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§0.—Introduction

In this paper, we study some asymptotic aspects, from a geometric point of view, of
the positive eigenfunctions of the combinatorial Laplacian associated to a homogeneous
tree. The results are inspired by the paper [Sul] of Dennis Sullivan, which concerns the
hyperbolic spaces H".

Let & be an integer > 3 and X the homogeneous tree of degree k, that is, the unique
simply connected simplicial complex of dimension 1 in which every vertex belongs to exactly
k edges. X is equipped with the length metric in which every edge is isometric to the unit
interval [0,1]. The distance in X between two points z and y is denoted by |z — y|. We
denote by 0X the boundary (at infinity) of X, that is, the set of ends of X. Recall that
the set X U JX has a natural topology which makes it a compact space in which X sits as
a dense open subspace.

For each z € X, the visual metric | |; on X is defined by the formula

€ —nlz =€,

for each ¢ and 7 in 0X, where L is the length of the common path between the geodesic
rays [z,£[ and [2,n]. We consider the function j : X x X x (X U90X) — R defined by

j(z,y,2) = elr—pl—lp—yl,

with p being the projection of z on the geodesic segment [z,y] (see Figure 1).

* The second author is also supported by the Max-Plank-Institut fiir Mathematik
(Bonn).



Figure 1

We have the following formula (which we shall refer to as the “formula for the change
of point of view ”):

(0.1) 1€ —ni2 = j(z,v,6)i(z,y,n)lE — 7l

All the measures considered in this paper are non-negative Radon measures. Let
S denote the set of vertices of X and let d be a real number. A conformal density of
dimension d on 8X is a family u = (uz);es of non-trivial measures on 8X which are
absolutely continuous with respect to one another and such that, for every z and y € S,
we have

d .
ﬁ(&) = j%(z,y,£) V€€ OX.

We note that a conformal density is entirely determined by its dimension and its value
at a given vertex, which can be an arbitrary non-trivial measure on 0X.

The Laplace operator A is defined on the space of functions on S by the formula:

(@) = f(z) 7 3 1)

Y~z

for every function f : § — R, where the notation y ~ z means that z and y are the two
vertices of the same edge. Given A € R, a function f : S — R is called A—harmonic if it
satisfles Af = Af.

We will be mainly interested in positive A—harmonic functions, i.e. A—harmonic
functions ¢ such that ¢(z) > 0 for all z € S. It is well-known that positive A—harmonic
functions exist if and only if A < Ag, where

Vk—-1
P

(We refer to the papers [Dod] and [MW] for surveys and bibliographical references.)

Ag=1-2
Here is a fundamental example of a positive A—harmonic function. Fix some real

number d, and points z € S and £ € 9X. Then the function

y s j%(z,y,6)
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1s a positive A—harmonic function on § (¢f. [CP2]), with

(0.2) A= %(1 — ek —1— ).
We shall often refer to the fact that for a given A < Ag, equation (0.2) has two
solutions, d_ < d4, satisfying
(0.3) d_ +dy =log(k —1),
and for A = Ay, it has only one solution, d_ = dy = 1 log(k — 1).

Let p be a conformal density of dimension d on 0X. Consider the total mass function
¢+ 5 — R, defined by
$u(z) = pa(0X).

By the definition of a conformal density, we can write, for every vy € S,

(04) ¢u(y)=[9de($,y,§)d#:(€)-

Therefore, ¢, is a positive A—harmonic function on S, with A given again by (0.2).
The plan of the paper is the following:

In section 1, we collect a few well-known results about spherical A—harmonic functions
which will be used in the rest of the paper.

Let ¢ = (pz)zes be a conformal density of dimension > 7 log(k — 1). We show in
section 2 that, for each z € S, the measure y, is the weak limit, as n — oo, of the measure

Z ¢u(y)5ya

vilz—yl=n

suitably normalized to have total mass ¢,(z). (Here, é, is the Dirac measure at y.) Thus,
in particular, a conformal density of dimension > 3log(k — 1) can be recovered from its
total mass function.

In section 3, we prove a representation theorem for positive A—harmonic functions.
More precisely, we follow Martin’s method (as explained in the paper [Sul]) to prove that
if ¢ is a positive A—harmonic function, then there exists a unique conformal density p of
dimension > 7 log(k — 1) on X whose total mass function is ¢. We conclude that the
map p — ¢, is a bijection from the set of conformal densities of dimension > %log(k -1)
to the set of positive eigenfunctions of the Laplacian.

