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ON K3 OF WITT VECTORS OF LENGTH TWO OVER FINITE
FIELDS

THOMAS G EISSER

ABSTRACT. We prove that for W2(IFq ) the Witt vectors of length two over the finite
field IFq, we have Ka(W2 (IFpI )) = (Z/ p2)f EI) Z / (p2J - 1) in eharacteristie at least
5 and K3 (W2 (IF3 !)) = (Z/9)J-l EI) (Z/3)2 EI) Z/(32J - 1) for (3, f) = 1. The result
is proved by using the identity K 3 (W2(IFq )) = IJ3 (SL(H!2(IFq ))) and ealculating
the right term with a group homology speetral sequenee. Some information on the
spectral s~uenee is aehieved by using the action of the outer automorphism of 5L
~n the 'h;~~iogygroup~ '~~d'~eCe~t' res~Ü~·O'il K-g~o~p~ 'ot loe~I'-;i~lgs '~nd"the"'ri'iIg'
of dual numbers over finite fields.

1. INTRODUCTION

Some of the higher algebraic K-groups whieh ean be explieitly calculated are the
groups Ki(Op/pn) for Op a loeal field with prime p. The prime-to-p part is given by
the prime-to-p part of Ki(CJp/p) by Suslin [21]. The groups K2 (Op/pn) have been eal­
culated by Dennis and Stein [5]. In the totally ramified ease, the groups Ki(IFq [t]/t 2 )

have been determined by Hesselholt anel Madsen [10] and in the unramified case,
Evens and Friedlander [7] proved K3 (Z/p2)p = Z/p2 for p 2:: 5. In this paper we
extend this result in two ways. The main theorem is, see 6.2, 7.2:

Theorem 1.1. a) Let p ;::: 5 then

• - <_ •• _ - ..~ ..... ~~-.~ ... ,.,...-1(3 (..W2(IF1'1.) ).,=,,(ZIp2.)! EBZ / (p2! - 1).

b) Let (3, f) = 1 then

K 3 (W2 (IF3 /)) = (Z/9)!-1 EB (Z/3)2 EI1 Z/(321 - 1).

The eharacteristic 3 ease is of particular interest. It is known that Jra(im J)3, the
homotopy group of the image of the J homomorphism, gives a direct summand Z/3
of K3 (Z) = Z/48 and of K3(Za, Z3) = Za EB Z/3. On the other hand one knows
by Panin [15] that K3(Z3, Z/3) = lim K3(Z/3n

l Z/3). So the question arises at which
t-

K ey words and phrases. Higher algebraie K -theory, Hoehschild Serre spectral sequenee, Charlap­
Vasquez theory, group eohomology, linear groups, loeal rings.
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level the image of J occurs for the first time in the inverse systelll. The above theorem
says that it arises at the earliest possible level n = 2.
The proof of the theoreln uses the identity

K3 ( W2 (IFq )) = H3 ( S' L(W2(IFq ))).

The fight hand term is then calculated as in [7], [1], [14] and (19], using the Hochschild
Serre spectral sequence to the extension

Some E 2-terms in this spectfal sequence have been calculated by Lluis-Puebla [14]
and Friedlander and Parshall [8]. We need the following additional results.
On the one hand, a main lemma 4.2 teils us that thc map K 3 ( Op, Zp) -7 K3 ( Opj'P 2

)

is surjeetive. This gives an upper bound on the number of generators of K3 (Opj'P 2
),

because the groups K3 ( Op, Zp) have been calculated by Levine [13] and Bökstedt and
..... -'''''''M'adsen' '[2]: - '.' _.- --. . -.""'-'. ,_ .. '. ,., ' tI" /'. ., •., ~-;.I1' " ' ." .•

On the other hand, we use the action of the outer automorphism of SL on the terms
of the spectral sequence to show that some differentials vanish. Using the calculation
of K3 (IFq [t]ft 2) of [10], which admits a spectral sequenee with the same E2-terms, this
suffices to calculate K3 ( Op/'P2

) in characteristic at least 5.
In eharacteristic 3 we have to calculate an explicit differential in the spectral sequence.
This takes the second half of the paper anel follows ieleas of [7].
Notation: IFq denotes the field with q = pI elen1ents, Wn(R) the Witt vectors of
length n over Rand W(R) all Witt vectors. For a group 11, 11* denotes the dual
group Hom( V, QjZ) and 1Ip the p-part of V. Vn (IFq ) are the n x n-matrices of trace
zero over IFq , and V(IFq ) is the direct limit of the Vn(IFq ). We will sometimes write V
if the field in question is clear from the context. For an R-module 11 over the ring R,
ARV is the n-th exterior power anel SnV the n-th symmetrie power.
I would like to thank the following people for many helpful conversations and their

.' .patienc~.in li~t"~ning t.o...I11e:...~.G.ros"~l ...L.H.e~§ell~.~!t, M.Levine, V.Snaith. I would also
like to thank C.Stahlke for his help with thc computer ca1culations and the Harvard
Department of Mathematics for its hospitality during Iny stay.

2. !(-GROUPS AND GRaU? COHOMOLOGY

For any ring Rand n 2:: 1 the K-groups are defined to be

where GL(R) = lim GLn(R), Bis the classifying space and + Quillen's plus-construction.
--t

As BSL(R)+ is the universal covering of BGL+(R), wc gct for n 2:: 2 : Kn(R) =
7rn (B S'L+(R)).



ON ](3 OF WITI VECTORS OF LENGTH TWO OVER FINITE FIELDS 3

If K2(R)p = 0, we get from the spectral sequence to the exact sequence 0 ---+ K2(R) -t
SteR) ---+ SL(R) -+ 0 :

K3(R)p = H3(St(R))p = H3(SL(R))p

K3 (R, Z/p) = H3 (St(R), Z/p) = 1f3 (SL(R), Z/p)

and the latter sequence determines the number of generators of the former. Thus we
will be interested in the low dimensional homology groups of SL(R).
Note that by duality we have

1In(SL(R), Z/p) = Hn(S L( R), Z/p)*.

If G is torsion, we get from the long exact sequcnce to the short exact sequence
o-t Z -t Q -t QjZ -t 0 and duality that H 1(G) = 0 and that for n ;::: 2

H n
( G) = Ifn

-
1 (C, QjZ) = fln-l (G)* .

. -'," v' ,,_•.~LR...is~fini t~, .~he~gr,01JP's,"s.:Ln (R) ~re,rfini.te .a_ncl .th.lJ~. SJ;;,( fi) i~,tqr~~9,IJ, .s9,. ~.~-5~~P-,.~-l~9
use cohomology groups to calculate K-groups.
For V an abelian group, we have [3, theoreln 6.6]

Hn(V, Z/p) = EB Az/pV ® S~/pV.
a+2b=n

If V is p-torsion, we have H 1(V) = V, 1J2(\I) = A2 V [3, V 6.4]. From the long
cohomology sequence to the sequence 0 -t Z -t Z -t Z/p -t 0 we get

V* = H1(V, Z/p) -:: H 2 (V),

and the two dual sequences

o-t H 2(V) = 8V* ---+ H 2(V,Z/p) ~ If3(V) = A2 V" -t 0

and
~._ .... ,,"~,_._O ~_H2(.V) ~A2~V.~.H2P(,Z/P) -.; H1(V) = V ---+ O.

In terms of the bar resolution the map p is given by p(u 1\ v) = [u]v] - [vlu] for
u 1\ v E A2 V = H2 ( V) and a is given by 8[ulv] = [u1-[u;v]+[v]. The map p is split by

[ulv] .-+ u~v and 8 is split by p : [v] J--+ L:~:~[vljv].
Finally we get

As we are interested in Witt vectors of length two l'V2 (IFq ) over finite fields, we will
consider the low terms of the spectral sequences associated to the short exact sequence
induced by reduction lnodulo p:
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One easily verifies that X H- 1 +pX identifies matrices of trace zero V(lFq) with K.
We will sometimes switch between the additive anel multiplicative notation for K.
The sequence gives rise to the Hochschild-Serre spectral sequences

E;,q(Z) = Hp(SL(lFq), Hq(V(IFq))) =? IIp+q(SL(W2(IFq)))

E;,q(Zjp) = Hp(SL(IFq ), Hq(V(IFq), Zjp)) => }fp+q(SL(W2 (IFq)), Zjp)

and similarly for cohon10logy.

Lemma 2.1. Let M be the group 0/ all 'matrices over lFq and V be the trace zero
matrices.
a)

b)
H.(GL(IFq), M) = EI. (GL(IFq), V) ffi lJ.(GL(IFq ), IFq )

_, ',' '..", ",J~r99f:.a)..If.(!1,.q-=-J}<tr.=:=:J.,.th~ ..ru?:Rge~ ~.9l~n(m:qJ ~If;.Ls~~pllt)?,y'.:! ..~ ..~)~g(~",.~)c:_:: '''~)
and the action of IF; on H.(SLn(IFq ), Mn) induced by conjugation is trivial. As ~
has order prime to p and Mn is p-torsion, thc spectral sequence

lIi(IF:;, Hj(SLn(IFq ), Mn) => Hi+j(GLn(IFq ), Mn)

shows that H.(GLn(lFq), kIn) = H.(SLn(IFq ), Mn) anel this carries over to the limit.
b) Ir (n,p) = 1, then the trace map is split as a GL(IFq)-lnap by x H- diag(;, ... ;),
and we have

which again carries over to the limit. D

The following terms of the above spectral sequencc are known:

Proposition 2.2 .

i > 0
i ~ 2 even
otherwise
i = 0,'1

._~...,~!!L .,._!!i (§..~(~q.)" ~)p === . ..q.. ~.
b) Hi(S L('q), V) = (Zlp)!

