculations in {7, par.9-11]. The idea is to
use stability to reduce to the S1is-level first, and then make the calculations for a
3-Sylow group. However, as we are in characteristic 3, the short exact sequence

1 = Vo = SLy(Z/9) = SL(Z/3) — 1

splits. Thus we would have to work on the SL3-level. Instead we make calculations
for Wy (FFy) and deduce results for Fs, because the 3-Sylow group of 5L(Fy ) is abelian
and has only rank 2.
We choose a basis {1,2} of Fy over F3 such that z* = —1, and consider the following
short exact sequence

1=V U—>P—1,

where U is the 3-Sylow subgroup of SLy(W2(Fy)) consisting of matrices

(1+3a b

3¢ 1+3d)’ a+d—bc=0 mod 3.
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We get the following diagram
HY(SL(B), HY(V,Z2/3) — HYSL(Fy), H*(V,Z/3)) —= H*(SL(F), HY(V))

& | ap oy & g

H°<SL2(F9),}13(‘@,Z/3)) s HZ(SLQ(FQ),VH2<%,Z/3)) 2, Hz(SLz(F;),H“(%))

Bo B2

4 L

H“(P,H’*‘(\@,Z/?))) — H?(P,H*\(VQ,Z/&) s Hz(P,;F(%))

The map ap is an isomorphism as in the proof of 5.1(a). To show that a; and a4 are

isomorphisms consider the following diagram:
H*(SL(Fo),V*) —— HX(SL(Fy), A?V")

El‘v laa
. NI B R R R e L O T R I T e L R T R R Rl L] amy
H*(SLao(Fo), Vi) —2= H2(SLy(Fy), A2Vy).

By [8, prop 1.6] and 2.1 the map « is an isomorphism. On the other hand the lower
map 7, induced by a Ab > ab—ba, is split by the map induced by e;; %Zk eir A €x;
and thus injective. Since all groups in the diagram equal Fg, we see that «; is an
isomorphism. As «; is the direct sum of &, and «, it must be an isomorphism too.
The maps [y and 3, are injective as P is a 3-Sylow group of SL,(Fy).

These considerations show that we can calculate the differential in the lower row of
the image of B o .

From now on we will write V for V;, as there is no danger of confusion.

We have

HO(SLy(Ty), H3(V,Z/3)) = (A3V*)Sta®o) gy (g2y/+)SLalFs),
A basis of invariants is given by
Cee s e a e aee o e .('.D,.:..K:sv,.uabc—bac Vv Q 'Fg ﬁ)‘ Z/3
$:SV B v 5 R S 73,

where x runs through a basis of linear forms. If we choose the linear forms x; :
a+bz— aand x;: a+bz > bas a basis, we find the following basic invariant forms:

A= —x109, B:=x0p, C:=xi0¢, D:i=xzo0.
Proposition 7.1. a)
Ks(Wa(Fe)) =Z/9BZ/3DZ/3DZ/80

b
) Ky(Z/=Z/3DZ/3DZ/S.
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Proof: a) Consider the spectral sequence

Ey(Z)3) = H'(P,H’(V,Z/3)) = H'Y(U,Z/3)
and its differential

82 B2 [3) = (2/3)' - 7 (Z13) = (Z/3)".
We will see in 10.1 that d3°(A + C) = 0, so ([0 has rank at most 3. On the other
hand it has rank at least 3, because I<3(W2( )) has at most 3 generators by 4.2 and
3.2. So the number of generators of I(g(Wg(]E‘g)) 15 3.
Now consider the spectral sequence

Ey(Z) = H\(P,H}(V)) = H™(U)
with differential
& ENZ) = (Z/3)! = EJ*(Z) = (Z/3)%.

T Wil 86 T 10T ERAE @y (A) and dy (B) af¢ lifedily iidependéiitsomdy (Z) ias
rank 2, and the cardinality of I(g(Wg(]Fg))g is 34,

b) The inclusion ¢ : Z/9 — W5(Fss) induces the natural map 7. : K3(Z/9) —
Ka(W2(Far)). On the other hand we have the transfer map * : Kz(W(Far)) —
K3(Z/9) induced by considering a W,(Fss )-module as a Z/9-module. As Wo(Fys) is
a free Z /9-module of rank f, we have that 7" o 7, is multiplication by f.