Let 4 be now a conformal density of dimension d with d < 2 log(k—1). We know that
its total mass function ¢, is a positive A—harmonic function, and vie the representation
theorem above, we have an associated conformal density pu* = (uF);es of dimension
dy > %log(k —1). In section 4, we study the correspondence g +— pT and we give,
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for each z € S, an explicit formula for g} in terms of y,. We see in particular that
each measure 7 is absolutely continuous with respect to the log(k — 1)—dimensional
Hausdorff measure H, associated with the visual metric | |, and we give a formula for the

. . - + - .
Radon-Nikodym derivative %‘{-ﬂz—. The map p — pF from the set of conformal densities of

dimension < %log(k — 1) to the set of conformal densities of dimension >  log(k — 1) is
neither surjective nor injective.

Section 5 contains different kinds of estimates on the growth of positive A—harmonic
functions along geodesic rays. These estimates, for ¢ positive A—harmonic, are obtained
in terms of the conformal density of dimension > 3 log(k — 1) whose total mass function

is ¢.

All the results, with the exception of those of section 4, are discrete analogs of results
contained in the paper [Sul] of Sullivan which concerns the case of hyperbolic space H". The

results of section 4 have also an analog for H" and other rank one Riemannian symmetric
spaces (cf. [CP3]).

Let us note finally that, as a general rule, the “infinite negative curvature” geometry
of trees, reflected for example in the ultrametric property of the visual metrics on the
boundary, makes the proofs simpler than in H". On the other hand, the statements are
often stronger than their analogs for hyperbolic spaces.

§1.—Preliminaries

We begin by recalling the definition of the spherical functions Sy(n), and we give some
of their elementary and basic properties (see for example [Bro|, [Car| and [FN]). Given a
real number A, it is easy to see that there exists a unique function Sy :IN — IR such that,
for every z € S, the function y — Sx(|z — y|) is A—harmonic on S and takes the value
1 at z. Indeed, for a fixed A, the sequence Sx(n) is determined by the order two linear
recurrence relation

(1.1) k;1SA(11+2)—(1—/\)SA(71+1)+%SA(n) =0

with initial conditions

Sx(0)=1 and Sx(1)=1-A.

For each z € § and n € N, let S(z,n) denote the sphere in X of radius n centered at
z, and let w, denote the number of points in S(z,n). We have wy = 1 and, for all n > 1,
wy = k(k - l)n—l.

Proposition 1.1.— Let f : § = R be a A—harmonic function. Then:

(12) = Y i) =f=)50)

" y€S(z,n)



for every x € S and n € N.

Proof.—1t is clear that the function which to every point at distance n from z associates
the left hand side of equation (1.2) is A—harmonic and takes the value f(z) at z. |

By applying the proposition to the function y — j4(z,y, £), we obtain:
Corollary 1.2.— Let A and d be real numbers satisfying equation (0.2). Then:
1 .
— Y i*@y0) =S\(n)
Wy
yGS(z,n)
for everyz € S, £ € 0X and n €N. |
Corollary 1.3.— (cf. [Bro|, Theorem 1.1) For A < Ay, we have Sx(n) > 0 for alln e N. &

We shall need the following estimate on spherical functions:

Proposition 1.4.— (cf. [Bro], Theorem 1.1) For A < Ao, we have Sy(n) ~ Ce~ ™~ as
n — 0o, where C = C(k,A) > 0 i3 a constant and d_ is, as before, the smallest of the two
solutions of equation (0.2). For A = Xy, we have Sx(n) ~ Cne™™? where C = C(k) > 0 is
a constant and where d i3 the unique solution of equation (0.2).

Proof.— Sx(n) satisfies the recurrence equation (1.1), whose associated characteristic equa-
tion is:

(1.3) — A —-(1-NB+

which is equation (0.2) with 8 = e~¢.

Therefore, for A < Ag, the general solution of (1.1) is of the form
Sa(n) = cre” ™+ 4 e - 0> 0.
The initial conditions give ¢; + ¢; = 1 and ¢cje™% 4 cpe™%- =1 — A, hence

1—X-= e_d+
g = ——————.,

We have e™ < 1 — A, using e™% +e™% = (1 — \) X5, which implies ¢; > 0.
Thus, Sx(n) ~ coe M- as n — co.