°°(Zjp)]
(Zjp)]

c) Hi(SL(IFq),A2V) =
d) Ho(S L(IFq), S2V) =
e) Ho(SL(IFq),A3V) =

Proof: a) [16, theorem 6]
b) By lemma 2.1, a) and duality we have

Hi(SL(IFq), V) = Hi(GL(JFq), V) = Hi(GL(JFq),lvI) = Hi(GL(JFq),M·t.

As M = M·, we get the claimed result from [8, prop. 1.6)
c) [14, theorems 2.3e, 2.4b] 01' [12, theoreme 3.4)
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cl), e) [14, theorem 2.4c] 0

Remark: As [14] only contains sketches of proofs, we like to mention that the results
of this paper remain valid if in d) and e) wc only know that the homology groups
have p-rank at least f.

But we have the SL(IFq )-invariant linear forms SZlI ~ V ~ IFq ~ Z/3 and

A3V abc-bac) V ~ IFq -+ Z/3, proving that 110(S L(IFq ), S2V*) and HO(S L(IFq ), A3 V*)
have dimension at least f over Z/p.

Ifwe denote Hz(SL(lFq ),i\211) by H we thus get

Corollary 2.3. a) The [010 terms in the speet1'al seq'llence Hp(S L(Ti'q), Hq(V))p =>
Hp+q(SL(Wz(Ti'q)))p a'te

3 (Z/p)2!
2 0 0 H

-1" ,,··,.,...,.II:O........... I-·'IiI· t '·0" "(Z'1i3)f04 "0'" "(Z1p)'I ~

0 Z 0 0 0 0
0 1 2 3 4

b) The 1010 terms in the spectral sequence Hp(S L(Ti'q), Hq(lI, Z/p)) => Hp+q(S L(W2(Ti'q )), Z/p)
are

3 (Z/p)2!
2 0 0 (Z/p)/ EB H
1 0 0 (Z/p)l 0 (Z/p)f
0 7l/p 0 0 0 0

0 1 2 3 4

3. K-GROUPS OF LOCAL RINGS

In this seetion we will recall same results on K-groups of dual numbers and loeal rings
and relate them to thc Lichtenbaum-Quillen conjectures.
-Bi Süslin '[2i] we .l<nö·w-lhat"fö-tä"'loc·äl ring'Op"with quotient field IFq and m prime
to p we have

Ki ( Op, Z/m) = Ki(lFq , ZI1n).

Thus we will be only interested in the p-part of K-groups, as the prime to p-part is
known by Quillen [16, theorem 8].
Similarly, Panin [15] has shown that

Ki(Op,Z/pn) = limKi(Oph{,Z/pn),
~

which allows us to relate K-groups of loeal rings to K-groups of their quotients.
The following two theorems have been proved by cornparison of K-theory with topO­
logical eyc1ie homology:
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Theorem 3.1. [10] Let k be a finite field oJ chm'actel'istic p =J. 2, then

K2n (k [t] j (t2
) ) p = 0

K2n_1(k[t]j(e))p = Ef7 lV"j(k).
(i,2)=1

Here Si is giuen by ip6;-1 ::; n < ip"i.

Theorem 3.2. [2] Let Oll be an unramified extension of7lp, p ~ 3, 01 degree I. Then
we haue

K 2n ( 0lll Zp) == 1r2n-1 (im J)p

K 2n- 1(Opl 7l p) == 7l{ EB 1r2n-l (inl J)p.

Here im J is the image 01 the J -spectrum, i. C. 1r4n-l (im J)p = (7l1dn)p, where dn is
the denominator 01 the Bemoulli-nu1nber !!.n..

n

.~ ~ "h""·"":«<-i·';"·For\l'I<'3;,)the4 Iast,"theorem'·has'-'also,-,beeIl"rproven...bY~Jbev.ine+13] .. ,. '"",,.,., '., - ".... ....i-­
Let compare the last theorem with the LichtenbauI11-Quillen conjectures:
Since we have by the localization sequence for n ~ 2

Kn(Oll, Zp) == Kn(!(p,Zp)

for !(p the quotient fielel of Op, we can consider the K-groups of !(ll'
One formulation of the Lichtenbaum-Qu illen conjectures in this case is that that
natural surjection [6]

p : Ki(!(Pl Zp) -r Ki t
( [(ll)

is an isomorphism for sufficiently large i. By the splitting of the Dwyer-Friedlander
spectral sequence for K:t, [20 , theorem 1], wc have

K~~(I(p) == HO(I(lll Zp(n)) EB H 2(J(p, 7l p(n +1))

K~~_1 (I<p) == H 1(I<pl Zp(n)) .

..... "NöW"blle"can"con'dude-from"'the'results"in "[1'7, par. 3] that

HO(/(Pl Zp(n)) == 0

H 1(I(p,7l p(n)) = Zpl EBZ/wn(I(ll)

H2 (Kp,Zp(n + 1)) == HO(Kll,rJJ.pjZp(-n))'" == Z/w_n(Kp).

Here wn(I(ll) == max{pi : [J(p(ppJ') : !(p]ln}.

Conjecture 3.3. (Lichtenbaum-Quillen conject7l,re 101' loeal fields)

1(2n(Op, Zp) = Zjwn ( [(p)

K2n-dOp, Zp) = Z~ EB Z/wn(!(p).
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If the field [(p is unraluificd, we havc [Kp(ppJ') : J(p] = (p _1)pi-l, so that

for (p - 1) An
for(p-l)ln

l -I .... ~ t.... ~ ,

[12, prop. 1.2]

[12, tlH~oreme 3.4]

In particular we see that the above surjections p IUUSt be isomorphisms.
We also have ,an action of Adams operators on both thc I<-groups and on the con­
stituents of the Dwyer-Friedlander spectral sequence. The Adams operator 'ljJk acts
like kn on Hi(K Z (n)) = E i ,-2n = Ei.-2n see [20 prop 2 theorem 1] so we get·p, p 2 00' , ., , •

Proposition 3.4. Let Op be an unramified extension oJZp and p 2:: 3. Then we have

1(2n(Op, Zp) = 1(2n(Op, Zp)(n+1)

K2n- l (Op, Zp) = 1<2n-l (Op, Zp)(n)

... ,4:~- THE' coj(ERNEL OF~ i(~( 6~'1p·rf·~· j(;CO~lpri) ....".,."., 'W .,,~, " ~ , •

Let Op be a finite extension of Zp with ramification index e and residue degree
f. We will" examine the cokernel C~ of thc maps K3(Opjpr) --+ K 3(Opjpn). We
assurne' for simplicity K2(Opjpr) = 0, which is for example true in case Op does
not contain p-th roots of unity 01' if r < ~e, [5, theorenl 5.1]. This implies that
1(3(Opjpr) = 113 (SL(Opjpr)) and similarly for K3 ( OpjP").

Proposition 4.1. Let n ::; r ::; 2n and K2( Opjpr) = O. Then the cokernel of the map
K 3 ( Opjpr) --+ K3(Opjpn) equals !1Op/pn ®Op/pn pn jpr = OpjpC, where c = min( r ­
n, d, (n - 1) + vp(n)), d the exponent of the discri-minant o/Op.

Proof: Consider the spectral sequence of homology groups for the short exact se­
quence of groups

Since r ::; 2n, the map A f---1- 1 + A induces an isomorphism between V(pn jpr), the
trace zero matrices with entries in pn jpr, and N~. Thus lil (N~) = V (pn jpr) and we
have H2(N~) = A2V(pn jpr), [3, theorem 6.4]. This gives HS

E;.o = HdSL(Opjpn)) = SL(Op/pn)ab = 0

E~,o = H2(SL(Op/pn)) = K2 (Opjp") = 0

E50 = H3 (S L(Opjpn)) = K 3 ( Opjpn),

E5.1 = IIo(SL(Opjpn), V(pn jl{)) = 0

E6.2 = Ho(S L(Opjp"), A2V(pn /pr)) = 0
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2 0
1 0 Er 1

0 Z 0 0 K3 (Op/pn)
0 1 2 3

So we get the short exact sequenee

d'J.

K3 ( Op/pr) -+ K3 ( Op/pn)~ E;,l -+ O.

By [12, theoreme 2.16] we have:

E;,1 = II1(SL(Op/pn), V(pnjpr)) = OOp/pn 0op/pn pn/pr.

