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Let G be a p-solvable group of order pam.
(p,m)=1, and let t=tp(G} denote the nilpotence index
of the Jacobson radical J(FG) of the group algebra
FG, where F denotes a field of characteristic p .
It is well-known and easy to see that t 2z a(p-1)+1
(this follows e.g. from Lemma 1.1 below) anﬁ that equa-
lity holds if the Sylow p-subgroups of G are elemen-
tary abelian. The converse need not be true: the first
known counterexample was G=S4 ;, the symmetric group on
four letters, with p=2 [6] , and later counterexamples
were constructed for each prime p by Motose [5]. In
this note we prove the following result which contains

all examples constructed so far (Theorem 2.7):



Assume G = N»#H is a semidirect product with N
a p~group and H = Q=#M a Frobenius group with kernel
Q a p'-group and M a p-group. Then tP(G) = tp(ﬂ) +

i+

+ £,(M)-1 holds if and only if o (o) 1/ (uN) is a

iz0
semisimple FH-module under the conjugation action of

H on N.

Here, N denotes the augmentation ideal of FHN.

Notations and Conventions. Throughout this note, G

will be a finite group and F will be a field of cha-
racteristic p>0 . All PG-modules are assumed to be
finitely generated right modules, and I denotes the
trivial one-dimensional FG-module. J(FG) and uG
denote the Jacobson radical, resp. the augmentation
ideal, of FG. For any FG-module V , £(V} is the
Loewy length of V , i.e, the smallest integer ¢

such that V-J(FG)Y=0 . Furthermore, P, (V) and (V)

will be the projective cover, resp. the Heller module

of V . Thus BG(V) < PG{V)-J(FG) and there is an
exact sequence 0 —-—>RG{V) -—-?PG(V} >V > 0, Fi-

nally, omitting reference to p which is fixed in the
following, we set t(G) = L£(FG) , the nilpotence index

of J(FG) . The remaining notation is as in ([7].



§ 1. Normal Subgroups

In this section, we study the situation where V
is an FG-module and N is a normal subgroup of G ac~
ting trivially on VvV . Thus V can be viewed as either
a G-module or a G/N-module, and we compare the Loewy

lengths of the corresponding projective covers.

OQur first lemma extends [9, Lemma 3.41.

Lemma 1.1. Let N be a normal subgroup of G

and let V be an FG-module with NskerG(V) . Then

i. PG/N(V)sPG(V?/PG(V)~mN H

ii. E(pg(WM))zL(p (V))+£(PN(I))~1-

G/N

Proof. Set P=P,(V) , H=G/N and let :FG~—>FH
denote the canonical map with kernel (wN)FG . Note
that J(FG)=J(FH) . (Images of semisimple Artinian rings

are semisimple Artinian.) Since P-J(FG) 20, (V)2P.uN ,

we have a map of FH~modules P/P.uwN —>»>V whose kernel
QG (V) /P.uN is contained in (P/P-uN)-J(FG)=(P/P-uN) -
«J(FH}) . As P/P.-uN is projective over FH , we ob~

tain the isomorphism PH(V}QP/P~mN  which proves (i).

Now write ¢ = L£(P,(V)) and £,=£(Pp(I)). Then
it follows from the foregoing that PoJ{EG)£“1 3;?~mﬁ .



A A
But P . wN = ann N , where N = X n €FN . Indeed
P neEN

since P 1is projective over FN, this follows from

A

the fact that aN = annFNH [7, Lemma 3.1.2]. Note

A =1
further that N € J(FN}fN , since viewing PN(I) as

A
a summand of FN we have F.N= socle PN(I) =PN(I) .

=1 £-1
- J(FN) " < J(FM) ¥ | We deduce that

£+ fﬁ-Z -1 A
P » J{(FG) 2 P - J{(FG) - N % 0 . This proves
(ii). o

We remark that if N , or G/N , is a p'-group
then the inequality in (ii) becomes an equality. More
generally, if J(FPN).J(FG) = J(FG) -J(FN) in the situ-

ation of Lemma 1.1, then we have
l(PG(V)) S l(PG/N(V)) . Z(PN(I)) .

For, part (i) above implies that PG(V) . J(FG)Q' <

PG(V) « N = PG(V) +J(FN), where we have set

=1 in

= I’(PG/N (V)) and where the latter equality holds
since PG(V) r as an FN-module, is isomorphic to a

direct sum of copies of PN(I) .