Consider now the following diagram

Ks(Z3, Z/3) —2 Ks(W(Fy),Z/3)

Ks(Z/9,Z/3) —2 K3(Wy(Fs),Z/3).
As the upper horizontal arrow is injective and the right vertical arrow is an isomor-
phism by a), the left vertlcal surjectlon must be an isomorphism and thus K3(Z/9)

has 2 generators. ot
For the number of elements we use the following diagram:

HO(SL(Fo), HY(V (Fs))) —2 H*(SL(Fo), H*(V(Fs))) = (Z/3)?

HO(SL(Fs), HY(V(F3))) —Z=  HSL(Fs), H3(V(F3))) = Z/3.

By the dual of [19, theorem 7.6] the vertical maps are surjective. And according
to (a) the upper horizontal map is surjective, so the lower horizontal map must be
surjective as well and thus the cardinality of K3(Z/9)3 is 9. d
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Theorem 7.2. Let (3, f) = 1, then we have
Ka(Wa(Fsr)) = (2/9) "' @ (2/3)* @ Z/(3% - 1).

Proof: As in the above proposition we can conclude from (3, f) = 1 that the natural
map i, maps (Z/3)? = K3(Z/9); to a direct summand of K3(W2(Fas));. We know
by 6.1 that it is 9-torsion and has at least 3%/ elements. As it has at most f 4 1
generators by 4.2 and 3.2, the theorem follows. )

Remark: The result K3(Z3,Z3) = Z3 @ Z/3 of (2] contradicts the results of [1].
Similarly, our result on K3(Z/9) contradicts the result K3(Z/9); = Z /9 of [1]. The
problem seems to be in [1, prop.Il 4.5].

T e ""‘""""‘8i“"e'A‘UC‘UUA’I‘[ON“OF'TH‘E"D’]'FFERENTI'AL‘“’dg"g"‘lN“CH?\‘R’ACTERIS’I"IC‘ 3 o

Recall that we want to calculate a differential in a spectral sequence for the extension
l1-V=sU—=P—1,

where U is the 3-Sylow subgroup of SLy(W,(FFg)) such that P consists of matrices of

the form
( (1) :f ) , z € Fy.
We choose for P the basis

1 -1

We also choose inverse images of ¢ and s in U of the same form. For V we take as a
basis the matrices (written multiplicatively)

(10 (10
=131 = 1321
1

+3 =3\ _ _ (1432 -3z
0 1-3

(13 (1 3z
=10 1 B= e 1)

‘oo
ol
N
o =
™
~——

Tq =
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If we order this basis as (2, %y, 23, Z;, &3, T3), then the action of ¢~! and s is given
by the matrices

1 00000 1 0 0 0 00

01 0000 0 1 0 0 00

1= 101000 -l 0 -11 0 00
1010100} |1 0 0 1 00

0010160 1 -1 0 -1 10

060101 1 1 1 0 01

1

for example the second column in s7! is obtained by

- (1 oz 10 I =z} _[(1-=3 3z \ _ _
Sts=lg 1)l 1) o 1 )T\ 3: 143 )Tt

. If.we.denote.the dual basis,of V* by o1, ,02,82, 23, &3, then the action of ¢ and s
on V* is given by the transpose of the above matrices.

Proposition 8.1. The following are bases and dual bases for homology and cohomol-
ogy groups of V:

H\(V,Z/p): T, L;
Hl(V,Z/p): o, O
Hg(V,Z/p): ;N x;, TN T; 1< g
iE,‘ﬂfﬁj
pzi), p(2:)
H*(V,Z[p): a; U aj, & Ua; i<y
o; U @y
(S(Q’,‘),(S(C_I,')
H3(V,Z/p)l :clﬂ:t:gﬂ:c;;,ﬁ:lﬂm"2ﬂ:f:3
e wn TN x; N T, Ty N T; N Th 1< g
zi N p(z;), 2: N p(z;), i N p(Z;), 2 N p(i‘j)
H3(V,Z/p): arUagUas,d UdayUas
o Uo; Uag,a; Ua; Uaoy 1< g

a; U (5(Q’j),&; Ué(a;),a; U (S(C_l'j), a; U 6(@j) .

Proof: This follows from explicit formulas for the cup and the Pontrjagin product,
see [3, V.3,V.5]. An analogue result is [7, prop 10.3,10.4]. 0

We will frequently use the graded commutativity of the cup and Pontrjagin product
and identify terms, e.g. when we write x3 N Z; N T; we mean the basis element
'—571 N SEQ N 3.
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Note that by construction of the Bockstein homomorphism we have for v,v’ € V,
v = 11&1+ 1282+ 1383+ 71 Ty + Jo T2+ J3%3 and v’ = 1z Fipxe+i5@a+ 71T+ J5 T2+ 75T
fp1) _ TR
Sa([olv]) = [F5%],  Sa([vlo]) = [FF4).