For the last equation of the proposition we have OOp = Op/pdd7f for 7f a uniformizer
of Op, d the valuation of the discriminant, and e - 1 ::; d ::; e - 1 + vp( e), [18,
prop.13,14]. We have the exact sequence

>, •.. ~. ", • '..... ' '.\' ""pn}p2n'~''fro~~'0''ö';''O~/pn':..:r~no-pip',; 2"t-.O,·~'·

where o(x) = dx 0 1. From d7f n = n7fn
-

1d7f we get

n _ Op/p
d
d7f ®op Opjpn = Op/tJmin(n,d,(n-l)+vp(n))

Op/pn - Opd7fn 0 1

hence
OOp/pn ® pn /pr = Op/pc

with c = min(n, l' - n, d, (n - 1) +vp(V)) = Inin(1' - n, d, (n - 1) +vll(n)) as r ::; 2n.
D

Corollary 4.2. 11 Oll is un1'amifiedJ then K3 ( Op/pr) --+ K3 ( Op/pn) is s'UT'jectiue foT'
all r > n. Consequently K3 ( Op, Zp) SUT'jeets onto K3 ( Opjpn)p .

. _. "'""'P~a'""~f: 'sf~c~h;~~'ö,ti'ie-'m~p--K;Tb~lp~;t+l'r~}C3( Op/pn) is surjective and the first
claim follows. As the map is an isomorphism outside panel for the p-part surjeetiv­
ity anel surjeetivity mod p are equivalent, the seeond clailTI follows from (see [15])
K3 ( Op, Zp)jp = K3 ( Op, Z/p) = lim K3 ( Op/pr 1 Z/p) = lim K3(Opjpr)/p, because if all

f- f-

maps in an inverse system are surjective then thc map from the inverse limit to a
member of the systeITI is surjective. 0

More generally, for T' not neeessarily less than or equal 2n , the term E5,zj im ~,1 =
Ho(S L(Op/pn), H2(V(tJ n /pr)))/ im 4,1 gives an extra contribution to the eokernel.
For example for e > r, the groups C~ grow regularly by (Z/p)J for T' = n +
1, ' .. , min(2n, 2n - 1 +vp(n)) (beeause Op/pc = ~) until they reach F;in(n,n-l+vp(n))
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and the El,rcontribution is exhausted. Then there is an irregular contribution com­
ing from EO,2/ im ~,1' In case Op sufficiently ramified (i.e. e > T), we eventually get
K3 (Op/pO

) = C~, and the precise pattern can be read of from [11,3.4].
For example C~ grows for the following r:

p = 3, n = 5 : 6,7,8,9,12,18,27,81

p = 3, n = 9: 10,11,12,13,14,15,16,17,18,21,24,27,36,45,54,81

p = 5, n = 5 :

p = 5, n = 6:

6,7,8,9,10,15,20,25

7,8,9,10,11,15,20,25,50,125

5. THE OUTER AUTOMORPHISM

T : SL{R) -t SL{R)
A f---+ tA-I

induces an automorphism of order 2 on hOlll01ogy groups with coefficients in any
self-dual representation. For R = IFq and aS coefficients the homology groups of
the adjoint representation V, the automorphism is compatible with the stabilization
maps SLo(R) -t SLn+1(R).
For the extension 1 -+ V(IFq ) -+ SL(W2 {IFq )) -+ S'L(IFq ) -+ 1 the induced action
on V is gi yen by A f---+ - tA. The automorphism in cl uces a map on t he spectral se­
quences, all terms of the spectral sequence decomposc into +- and --eigenspaces and
the differentials respect this decomposition. The action corresponds to the Adams
operator 'l/J-l on K-groups, because changing the R-module structure on a projective

, ·... ,~,~-- ..... module..by..T...corresponds..to.going..to~the.dual module. Thus the +-eigenspaces under
. T correspond to even Adams eigenspaces and the --eigenspaces correspond to odd

Adams eigenspaces.
We will determine the action of T on some of the E 2-terms:

Proposition 5.1. a) The automoTphism T acts Hke +1 on Ho(S L(IFq ), A3 V) and on
Ho(S'L{JFq ), S'2V).
b) Forn ~ 2 and p ~ n, T acts like (_1)0 on H2n - 2 (SL(IFq ), V) = JFq .

Proof: a) We prove the dual cohomological result. The stabilization maps
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are isomorphisms, as one sees with the diagram

A3 V; abc-ba') V2 ~ IFq ----+ Z/3

1 1 1 1
A3 Vn

abc-bac) Vn ~ IFq ----+ Z/3

and silnilarly for S2V*. But on thc SLTlevel T is an inner automorphism, thus the
action must be trivial.
b) Will be proved in the remainder of this section.
By [19, theorem 7.6} we can always go to a bigger field and thus assume that 2n - 2 <
j(2p - 3) - 2. By duality and lemma 2.1 wc havc

H2n- 2(S L(fq), V) = H 2n- 2(SL(IFq), V·)* = f/2n-2( GL(IFq), M·r

and since we assume 2n - 2 < min(2p -1, j(2p - 3) - 2) we know by [8] that we have

H2n- 2(GL(IFq ), M) = H2n-2(BnCflq), Mn) = IFq ,

where Bn (lFq ) is the Borel subgroup of upper triangular matrices.
Instead of T we consider the composition u of T with conj ugation by 9, where 9 = (ai,j)
with ai,j = 1 for j + i = n +1 and 0 otherwise, because u respects the Borel subgroup.
An easy calculation shows that u acts on 1\1n = kerGLn (W2 (IFq )) -t GLn(IFq ) by
(ai,j) -f (-an+l-j,n+l-d (i.e. -1 times the reflection on the diagonal (1, n) ... (n, 1)),
since T( ai,j) = -(ai,j)t and Intg induces a turn by 180 clegree.
We define the following u-invariant deseending filtration on Mn:

F$Mn = {(ai,j)lai,i = 0 for i - j 2: n - s}.

The associatec graded pieces are isomorphie to

gr$ kIn = {(ai,j)lai,j = 0 for i - j =I- 12 - oS - I}.

Lemma 5.2.
for s = 2n - 2

otherwise

Proof: To compute the cohomology of Bn with coefficients in the graded pieces we
use the "symbolic weight equations" of [8]:
First note that for Un the unipotent subgroup of Bn and Tn its torus, we have

H 2n- 2(Bn,gr" Mn) = H 2n- 2(Un,gr" /vln)Tn = (If2n- 2(un , IFq ) ®Fq gr$ Mn)Tn.

The first equation follows because tbe order of Tn is pritne to p and gr' Mn is a
p-torsion group. The second equation follows because Un acts triviallyon gr" Mn.
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In [8] one sees that Un admits a filtration such that we have for the graded pieces
gr Un = IF;;(n-l)/2 and for the cohomology H2n-2 (Un , JFq ) = H2n-2(gr Un , JFq ). On the
other hand the cohomology of gr Un is given by

HO. (gr Un, JFq ) = AFq (\In) ~Fq SFq (Wn),

where Vn has a basis {ai,;!l ::; i < j ::; n,O ::; s < J} and is of degree 1, and Wn has
a basis {bi,jJ1 ::; i < j :::; n,O :::; s < f} anel is of degree 2. The Tn-action on this
ring is given by the conelition that ai,j and bi,j have weight -p8

O:i,j, where ai,j is the
character (tl) . .. ,tn ) t-+ ti/tj. We write this symbolically as

[ai,j] = [bi,j] = _p8[i] + pS[j].

The Tn-action on eu,v E gr8 Mn (U - V = n - 8 -1) is given by au,v, so it has symbolic
weight [u] - [V]. We want to determine

(H2n- 2(gr Un, 'fq ) ~Fq gr" Mn )Tn
•

~ tU" ~~1 1. -""'~"'''1\.t.1~''~, t. r ~4._ ",,~ ~ ..I l,~ ~ .,.,r.l'~ ~r.....a:.lr,iII,) .. tn.. ~ ...:..... .,.....~I .L· ......u- 411 111~ '1-, ~ ~''''' ~ 4 __ J .• .......... ...,~ - ...- ~ ..4 ~J1.IJ:r--t!t:,._l.~~J- .,. l' ~ ~

As Tn acts like scalars on all basis elements of H 2n-2(gr Un, JFq ) and gr8 Mn, it suffices
to consider monomials of the form

z = al~l)" 1\ ... 1\ al~m)" ~ bk
t1

1 ~ ••• @bk
t
: 1 0 e u v E Arm Vn 0 SFr Wn 0 gr" Mn

1,1 m,m 1,1 r,r' q q

for m + 21' = 2n - 2 and U - V = n - s - 1 in order to get all Tn-invariant elements.
The monoITIial z has symbolic weight

n

[z] = _p81[i 1] +p81[jd - ... +ptr [lr] + [u] - [v} =: L gere}.
e=1

Obviously the sum of the positive ge equals minus the sum of the negative ge' In
order for z to be Tn-invariant, we need ge =0 ITIod pI - 1 for all e.
Let LI be the smallest subscript occurring. Ir g/t = 0, we must have u = LI and the
only a and b occurring with LI as the first subscript is a?l,k

1
01' b?l,kl for some kl.