If N is a p~-group then Lemma 1.1 can be streng-
thened as follows. Recall that t(G) denotes the nil-

potence index of J (FG) .



Lemma 1.2. Let N be a normal p-subgroup of G
and let V be an FG-module with NskerG(V) . View FN

as an FG-module via conjugation of G on N.

i. For all 120 we have FG-isomorphisms
i P (V) - (o) *
4 (V) o loM) . G
G/N F i+l

(wN) P (V) - () **

where PG/N(V) is viewed as an FG-module by letting

N act trivially.

(V) @FYQ

ii. L(PG(V)) z t(M)-1 + mzf K(PG/N

(v OFX)) 7

2 t{(N)-1 + mzf X(PG/N

where X runs over the FG-composition factors of FN,

Proof. Let P = PG(V) and H = G/N . For each

120 we have an F-epimorphism g; ¢ Pa% (mN)l'—9>

—>»> P .(mN)i ;s Pea > po , which is in fact FG-1li-
near if G acts by conjugation on (u¥) . Thus we

obtain FG-epimorphisms

- i
5 e lmi o PpMT st
. F (mN)i+1 PwF(wN)l+1 p.(wN)l+1'



i
Since g, annihilates P .uN & jEELT__ and
i F (mN)1+1

PH(V) = P/P.wN , by Lemma 1.1, Ei defines an FG-

epimorphism

i i
(uN) * P - (uN)
£ :‘P {V) B e P D e .
i H F {NN)1+1 p '(wN)l+1

To see that fi is injective, note that, as FN-mo-
dules, P}N = P,(V) &, FN with the regular action of

FN on FN. Indeed, by Lemma 1.1(1i),

PH(V)QFFN
. ¥
( PH (V)@F FN) *uN

P/P - uN = PH(V}E

and hence P{N ¢ P,(V) @, FN , since both sides are pro-
jective over FN, and oN = J{FN) . It follows that

£ is an isomorphism, and part (i) is proved.

i



For {ii), set

i i
i H F (mN)1+1 P ’(mN}l+?

If m<4;, then PN .J(Fa™ ¢p. (@it -

= a.nnP(mN)t(l\”"l"1 , where the latter equality follows

from [2, p. 261] , since P is free over FN. Thus we

conclude that
Pe (o)t ape)® e () EM 1T L
and so £(P) > t (N)+m - 1 . Therefore, £(P)z2t(N)+2-1,

where L= m?Xﬂi. . Finally, since PH(V) is projec-

tive over FH , we have

114

i i+1
? Py (V) oy (wN) "/ {wN) § PulV) o X,

where X runs over the composition factors of FN.

Hence 1t = égx £(PH(V)®FX) . Since PH(VGFK) is a sum-

mand of PH(V)@FX , we also have 2 a«Z(PH(VQFx)),

This completes the proof of ({ii}). o



The following example illustrates the difference

between the estimates provided by Lemmas 1.1.and 1.2.

Example 1.3. Let G = 54 be the symmetric group

on four letters and let char F = 2 . Then G=V£!GL2(2)

and there are two irreducible FG-modules, namely I
and the canonical 2-dimensional module for H=GL2(2) '

denoted by 2. We have

I I
P - - = .
H(I) T PH(?.) 2 , and FV, III

Thus Lemma 1.1 yields £(PG(ID 2 4 and X(PG(Zn 2 3.,

However, as FG-module, FV, = (IH)G = and so

4

N

Lemma 1.2 implies
£(PG{2n z 3 + £(PH(2@2))~1 .

Since 202 =2e we obtain K(PG(2)) 24 . We will

I
T’
see shortly that, in fact,Z(PG(I))=£(PG(2})=4 ;, a result
due to Motose and Ninomiya [6]. A detailed discussion
of the Loewy and socle series of P.(I) and P;(2)

can be found in [2, p. 214 - 218].

For simplicity of formulation, we restrict ourselves
to the case of an irreducible FG-module V in the follo-

wing lemma.



This is of course no real loss, since for any V we
have PG(V) = g PG(X) where X runs over the simple
components of V/V - J(FG) , with multiplicities. Also,
it would be enough to assume that 1-» U(FN)- U(FN)G-»G~
-» 1 splits , where U(.) denotes the group of units,
but for simplicity we assume G to be a semidirect

product.

Lemma 1.4. Let N be a normal p-subgroup of G

and assume that G = N» H for some H £ G. .Let V be

an irreducible FG-module.