Proposition 8.2. The following are a description of the SL(Fy)-invariant forms
A, B,C and D in terms of our basis of H*(V,Z/3):

A = o033 — @10y — Gy apdis — o Qply

B = &,0003 — & a3 — @z — Qg3

C = asba; + a1das — azda; — ajdas — agdoy
— @300 — @100 + 80y + a1 ddg 4 Gyddy

D = a38d; + a18a3 — apdag — aqddy — apdd
+ azda; + adaz — @xdas — @180, — @xdoy

- Proof: Recall that A, B,C and_D are expressions of the form

A3y setesy oy R Z/3

sV 2 v 5 F - Z/3.

Now we just have to calculate the effect of these maps on our basis of A3V respectively
SV (written additively). For example

Az Nz NZ3) =
Sen((28) (52 (83)-( 2)(20) (2 5)
=_x10tr((8 __01)—(3 ?

so we get a contribution —& a3 for A. a

- —— . e .-

9. THE CHARLAP-VASQUES DESCRIPTION OF THE DIFFERENTIAL
In a situation like ours, Charlap and Vasquez [4] described the differential
&5 : E3*(Z[p) = EY™(Z/p)

as follows:
Considering the following cup product

HY(P, HO(V, Z/3)) ® H(P, H"™\(V,2/3) © H,(V,Z/3)) % HP*(P, H*\(V,Z/3)),
the differential is given by
d52(€) = (=176 U (V7 = Q.(x))-
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Here ¥y € H*(P,V) is the cohomology class of the extension and @, the functor
H?*(P,—) applied to the following map @ induced by Pontrjagin multiplication from
the right:

V = H(V,Z/3) S Homg s(He-1(V,Z/3), Hy(V,Z/3)) = H"'(V,Z/3)@ H,(V,Z/3).

On the other hand V9 is universal in the sense that it only depends on the action of
P on V and not on the specific extension. We will calculate the term £ U V9 in the
next section by explicitly calculating the differential in the spectral sequence for the
split extension.

In this section we are going to calculate the term £ U Q.(x). To do this we have to
determine the class y of the extension, calculate Q. of xy and calculate the above cup
product.

For the cohomology of P we have the following results:

As P is the direct product of the cyclic groups 7' = (t) and S = (s), we will use
the tensor product. of the minimal resolutions of T" and S as our resolution of P: the
minimal resolution of 7" is given by '

E.=... 5 zm Sz 21 25 Z2[T) — 0
where N; = 1 + ¢ + 2, and similarly we have the minimal resolution F. for S. The
tensor product of the two resolutions is given by
(E.QF).= P E,QF, de® f) =de® f 4+ (=1)"5%e @ df.
ptg=n

Note that Z[P] = Z[T x S] = Z[T] ® Z[5], so in low degrees the resolution is given
b

’ .. = [P WDt LD ON), o p2 el 7ipy g,

The cohomology of P with coefficients in the module M is given by the homology
of the complex Y, = Homgp)(Z[P)7F!, M) We will identify a Z[P] linear homomor-
phism Z[P}*t! wnth the q+1 tupels of i 1mages of 1, ordered in the following way:
LB @ Fo, By @ Fr T T o

Lemma 9.1. a) HQ(P, V) = (Z/3)?, a basis for cycles is given by
(mi’-a Oa 0)3 (533 01 0)) (Oa Oa 3;3)3 (Oa Oa 53)

and a basis of boundaries is given by (z3,0, —Z3),(Z3,0, z3).

b) H*(P,V*) = (Z/3)?, a basts for cycles is given by
(051,0,0),(&1,0,0),(0,0,0’1),(0,0,&1)

and « basis of boundaries is given by (1,0, @), (@1,0, —cx).
c) H*(P,A*V*) = (Z/3)?*, a basis for cycles is given by

(ala‘Z + 510210, 0)1 (051052 - 5-'1&21 0,0)7(03030'1052 - &1&2), (0507a1&2 + &laz)
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and a basis of boundaries is given by
(@ + &g, 0, —oog + &1&3), (nay — &1, 0, 0 &g + &y02).
Proof: The cycles are given by triples (a,b, ¢) such that
O=(t—-1Na=(s—=Da+Nb=~=Nb+(t—1ec=(s—1)c
and the boundaries are given by triples
(Nez, (t = 1)y — (s = 1)z, Nyy).