In this case let i 2 be the next smallest subscript occurring. Again, if gl2 = 0, then
'[2 -;;·l~··an(r"fhere'isaf·rrios"f~öö.eä?2~k;"ör"'b?;,k~' occul'ring for some k2 • Continuing in
this fashion, we either find a smallest L such that gl f:. 0 , and all but one coefficients
of [L] are negative (and the positive coefficient can only be 1), 01' all ge = 0 and z is
made from elements cD

t 1 ,co/ 1 l' •• ,cID I with u = 11 < 12 ••• < lm+l = v. Clearly
1,2 2,3 m,m+1

m +1 :::; lm+l :::; n, on the other hand deg z = 2n - 2 :::; 2m, so we conclude m = n -1,
Li = i and

z = b~,2 ~ ... 0 b~-I,n @ et,n·

Thus we find a unique basic element in H2n-2(Bn1 gr" M) for s = 2n - 2.
In case there is a smallest I such that 91 f:. 0 we siJnilarly find a largest j such that
9j f:. 0, and all but one coefficients of j are positive (and the one exception can only
be -1).
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Consider the minimal p-adic expression

1-1

Igel = L ge,l/P
v
,

v=o

where Ininimal means that L:.ge,v is minimal. We have

1-1
-gi = Lg"vplJ == 0 mod pI -1.

v=o

Because g, =f:. 0 and z has 2n - 2 factors with coefficients at most p!-l, we have
-gi:::; (2n-2)p!-1:::; (2p-2)p!-1 < 2(p! -1). So -gi =p! -1 and wecanconclude
Lg"v 2:: f(p - 1). Similarly we get E9j,v 2:: f(p - 1).
Let 1 be the number of factors of z of the fonn ar,i and bi,i' then the surn of degrees of
these terms is f +2( I - f), as there are at most f factors of this form of cohomological

.... ~ .......'""'._-degree-l~Since..·tthe...number..-of.....faoteFS"wi th...an..l-oGGur.r~ ng...aa ...a-s \ol bsc.cipt..is.a.t ~least' .... -". I:f'

"L 9l,In we get

2n - 2 = degz 2:: (L9l,v - I) + (L:9j,v - I) + (f +2(1 - f)) ~ f(2p - 3),

contradicting 2n - 2 < f(2p - 3) - 2.

We now consider the spectral sequence to the filtration F" Mn,

From

o

for .9 = 2n - 2

otherwise

H 2n- 2(Bn,gr2n- 2 Mn) = E;n-2,O = E;:-2,O = 112n-2(Bn, Mn) = IFq

and we can calculate the action of a on H2n-2(Bn,gr" Mn)'
But as H 2n-2(Bn, Mn) =H2n-2(Bn, IFqel,n) is generated by the cocycle

z = b~,2 Q9 , . , (9 b~-l,n (9 el,n,

we have to calculate the action of a on z. An easy calculation shows that a(el,n) =
-el,n and a(bi,j) = -bn+1-j,n+l-i. As the bi,j C0I11111ute we get a(z) = (_l)n-l+l z ,
which was to be proven. 0



ON 1<3 OF WITT VECTORS OF LENGTH T\VO OVER FINITE FIELDS 13

6. K 3(W2(lFq )) FOR. CHAR IFq =1= 3

Proposition 6.1. For p 2. 3 we have the following +-eigenspaces under T in the
spectral sequence Ili (5L(fFp/ ), Hj(V))p => Jli+j(5L(H12 (lFp / )))p:

3 (Zjp)2!
2 0 0 (Zjp)!
1 0 0 (ZjpF 0 0
0 Z 0 0 0 0

0 1 2 3 4

Proof: This is an immediate consequence of 2.3 and 5.1 except from the identity
(Ei.2)+ = H+ = (Zjp)!. For this consider the extension

.~.,:~. ,}~··:t",,4he~cor'f.esp(}nding~peGtFalof-8equence.has.·the..same,E2~ter.ms,as. the,specttal.,sequence .
to the extension 0 ---+ V --+ 5 L(W2(IFq )) --+ S'L(IFp ! ) ---+ 0, since the action of S L(lFp ! )

on V is the adjoint action in both cases. The differentials are different, however, as
the latter sequence does not split whereas the former does.
From # K3 (IFp / (t)jt2) = p2! we conclude that Er3 = (Zjp)! and thus that ~,2 has
rank f. On the other hand we know that K4 (IFp / (t]/t 2) = 0, so Ef:2 = O. As there
are no nonzero differentials cnding in E2,2, we conclude H+ = (Zjp)!. 0

Theorem 6.2. Let p 2 5 then

K3 (W2 (IFp!)) = (Zj p2)! ffi Zj(p2! - 1).

Proof: By Suslins result the prime to p-part is the same as for IFq • For the p-part let
us first determine the +-eigenspaces. By 4.2 and 3.2 we know that K3 (W2 (IFp / ))p has

.. ~-- ~·---at ...m0st, ..f... generators;, ,,::rh is..forces ...the.,differential ~ 2 in 6.1 to be injective. Thus we
are left with a group with f generators and two gra~led pieces isomorphie to (71jp)!,
giving the desired result for the +-eigenspaces.
As K3(W2 (lFp! ))p has at IllOSt f generators and the +-eigenspace already has f gen­
erators, we conclude that the --eigenspace is trivial. 0

7. 1(3 (W2(lFq )) FOR. CHAR IFq = 3

In this section we detenlline J(3 (lV2 (IF3 ! )) for (3, f) = 1. The problem in characteristic
3 is that there might be f + 1 generators instead of.f generators and so the differential
~.2 in 6.1 may not be injective (and similar in the n10d 3 spectral sequence).
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It turns out that cohomological calculations are easier than homological calculations,
so [rOIn now on we work with cohomology groups. The dual of 6.1 gives us the
following E2-terms in the spectral sequences:

3 (Z/3)2J

2 0 0 (Z/3)2!
1 0 0 (Z/3)! 0 0
0 Z 0 0 0 0

0 1 2 3 4

4 (71/3)2J

3 0 0 (Z/3)f
2 0 0 (Z/3)f 0 0
1 0 0 0 0 0 0
0 Z 0 0 0 0 0
.. . 0 " ]" -"'·"2' "-", '3"' '4~ 'S'

In order to determine If3 (SL(W2(IF3f )),Z/3) and H4(SL(W2 (IF3f )))3, we have to'
calculate the differentials

~,3 : H O(SL(IF3f), H3(V, 7l/3)) --+

+
~,4 : HO(SL(IF3f), H4 (V)) --+

fl 2(SL(IF3f), H2 (V, Z/3))

1·
112(S L(JF3 ! ), H3 (V))

The calculations will be similar to the calculations in (7, paI'.9-11]. The idea is to
use stability to reduce to the SL2-level first, and then make the calculations for a
3-Sylow group. However, as we are in characteristic 3, the short exact sequence

splits. Thus we would have to work on the S L3-level. Instead we make calculations
for W2 (IFg ) and deduce results for lF3 , because the 3-Sylow group of SL2 (IFg ) is abelian
and has only rank 2.
We choose a basis {I, z} of IFg over IF3 such that Z2 = -1, and consider the following
short exact sequence

1 ---+ V2 -+ U -+ P ---+ 1,

where U is the 3-Sylow subgroup of SL 2(W2 (IFg )) consisting of matrices

(
1 + 3a b )

3e 1 +3d '
a + d - be =0 mod 3.
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We get the following diagram

HO(SL(rlg ), H3 (V, Z/3)) ~ HZ (S L(IF9 ), HZ (V, Z /3) ) ~ HZ(SL(JFg ), H3 (V))

~100 ~1°' ~1°,
HO( S Lz(JFg ), H3

( Vz 1 7l /3))
d HZ(S Lz(JFg ), HZ(\Iz, 7l /3)) 8 HZ(SLz(JFg ), H3 (\!2))-----t ---+

lßo 1 1ßo

HO(P, H3 (\Iz, Z/3))
d H2 (P, If2 (V2 , Z/3))

8
H 2 (P, H 3 (Vz))---+ -----t

The map 0'0 is an isolnorphism as in the proof of 5.1(a). To show that 0'1 and 0'2 are
isomorphisms consider the following diagranl:

112(SLz(JFg ), Vz*) ~ j{2(SL2(IFg ),A2Y;*).

By [8, prop 1.6] and 2.1 the map 1 is an isonl0rphism. On the other hand the lower
map 7], induced by a 1\ b I---t ab - ba, is split by the map induced by eij I---t ~ Lk eik 1\ ekj

and thus injective. Since all groups in the diagralll equal lFg , we see that 0'2 is an

isomorphism. As 0'1 is thc direct SUln of 0'2 and " it must be an isomorphism too.
The I11apS ßo and ß2 are injective as P is a. 3-Sylow group of SL2(lFg ).

These considerations show that we can calculate the differential in the lower row of
the image of ßo 00'0'

From now on we will write V for V2 , as there is llO danger of confusion.
We have

HO(SL 2 (JF9 ), If3 (V,Z/3)) = (A3 V*)Slr.z(Fg
) EB (SzV*)S~(F9).

A basis of invariants is given by

,. ,- _. ,- ~ -. '---' •.- ><jJ';,,"j\3 V" .. abc-bac) V ~. JF
g

-4 Z/3

1/; : 52V ~ V -!..4 JFg 2, Z/3,

where X runs through a basis of linear fonns. If we choose the linear forms Xl
a +bz I---t a and X2 : a +bz t-+ b as a basis, we find the following basic invariant forms:

A := -Xl 0 'P, B:= X2 0 'P, C:= XI 0 'IjJ, D:= Xz o 1/;.