. . G « o

i. PG(V)- (IH) o PH(V), where N acts trivially
on PH(V).

ii. R(RG(V)) 2 £(P (V) + t((vH)G)—1 i

iii. PFor each iz0 let Vi denote the FG~module

i
vV, = Vo L)) R— , where G acts by conjugation on
1 F (mN)l+1
(o)
(mN)i+1 . Then

L)% z em) -1+ max BV, .

In particular, Z((VH}G) = t£(N) 4if and only if all Vi

are semisimple.



_ G - G -
Proof. Set Tw(IH) @FPH(V)=(PH(V){H) and J=J(FG).
Then T/T-J = T/T-mN/ToJ/T~ wN =Py (V) /B (V) - J(FH) =V .

Since T is projective, it follows that T = PG(V) SO
that (i) holds.

If g = K(PH(V)) then, by part (i},

2=1_ G, . ;21 ) -1,
Pg(V)-37 = (P (Vi@ (1) ") -3 '2(Py(V)eIy)-J(FH) " FN

1

= 2= - - . ~ G
—(PH(V)J(FH) QIH) FN—(V@IH) FN—(VH) .

Assertion (ii) follows. As to {iii), note that

G i
(V) - (wN)
v = H .

G - |
(Vﬁ) « {uN)

i

c .
£(V,) then (V,)°* (uM)™ - J(FG)" &

t(N)-i-1

Thus 1if m < zi

i+1

$ (VH)G- {wN) = ann(v )G (wN) . Here, the
H

latter equality follows from [2, p. 261] , since (VH)G

is free over PFN. Therefore, £((VH)G)2t(N)+zi-1 for

all i . Since the last assertion is clear, the lemma

is proved. o

Example 1.5. Set G = (CBxCB) X SL2(3) . with

the canonical action of H=SL2(3) on N=03xc3 , and

let char ? = 3 , The irreducible FG~modules all come



from FH and are : I , the canonical 2-dimensional
FH-module, 2, and 3 which is induced to H from a non~
trivial 1-dimensional module for the quaternion group

Q8 £ H . One checks that t{(N) = 5 and &(H) =3 ,
and so the lower bound for £(PG(V)), ve {1,2,3} ,
provided by Lemma 1.2 (ii) can at most be 7. However,

for Vv = 2, Lemma 1.4 gives Z(PG(Z)) 2 9 ., Indeed,

. I {(1=0,4)
(mN)l .
—_— = 2 (i=1,3)
(o) +*1
3 (i=2 )

Hence, in the notation of part (iii), we have

Vz = 2 8 3 =

LS g N

so that £((2H)G) 27 and £(Pg(2))29.

Actually, equality holds here and even +t{G) = 9 (see

Example 2.5} .

§ 2. Groups of p-Length 2

Our goal here is to show that, under certain cir-
cumstances, the inequality of Lemma 1.4(ii) does in fact
become an equality. For example, thié is always the case
if H 1is p-nilpotent with elementary abelian Sylow

p-subgroups {(Corollary 2.4).



Lemma 2.1. Let V and W be FPG-modules. Set

1

i
v = £(V), w= £{W) and Ti‘ = YJ &

Wl
i+1

— (0Sisv-1,
I vg Fowgd*

0sjsw~1}, where J = J(FG) . Then

viw~-2 )
LV e W) < § max {Z(‘I‘ij) li + 3 = 2} .
£=0
- i 3
Proof. Set Uij VI L W3- . Then Uij 2
3Ui+1,j + Ui,j+1 and Uij/Ui+1,j + Ui,j+1 2 Tij .
Now let g = X U,. for 0s2s v+tw-1 . Then

L i+g=g 1]

U, = Ve W, andthe

cu <
viw-1 = Tviw-2 — - -

canonical map © Uij —>> Uk yields an epimorphism
i+j=4

(0] T =

.= 9 U
itg=2 *d i+4=g

Us/Use1,5 % Ug, 501> T/ Touqe

Therefore, E(TQ/T£+?) <

< max {L(Tij) |i+j=£} and the

lemma follows. o

Corollary 2.2. Let U be a normal subgroup of

G such that G6/U is a p-group., Let W be an FG-mo-
dule and set V = (WIU)G = WG.F(IU)G . Then £(V)S

2 t(G/U) + L(W) -1 .



Proof, Set M=G/U and view FM as FG-module

G

via FM = (I;)” . Then (wM): = FM - 3% , where J=J(FG),

and (wM)l/(mM)i+1 = IG(ni) for suitable integers n; .