The action of P on V and V* is given by ¢ and s resp. *t~! and 's™!, the action of
P on A?V* has to be calculated. We have chosen representants such that the second
component is always trivial. d

Since the cocyle of our extension is most easily given in terms of the bar resolution,
. we need a comparison between the minimal and bar resolution for cyclic groups:

Lemma 9.2. The following is an augmentation preserving chain map from the min-
imal to the bar resolution of a cyclic group of order m with generator t (necessarily
being a homotopy equivalence [3,17.5]): In odd degree we take the map

Z[T) — ZT)[T*™")
1 = T[], .. e ¢

and in even degree

ZT] - Z[THT™
O D EAL A TAC ST 1]
The sum goes over all n-tuples (i1,...,1,) € {0,...,m —1}".
Proof: Easy verification by induction. O

Let U be an extension of P by V and choose a lift @ of each element a of P in U.
Then the cocycle correspondmg to the extension is given by

(a|b] — &B(ab)_
Lemma 9.3. A representant of the class x of our extension in Homzp(Z[PJ3, V) is
given by (—x3,0, —23). :

Proof: We have to take the tensor product of the above maps from the minimal to
the bar resolution for the groups T and S and calculate the class of the cocycle in
the bar resolution. For the first component we get

Z[P] — Z[P][P x P}
S D (411
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and for our choice of the lift of { we have

1 -
. ' 0 3)=—m3 fori =2
[ti|t]r—> 1 —2 1 -1 1 i41Y 1
0 1 0 1 0 1) 1 0
01 otherwise .

Similarly, we get for the second component

mwsm(é 1)) et )=

and for the third component

g (3 ) () (000

- - L PRI w e [T R,

The next step is to calculate Q.(x) of this element.

Lemma 9.4. The element Q.(x) € H*(P, H3(V,Z/3) @ H*(V,Z/3)) is represented
by (u,0,v), where

u=—(z1Nz2Nz3)® ey Uos — ) (2:NT;Na3) @ o U &;
i#3
—Zx,ﬂmJﬂT3 @& Ua; — Z'Lgﬂp Y ® Sa; — ngﬂp ) ® o,

i<y

=—(Z1NZNE)QaUa;— Y (ZNz;NE) Q& Ua;
i#3
—zm,ﬂ:ﬂjﬂmg ®a,Ua_, Z'Bgﬂp )® bda; — Z:T:gﬂp(i,-)@&‘x,-.
1<J
Proof: To get the components of Q.(x), we have to determine what the cup product
with (—z3,0,—Z3) does on a basis of Hy(V,Z/3). For example, —z3 sends z; N Z;
to —z; N Z; N 3 and thus gives a contribution —z; N Z; N3 @ o; U &; to u, or —Z3
sends px; to —pz;NT3 = —Z3Npz; and thus gives a contribution —Z3Npz;@de; tov. O

Finally we have to calculate the cup product £ U Q.(x). For this we have to go into
the definition of the cup product:

The cup product of two cocycles a € Hom(Y;, M) and b € Hom(Y}, N) is represented
by the map

aUb:Yy, 2 Y,@Y; > M@N,
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where A is a "diagonal approximation”,[3, V.3]. For a cyclic group with generator ¢
a diagonal approximation is given in [3, V 1]:

1®1 1 even
A1) =41®t t even , 7 odd

2i<i @t 1,7 odd
We have to work with the tensor product of the approximations for T and S: let
E. be the resolution for 7' and F. be the resolution for S. Then an elements ¢ €
HO(P, H*(V,Z/3)) is represented by a map sending 1 ® 1 € Ey ® Fp to some cocycle
w in H3*(V,Z/3). On the other hand we just calculated that Q.(x) is represented by
the map sending (1®1,1®1,1Q1) € (E:® [4)&® (£, @ F1)® (Ey® F2) to (u,0,v) in
H*V,Z/3) ® H3(V,Z/3). Thus a representant of the cup product has the following
three components:

AQA

E2®F0 e E2®F0®E0®Fo - HZ(V,Z/3)®H3(V,Z/3)®H3(V',Z/3)
11T = 1®TRIg1 e Cu@Qw
EL@F 225 EQF®E®F — HYV,Z/3)® Hs(V,2/3)® H3(V,Z/3)
1®1 — IR1IQtRs — 0® tsw
Ec®F, 22% E@R@EQF — HXV,Z/3)® Hs(V,Z/3)® H¥V,Z/3)
1®1 — 11®1®1 — VR w