For A = Ay, equation (1.3) has one double solution 8 = e~%, and the general solution
of (1.1) is of the form
Sa(n) = (e1 + can)e e,

Using the initial conditions, we can see as before that the constant ¢y 1s also positive in
this case, and we have Sx(n) ~ cane™ ™ as n — oo, which proves the proposition. |
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§2.—Spherical approach to conformal densities

Proposition 2.1.— Let A < g, and let dy be the largest solution of equation (0.2). Let
z be a fized vertez of X and f: X UOX — R a continuous function. For every n € N,
consider the function g, :.0X — R defined by

gn(.s)=wns;m S ey, 01 ().

yES(z,n)
Then the sequence (g,) converges uniformly to f on 0X.

Proof.—By Corollary 1.2, we have

(2.1) %S;A(n) Y i@y 6 =1

yES(z,n)

for all £ € 0X,n € N. Therefore,

gn(€) = £(6) = T;IE*) S (&) - £(6)).

yES(z,n)

Let us fix now an € > 0. The function f is uniformly continuous on the compact set
X U 9X. Therefore, we can find an integer K > 0 such that |f(y) — f(£)| < 5 for every y
in the set

W= {y €S ] (yg):r > I{}s

where (y.£). denotes the Gromov product of the points y and £ with respect to z, that is,
the length of the common part of the geodesics [z,y] and [z,£[. We have, by the triangle
inequality:

() = OIS 55 2 I 1@ - 1O

y€S(z,n)

= Y i@ S - £

wnS,\(n) yES(z,n)NW

e S i (mu6) | f) - £

yES(z,n\W

€ 1 -d
§wnSA(n) Z J +($’y=£)

yES(z,n)NW

A

T D DL XN (O 1P

yES(z,n)\W
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Using equation (2.1), we obtain

w_n-sl,\-fn_) Z jd+(may:§) ( ) Z J +($5ya )"'1

y€S(z,n)NW y€S(z,n)
which gives
(22) n(©O-FOIS St s 30 e F)=FE) |
yES(z,n)\W

We remark now that j(z,y,£) < e~ for all y € S(z,n)\ W, and that

1f(y) = £ < 20| loo

where

||f||oo = sup |f|
NUdX

Thus, inequality (2.2) implies

(2K =-n)dy

(23) 92(6) = FE < 5+ 2 oo 55—

For A < )y, we have, by Proposition 1.4, Sy(n) ~ Ce™"¢- as n tends to co, where
C > 0 is some constant and where d_ is the smallest solution of (0.2). For A = Aq, we
have Sx(n) ~ Cne~ ™%+, Therefore, (2.3) shows that there exists an integer N such that,
for all £ € X and for all n > N, we have

lga(€) = F(E)] <

tolm
wlm

This completes the proof of Proposition 2.1. ]
We can now prove the following

Theorem 2.2.—Let p = (jtz)zes be a conformal density of dimension d on 90X, with
d> %log(k —1). For every vertez x € X and every n € N, define the measure p, , on X
by the formula

(24) Hn,z = wns’\( Z d’,u. '!j

v€S(z,n)

where 6, 13 the Dirac measure at y. Then the sequence (”"’I)neN converges weakly to p,
in the space of measures on X UJX.



Proof.—Consider a continuous function f on X U X and, for n € N, let ¢, be the
function on 90X defined in Proposition 2.1 (note that dy = d here). We have, using (0.4),

,un’,:(f) ” S)\ Z ¢'.u f(y)
n yES(—’c n)
— 4 .1
_ w,,s,\ o yesz(;n) ] (2,9, €) dpua () f(v)
_ /Mr;m > %y, O F () dpa(€)
n yES(z,n)
_ / 0n (&) dpi(€)
00X

= pz(gn)-

Now since (gn) converges uniformly to f on X (Proposition 2.1), we conclude that
fin,z(f) converges to p.(f) as n — co. Therefore, the sequence (gn,;) converges weakly

to gz [
We note the following corollary which will be useful in the next section:

Corollary 2.3.—A conformal density of dimension > 1 log(k — 1) is uniquely determined
by its total mass function. ]

-§3.—Conformal representation at infinity of positive A—harmonic functions

In this section, we show, by following Martin’s classical method, that for every positive
A—harmonic function ¢ on S, there exists a unique conformal density p of dimension
> 3log(k — 1) on X whose total mass function is ¢. The dimension of y is equal to the
largest solution of equation (0.2). The uniqueness of u will be a consequence of Corollary
2.3.

We shall follow the lines of the proof of the corresponding theorem of Sullivan (The-
orem 2.11 of [Sul]), adapted to the discrete setting. For this purpose, we need to recall a
few facts from discrete potential theory. For further details, we refer the reader to ([Mey],
chapter 9). From now on, we suppose A < .

