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Let G be a p-solvable group of order pam, 

(p,m)=1, and let t=tp(G, denote the nilpotence index 

of the Jacobson radical J(FG) of the group algebra 

FG, where F denotes a field of characteristic p • 

It is well-known and easy to see that t ~ a(p-1)+1 

(this follows e.g. from Lemma 1.1 below) and that equa­

lity holds if the Sylow p-subgroups of G are elemen­

tary abelian. The converse need not be true: the first 

known counterexample was G=S4 I the symmetric group on 

four letters, with p=2 [61 , and later counterexamples 

were constructed for each prime p by Motose [5]. In 

this note we prove the fol.1owing result which oontains 

all examples constructed so far (Theorem 2.7): 



Assume G == N)4 H is a semidirect product with N 

a p-group and H == Q'" M a Frobenius group with kernel 

Q a pi-group and Map-group. Then tp(G) == tp(M) + 

+ t p (M)-l holds if and only if is a 

semisimple FH-module under the conjugation action of 

H on N. 

Here, wN denotes the augmentation ideal of FN. 

Notations and Conventions. Throughout this note, G 

will be a finite group and F will be a field of cha-

racteristic p > o. All FG-modules are assumed to be 

finitely generated right modules, and I denotes the 

trivial one-dimensional FG-module. J(FG) and roG 

denote the Jacobson radical, resp. the augmentation 

ideal, of FG. For any FG-module V, t(V) is the 

Loewy length of V, i.e. the smallest integer 1 

such that VoJ(FG}l==O. Furthermore, PG(V) and GG(V) 

will be the projective cover, resp. the Heller module 

of V. Thus GG(V) ~ PG(V).J(FG) and there is an 

exact sequence 0 ~ GG (V) -+ P G (V) --7 V -+ O. Fi-

nally, omitting reference to p which is fixed in the 

following, we set t(G) = t(FG) , the nilpotence index 

of J(FG} • The remaining notation is as in [7]. 



§ 1. Normal Subgroups 

In this section, we study the situation where V 

is an FG-module and N is a normal subgroup of G ac­

ting trivially on V. Thus V can be viewed as either 

a G-module or a GIN-module, and we compare the Loewy 

lengths of the corresponding projective covers. 

Our first lemma extends [9, Lemma 3.4]. 

Lemma 1.1. Let N be a normal subgroup of G 

and let V be an FG-module with NSkerG{V) • Then 

Proof. Set P=PG(V) , H=G/N· and let -:FG~FH 

denote the canonical map with kernel (~N)FG. Note 

that J(FG)=J(FH) • (Images of semisimple Artinian rings 

are semisimple Artinian.) Since poJ(FG)20G(V)2PowN, 

we have a map of FH-modules P/P.~N ~>V whose kernel 

nG(V)/P.~N is contained in (p/P·~N)·J(FG)=(P/p·~N)· 

-J(FH) • As p/p·~N is projective over FH I we ob­

tain the isomorphism PH(V)gP/P-roN, which proves (i). 

Now write i = I (PH (V) ) and £.N=l(PNU». Then 

it follows from the foregoing that P.J(FG) 'i-1 $pot},)N • 



But 
1\ 

P • wN = ann N , where 
P 

1\ 
N= Ln€FN. 

n€N 
Indeed 

since P is projective over FN, this follows from 

the fact that 
1\ 

wN = annFN N [7, Lemma 3.1.2]. Note 

further that 
1\ )f1 
N € J(FN) , since viewing as 

1\ 

a summand of FN we have F·N= socle PN{I)=PN(I). 

);1 l-1 
• J (FN) . .= J (FN) N • We deduce that 

l + 4r2 - 1\ 
P • J{FG) 2 P • J(FG)!-1. N * o. This proves 

(ii) • D 

We remark that if N, or GIN , is a F-group 

then the inequality in (ii) becomes an equality. More 

generally, tf J(FN) .J(FG) = J(FG) ·J(FN) in the situ-

ation of Lemma 1.1, then we have 

For, part (i) above implies that PG(V). J(FG)~ E 

C PG (V) • <oN = PG (V) ·'J(FN), where we have set 

t = l(PG/Nev» and where the latter equality holds 

since PG(V) , as an FN-module, is isomorphic to a 

direct sum of copies of PN(I). 