Evaluating v @ w and v @ w we get

Proposition 9.5. The second term EU(—Q.(x)) in the Charlap Vasquez description
of the differential dg,s is given by

A= (—ayUp+aUay ,0, aiUaz+ o Uas)
B - (eqyUa+&Ue ,0, agUaz — & Uaés)
C = ((5(11 ,0, —66{1)

D - ((5&1 ,0, (50.’1)

T

10. THE DIFFERENTIAL FOR THE SPLIT EXTENSION
Let U be the split extension of P by V. Let X, = Z[V][V"] be the bar resolution of
V. There is an action of P on X. by
p*v[uifve| ... |va] = p(v)[p(vr)lp(v2)| - .. [p(va)],

which is compatible with the differential and the augmentation. Let Y. be the minimal
resolution of P, i.e. the tensor product of the minimal resolutions of 7' and S. Then
Y. ® X. is a Z[U]-module via the natural action

ply®z)=py) @p(z), v(y©z)=yQus
Furthermore Y. @ X. is a Z[{/]-free resolution of Z, (7, prop 11.1].
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Thus we can calculate the cohomology H*(U,Z/3) as the homology of the double
complex

c.= Homz[U](Y ®X., 2/3) = HOITIZ[P](Y., HOITIZ[V](X., 2/3))
This double complex yields a spectral sequence with

E}® = Homgp|(Y,, Homzg)(X,, Z/3))
E}® = HP(P,H*(V,Z/3))

and limit H}, (C) = H*(U,Z/3). One sees as in {7, prop 11.2] that this spectral
sequence is the same as the Hochschild-Serre spectral sequence to the extension 1 —
VsU—=P—l

The differential for the spectral sequence to the above double complex is calculated
as follows see [9, 4.8]:

Let d;r be the vertical and d; be the horizontal differential.

L 03 TrEdey gt Tt ov e e e

du=—dvl[
g2 4r=dey pag

Elements of Z2° are of the form z = z%3 + &2 such that d;;z%% = 0 and djjz'? +
d;z®? = 0. They can be identified modulo boundaries with H%( P, H*(V,Z/3)) by
projection to %2, The differential of z is given by

d(z) = (dr + di)(=*° + &%) = dpz® + dpe® + dpz'? + dppe™? = dya'?,

In our case @ € {A,B,C, D} we have djja = 0 and we have to find an element
B € Ey? such that di;B + dja = 0. Then we have to calculate d;3 and the resulting
element of Ea® will represent an element of H*(P, H*(V,Z/3)).

As we have

T e (B PP Homg (X, 2/9),

we will identify a Z[P]-linear homomorphism Z[P]P*! — Homgp|(X,,Z/3) with the
p+1-tupel of images of 1. Similarly we have Homgpy(X,, Z/3) = Homgv(Z[V][V?], Z/3)
and we will identify an element of this group with a map V? — Z/3.

So for a representant of o we have to calculate dja = dpa. With the above identifi-
cations this element has components dp(a); = (1 — 1)a, and dp(a); = (s — 1)a

Then we have to find an element 8 of E(',’2 such that —d;;8 = dvf = dja. The
differential dv is given by

dy (f)lalble] = flalt] — fla + blc] + flalb+ c] — flblc]

on each component.
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The next step is to calculate the differential d; = dp of 8 = (81, 32): With the above
identifications it has the three components N,(8;), —(s —1)B1 + (¢ — 1)B2 and N,(53;)
. respectively.

Finally we will show that that some of the resulting cocycles become zero in E2? =
H*(P, H*(V,Z/3)) by exhibiting them as boundaries from Eg''.

We will proceed for A, B € (A3V*)P and C, D € (§?V*)? separately. We will only
give the results of the calculation and indicate how the calculations can be done. All
verifications are left to the reader.

The following will be the result of the next sections:

Proposition 10.1. Let A, B,C and D as in proposition 8.2. Then the three compo-
nents for the differential in Ey*(Z/3) are:

A (—010‘2+C_ll&2—5al ,0, &132-}-016’24—6&1)
B (01(_!2 + &1052 - 5551 ,0, 10 — &1&2 —_ 6(1'1)
- C . . (6(‘11 + 1xg — 5.’15.’2 ,0, —5&1 — 0’1&2 —_ &10.’2)

D (ba + onag + e 0, by H djag = was) T
b) The three components of the differential in Ex*(Z) are given by

A (—Cl’]_a‘z + a1 &g ,O, Qe p + Cl‘la.'g)
B: (alég—}-&lag ,0, O.’laz—alﬁ’g)
C: (alag — 1&g ,0, - Qg — 6510.’2)
D (alég + (351052 0, 109 — &1&2)

Proof: a) 9.5, A.5, B.4
b) Obvious from a). a

?