The transition kernel P: S x S — {0, 1} is defined by
1
Plz,y)= ¢ iflz—yl=1

and P(z,y) =0 otherwise.
The A—Green kernel Gy : S x S — [0, 00] is defined by

(z,y) = 2(1 NP (,y),

n=0



where P° = I is the identity kernel, defined by I(z,y) = 1 if £ = y and I(z,y) = 0 |
otherwise, and where P" is the matrix product, defined by induction on n by the formula

Pn+l($:y) = ZP"(&:,Z)P(Z,'Q).
z€S

Let us note that by a result of Kesten (see for example [CP2],85), we have an explicit
formula for A < )y,

(3.1) Ga(z,y) = ae” 77014,
where d is, as before, the largest solution of equation (0.2), and

1

R N W

Let us recall also that any kernel K : S x § — [0,00] acts on the set of positive
functions on § by the formula

Kf(z)=Y K(z,9)f()
yES
for every f: S — [0,00].
The function f : S — R is said to be A—superharmonic if it satisfies Af > Af, or,
equivalently, f > (1 — XA)"1Pf, where Pf is defined by

Pf(z) =) P(z,y)f(y).

yES

Proposition 3.1.—Let A < A¢. Consider a function f: S — [0,00[. Then, the following
two properties are equivalent:

(2) f 18 A—superharmonic and satisfies

lim (1 — A\)""P"f =0,

n—00
in the sense of pointwise convergence.
(i) There exists ¢ function g : S — [0,00[ such that f = G\g.

Proof.— Suppose that property (¢} is satisfied. Let ¢ = (1 — A)f — Pf. Since f is
A—superharmonic, we have ¢ > 0. On the other hand, the identity

n—1
f=3 (1=NT"Pig4+(1-2)7T"Pf
=0
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shows that f = Gig since, by hypothesis, we have (1 — A\)™"P"f — 0 as n — oo.
Therefore, f satisfies property (i1).

Conversely, suppose that f satisfies property (i7). From the relation f = Gag,
we deduce f = (1 — A)7'g + (1 — A)~'Pf, which implies f > (1 — A)7'Pf, and f is
A—superharmonic. Furthermore, we can write

f=1-N"g+1-NTP(A-NTg+(1-1)7"Pf)

=(1=-M"T1g+Q@ =N Pg+ ..+ (1 -N"T"P g4 (1 - NP,

hence (1 — A)""P" f appears as the n—th remainder of a convergent series, and therefore
tends to 0. |

Proposition 3.2.—Let A < Ao, and let f: S — [0,00[ be A—superharmonic. Then, there
ezists a sequence of functions g, : S — [0,00( such that f = im G g, in the sense of
pointunse convergence.

Proof.— Let us fix a basepoint 2z € S, and for all n = 0,1,2,..., let x, denote the
characteristic function of the ball B(z,n) of radius n centered at z. Consider the sequence
of functions f, = min{f,nGxxn}. Being the minimum of two A—superharmonic functions,
fn is itself A—superharmonic.

For a given point y € S, let us take n large enough so that y belongs to the ball
B(z,n). We can write in this case:

Gaxn(y) =D Galy, 2)xn(2) 2 Galy,4) = (1 - M)~
€S

Therefore, there exists an integer ng such that for every n > ng, we have

nGaxn(y) 2 (1 = X)7,

which implies f,(y) = f(y) for all n large enough. Thus, f is the increasing limit of (f,).

We prove finally that for every n = 0,1, 2, ..., the function f,, is of the form Gagn, with
gn 2 0. By proposition 3.1, it suffices to show that we have lim;_,(1 — A)™/P’f, =0
pointwise.

Let us fix the integer n > 0. It is easy to see, by induction, that for every j =0,1,2, ...,
we have

(1= NP f, <min{(1 - N7 PIf,(1 - N PInGxxa}.

Now using Proposition 3.1, we have

Hm (1 =X Pif = lim (1 — A) 7 P'nGyx, = 0.
100

o0
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This completes the proof of Proposition 3.2. |
Now we are ready to prove the following

Theorem 3.3.—Let ¢ be a positive A—harmonic function on S. Then there ezists a
unique conformal density p of dimension > 1 log(k —1) on 0X whose total mass function
13 ¢. The dimension of p 13 equal to dy, the largest solution of equation (0.2).

Proof.— Let z be again a basepoint in S. By Proposition 3.2, there exists a sequence of
functions g, : § — [0, o[ such that the sequence f, = G g, converges pointwise to ¢.