If N is a p-group then Lemma 1.1 can be streng­

thenedas follows. Recall that t(G) denotes the nil-

potence index of J(FG}. 
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Lemma 1.2. Let N be a normal p-subgroup of G 

and let V be an FG-module with N~kerG(V) • View FN 

as an FG-module via conjugation of G on N. 

i. For all i~O we have FG-isomorphisms 

PG/N(V) QP
F 

{UlN)i P G (V) • (UlM) i 
I 

(UiN)i+1 
= i+1 

PG (V) • (wN) 

where PG/N(V) is viewed as an FG-module by letting 

N act trivially. 

ii. t(PG(V» ~ t(N)-1 + max t(PG/N(V) 0F"X) 
X 

~ t(N}-1 + max l(PG/N(V QPF X» t 
X 

where X runs over the FG-composition factors of FN • 

Proof. Let P = PG(V) and H = G/N • For each 

iii:O we have an F-epimorphism 

P • ("'N) i p _ rv t_ ... pN 
'" _ , "".... f""""" "" , which is in fact FG-li-

near if G acts by conjugation on 

obtain FG-epimorphisms 

(OON)i 
(UlN) i+ 1 

i 
(wN) • Thus we 



Since gi annihilates P • w N e p 

PH(V) ;0 pIp· wN , by Lemma 1.1, 

epimorphism 

--7» 

(wN) i 
(wN)i+1 

and 

defines an FG-

P • (wN) i 

P • (wN) i+1 

To see that fi is injective, note that, as PN-mo­

dules, plN;o PH tV) 0 p FN with the regular action of 

FN on FN. Indeed, by Lemma 1.1(i), 

and hence piN ~ PH(V} eF FN, since both sides are pro­

jective over FN, and wN = J(PN) • It follows that 

fi is an isomorphism, and part (i) is proved. 



For (ii), set 

( 
(wN) i ) 

.t i == l PH (V) 0\F . 1 
(wN) 1.+ 

= .t(P • (wN) i ) 
P • (wN) i+1 

If m<.t. then P(wN)i'J(FG)m <J;P'(wN")i+1;:: 
1. 

= annp (wN)t(N}-i-1 , where the latter equality follows 

from [2, p. 261] I since P is free over FN. Thus we 

conclude that 

P . (wN) i . J (FG) m • (wN) t (N) -i-1 :1= 0 

and so .t (P) > t (N)+,m - 1 . Therefore, l (P) ~t eN) +1-1, 

where R.= max R.. 
i 1. 

Finally, since Pg{V) is projec-

tive over FH, we have 

where X runs over the composition factors of FN. 

Hence R. = max l(Pg (V)0\FX) . Since Pg(V0F~) is a sum-
X 

mand of PH(V)0~ , we also have R. ;:: .t (PH (V0pX) ) • 

This completes the proof of (ii) • tl 



The following example illustrates the difference 

between the estimates provided by Lemmas1.1.and 1.2. 

Example 1.3. Let G = S 4 be the symmetric group 

on four letters and let char F = 2. Then G=V4~GL2(2) 

and there are two irreducible FG-modules, namely I 

and the canonical 2-dimensional module for H=GL2 (2) , 

denoted by 2. We have 

2 , and 
I = I I 
I 

Thus Lemma 1.1 yields t(PG(I)) ~ 4 and t(PG(2» ~ 3 • 

However, as FG-module, 

Lemma 1.2 implies 

I 

FV 
4 

I 
= 2 

I 
and so 

Since 21&)2 = 2 4> I' we obtain t (P G (2» ~ 4 • We will 

see shortly that, in fact,t(PG{I))=!(PG(2})=4 , a result 

due to Motose and Ninomiya . [6]. A detailed discussion 

of the Loewy and socle series of PG(I) and PG(2) 

can be found in [2, p. 214 - 2183. 

For simplicity of formulation, we restrict ourselves 

to the case of an irreducible FG-modu1e V in the fo110-

wing lemma. 



This is of course no real loss, since for any V we 

have where X runs over the simple 

components of V/V' J(FG) , with multiplicities. Also, 

it would be enough to assume that 1 ... U(FN)-+ U(FN)G-+G-+ 

-+ 1 splits, where D(.) denotes the group of units, 

but for simplicity we assume G to be a semidirect 

product. 