APPENDIX A. THE DIFFERENTIAL FOR A®V*

Let a; be o; considered as a map V — Z/3. Then a;a;ax : V3 — Z/3 represents

ceon 'GECY}CYAHEtC.'-" e e tamens me cm m e A e e e e

Lemma A.1. The image of A and B in Ey® are given by

AR = — - - - - -
17 = 16162 + 61143 + 418282 — 4181Gp — 018Gz — Q18909 — 0110y — 16103

- &1(1,2(_{,2 —a;a ay — a|a,az — &1&2a2

1,3 _ _ . _ -
Ar‘)’ = —a1a10] — ajad; — @14 — a121403 + a1asa; — Q1201 — Q1Q2a072 — A1Q1Qq
—a1a1a3 + 01814y + ¢181G2 — @102a) — Q10203 — A1828; — G1Q10) — G1G143
+ aya1ay + @183 — 8102a;) — @G22 — Q1428 + Q18101 + G1G 182 + 61818

+ @1a1a3 — 418201 + 61028, + Q18482
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1,3 - - - - — — — -
Bl, = —@14109 — Q12143 — Q1007 — Q1A 10y — A1(11 A3 — Q1A909 — Q1A 1G9 — A1A103

— @130z + Q10107 + 410143 + Q10202

Bll’s = —@q1a14; — aya;das + alalﬁl -+ alalc'tg — 1201 — A1y — a1 aqa; + alalal
+ a1@1ay + a1G6131 + 616183 — A1Ga¢1 + ad20; + @1G202 + A1¢161 + @10102
+ a1a1G1 + 310183 — Q18201 + Q1 Q2@ + Q16202 + @101 + 16183 — 1210y

— @11Gg + @1832a) + G102a3 + @1G20a).

Proof: One has to calculate { — 1 and s — 1 of A and B. O

Lemma A.2. Define the following maps V — Z /3 for v = 1121 +taza + 1323+ J1 T +

J2%2 + JaZs
un(v) =1, Un(v) =7,
- N A
'vn,m(v) =_injm
Then the following are lifts of A and B to E,?, i.e. dyA'? = dpA®® and dy BM? =
de0'3:

1,2 _ - _ _ _ -
Al' = a1ty — a Uz + A V22 — U1 @z — Uyagz + u1az + U@z — V1,182 — V1183

1,2 — - - - - - - - =
Ay = —a i + ayvgy + a1ve g + aguy — Gyt + agug — @yvr,) + G1v21 + G1wie + Gaty
— Gouy — GU1; — U3G2 + U@ + U1d3 — W1 201 + W 28) — U Gy — U1dy — U0

- U183 — v1,1G] -+ V1,182 — V1,13 + V1,102 — V120 — V1281 + Wy 20,

1,2 - = S - _
By'* = ayvqy0 — Gitl 4 Grug + 28y + Uz — UGy — U ds — Vy,182 — V1,103

1,2 — — — - - — -
L .uBz».’..z\malul..—_-:.al.ug\+.a1.u2..—i-,,al\v2;1 — QU1 — A1V,] — A1V — A1V22 + arwi 2 + aoUy
— Quy + AUy — U182 + Uya3 — U181 — UGy + Wy 201 + W1 281 — U104 — Uyd3

+ u1@y + w18 + V1,181 — U182 + V5,183 — V1201 + U128 — Wy 26
Proof: First one has to verify the following equations of functions V2 — Z/3:

nay, = dytu,

na, = dVﬁn
Anlm + GGy = dVUn,m
Anlm + Amn = dywWam

UnGm + GG, = dVﬁ’n,m-
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Then one uses these equations and dy(a,) = dv(a,) = 0 to write the expressions of
the last lemma as images of —dy, for example

aja1az = dv(uy)ay = dv(uiaz).

0

Lemma A.3. The three components of dp A'? and dpB'? in [ are given as fol-

lows:
2,2
Ay
2,2
As

2,2 _
Ayt =

B?