In the notation of the preceding lemma, we therefore

have

_ et wgd z(w'Jj )ny)
ij L

a3 [+ - ™
() 1T gt w-git?

and so Z(Tij) = 1 for all i,j . Thus Lemma 2.1
yields £(V) s L£(FM) + £(W)-1 which proves the corollary

a

The estimate given above does not hold for arbitrary

induced modules. FPor example, if U=C, = G=C4 and

2 ®

W=FC2 , where char F=2 , then K(WG)=£(FC4) > £L(W)+2-1=3.

Proposition 2.3. (F algebraically closed) Assume

that G=NxH, where N is a p-group and H is p-nilpo-
tent, say H=Q » M with p%IQ} and M a p-group. Let

V be an irreducible FG-module, let W be an irreduci-

ble component of v Q ! and let T denote the inertia

group of W in H . Then



. G
i. PG(V) =W g

ii. L(BL(V)) 2 £(T/Q) + z((vH)G)-1. If M

has a normal complement in M, then equality holds.

Proof. By [1, §3]1, we have PH(V) = WH and
K(WH) = t{T/Q) . Therefore, Lemma 1.4 implies that
LR (V) 2 £(T/Q) + £((V®)-1 and P (V) = (1" @

@F Wh = WG . By [ 8], there exists a unique FT-module

U such that UlQ W . The induced module UL is

irreducible, and UH ES VH s Since both have a common

FQ-component. Now let M be a normal complement for

1
TNM in M and set § = <Q,M{> S H . Then S 1is nor-

mal in H and V|g = UHlS = WS . Hence
N G . .. .G H_
Pe(V) = (1% o W' = (1) o (V|g)'=
- G G _ G G
= (Ig) op Voy,s) ® (‘Vﬁ’ <N,S>) .

Corollary 2.2 implies that £(P5(V)) = t(G/<N,S>) +
+ Z((Vﬁ)G)-1 . Since G/<N,S8> =z T/Q , the proposition

is proved. B

Corollary 2.4. In the situation of Proposition 2.3,

14



assume that M is elementary abelian. Then, for any

irreducible FG-module V,

£ (Bg(¥))= (rkM-a) (p=1) + £((v®) ,

where Pd is the p-part of dimF V.
Proof. By assumption on M , TAM has a normal

complement in M , and t{T/Q) = rk (TnM) (p-1)+1 [4].

Let U be as in the proof of Proposition 2.3 so that

UH = V’H . Then dimFU is not divisible by p and
so the p-part of dimF V equals pd=]H/Tl . Therefore,
rk (TNM) = rk M-d and the corollary follows. o

Example 2.5. Let G = N»H be as in Example 1.5,

- _ _ _ - G
with N—C3xc3 and H= SL2(3) = Q8>4C3 . Then FN (IH)

has Loewy series

(T

[ RS I SO N S I |
-~

where 1I,2,3 denote the simple FH-modules as in Ex-

ample 1.5, and so Corollary 2.4 yields £(PG(I))=2+5=7.



also, by Corollary 2.4, £(Pg(2)) = 2+£((2;)%). Using

2
2 2 =zI®3 and 2 ¢ 3 = % , we see that (ZH)G =

=2 @ (IH)G has Loewy length at most 7. On the other

hand, we already know that ﬁ((zﬁ)s) z 7 (Example 1.5)

and so we obtain K(PG(Z)) = 9,

As to the remaining irreducible module, 3, recall

that 3=1G , where 1 1is a non-trivial 1-dimensional

module for U = < N,Q8 > 5 G. Thus, by Proposition 2.3,

P, (3) = (1Q8)G = 3% =30 ()% . clearly,

£((3H)G) < 2 + £(X) where

Since J(FU)

n

(uN)FU, the Loewy series of 1 o is

DWW

easy to compute:

where 1' and 1® denote the G-conjugates of 1. In par-

2

ticular, 1 o 3
210

= . 3
Y = P;(2)/ P,(2) * (uN) ™ .

is a homomorphic image of

16



- U _ G .
Now PU(Z) = 2U ® (IQ) = {2 ® (IH) ) u and PU(Z)

ceN) = (2 e (IH)G '(mN)3)*U , hence
G
(1) I
H
Y ==(2 @ )! ={ 2 @ 2‘)‘
(IH)G_ o3 o ( U
2
= 1,3 .
2
2 |u

Corollary 2.2 implies that £ (YG)

A

3+5~-1=17.
Therefore, £(X) = 7 and E(PG(3)) £ 9 . In particu-

lar, we obtain t(G) = 9.
In the following, we set

(uN) *

gr FN = o 177

iz0 (uN)

and we view gr FN as FG-module by letting G act

by conjugation.