Lemma 1.4. Let N be a normal p-subgroup of G 

and assume that G = N >.4 H for some H ~ G. Let V be 

an irreducible FG-module. 

i. 

on PH(V). 

ii. .t(PG(V» ~ .t(PH(V»)+ t«VH)G)-1 • 

iii. For each i;;;O let V. 
~ 

denote the FG-module 

Vi = VGPF 
(wN) i 

where G acts by conjugation on 
(wN) i+ 1 

, 

(wN) i 

(wN) i+1 
• Then 

teN) -1 + max i(V i ) . 
i 

In particular, t«VH)G) = teN) if and only if all Vi 

are semisimple. 



Proof. Set 

Since T is projective, it follows that T ~ PG(V) so 

that (i) holds. 

If f = t(PH(V}) then, by part (i) I 

PG(V)"Jf-1=(PH(V)0(IH)G)oJR.-1::>(PH(V)0IH)·J(FH}R.-1.FN 

=(PH{V)J(FH)R.-10IH)·FN=(V0IH)·FN~(VH)G • 

Assertion (ii) follows. As to (iii), note that 

Thus if 

(V ) G. (wN) i 
H 

m < R. = t (V.{) i ... then 

f (VH) G. ("'N)i+1= (N)t(N)-i-1 H th 
Vol ann G w • ere I e 

(V ) 
H 

latter equality follows from [2, p. 261] , since 

is free over FN. Therefore, t«VH)G)~t(N)+R.i-1 

(V )G 
H 

for 

all i. Since the last assertion is clear, the lemma 

is proved. o 

Examele 1.5. 

the canonical action of H=SL2 (3) on N=C3
xC3 I and 

let char F = 3 • The irreducible FG-modules all come 

to 



from FH and are: I I the canonical 2-dimensional 

FH-module, 2, and 3 which is induced to H from a non-

trivial 1-dimensional module for the quaternion group 

Q8 ~ H • One checks that t{N) = 5 and t(H) = 3 , 

and so the lower bound for t(PG(V», V E {I,2,3} , 

provided by Lemma 1.2 (ii) can at most be 7. However, 

for V = 2, Lemma 1.4 gives t(PG(2)} ~ 9 Indeed, 

I (i=0,4) 

(wN) i 
= 2 (1=1,3) 

(wN)i+1 
3 (1=2 ) 

Hence, in the notation of part (iii), we have 
2 

V2 = 2 ® 3 = ~ so that t«2H)G) ~ 7 and 1(PG{2)}~9. 

Actually, equality holds here and even t(G) = 9 (see 

Example 2.5). 

§ 2. GrouEs of p-Length 2 

Our goal here is to show that, under certain cir-

cumstances, the inequality of Lemma 1.4(ii) does in fact 

become an equality. For example, this is always the case 

if H is p-nilpotent with elementary abelian Sylow 

p-subgroups (Corollary 2.4) • 

II 



Lemma 2.1. Let V and W be FG-modules. Set 

v = l(V), w = l(W) and 

O~j~w-l), where J = J(FG) • Then 

v+w-2 
L max { l ( T. .) I i + j = 

£=0 ~J 
£} • 

Proof. Set Qg WJ
j . Then 

F 

:::> U. 1 . + U .. 1 - ~+,J ~,J+ 
and U .. /Ui +1 . + U. . +1 ;; T - - • 

~J ,J ~,J ~J 

Now let U = L U for O~~~ v+w-l . Then 
!L i+j=.t ij 

O=U c:U c: v+w-l - v+w-2 - • 
c: U = V0

F
W, and the 

- 0 

canonical map yields an ep'~morph~sm 

(& T .. == 
i+ j=£ ~J 

$ U. -lUi 1 ,+ Ui , J'+l--+-> Tn/Tn+l' 
i+ j=R. ~J. +, J N N 

lemma follows. o 

Corollary 2.2. Let U be a normal subgroup of 

G such that G/U is a p-group. Let W be an PG-no-

dule and set V = (wlu)G ~ W 0 p (Iu)G Then ltV) $ 

~ t(G/U) + l(W)-l • 



Proof. set M=G/U and view FM as FG-module 

via 
_ G 

FM = ( Iu) • Then (wM) i = FM. Ji ( where J=J(FG), 

and (wM)i/(wM}i+1 ~ IG(ni) for suitable integers n i • 

In the notation of the preceding lemma, we therefore 

have 

and so l(T .. ) = 1 for all i,j. Thus Lemma 2.1 
1) 

yi~lds leV} ~ l(FM) + l(W)-1 which proves the corollary 

o 

The estimate given above does not hold for arbitrary 

induced modules. For example, if U=C2 ~ G~C4 and 

W=FC2 ' where char F=2 , then l(W
G

)=t(FC4 ) > t(W)+2-1=3. 