For every n > 0, we define the measure v, ; on S by
Vnz = Z Gz, 2)ga(2)6:,
z€S
where . denotes the Dirac measure at z.
The total mass of v, ; is equal to
Z G,\(a:,z)gn(z) = GAgn($) = fn(z)
€S

As fn(z) converges to ¢(z), the total mass of v, , is bounded, and we can find a
subsequence vy, , which converges weakly to a measure p, on the compact set SU 0X.
Let us show now that the support of p, is necessarily contained in 0X.

From the relation f, = Gxgn, we deduce that g, = (A — AI)f,. Therefore, for every
z € S, we have

gn;(2) = (A = M) fn;(2).

As n; — oo, we have fp,(2z) — ¢(z), and

lim gn;(z) = n!ﬂnoo(‘/—\‘ - )\I)fﬂi(z) = (A - ’\I)QS(Z) = 0.

n;—o0

Therefore, for every vertex z € S, we have
p:({z}) = lm vy, ({z}) = lim Gi(z,2)gn;(2) =0.
n;—00 ni—oo

The support of u, is therefore contained in 0X.

We can write

fni(y) = Z Galy, z)gn:(2)

zES



By (3.1), we have

Galy,z) _ ae”lv—slds
Gi(z,2z)  ae~le—zld+

=j"*(z,y,2).

Therefore, we can write

fai(y) = [Suaxjd+($’y,2) dyn.‘,r(z)-

Letting n; — oo, we obtain

by) = ]S e dus) = /a (0,6 dua).

Therefore, the uniquely defined conformal density of dimension dy which takes the
value u, at z, has ¢ as total mass function.

Uniqueness of pu follows from Corollary 2.3. This completes the proof of Theorem
3.3. |

Remark. In [CP2|, we give a probabilistic interpretation of the conformal density p in
terms of the random walk on § with transition probabilities

Py(z,y) = (1 - A)-‘%P(m,y)

for every z,y € S. More precisely, p; is ¢(z) times the hitting probability at infinity of
the random walk starting at z, with probability 1.

§4.—On the correspondence u — ut

For each « € S, let H, denote the log(k - 1)—dimensional Hausdorff measure on §X
associated to the visual metric | |, and normalized so that H,(3X) = 1. We recall a few
basic properties of H,. First, it is the only probability measure on 0X which is invariant
by the full isometry group of X fixing the vertex z. From this symmetry property, we see
that all the closed balls of a given radius (for the metric | |;) have the same H, ~mass. In
fact the mass of a closed ball of radius e™" centered at a point in X is equal to <~ where
wy, is defined, as before, as the number of points on a sphere of radius n in X centered at
a vertex. Let us note also that H = (H;),es is a conformal density on §X of dimension
log(k — 1). This can be deduced from the fact that 7 is the conformal density which is
associated by Theorem 3.3 to the constant function ¢ = 1 (which is 0—harmonic).

Proposition 4.1.—Let £ € 80X and z € S, and let o« <log(k —1). Then the function hq

on 0X defined by
1

1€ =nle
12

ha(n) =



belongs to L'(H,) and satisfies

1 k-2 e”
hodH, = — + ——(1 — =1
H k+ - (1 k—l)

80X
We shall denote this value of Ho(hy) by I,.

Proof.— For each n € N, let E,, be the set of points n € 8X such that the projection of
n on the geodesic ray [z,£][ is at distance n from z. The function h, is constant and equal
to €™ on E,. Therefore, H,(hqy) is the limit as N tends to co of

N

I(N) =) e*" M (Ey).

n=0

We have H,(E,) = k—zl For every n > 1, we note that E, = B, \ Bp+1, where B,, is
the closed | |, —ball of radius e™" centered at £. Therefore

1 1 1 1 k-2
T En = - - = - = .
Rl Br) = o~ oy TEE ST T RE=T ST
This gives
N
k—1 k-2 e
I.(N)= Tt =1
n=1
which converges since o < log(k — 1), with limit I,. (|

Corollary 4.2.— Let m be a measure on 0X and o < log(k — 1). Then the function
- / d'.'n((;")ﬂ
ox 1€ =g

Proof.— This is an immediate consequence of the preceding proposition and Fubini’s
theorem. 1

belongs to L'(H,).

Theorem 4.3.—Let pp = (uz)zes be a conformal density on OX of dimension d_ <
3 log(k—1), and for each x € S, let uf be the measure on OX which is absolutely continuous
with respect to H, with Radon-Nikedym derivative given by the formula

dpy €)=+ dpez ()
dHz C Jreax € —nlz*"

where C = Ipq_, using the notations of Proposstion 4.1. Note that this function i3 in
L'(H,), by Corollary 4.2.