Corollary 2.6. Let G be as in Proposition 2.3

and let V be an FG-module such that V Q is irredu-

cible. Then



L(P,(V)) 2 t{M) + t(N)-1 ,

and equality holds if and only if V &, 9T FN is semi~

simple,
Proof. By Proposition 2.3, E(PG(V))=t(M)+£((VH}G'?

and, by Lemma 1.4 (iii), £((vH)G)gtm) with equality

occuring if and only if V@F gr FN is semisimple.
o

Theorem 2.7. Assume that G=NxH with N a p-

group and H=QxM a Frobenius group with kernel Q a
p'~group and M a p-group. Then t({M)+t(N)-1=t(G) if

and only if gr FN is semisimple.

Proof. The condition is clearly necessary in view
of Corollary 2.6. Conversely, assume the condition is sa-

tisfied. Our assumption on H implies that J(FM) =

e - M , where e=}Q[‘1 is a central idempotent

quQq
of FH. 1Indeed, this follows from the fact that for any

irreducible PQ-module W # I the induced module WH
is irreducible [3, Lemma 15.15]. Thus the semisimplicity

(wN)i

of
(mﬁ)i+1

just says that for all

i am _ a
o € (wN) and m€ M we have EqEQ o zqu o> €

€ (wN}i+1 . It follows by a straightforward calculation
that, for all 12 0 ,

e ~uM - (mN}i~ e + e(mN)i+1e = e{mﬁ)imke + e(wN)i+1e.



Set & = t(N) + t(M)-1 , X = (uN)FG , and Y = e-uM .
Then J(FG) = X + Y , and we have to show that if
e € FG can be written as a product of & factors each
of which belongs to either X or ¥ then o = 0 .

We argue by descending induction on the number zxzaxia}
of X-factors involved in o . If &X z t{N} then

t(N)

a € X = {0}. So assume that QX < t£{N} . Then the

number of Y-factors involved in o is at least +t(M).

Let n, = nY(a) denote the length of the longest con-

secutive subproduct of o consisting entirely of Y-

factors. Clearly, if n, 2 t{M) then o =0 . So

b4

assume that n, < t{(M) . Then o contains a subproduct

» ?1 n >
which either belongs to YX"Y Y or to Y Yxly  (i>0).
We consider the first case, the second being entirely

analogous. Now

. n : ny ; n
YX'Y Y = e oM (o) reluM) o elwN)T (uMle (M) ¥4

: n . DL+ n
el Ve ¥ e xty ¥ Myt

-

Thus we have a=a.ta with Gqr Oy € J(FG)jz s but

2

ﬁxiaz) > 2X(a3 and ZX‘“1)= zx(u}, nYia1}>nY(u}. By

induction, we conclude that a1=a2=ﬁ and so a=0 .
o



Certainly, gr FN is semisimple if FN 1is semi-
simple over FH. The converse, of course, need not be
true. For example, if G = N » H 1is as in Examples 1.5
and 2.5, then gr FN = 1(23 ) 2(2) ¢ 3 1is semisimple

but FN is not. To see the latter, let z = (T; “2)

nE 3 ; € H = 8L,(3). Then a = (1—z)(1+m+m2) be-

longs to J(FH} and if <a,b > is the standard basis

of N=TF., 6F, then b - a = (b-b" ') » (1+m+m?) =

3 3

= (b-b%) + (1+m+m%) = b-b® + ab-a’b® + ab%-a’b # 0 . -

If H=Q M is Frobenius, as in the theorem, then it
is easily seen that FN is semisimple over FH if and

only if M stabilizes all Q-orbits in N.

Example 2.8. et G = S4 and use the notation

of Example 1.3. Then G =V, » H with H = GL,(2) =

4

=C3 %C, a Frobenius group. Also , c, stabilizes

the C,-orbits {1} and v

3 ~ {1} in V, . Hence,

4

by the above remark, gerV4 is semisimple (in fact,

gqr FV, = 1(2’ ¢ 2 ) and we conclude that t(G)=t(V4) +

4
+ t(GLZ(Z)) - 1 =4 , a result due to Motose and

Ninomiya[6]. In particular, £(P,(I)) = £(P;(2)) = 4 .

Further examples of a similar form have been con-

tructed by Motose [5] , for every prime p .
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