Proposition 7.1. a)

K3 (vV2 (JF9 )) = Z/9 EB Z/3 EB Z/3 EB Z/80

b)
K3(Z/9) = Z/3 EB Z/3 EB Z/8.
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Proof: a) Consider the spectral sequence

E~,i (71 /3) = I{i (P, Hi (V, 7l /3)) => Jli+i (U, 7l /3)

and its differential

~,3 : Eg,3(Z/3) = (7t/3)4 --+ Ei,2(71/3) = (71/3)4.

We will see in 10.1 that 4,3(A +C) = 0, so (4,3 has rank at most 3. On the other
hand it has rank at least 3, because K3(W2 (IFq )) has at most 3 generators by 4.2 and
3.2. So the nUITIber of generators of K3 (W2 (IFg )) is 3.
Now consider the spectral sequence

E~,i(Z) = Hi(P, Hi(V)) => Hi+i(U)

with differential

~,4 : E~,4(Z) = (Z/3)4 --+ E~,3(Z) = (Z/3)2 .

...... 1 "./.- '''We'''will''see 'in 10"J <rtliaf~,4CArai{d.-,~,4(Br afe"lineäi~lY' jnd'ep-enaent~sö.....~,4{Z')~lias'·
rank 2, and thc cardinality ofK3 (W2 (IFg )h is 34

.

b) The inclusion i : Z/9 --+ W2(IF3f ) induces the natural map i* : K3 (Z/9) --+
!(3(W2(IF3f )). On the other hand we have the transfer map i* : K3 (W2(IF3f)) --+
K3 (Z/9) induced by considering a W2 (IF3 f )-ITIodule as a Z/9-module. As W2 (iF3 f) is
a free Z/9-n1odule of rank f, we have that i* 0 i. is multiplication by f.
Consider now the following diagram

~ K3 (l'V(IFg ), Z/3)

~1
K3 (Z/9, Z/3)~ K3 (W2 (IFg ), Z/3).

As the upper horizontal arrow is injective and thc right vertical arrow is an isomor­
phism by a), the left vertical surjection must be an isomorphism and thus K3 (Z/9)
has· 2 generat-ü'rs": ~ - .-., ~~_...- ~

For the number of elements we use the following diagram:

HO(SL(IFg), lI4(V(~g))) ~

;,1
H2(SL(IFg ), H3(V(IFg ))) = (71/3)2

;,1
H O(SL(rl3), H 4 (V(IF3 )))~ lf2 (SL(iF3 ), j{3(V(IF3 ))) = Z/3.

By the dual of [19, theorem 7.6] the vertical maps are surjective. And according
to (a) the upper horizontal map is surjective, so thc lower horizontal ffiap must be
surjective as weIl and thus the cardinality or K3 (Z/9h is 9. D
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Theorem 7.2. Let (3, f) = 1, then we haue

Proof: As in the above proposition we can conelude from (3, f) = 1 that the natural
map i. maps (71../3)2 = K3(71../9h to a direct sUITII11and of K3(H/2 (IF3! )h. We know
by 6.1 that it is 9-torsion and has at least 32J elements. As it has at most f + 1
generators by 4.2 and 3.2, the theorem folIows. 0

Remark: The result K3(Z3, Z3) = Z3 EB 7l/3 of {2] contradicts the results of (ll.
Similarly, our result on J(3(Z/9) contradicts the result K3(Z/9h = Z/9 of (I]. The
problem seems to be in [1, prop.II 4.5] .

• 9-· .......... _ "' ...., .....,-.."8 ;~...eÄt'CU l;ATION'''OF "THE"DIFFERE NT JA L""'4,;3,,, ,N"CH~'R:ACTERI STIC· 3 .." '." ."'

Recall that we want to calculate a differential in a spectral sequence for the extension

1 -+ V ----t U -+ P -+ 1,

where U is the 3-Sylow subgroup of S L2(H12 (IFg )) such that P consists of matrices of
thc form

x E IFg •

We choose for P the basis

We also choose inverse images of t anel s in U of the same form. For V we take as a
basis the matrices (written multiplicatively)

Xl =
3
1
z n

1 + 3z -3z )
o 1- 3z

1 3Z)o 1 .
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Ifwe order this basis as (Xh'~I,X2,X2,X3,.1;3)' then the action oft- 1 and 8- 1 is given
by the matrices

1 0 O. 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0

t- I = 1 0 1 0 0 0 -1 0 -1 1 0 0 0
0 1 0 1 0 0 8 = 1 0 0 1 0 0
0 0 1 0 1 0 I -1 0 -1 1 0
0 0 0 1 0 1 1 1 1 0 0 1

for example the second column in 8- 1 is obtained by

'.. ,IJ~we, d~note. the du~l,basis (o( V~ qy. ,gI ,'~l ,,~2, .(~b, P3, 03, .t~~1~ .the a~~iC?~. ~.f ( ~nd.. s
on V* is given by the transpose of the above nlatrices.

Proposition 8.1. The jo/lowing are bases and dual bases tor hOlnology and cohomol­
ogy groups 0/ V:

HI(V, Z/p) :
Hl(V, Z/p) :
Hz(V,71/p) :

Xi, Xi

O'i, ai

XinXj,XinXj
Xi n Xj

p(xd, p(xd
ai U aj,aj U 0j

ai U aj
o(ad, J(Oi)

Xl n Xz n X3, Xl n X2 n :1: 3
• _r ~T' .L'. ·Xi~n-Xj n Xk,·Xi n Xj n Xk

Xi n p(Xj), Xi n p(Xj), Xi n p(Xj), i\ n p(Xj)
0'1 U 0'2 U 0'3,01 U 02 U 03

O'i U O'j U &k, 0i U aj U O'k

O'j U o(O'j), ai U o(CYj), üi U o(Oj), Ö'i U J(aj)

i < j

i < j

i < j

i<j

Proof: This follows from explicit formulas for the cup and the Pontrjagin product,
see {3, V.3,V.5]. An analogue result is [7, prop 10.3,10.4]. 0

We will frequently use the graded commutativity of the cup and Pontrjagin product
and identify terms, e.g. when we write X3 n X2 n .7;1 we mean the basis elelnent
-Xl n X2 n X3.
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Note that by construction of the Bockstein homomorphism we have for v, v' E V,
v = ilXl +izxz +i3X3 +jl Xl + jzxz + j3 X3 anel V' = i~ Xl +i~xz+i~X3+j~ Xl +j~xz+j~X3;

OCfk([vlv']) = [ik~ik], OQk([vlv1) = [jk~jk].

Proposition 8.2. The jo/lowing are a descdption 0/ thc S L(IFg )-invariant forms
A,B,C and D in terms 0/ our basis 0/ H3(V,Z/3):

A = 0'10'Z0'3 - O'l O'Z0'3 - 0IO'Z O'3 - 0'1O'ZO'3

B = ÖlO'ZÖ3 - ÖIO'Z0'3 - 0'10'Z0:3 - 010:Z0'3

C = 0'300:1 +Cfl J0'3 - ozJO'z - 0'100'Z - O'ZJCfl

- 0300'1 - Öl JO'3 +OZO&Z +&1 06'Z + &ZO&1

D = 0'306'1 + 0'1 JO'3 - O'ZOo'z - 0'1 Jäz - O'ZOÖ'l

+ Q3J O'1 + O'l 0a3 - O'z60'z - Öl 60'2 - Ö'ZOO'l

Proof: Recall that A, B, C and D are expl'essions of the form
- • 4 • ,. ~ • ~ • J ~, • ..... ' • j '111 ~' ~ ... _ lo" - I • ~ ........"•• I. ..... t

A3V abc-bac) V -.!; IFg -+ 7l/3

52 y ~ V ~ IFg -+ 7l/3.

Now wejust have to calculate the effect of these n1aps on aur basis af A3V respectively
5zy (written additively). For example

A(Xl nXZnX3)=

- Xl 0 tr( (~ nu=~)un-(~ =~) (~ nun)
= -Xl 0 tr( (~ ~1) - (~ n) = -XI(-2) = -1,

so we get a contributian -al ('(Za3 for A. 0

9. THE CHARLAP-VASQUES DESCRIPTION OF THE DIFFERENTIAL

In a situation like aurs, Charlap and Vasquez [4] dcscribed the differential

~,q : E~,q(Z/p) -t E~+Z,q-l(71/p)

as follows:
Considering the following cup product

HP( P, Hq (Y, 7l /3)) 0 H2(P, Hq-l (V, 7l /3) 0 Irq (V, Z/3)) ~ IIp+2 (P, !iq- 1 (V, Z/3)),

the differential is gi yen by

~.q(~) = (-l)P~ U (Vq- Q.. (X))'



20 THOMAS G EISSER

Here X E H 2 (P, V) is the cohomology dass of the extension and Q. tbe functor
H2(P, -) applied to the following map Q induced by Pontrjagin multiplication from
the right:

V = Hl (V, Z/3) ~ HOmZj3(Hq- 1 (V, Z/3), Hq(V, Z/3)) = Hq-l(V, Z/3)® Hq(V, Z/3).

On the other hand vq is universal in thc sense that it only depends on the action of
P on V and not on the specific extension. lJ\Te will calculate the term ~ U V q in the
next section by explicitly calculating the differential in the spectral sequence for the
split extension.
In this section we are going to calculate thc term ~ U Q",(X). To do this we have to
determine the dass X of the extension, calculate Q. of X and calculate the above cup
product.