Then, ut = (u})zes is a conformal density on 0X of of dimension dy = log(k—1) —
d_. Furthermore, u,. 1s the unique conformal density of dimension > %log(k — 1) having
the same total mass function as .

13



Proof.— Let us show first that 4T is a conformal density of dimension d.,..

For z and y € §, and for every continuous function f on 8X, we have:

/ FE)5%* (2, y,€) dyct ()
E€aX

_ _dpa(n)
/556Xf(£ (2,,6) = Leax S ()

_1 i (29,0 dpa(n)
G / o R

1 741 (2,9,6)5% (=, 1) duz(n)
_1 M,
C £edX /7;681\' |£ - n]id—jd_ (xay,f)jd‘(fﬂ,y,ﬂ) (6)
‘dy4d_ T cd_ T
£€OX n€dX

C 1€ — 3t

(using formula (0.1) of “change of point of view™)

=i M d++d d
6 o TO | oy i 14 O aa(®)

(since the conformal density (,u,,) is of dimension d_.)

_ 1 _@(J&
~ C Jeeax f /:;eax € —n Hy(0)

(using (0.3) and since H; is conformal of dimension log(k — 1)).
This proves that u* is a conformal density of dimension d.

Now, with ¢, and ¢,+ denoting respectively the total mass functions of the conformal
densities 1 and pu7 respectively, we have, for every x € S,

bur(z) = = / / Kd"’fn IE?,_ Ha(n)
-z [ / | {d”n(l” ) due(€)

= /.s dpz(€)

= ¢u(z)-

This completes the proof of Theorem 4.3. |

Ezample—Let p = (p,)res be a conformal density of dimension d = 0. In this case, p;
does not depend on z, and the total mass function of  is constant. Then, ut = (aHz)zes

where the constant a is the common mass of the p’s.

Corollary 4.4.—Let v = (v3)zes be a conformal density of dimension > ;log(k — 1).
Assume that v, is not absolutely continuous with respect to H, for some (or, equivalently,

14



for all) x € S. Then, there is no conformal density of dimension < §log(k — 1) having the
same total mass function as v. ]

§5.—O0n the radial growth of positive A—harmonic functions

In this section, we study the asymptotic growth of a positive A—harmonic function
along geodesic rays.

Let us first fix some notation. Consider a positive A—harmonic function ¢ on S. We
denote, as before, by d_ < dj the solutions of equation (0.2). For z € S, n € N and
¢ € 0X, we denote by (z,n, £) the point in S situated on the geodesic ray [z, £[ at distance
n from z. Define the ezponential growth coefficient of ¢ in the direction ¢ as

gr,(6) = limsup = log (s, 1, €).

n—o0

It is clear that gry(£) does not depend on z, since two geodesic rays anding at ¢
eventually coincide.

Proposition 5.1.—There ezists a constant C = C(k,A) > 0 such that, for all points

z,y € S, we have
$(y) < Cg(z)ed+
where n = |z — y|.

Proof.— Proposition 1.1 shows that ¢(y) < ¢(z)w,Sx(n). Using proposition, 1.4, we

have w,S\(n) < Const.e™@+. This proves the formula. ]
Corollary 5.2.—For all { € 0X, we have —dy < gry(§) < dy. |
Ezamples.

1.— Fix zp € §, dy €R, £p € X and take ¢(z) = j% (o, z,&). Then, gry(€) = —dy for

¢ # &o and gqu(fo) = dy.
2.— For ¢(z) = Sa(|z — zo|) with A < Ag, we have, for every £ € 0X, gry(£) = —d_.

Given the positive A—harmonic function @, let = (u;)res be the unique conformal
density of dimension > 7 log(k — 1) with total mass function ¢. We recall that y is of
dimension d;. We shall see now how to use p to get estimates on the radial growth of ¢.

Theorem 5.3.—Let z € S and let £ be a point in OX which is not in the support of p.
Then, there exist C > 0 and N € N such thai, for all integers n > N,

Hz,n, €)= Ce i+,

In particular, we have cg(§) = —d4.