N s Y1V I
Bg' =

2,2
By

= —afly + a1uy — GV, — UG + U@y ~ v1,1a;
= a ) —avy, — AUy + a1v F e — @y — v + V1,18

a1vy, — @iy + G1u — 4 a; + uay + vra

—aivy + a1y — AUy + Ua — Uy — v1aq

......
T Y

= U - V1 — AU — V1) — Wt — U@ — V118 — V1,1Q

= —aq U + a1u; — a1v;,) — 1 + ura) — vy,

Proof: We have to calculate N, A;?, —(s—1)A;?+(t—1)Ay% and N,Ay? and similarly
for B. The action of ¢t and s on ay, @;, uy, %1 and v;; is trivial and on the other
terms given as follows:

t(l2
ta,
ta3
tas
tUQ
tiiy
tw 2

lwy

t'Ul‘z
t'UQ'[
t'Ug‘z

For example

= a3+ a say = a9+ 2&1

= a;+a S, = a3+ ay

= a3+ aq Sty = dagz+ a; -+ 2(_51 + 2&2
= az+a siz3 = az-+a;+a; +a
= uz+u; + w2 Stg = Uy + Uy — V2,

= Ug+ i + Wiy Sy = Uyt U+ v

= wz+ 2y swi = wig+2v)

= Wit SWiz = Wit

= v+ Y11 svig = vi2+ 2uy

= wy1 -+ V1 Svg = Uz -+t

= wvyo-+vi1t V12tV SUz2 = Vot wig+ 2w+ 201,

Slﬁl‘g(v) = ﬁ)l,z(s"lv) = —jl(jg + l]) = ’lf)],g(v) + ’UI'](U).
O

Lemma A.4. Let ch,,, be the characteristic function which is 1 on nzy + mZ,; and
0 on all other elements of V. Let dy : EX' — EZX?* be the boundary given by
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dv(f)v|w] = flw] = flv + w] + flv] on each component. Then we have the following
equations in E32;

Af'z = —da; + dv(chyy + chy 2 + chap)

A2? = dy(chyy — chay)

A§'2 = 6@, — dy(choz + chy1 + ch2:1)

Bf'z = —d6ay + dv(choa + chy1 + chay)

By = dy(chgg — chyy)

B3?* = =8ay + dv(chy,y + chy 2 + chayg)

Proof: This has to be proved by inspection. Since only the coefficients of z; and z;

of elements in V are involved, one has to check that the above functions agree on all
81 elements of {(z,,%;)> C V2. O

Finally the lemmas prove the following proposition:

Proposition A.5. The first term £ UV? in the Charlap Vasquez description of the
differential d3° is given by

A = (=80,0,6a)
B (—66_1’1,0,-'501)

APPENDIX B. THE DIFFERENTIAL FOR S*V*

Lemma B.1. Let [§] be the largest integer less than or equal to & and define the

following functions onv € V, v = 1,21 + 1282 + 1323 + "1 T1 + JoTo + JaZa:

P2 = “[H‘Jfl] g2 = _[_2__1:.1452]

P = S g = —fahy
..\...ﬁé- .E.-.,,_...[.llaj__,-z.] - .....qs... = ..,_[:‘3 2.12-;211‘%—1] ]

po = —[Bf] g = _[ithi

Then the action of t and s on terms of the form da; and §a; can be described as
follows:

téa;, = day sba; = daq

t6&1 = 6&1 5&‘11 = (S?L]

tday = dag+ da;+dvp, s8bay, = day—da; +dvg

téa; = dax+day+dvp,  s6a; = Saz+ dar + dv

t5a3 = 603 + 60,2 + dvpa S(S(lg = (503 — 6(_12 - (5(—11 + (5(11 + dvq3
tday = ébas+ dax+ dvps séay = Obas+ bdag+ da; + da, +dvis
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Proof: As in [7, 11.9): define @ mod 3 € {0,1,2} as usual and let v,v’ be two
elements of V, v = 4,2, + taxs -+ tax3 + /121 + JaZs + JaZs, v = iz + 152, + 1423 +
F1Z1 + JoZ2 + j3Z3. We will calculate the example séa;. We have

s+ 3 + 22 + 25 + 21 + 251 + 4y + 1) = S[RtRatRicel] y gpldAlib)

(43 + 242 + 271 + 1) mod 3+ (25 + 275 + 257 +¢}) mod 3

and thus

[i3+i5+2j2+2j5+2j1+2j;+£1+i’]_] _ [i3+22'3+2z'1ii] ] + [f'3+2j3'+2j']+i’1] +

3 = 3 3

[(i3+2j2+2j1+i1) mod 3+(i4-+255+235] +i}) modS]
3 .