Proposition 2.3. (F algebraically closed) Assume 

that G=Nl4.H, where N is a p-group and H is p-nilpo­

tent, say H=Q" M with pt l Q\ and Map-group. Let 

V be an irreducible FG-module, let W be an irreduci­

ble component of vlQ ' and let T denote the inertia 

group of W in Ii. Then 
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i. P
G 

(V) ;:;; WG ; 

ii. I(PG(V» ii:: t(T/Q) + IUVH )Gl - 1 • If TOM 

has a normal complement in M, then equality holds. 

Proof. By [1, §3], we have PH (V) ;:;; wn and 

l(wli) = t(T/Q) • Therefore, Lemma 1.4 implies that 

l(PG(V» ~ t(T/Q) + 1«VH)G)-l and PG(V) ~ (IH)G.P 

By [8], there exists a unique PT-module 

U such that U t Q ~ W. The induced module uH is 

irreducible, and uH ;:;; VH I since both have a common 

FO-component. Now let Ml be a normal complement for 

TnM in M and set S = <O,M1> ~ H . Then S is nor-

mal in H and vis 
_ HI 
= U S S! wS . Hence 

- (IH)G ~F (V<N,S»G '" (v)GI )G 
H ! <N,S> 

Corollary 2.2 implies that I(PG(V» ~ t(G/<N,S» + 

+ l{(VH)G, - 1 • Since G/<N,S> ~ T/Q , the proposition 

is proved. IJ 

Corollary 2.4. In the situation of Proposition 2.3, 

14 



assume that M is elementary abelian. Then, for any 

irreducible FG-module V, 

G .t (P
G 

(V»= (rkM-d) (p-1) + .e. «V
H

) ) , 

where pd is the p-part of dimp V. 

Proof. By assumption on M I TOM has a normal 

complement in M, and t(T/Q) = rk (TOM) (p-1)+1 [4J. 

Let U be as in the proof of Proposition 2.3 so that 

uH 
= vlH . Then dimpU is not divisible by p and 

so the p-part of di~ V equals pd=IH/TI . Therefore, 

rk (TOM) = rk M-d and t 11e corollary follows. 0 

Example 2.5. Let G = N~H be as in Example 1.5, 

with N=C3xC3 and H= SL2 (3) = Qa >lC3 • Then PN=(1H)G 

has Loewy series 

(I ) G = 
H 

I 
2 
3 
2 
I 

where 1,2,3 denote the simple PH-modules as in Ex-

ample 1.5, and so Corollary 2.4 yields l(PG(1»=2+5=7. 



Also, by Corollary 2.4, l(PG(2» = 2+l«2H)G). Using 

2 ~ 2 ~ I ~ 3 and 2 ~ 3 ~ ~ , we see that (2)G = 
2 H 

= 2 ~ (I)G has Loewy length at most 7. On the other 
H 

hand, we already know that l ( (2H) G) s: 7 (Example 1.5) 

and so we obtain l(PG(2)} = 9. 

As to the remaining irreducible module, 3, recall 

that 3=1G , where 1 is a non-trivial 1-dimensional 

module for U = < N,Qa > ~ G. Thus, by Proposition 2.3, 

PG(3} = (1Q
a

)G = (3H)G = 3 0 (IH)G 

l«3H}G) $ 2 + leX) where 

Clearly, 

Since J(FU) = (wN)FU, the Loewy series of 1 0 ~t is 
2 U 

easy to compute: 

1 0 ~t 
2u 

= I 1 ' 111 , 
2 U U 

2u 

where l' and 1· denote the G-conjugates of 1. In par­

ticular, 1 ~ ~I 
2 U 

Y = Pu (2)/ Pu (2)' 

is a homomorphic image of 

3 (wN) • 

J6 



Now PU(2) = 2U 0 (IQ)U = (2 0 (IH)G) Iu and PU(2) • 

• (WN)3 = (2 0 (IH)G '(WN)3}lu I hence 

(I ) G 

-(-I=H_) G=--. -(-w-N-) =3 ) I u = ( 2 0 ~) I U 
H 

2 
= I 2 3 

2 
2 u 

Corollary 2.2 implies that l (yG) ~ 3 + 5 - 1 = 7 • 

Therefore, leX) ~ 7 and l(PG(3») ~ 9 

lar, we obtain t(G} = 9. 