Proof.— Let us set y = (z,n,§). For each i € N, let E; be the set of points in JX whose
projection on the geodesic ray [z,{[ is at distance ¢ from z. As £ is not in the support of
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4, there is an integer N such that every point in the support of y is in E; for some i < N.
Therefore,

$(y) = /ﬂ 3% (z,y,1) dua(n)

= f 3 (2, y,m) dpa(n).
EoUE, U...UEN

We remark now that j(z,y,n) = e*~" for all € E; and ¢ < n. Therefore we have,
foralln > N,

y |
Bly) =) Py (B

i=0

= Ce "
with C = N | e+, (E). N

In the next lemma, we prove a general property of the visual metric | |, on X which
will be useful in the proof of the subsequent theorem.

Lemma 5.4.—Let m be a measure on 0X. Then, for m—almost all £ € OX, we have

o mEBE)

0
0<r<1 rlog(k—1) >

where B(&,7) denotes the closed ball of center £ and radius v, with respect to the visual
metric | |,.

Proof.— Let

r - m(B(g’ T))
A= {tf € 0X such that Oélgil W

= 0}.
We prove that the m—measure of A is zero.

Let us fix € > 0. For each £ € A, we can find a real number r¢ with 0 < r¢ < 1 such
that tog(k—1)
m(B(€,re)) Serg® .

We use now the fact that given any two closed balls in the ultrametric space (90X, | |z),
then either one of them contains the other or they are disjoint. Therefore, we can find a
countable family of points {{;} C A, and associated real numbers {r;} such that the family
of closed balls {B(¢;,7;)} centered at ¢; and of radii r; covers A, with these balls being
two by two disjoint. We deduce that

m(A) <3 m(B(&, ) <ed ittty

Now from the definition of the visual metric, we see that we can suppose without loss
of generality that each of the radii r; is of the form e™™, with n; € N*, and we recall the
fact that the H;—measure of a closed ball of radius e~ is equal to
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k(k— 1=k kot

Therefore, we have

1 1 k-1 g~ nilog(k—=1) _ k— 1?.{09(’*—1)‘
W,

k k b
m(A) < 7= 1EZHI(B(5*’Tf)) S poree(0%) = g3

We conclude that m(A) = 0, and the lemma 1s proved. |

The measures . being absolutely continuous with respect to one another, they have
the same sets of measure 0. Therefore, we can say that a certain property holds “g—almost
everywhere” if it holds u,—almost everywhere for some (or equivalently for all) z € S.

Theorem 5.5.— There ezists C > 0 such that, for p—almost all £ € 0X,
qﬁ(:z:,n,f) 2 Ce~md-.

In particular, we have gry(€) > —d_ for p—almost all £ € 0X.

Proof.—Let £ be an arbitrary point in 0X. We set, as before, y = (z,n, £) and we denote,
for each ¢ € N, by A; the set of points in 0X whose projection on [z,y[ is at distance z
from z. Let B; be the closed ball in (8X,| |;) of radius e™* centered at £. We have
A; = B;\ Bi;, fori =0,1,...,n—1 and A, = B,. We note also that j(z,y,n) = ei—" for
all n € A;. Therefore,

Hy) = fa @ )

n .
— Z e(2l—n)d+#I(A'.)
=0
n-—1

— e_nd+ Z eQid.}, (#z(B:) —_ 'ux(B"_l,_])) -+ e”"'+,ux(Bn)-
=0

Using Abel’s summation formula, we obtain

By) = e (ua(Bo) + (2% — 2=Vl ),(By)),
i=1
which implies

n

(5.1) By) 2 e 30 (i 2Dy (B,

=1

By Lemma 5.4, there is a constant Cy > 0 such that, for p—almost all £ € 0X and all
: € N, we have
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(5.2) 1z(B;) > Coeiloslk=1)

Inequalities (5.1) and (5.2) imply that, for g—almost all £, we have

n
¢(y) > e+ Z(GZM"' - 62(i—1)d+)006—ilog(k—-1)
i=1
n
= Che "4+ (1 — e 244+) Z gi(2d4 —log(k=1))
i=1

> Ce—nd+en(2d+—log(k—l))

= Cen(d+—log(k—1)),

where C' > 0 is some constant. This proves Theorem 5.5 since we have dy —log(k—1) = d_,
by equation (0.3). |

Theorem 5.6.—Let A be o Borel subset of 0X. Assume that uy(A) > 0 for some (or,
equivalently, for any) ¢ € S. Assume furthermore that there ezists some real number o

such that gry(£) < o for all £ € A. Then, the Hausdorff dimension of A (with respect to
the visual metrics) is > dy — 0.