For the cohomology of P we have the following results:
As P is the direct product of the cyclic groups T = (t) and S = (s), we will use
.the ten~or pI:oduct, pfthe minimal resql\l~i.ollSo( r.a.~~q S ~ .o~r r~s<?,l'!tio.n..?f,_P:c; th~
minitnal resolution of T is given by

E. = ... ~ Z[T]~ Z[T] !!4 Z[T]~ Z[T] -t °
where Nt = 1 + t + t2

, and similarly we have thc n1inimal resolution F. for S. The
tensor product of the two resolutions is giVCll by

(E. ® F.)n = EB Ep 0 Fq ,

p+q=n

d(e 0 f) = de 0 f + (_l)degee 0 df.

Note that Z[P] = Z[T x S] = Z[T] 0 Z[S], so in low degrees thc resolution is given
by

... -r Z[PP (Nt,O),(-"+I,t-l),(O,N~)) Z[?]2 t-t,.,-\ Z[P] -r 0.

The cohomology of P with coefficients in the module lV! is givcn by the homology
of the complex Yq = Homz[p](Z[P]q+l, M). \Ve will identify a Z[P]-linear homomor­
phism Z[P]q+1 with the q + I-tupels of images of 1, ordered in the following way:
'Eq~0"Fo;Eq_'1- 0 F1--, • -:.'. . ~ ., ••• -, .....

Lemma 9.1. a) H 2 (P, V) = (Z/3)2, a basis for cycles is given by

(X3,0,0),(X3,O,0),(O,O,X3),(O,0,X3)

and a basis of boundaries is given by (X3, 0, -X3), (X3, 0, X3).
b) H 2(P, V·) = (Z/3)2 J a basis for cycles is given by

(at, 0,0), (Öl, 0,0), (0,0, at), (0,0, öd
and a basis 01 bO'llndaries is given by (al, 0, al), (0'1,0, -a.).
c) H 2 (P,A 2V"') = (Z/3)2J a basisfor cycles is given by

(Q'IO'2 + 0'1 a2, 0, 0), (0'10'2 - 0'10'2,0,0), (0, 0, a. 0'2 - 0:1ä 2), (0,0,0'1 ä 2 +ÖI0'2)
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and a basis oJ boundaries is given by

Proof: The cycles are given by tri pies (a, b, c) such that

o= (t - 1)a = (s - 1)a + Nt b = - N 8 b+ (t - 1)c = (s - 1)c

and thc boundaries are given by tripies

(Nt x, (t - l)y - (oS - 1)x, lV,Y) .

The action of P on V and V· is given by t and s resp. tt- 1 and t S-1, the action of
P on 1\2V· has to be calculated. We have chosen representants such that the second
component is always trivial. 0

Since the cocyle of our extension is most easily given in terms of the bar resolution,

. , "Y~ need ~ ~9~paris9n.J~e_~ween.the. fI1~!1illF!J ~I).1.ba~. ~~~?!.u.~~~~~f()! ~cy.~li~c .g;~?~ps:

Lemma 9.2. The JoUowing is an augmentation ]Jreserving chain map Jrom the min­
imal to the bar resolution 0/ a cyclic group 0/ order lH with genel'ator t (necessarily
being a homotopy equivalence [3, I 7.5]): In odd degree we take the map

Z[T] -+ Z[T][T2n+l]
1 t-+ L:[tlti1Itlti;z I.. ·Itin It]

und in even degree
Z[T] -t Z[T][T2n)

1 t-+ L:[t i1 It It i2 1... lt in It]
The sum goes ovel' aU n-tuples (i 1 , .•• , in) E {O"" ,ln - l}n.

Proof: Easy verification by induction. o

Let U be an extension of P by V and choose a lift a of each element a of P in U.
The~ -t'h~ c~~y~l~~ ~~r~~';p~~di~gt~ th~C~;te~~i~r; 15 gi Yen by

- - -1
[alb] t-+ ab(ab) .

Lemma 9.3. A 1'epresentant 0/ the class X 0/OU1' extension in Homz[p](Z[P]3, V) is
given by (-X3, 0, -X3)'

Proof: We have to take the tensor product of thc above Il1aps froin the minimal to
the bar resolution for the groups T and Sand calculate the dass of the cocyde in
the bar resolution. For the first component we get

Z[P] -+ Z[F)[P X P)
1 t-+ I:;=:o[tilt]
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anel for our choice of the lift of t we have

~ -~) = -X3 für i = 2

0
1 °

1
) otherwise.

Similarly, we get for the second component

h-+ [tls] M U-~) u-n (~ z + ~ ) = 1

and for the third component

The next step is to calculate Q.(x) of this element.

Len1n1a 9.4. The e/elnent Q.(X) E H2 (P, lf3 ( V, Z /3) ® If 2
( V, Z /3)) is represented

by (u,O,v), whel'e

u = -(Xl n X2 n X3) ® 0'1 U 0'2 - L:(Xi n Xj n X3) @ D:i U 0:;
i:;i:3

- L:(Xi n Xj n X3) C:9 O:i U Ctj - 1: X3 n p(Xi) C:9 OO'i - L: X3 n P(Xi) 0 0Cti,
i<j

v = -(Xl n X2 n X3) C:9 Ctl U Ct2 - L:(Xi n Xj n X3) @ Öi U O'j

i:;i:3

- L:(Xi n Xj n X3) 0 O'i U aj - L X3 n p(Xi) ® OO'i - L X3 n P(Xi) @ OÖj.
.. "'<:.j' . ", ~_.. • _,., , .,-,..' .•~ "." - ,. ~.,. -- .

Proof: Ta get the components of Q.(X), we have to determine what the cup product
with (-X3, 0, -X3) does on a basis of H2(V, Z/3). For example, -X3 sends Xi n Xj
to -Xi n Xj n X3 and thus gives a contribution -Xi n Xj n X3 ® O'i U O:j to u, or -X3
sends PXi to -PXinX3 = -X3npXi and thus gives a contribution -X3npXi@oai to V. 0

Finally we have to calculate the cup product ~ U Q.. (X). For this we have ta go into
the definition of the cup product:
The cup product of two cocycles a E Hom{Yi, M) anel b E Hom(Yj, N) is represented
by the map

aa U b ; Yi+ j -+ Yi 0 Yj --+ A1 C:9 N,
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where ~ is a "diagonal approximation" ,[3, V.3]. For a cyclic group with generator t
a diagonal approximation is given in [3, VI]:

1
1 ® 1 z even

6 ij (1) = 1 0 t. . i even ,j odd

Li<j t l ® tJ i, J' odd

We have to work with the tensor product of the approximations for T and S: let
E. be the resolution for T and F. be the resolution for S. Then an elements eE
HO(P, H3(V, Z/3)) is represented by a map sending 1 ® 1 E Eo 0 Fo to some cocycle
w in H 3 (V, Z/3). On the other hand we just calculated that Q*(X) is represented by
the map sending (101,1 ® 1,1(1) E (E2 0 Fo) ffi (E1 0 Fd ffi (Ea® F2) to (u, 0, v) in
If2(V, 7l/3) (3) H3 (V, 7l/3). Thus a representant of the cup product has the following
three components:

E2 0 Fo fie9~\ E2 0 Fo 0 Eo ® Fa -+ H2(V, Z/3) 0 H3 (V, Z/3) 0 H 3(V, Z/3)
- r (3) T' M . 'I 0"1 ®-1"l2j 1 . -8 < 'u 0 w

EI ® Fl (3) Eo ® Fa
1010t®s

-+ H2(V, Z/3) 0 H3 (V, Z/3) (3) H3 (V, Z/3)
M 00 tsw

Eo ® F2 .:.\0~\ Eo ® F2 0 Eo (3) Fo -+ f]2(V, Z/3) ® H3 (V, Z/3) (3) H3(V, Z/3)
101 M 1010101 t-+ v0w

Evaluating U (3) wand v 0 w we get

Proposition 9.5. The second term ~ U (-Q*(X)) in the ChaTlap Vasquez description
0/ the differentiaL ~,3 is given by

A M (-al U 0'2 +Öl U Ö2 ,0, Öl U 0'2 + 0'1 U (2)

B l--t (01 U Ö2 + Öl U a2 ,0, 0'1 U 02 - a} u (2)

C l--t (Ja} ,0, -Jö})
D t-+ (Ja} ,0, oO't}

10. THE DIFFERENTIAL FOR THE SPLIT EXTENSION

Let 0 be the split extension of P by V. Let Xn = Z [V][Vn
] be the bar resolution of

V. There is an action of P on X. by

p *v[vl1v21·· ·Ivn ] = p(v)[P(vdlp(v2)1·· ·Ip(vn )],

which is compatible with tbe differential and the augnlentation. Let Y. be the minimal
resolution of P, i.e. the tensor product of the miniInal resolutions of T and S. Then
Y. 0 X. is a Z[Ü]-module via the natural action

p(y 0 x) = p(y) 0 p(x), v(y 0 x) = y (3) vx.