In the following, we set 

gr FN = (\) 
i~O 

In particu-

and we view gr FN as FG-module by letting G act 

by conjugation. 

Corollary 2. 6. Let G be as in Proposition 2.3 

and let V be an FG-module such that vl Q is irredu­

cible. Then 

n· 



t(PG(V») ~ t(M) +. t(N)-l , 

and equality holds 1f and only if V e F gr FN is semi­

simple. 

Proof. By Proposition 2.3, t(PG (V))=t(M)+t«Vg )G-1 

and, by Lemma 1.4 (iii), t{(VH)G}~t(N) with equality 

occur1ng if and only 1f ve
F 

gr FN is semisimple. 
o 

Theorem 2.7. Assume that G=N~H with N a p-

group and H=O~M a Frobenius group with kernel 0 a 

p'-group and Map-group. Then t(M)+t(N)-1=t(G} if 

and only if gr FN is semisimple. 

Proof. The condition is clearly necessary in view 

of Corollary 2.6. Conversely, assume the condition is sa-

tisfied. Our assumption on H implies that J(FM) = 

e·UlM I where e=101-1 t qEQ q is a central idempotent 

of FH. Indeed, this follows from the fact that for any 

irreducible FQ-module W * I the induced module wB 
is irreducible [3, Lemma 15.15]. Thus the semisimplicity 

of 
(UlN) i 
(UlN) i+ 1 

just says that for all 

a E (UlN)i and m E M we have tqEO aqm - tqEQ a
q 

E 

E (UlN)i+1 • It follows by a straightforward calculation 

that, for all i ~ 0 I 



Set t = t(N) + t(M)-1 I X = (roN)FG I and Y = e-wM • 

Then J(FG) = X + Y, and we have to show that if 

a E FG can be written as a product of ~ factors each 

of which belongs to either X or Y then a = 0 • 

We argue by descending induction on the number tx=tx(a) 

of X-factors involved in d. If ~x ~ tIN) then 

a E Xt(N) = {Ole So assume that tx < t(N) • Then the 

number of Y-factors involved in a is at least t{M). 

Let ny = ny(a) denote the length of the longest con­

secutive subproduct of a consisting entirely of y-

factors. Clearly, if ny ~ tiM) then a = 0 So 

assume that ny < t(M) • Then 

which either belongs to 

contains a subproduct 
n . 

or to Y Yx~Y (i>O). 

We consider the first case, the second being entirely 

analogous. Now 

. n 
yx~ y y 

Thus we have 

i ny i n = e • roM .. (wN) °e(wM) E e{wN) (wM)e (wM) Y i-

n 
+ e(wN}i+1 e{wM) Y 

induotion, we conclude that a =a =0 1 2 and so a=O .. 



Certainly, gr FN is semisimple if FN is semi-

simple over FH. The converse, of course, need not be 

true. For example, if G = N )f H is as in Examples 1.5 

and 2.5, then gr FN = I (2) d) 2(2} C!'J 3 is semisimple 

but FN is not. To see the latter, let = COlO) 
z 0 -1 

(~ ~) H = SL2 (3). Then 
2 be-m = E a = ( 1- z) (1 + m+ m ) 

longs to J(FH) and if <a,b > is the standard basis 

of N =:lF3 elF3 then b· a = (b-b- 1 ) • (1+m+m2) = 

= (b-b2) • Cl+m+m2) = b-b2 + ab-a2b 2 + ab2_a2b '" 0 • -

If H = Q )f M is Frobenius, as in the theorem, then it 

is easily seen that FN is 'semisimple over FH if and 

only if M stabilizes all Q-orbits in N. 

Example 2.8. Let G = S4 and use the notation 

of Example 1.3. Then G = V4 )f H with H = GL2 (2) = 

= C3 ~ C2 a Frobenius group. Also , C2 stabilizes 

the c3-orbits {1} and V4 '{1} in v4 • Hence, 

by the above remark, gr FV 4 is semisimple (in fact, 

grFV4 = I(2) ~ 2 and we conclude that t(G)=t(V4 ) + 

+ t(GL2 (2») - 1 = 4 , a result due to Motose and 

Ninomiya[6). In particular, !(PG(I» = !(PG(2» = 4 • 

Further examples of a similar form have been con-

tructed by Motose [5) , for every prime p • 

. W 
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