Proof.—As before, the proof relies on the existence of the following representation:

b0y = [ 30,6 diale).
ax
Let € > 0 be a fixed real number. For each N € N, define the set
(5.3) AN)={¢ € A] ¢(z,n,&) < e*"F9) ¥ > N}

Then A is the increasing union of the A(N)’s and therefore we can find an integer N
such that u, (A(N)) > 0. We fix such an integer N.

Let £ be an element of A(N), let y be a point on [z, £[ satisfying |z —y| = n > N and
let B C A(N) be the closed ball (for the induced metric) of center £ and radius e™". For
every n € B, we have j(z,y,n) = €", which implies

¢(y) > end+:“=c(B)-

Using (5.3), we have also
¢(y) < e(a+e)n.

Therefore, we have
”I(B) S 6(U+f—d+)n-

Thus, for all £ € A(N) and for any closed ball B of A(N) of radius r < eV, we have
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(5.4) pz(B) < roetde

Consider now an arbitrary covering of A(N) by closed balls of radii < e™®. Using
again the fact that given any two closed balls in 90X, either one of them is contained in the
other or they are disjoint, we can extract a countable subcover {B;} of closed balls which
are two by two disjoint. Each of the balls B; satisfies

,UI(B,') _<— 7'.—0'-—6+d+

N 3

where r; is the radius of B;. Therefore ,we have
0< pa(A(N)) <Y pua(Bi) < ] 77 64,

We deduce that the (d+ — 0 — €)—dimensional Hausdorff measure of A(N) is > 0,
which implies that the Hausdorff dimension of A(N) is > dy — o — €. Making ¢ — 0, we
conclude that this dimension is > dy — . Therefore, the Hausorff dimension of A itself is
> dy — o, which proves the theorem. |

Corollary 5.7.—We have gryg(£) > —d_ for p—almost all { € 0X. |

Proof.— Let ¢ < —d and suppose that there exists a Borel subset A C X such that
for every { € A, we have gry(¢) < o. By Theorem 5.6, the Hausdorff dimension of A is
>dy — o >dy +d- =log(k — 1), contradicting the fact that log(k — 1) is the Hausdorff
dimension of 0X. We conclude that gr (§) > o for p—almost all { € 0X.

Let For every n € N*, let define 6, = —d_ — 1, and let E(0y,) be the set of points
¢ € 0X such that gry(¢) < 0,. For all n, we have yi,(En) = 0. The set of points satisfying
grs(€) < —d- is the countable union of the E(o,)’s. The proof of the corollary follows. B

Now we use the Fatou-type theorem given in [CP1] for conformal densities of the same
dimension, and the proof of Theorem 5.6, to obtain the following

Theorem 5.8.— The following four statements are equivalent:
(2) gr4(€) = —d- for p—almost all £ € 0X.
(22) gr4(€) < —d- for p—almost all £ € 0X.

(i12) For all z € S, the measure u, i3 absolutely continuous with respect to the log(k —
1)—dimensional Hausdorff measure H, on 0X.

(iv) There ezists a point z € S such that he measure p, i3 absolutely continuous with
respect to the log(k — 1)—dimensional Hausdorff measure H, on 0X.

Furthermore, if one of these conditions is satisfied, then, for u—almost all € € 0X,
we have
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- #(z,n,6)  dus

In particular, there is a constant C = C(k,\) > O such that, for u—almost all £ € OX,
we have

Bz, €) ~ CLEE(E)e-

asn — 0o. (Note that we already knew that gry(€) = —d_ for p—almost all ¢, by Corollary
5.7).

Proof.— (i) = (1) is trivial. Let us prove (11) = (11).

Assume that gry(¢) < —d_ for y—almost all £ € 0X. Let us fix z € S. By the proof
of Theorem 5.6, taking o = —d_, we have, for every Borel subset A € dX, H,(A) > 0 if
pz(A) > 0. Therefore, p, is absolutely continuous with respect to H,. This proves (#:¢).

The equivalence (#21) < (2v) follows from the definition of a conformal density.

Let us prove finally that (zv) = (z) and that (zv) imples the relation (5.5). We suppose
therefore that there is a point z € S such that the measure y, is absolutely continuous
with respect to H,. Let v be the (unique) conformal density of dimension d; such that
v = H,. By symmetry, we have ¢,(z,n,€) = Sx(n) for all £ € 0X. Recall now that p and
v have the same dimension d. Therefore we can apply to them the Fatou-type theorem of
[CP1], and we obtain formula (5.5). By Proposition 1.4, we have Sx(n) ~ Ce™™4- which
implies gry () = —d—. This proves (7). |
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