Similarly

[f3+i§+2jz+2jé+21'1+23'{+l'1+l"l] — [fs-;fé] + 2[.1'2:1'5] + Q[irgﬁ] + [il-é-t",] +

3
[(i3+.'g } mod 3+2((ja+43) mod 3)42((/1+7]) mod 3)+(i144]) mod 3]
. et s - - - N B T 34 - 4. R TR - .A. .

B R

i1 CELE B

Finally, using these equations and recalling the definition of dv, we get

1, =1, _ [{3+2524+251+41) mod 3+(i5+255+25; +i}) mod 3
v,s v ) - [ 3 ]

'+'-I '+'J ‘+‘i '+£I . . : i 'J+2'l 2'I+"I
— [taa 3] + 2[373.12] + 2[J13A] + [:13 ,] _ [‘a+21243-211+ |] . [‘a Jg'g i 1]

séaz{v,v’) = dasz(s™

+ [(t’g-i—ié) mod 3+2((52+37;) mod 3);2((:,&) mod 3)4(i1+4]) meod 3]

= das(v,v') + 26a2(v,v") + 28a, (v, v") + da (v, v’) + dv gs(v,v’).
ad

Lemma B.2. a) The image of C and D in E}* are given by
C1? = ardvpy + ardyps — ardypy — @dy Py — @rdy s + aady by
Cy = ~ady gy ardy gy +-a1dy Go-— aady g +a1dv @z + @1dy 3 — Grdy 3s + Gadv
D}® = aydvpr + a1dvps — asdvps + @ydvp; + Gidyps — Ggdy po
D;° = —aydy gz — a1dv iy + ardy §s — azdy Gy — tndy gz + @1dv gs + G1dy Gz — Gady gy
b) The lifts of C and D to Ey* are given as follows:

17 = —(a1p2 + a1pa — aopy — @z — @13 + @)
Cy* = —(—a1q2 + @105 + 1@ — G202 + @12 + @Gy — TG + G2dl)
Di? = —(a1p2 + 13 — aaP + @1py + @1ps — dzpy)

3= —(—a1q2 — 1@ + 133 — @242 — @1q2 + G1g3 + 3132 — @2q2)
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Proof: a) We have to calculate ¢ — 1 respectively s — 1 of the terms of C' and D.
This is done easily with the last lemma.

b) Use the fact that dya; = dva; = 0 and that dy is a derivation, e.g dv(a1p2) =
dv(a1)P2 - aldv(Pz) = —GldV(P2)- D

Lemma B.3. Let z be any function on V, then we have

a)

tH{arx) = etz tae) = otz
slayz) = arsz s(aiz) = @ sz
b)
Ni(aqsz) = asNyz + aytz + 2a,t%z Ny(aqz) = Nz + aytz + 2a,t%z
(s =1)(azz) = azxs—Dz—-asz (s—1)(Gz) = a(s— 1)z + arsz
(t=1)(a2z) = at—Dz+atz (t—1)(@2) = @t-1)z+ats
No(azz) = N,z ¥ aysz +ayste "N, (aez) TETapNT st

c) We have the following identity of functions on V:

Nips = —ay Nip, = —a4
Spr—p2t+g—tgg = 0 spp—pr+q@—1tga = 0
Nyge = @ NG = —a

ps+ipa + tPps —tpp +'pr = a1 — ay
Pa + 1P + P — tha +1'hr = G — @
G+ s+ sip+sh—Sh=a+a+a
Bt sh+sB-sg+s’p=a—-a—aq
P3—sPr— Q@ — Q2 +1q2—sps — @z +1ig3 =0
Pa+spy+ @'~ Q@ +tqs — sp3 — g3 + 1g3 = 0.
Proof: a) follows because ¢ and s act trivially on a; and &.
b) is easily verified, for example
Ni(azz) = t*(a2)t*(z) + t(az)t(z) + azz
= (ag + 2a))t*(z) + (a2 + a)t(z) + azz = agN;x + 20,1tz + aytz.
c) is explicitly verified on the 3% elements of V (the identities have been found by

taking the vectors of values of these functions and finding linear relations between

them). O
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Proposition B.4. The first term £ U V3 in the Charlap Vasquez description of the
differential d5° is given by

C = (a2 —0qa,,0,—o&e — &az)

D — (CEIC_YQ + @ an, U, Qg — &1&2)

Proof: The three components are given by N;C{*#, —(s — 1)C}"* 4+ (¢ — 1)Cy*? and
N,C3? and similarly for D. This calculation and the simplifications are done with
the help of the last lemma. Finally we need that ¢ a; and —aqa, represent oy ap and

similarly for the other parts. a
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