Furthermore Y. 0 X. is a Z[ü]-free resolution of Z, [7, prop 11.1].
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Thus we can calculate the cohomology H* (0, Z /3) as the homology of the double
complex

C.. = Homz[O](Y. 0 X., 7l/3) = HOIllZ[Pj(Y., Homz[V)(X., Z/3)).

This double complex yields a spectral sequence with

E~,q = Homz[p](~, Homz[V](Xq,Z/3))

E~,q = HP(P, Hq(V, Z/3))

and limit Hto tal ( C) = H*(0, Z /3). One sees as in (7, prop 11.2] that this spectral
sequence is the same as the Hochschild-Serre spectral sequence to the extension 1 -+
V-tU-+P-+l.
The differential for the spectral sequence to the above double complex is calculated
as follows see [9, 4.8]:
Let dII be the vertical and dI be the horizontal differential.

dII=-dv1
E1,2 d1=d p ) E2,2

Elements of Z~,3 are of the form x = XO,3 + x 1,2 such that dII xo,3 = 0 and dIIx 1,2 +
d1xo,3 = O. They can be identified modulo boundaries with HO(P, H3(V, Z/3)) by
projection to XO,3. The differential of x is given by

d(x) = (dI + dII )(xO,3 + X 1,2) = dI x o,3 + dII xO,3 + dIx 1,2 + dU X 1,2 = dIx 1,2.

In our case 0' E {A, B, C, D} we have duO' = 0 and we have to find an element
ß E E6,2 such that dIIß + dIa = O. Then we have to calculate dIß and the resulting
element of E5,2 will represent an element of lI2 (P, H2 (V, Z/3)).
As we have

- ._. -'. ' ~- - ~ ~ .. ~E~'q-=-Höiii.'Z[pj(Z,[p]P+l ;·HOffiz[V] (Xq,Z /3)),

we will identify a Z[P]-linear homomorphism Z[P]p+l -+ Homz[p)(Xq, Z/3) with the
p+l-tupel of images of 1. Similarly we have I-Iomz[V](Xq,Z/3) = Homz[V](Z[V][vq], 7l/3)
anel we will ielentify an element of this group with a map vq -+ Z/3.
So for a representant of a we have to calculate dIa = dpO'. With the above identifi­
cations this element has components dp(O'h = (t - 1)0', and dp(ah = (s - 1)0'.
Then we have to find an element ß of E~,2 such that -dllß = dvß = dIa' The
differential dv is given by

dv(J)[alblc] = J[a[b] - J[a + blc] + J[alb + c] - J[blc]

on each component.
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The next step is to calculate the differential d] = dp of ß = (ßl, ß2): With the above
identifications it has the three components l\'t(ßd, -(8 -l)ßl + (t -1)ß2 and NlJ (ß2)
respectively.
Finally we will show that that some of the resulting cocycles become zero in E~,2 =
H 2 (P, H 2 (V, Z/3)) by exhibiting them as boundaries from E~,t.

We will proceed for A, B E (A3 V*)P and C, D E (S2V*)P separately. We will only
give the results of the calculation and indicate how the calculations can be done. All
verifications are left to the reader.
The following will be the result of the next sections:

Proposition 10.1. Let A, B, C and D as in proposition 8.2. Then the three compo­
nents for the differential in E~,2(Z/3) are:

....

A: (-0'10'2 + Öta2 - bO'I

B: (alÖ2+al0'2-bal

C: (bO'I+(110'2-alÖ2

D : ' ~ (Jal + (YI02 + Qt0'2

,0, Öt(Y2 + 0'1 Ö 2 + bad
,0, 0'10'2 - ÖI02 - oal)
,0, -oal - 0'1 <5:2 - 0:1(}:2)

; O,' . -Oal- +. äi0:2---'::(j'ia2)'·· -....

b) Th e thTee components 0 f the differential in E~' 2(Z) are given by

A: (-(YI0'2 +<5: t <5:2 ,0, &t0'2 + 0:10:2)

B: (O:t02 + Ot(12 ,0, (tl0'2 - 01 ( 2)
C: (0'1(}:2 - 01 0 2 ,0, -O:t 0 2 - 6'10:2)

D: (aIÖ2+0:10:2 ,0, 0't0:2 - O:t ( 2)

Proof: a) 9.5, A.5, BA
b) Obvious from a). o

ApPENDIX A. THE DIFFERENTIAL FOR A3 l/*

Let ai be O'i considered as a map V -+ 7l/3. Then aiajak : V3 --t 7l/3 represents
·Ct'.iO!J O'k ~etc::' .... . _. -- .~- ,_<0 -- ••• - ... -. ~ ... "~.. ~. _ •• _. -

Lemma A.1. The image of A and B in E6,3 are given by

Ai,3 = atala2 +alala3 +ala2a2 - al(lla2 - al(lIU3 - at(l2(l2 - (llala2 - äl a l ä3

- at(l2a 2 - a t at(L2 - lZlala3 - lZta2a2

A~,3 = -at a l a l - ata t a 2 - atatat - al a tQ.3 + at a 2a t - al a 2lZ t - at a 2a 2 - allIlat

- alat a 3 + at ä l at + al at a 2 - at a2a t - at ä2a2 - at lZ 2al - at a t a l - al a t a 3

+ atatat + ä t a 1ä2 - Q,t a2a t - al a2a2 - at a2ä t +atatat + at ä l a 2 + atatal

+ at UI ä3 - {Lt a2 a l + {LI a2UI + al a2a2
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B:,3 = -at a t ä2 - at a t a3 - at a2a2 - at ä t a2 - aläta3 - at ä2a2 -li}ata2 - ät a t a3

- (Lt(L2 a2 +ä ta1ä2 +at Uta3 + (i} a2a 2

B:,3 = -at a t a l - at a t a3 +atatat +at a t a2 - at(L2at - at a2a2 - ala2at + alalal

+atata2 +alalat +alala3 - alazat + atäzät + ala2a2 + (italal +ßta t a2

+älalat +alala3 - al aza t + alazä l +ala2a Z +alalat + atal a3 - (ilalat

- atUlaZ +ala2a l + ßt a Za 2 + al ä2a t·

Proof: One has to calculate t - 1 and s - 1 of A and B. o

Lemn1a A.2. Define the Jollowing maps V -+ Z/3 /01' V = itXt + i2 X 2 +i3X3 +)13;t +
)Z X2 +)33;3

Un(V) =)~
· "w'-n~,m(v') ., - . ,= "-JnJm ...

ll n ( v) = i~,

'ivn,~(v) ~:;·-'i';i~,

Vn,m (v) = -ZnJm

Then the Jollowing are lifts oJ A and B to E6,2,
dp Bo,3 :

Z.C. dv A t ,2 = dp Ao,3 and dv B 1,2 =

A~'z = -atUt + at V2,t +at V2,2 + a2u I - a!'üz +a!'u2 - alVt,t +alv2,1 + atWt2 + a2üI

- a2Ut - aZVI,t - Ut a2 + Ülat + Ul a 3 - 1üI,Zat + 1ül,2at - u\al - Ul a 2 - Utal

- Ullh - Vt,lal + Vt,t a 2 - Vt,l a 3 + Vt,t(Lz - VI,2a t - Vt,Zat +Wl,Z a l

B t,z - - + + - - - + - + - -
~.... Tl' , z·· ,.= .. -..alUt·,--.·a I'UZ '. .al·UZ" -.a I'V2;t~· azU1-· -;- al v 1,1 - al Vz, I - al V2,Z U1Wl ,z azu 1

- azUt +a2V I,1 - UIUZ +Üt a3 - ulä l - Ulaz + 1il l ,2a l + WI,2al - Ulal - Ut a3

+ Ulal + u l ä2 + Vt,lal - VI,la2 + VI,t a 3 - VI,Zal +VI,2ä l - WI,Zat

Proof: First one has to verify the following equations of functions V 2 -+ Z /3:

anan = dvu n

änan = dvun

anäm +aman = dvvn m,

anam +aman = dvwn,m

ßnam + (iman = dvw n m',
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Then one uses these equations and dv(a n ) = dv(an ) = 0 to write the expressions of
the last lemma as images of -dv , for example

alala2 = dv (ud a2 = dv (ula2).

o

Lemma A.3. The three components 0/ dpA 1,2 and dpB I ,2 in E5,2 are gzven as /ol­
lows:

Ai,2 = -alül + alUI - alVI,l - ulal + ulal - Vl,lal

A2
2

,2 = alul - alvl I - alUI + alVI 1 +Ulal - 1llal - vllal +Vllal
t ~ ,t

A 3
Z

,z = alvl I - alUl +alUl - Ülal + 'UIUI + Vt lai, ,

B1
2

,2 = -al VI I + UIÜI - alUl + UIUI - UIUI - vilal, ,

Proof: We have to calculate NtA~'Z, -(s-l)A~'Z+(t-l)A~'Zand N.. A~'Z and similarly
for B. The action of t and s on aI, CiI, UI, UI and VI,I is trivial and on the other
terms given as follows:

iaz = az + al SflZ =
tCiz = az + Ci l säz =
ta3 a3 + az S(l3 =
ich = a3 + äz SU3 =
tuz Uz + UI + WI,Z SUz

tüz Uz + ih + Wl,Z SUz

tWl,2 = WI,Z + 2Ul SWI,Z =
~t1!.t,~ . := tUI Z + 2ÜI SWI,2

... -4 ••' ~., ....~_. . ... ~ .................... 'ft'o'" ...... _w
tVI,Z VI,Z + Vl,l SV},Z

tV2,1 = VZ,l + Vl,l SVZ,I =
tV2,Z = Vz,z + VI,l +Vl,Z +VZ.I SVZ,Z =

aZ + 2ä l

äz + al

a3 +a} + 2clt + 2az

a3 +Ci} + al + az

Uz +UI - VZ,t

Üz +UI + Vl,2

Wl,2 + 2VI,1

101,2 + VI,I

VI,2 + 2Ul

VZ,1 + 1ll
Vz,z + Wl,Z + 2üit,z + 2Vl,1

For example

o

Lemma A.4. Let chn,m be the characteristic /unciion which is 1 on nXI + mXI and
o on alt other elements 0/ V. Let dv : E6,1 -+ E5'z be the boundary given by
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dv(f)[vlw) = J[w] - J[v + w) + J[v] on each component. Then we haue the Jollowing
equations in E~,2:

Ai,2 = -Jat + dv (chl,l + chl ,2 + ch2,o)

A~,2 = dv (ch t ,2 - ch2,d
A;,2 = Olll - dv (cho,2 + Cht,l + ch2,d
B;,2 = -Jal +dv (ChO,2 + chl,t + ch2,d
B~,2 = dv (ch2,z - cht,d

B~'z = -Jat +dv (chl,l + chl,2 + ch2,o)

Proof: This has to be proved by inspection. Since only the coefficients of Xl and Xl

of elements in V are involved, one has to check that the above functions agree on all
81 elements of (Xl, XI)2 ~ V 2

• D
.... 11 Ir< .....

Then the action
fol/ows:

Finally the lemmas prove the following proposition:

Proposition A.5. The first term ~ U V3 in lhe Charlap Vasquez description 0/ the
differential ~,3 is given by

A f-t (-oO't, 0, Jöd
B f-t (-Oal' 0, -oaI)

ApPENDIX B. THE DIFFERENTIAL FOR S2V·

Lernrna B .1. Let [~] be the largest integer Iess lhan 01' equal to ~ and defin e the
/ollowing Junctions on v E V J v = ilXt + i ZX 2+ i3X 3+ jtXI + j2x2 + j3X3:

pz = - [!l±!L] qz = - [irl.lli ]
pz = _[ili] qz = _[h~il]

~""P3~ .~._~=["ia.:k.] - ···-(13'" == .-- [i3~2h+zh +i 1 ]

P3 = -[$] q3 = _[33+ i#!11+ i J]

0/ t and s on terms 0/ the forln oai and Jai can be described as

toat Jat Saat Jal
tJal = Oat sJat oat
tJa2 - Jaz + oat + dvpz soaz = 8a2 - Jal + dV q2
tJaz = O(1z + Jät + dvpz soaz oaz + oat +dvfh
toa3 = oa3 + oa2 + dv P3 soa3 = oa3 - oa2 - Jat + oat + dV Q3
toa3 oa3 + oaz + dV P3 soa3 oa3 + Oetz + oat + oät + dviiJ



ON K 3 OF WI'IT VECTOM OF LENGTH TWO OVER FINITE FIELDS 29

Proof: As in [7, 11.9): define a mod 3 E {O, 1, 2} as usual and let v, V' be two
elements of V, v = itxI + i2X2 + i3X3 + jtXI + j2X2 + ]3X3, v' = i; Xl + i;X2 + i;X3 +
j~ Xt +j~X2 + j~X3' We will calculate the exaluple soa3. We have

i 3 + i~ + 2j2 + 2j~ +2jl + 2j~ + i 1 +i; = 3[i3±21212iJ til) + 3[ i~t2j2~2j: ti;) +

(i3 + 2j2 + 2jl + iI) luod 3 + (i; + 2j~ + 2j~ + i;) mod 3

and thus

[i3ti3+2h+2j~~2it+2j; fit +ii ] = [i3+2h~2jl ±il ] + [i3+2j2~2j: +ii ] +
[(i3+2h+2i1 +id find 3~(i3+2;~+2;1 fit) mnd 3].

Similarly

[i3+i3t2h+2j2~2it+2J'I+il+ii]= [i3 ;ia] +2[1:2;;;] +2[jl~j:] + [il~ii] +
, '. , • ,1,', ~ • '.' •••• [(~3~i~l.. m~d ~+?((.htj~~ .~~..d 3),~:(~~I~~J).~~~~....3)~f:~,~~]) ...~~d .3) ..

Finally, using these equations and recalling the definition of dv , we get

r ( ') _ r (-1 -1 ') _ [(i3+2h+2it+h) mod3+(ia+2j;t2;;+ii) mod3]SUa3 v, v - Ua3 S v, S v - 3

= [i3~i3] + 2[j~~j2) + 2[jl~jl] + [il~i!] _ [i3t2h~2h+il] _ (i3+2j;~2ji+ii]

+ [(i3+i~) mnd 3±2((j~+ji) mnd 3)~2((jltj:) mnd 3)±(i1tii) mnd 3]

= Ja3(V, V') + 2Ja2(V, v') +2Jat(v, V') + Jat(v, V') + dVq3(V, V').

o

Lemma B.2. a) The image 0/ C and D in Eci,3 are given by

Ct,3 = a1dv P2 + a1dv P3 - a2dvP2 - atdVP2 - a1d\rp3 + a2dvP2

C~,3-=':""atdvq2"+"at'dvq3'+"aldvih'-'a2dvq2 +·a 1dv Q2 + atdvih - o'ldv ii3 + a2dvih

D~,3 = at dVP2 +a1dv P3 - a2dvP2 +at dVP2 +o't dVP3 - 0'2 dVP2

D;,3 = -a1dv Q2 - atdvih + atdviiJ - a2 dv ih - a1dv Q2 + a1dv Q3 + atdvih - a2dvQ2

b) The lifts of C and D to Eci,2 are given as /ollows:

C:·2 = -(alP2 + atP3 - a2P2 - alP2 - adh + a2P2)

C~,2 = -( -alQ2 + alQ3 + alqz - a2(}2 + alCjZ +alqz - G.tq3 + ä2qz)

D~,2 = -(ati5z + atP3 - a2pZ + atP2 + atP3 - a2P2)

D~,2 = -( -atq2 - alqz + atq3 - (lzqz - alq2 +alq3 + alq2 - a2q2)
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Proof: a) We have to calculate t - 1 respectively S - 1 of thc terms of C and D.
This is done easily with the last lemma.
b) Use the fact that dvai = dvai = 0 and that dv is a derivation, e.g dv (alP2) =
dv (aI)P2 - a1dv (P2) = -aldv (P2)' 0

Lemma B.3. Let x be any funetion on V, then we have
a)

b)

t(alX) - altx
s(alx) = alSx

t(älx)
s(alx) =

Nt(a2X) = a2!'·ltx + altx + 2alt2x Nt(a2x) CL2Ntx + CLltX + 2alt2X
(s -1)(a2x) = a2(s - l)x - alSX (8 - 1)(a2x) ä2(s - l)x + alsx

.(~".-:-}),(~2~) ... , " a2(t - l)x + altx (t - 1)(a2x ) a2(t - l)x + altx
N~(a2x) = ·~;N;'X'+~lS·x·+··a~s2xl "'-'NsCCi2'i)~ --'~--"(12N;:zr-f·äi·sx-"':'''ais2x·

c) We have the following identity of funetiol1s on V:

Nt P2
SP2 - P2 + q2 - tq2

N~q2

= -al
= 0

= (11

Näh - -al
SP2 - jh + ih - tth 0

N$th = -al

t2 2P3 + t]J3 + P3 - tP2 +t P2 = al - a2

P3 + tP3 + t2p3 - tih + t2jh = Ci l - (12

q3 + Sq3 + S2 q3 + sth - s2(h = al + (LI + a2

ih + sth + s2 th - SQ2 + S2 q2 = Ci l - al - a2

P3 - SP2 - q2 - q2 + tq2 - SP3 - q3 + tq3 = 0

P3' + SP2--+ q2 -....: 1h +·tqi - sß3' -' q3 + tq3 = O.

Proof: a) follows because t and S act triviallyon al and al'
b) is easily verified, for example

Nt (a2x) = t 2(a2)t2(x) + t(a2)t(x) + a2X

= (a2 + 2aI)e(x) + (a2 + a.)t(x) + a2x = a2Ntx + 2a I t
2x + altx.

c) is explicitly verified on the 36 elements of V (the identities have been found by
taking the vectors of values of these functions anel finding linear relations between
them). 0
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Proposition B.4. The first term ~ U V 3 in the Charlap Vasquez description 0/ the
differential c4,3 is given by

C I---t (al a 2 - QI Q 2, 0, -al 0 2 - Ql(2)

D I---t (al Q2 +Qla2, 0, ala2 - 010:2)

Proof: The three components are given by Nt C;,2, -(s - 1)C;,2 + (t - 1)C~,2 and
NaCj,2 and similarly for D. This calculation and the simplifications are done with
thc help of the last lemma. Finally we need that (LI (l2 and -a2al represent al0'2 and
similarly far the ather parts. 0
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