Positive λ-harmonic functions and conformal densities on homogeneous trees

Michel Coornaert Athanase Papadopoulos

Institut de Recherche Mathématique	Max-Planck-Institut für Mathematik
Avancée	Gottfried-Claren-Straße 26
Université Louis Pasteur et CNRS	53225 Bonn
7, rue René Descartes	
67084 Strasbourg Cedex	Germany

France

Positive λ-harmonic functions and conformal densities on homogeneous trees

by
Michel Coornaert and Athanase Papadopoulos*
Institut de Recherche Mathématique Avancée
Université Louis Pasteur et CNRS
7, rue René Descartes, 67084 Strasbourg Cedex France

§0.-Introduction

In this paper, we study some asymptotic aspects, from a geometric point of view, of the positive eigenfunctions of the combinatorial Laplacian associated to a homogeneous tree. The results are inspired by the paper [Sul] of Dennis Sullivan, which concerns the hyperbolic spaces \mathbb{H}^{n}.

Let k be an integer ≥ 3 and X the homogeneous tree of degree k, that is, the unique simply connected simplicial complex of dimension 1 in which every vertex belongs to exactly k edges. X is equipped with the length metric in which every edge is isometric to the unit interval $[0,1]$. The distance in X between two points x and y is denoted by $|x-y|$. We denote by ∂X the boundary (at infinity) of X, that is, the set of ends of X. Recall that the set $X \cup \partial X$ has a natural topology which makes it a compact space in which X sits as a dense open subspace.

For each $x \in X$, the visual metric $\left|\left.\right|_{x}\right.$ on ∂X is defined by the formula

$$
|\xi-\eta|_{x}=e^{-L}
$$

for each ξ and η in ∂X, where L is the length of the common path between the geodesic rays $[x, \xi[$ and $[x, \eta[$. We consider the function $j: X \times X \times(X \cup \partial X) \rightarrow \mathbb{R}$ defined by

$$
j(x, y, z)=e^{|x-p|-|p-y|}
$$

with p being the projection of z on the geodesic segment $[x, y]$ (see Figure 1).

[^0]

Figure 1

We have the following formula (which we shall refer to as the "formula for the change of point of view "):

$$
\begin{equation*}
|\xi-\eta|_{y}^{2}=j(x, y, \xi) j(x, y, \eta)|\xi-\eta|_{x}^{2} \tag{0.1}
\end{equation*}
$$

All the measures considered in this paper are non-negative Radon measures. Let S denote the set of vertices of X and let d be a real number. A conformal density of dimension d on ∂X is a family $\mu=\left(\mu_{x}\right)_{x \in S}$ of non-trivial measures on ∂X which are absolutely continuous with respect to one another and such that, for every x and $y \in S$, we have

$$
\frac{d \mu_{y}}{d \mu_{x}}(\xi)=j^{d}(x, y, \xi) \quad \forall \xi \in \partial X
$$

We note that a conformal density is entirely determined by its dimension and its value at a given vertex, which can be an arbitrary non-trivial measure on ∂X.

The Laplace operator Δ is defined on the space of functions on S by the formula:

$$
\Delta f(x)=f(x)-\frac{1}{k} \sum_{y \sim x} f(y)
$$

for every function $f: S \rightarrow \mathbb{R}$, where the notation $y \sim x$ means that x and y are the two vertices of the same edge. Given $\lambda \in \mathbb{R}$, a function $f: S \rightarrow \mathbb{R}$ is called λ-harmonic if it satisfies $\Delta f=\lambda f$.

We will be mainly interested in positive λ-harmonic functions, i.e. λ-harmonic functions ϕ such that $\phi(x)>0$ for all $x \in S$. It is well-known that positive λ-harmonic functions exist if and only if $\lambda \leq \lambda_{0}$, where

$$
\lambda_{0}=1-2 \frac{\sqrt{k-1}}{k} .
$$

(We refer to the papers [Dod] and [MW] for surveys and bibliographical references.)
Here is a fundamental example of a positive λ-harmonic function. Fix some real number d, and points $x \in S$ and $\xi \in \partial X$. Then the function

$$
y \mapsto j^{d}(x, y, \xi)
$$

is a positive λ-harmonic function on $S(c f$. [CP2]), with

$$
\begin{equation*}
\lambda=\frac{1}{k}\left(1-e^{-d}\right)\left(k-1-e^{d}\right) . \tag{0.2}
\end{equation*}
$$

We shall often refer to the fact that for a given $\lambda<\lambda_{0}$, equation (0.2) has two solutions, $d_{-}<d_{+}$, satisfying

$$
\begin{equation*}
d_{-}+d_{+}=\log (k-1) \tag{0.3}
\end{equation*}
$$

and for $\lambda=\lambda_{0}$, it has only one solution, $d_{-}=d_{+}=\frac{1}{2} \log (k-1)$.
Let μ be a conformal density of dimension d on ∂X. Consider the total mass function $\phi_{\mu}: S \rightarrow \mathbb{R}$, defined by

$$
\phi_{\mu}(x)=\mu_{x}(\partial X)
$$

By the definition of a conformal density, we can write, for every $y \in S$,

$$
\begin{equation*}
\phi_{\mu}(y)=\int_{\partial X} j^{d}(x, y, \xi) d \mu_{x}(\xi) \tag{0.4}
\end{equation*}
$$

Therefore, ϕ_{μ} is a positive λ-harmonic function on S, with λ given again by (0.2).
The plan of the paper is the following:
In section 1, we collect a few well-known results about spherical λ-harmonic functions which will be used in the rest of the paper.

Let $\mu=\left(\mu_{x}\right)_{x \in S}$ be a conformal density of dimension $\geq \frac{1}{2} \log (k-1)$. We show in section 2 that, for each $x \in S$, the measure μ_{x} is the weak limit, as $n \rightarrow \infty$, of the measure

$$
\sum_{y:|x-y|=n} \phi_{\mu}(y) \delta_{y}
$$

suitably normalized to have total mass $\phi_{\mu}(x)$. (Here, δ_{y} is the Dirac measure at y.) Thus, in particular, a conformal density of dimension $\geq \frac{1}{2} \log (k-1)$ can be recovered from its total mass function.

In section 3, we prove a representation theorem for positive λ-harmonic functions. More precisely, we follow Martin's method (as explained in the paper [Sul]) to prove that if ϕ is a positive λ-harmonic function, then there exists a unique conformal density μ of dimension $\geq \frac{1}{2} \log (k-1)$ on ∂X whose total mass function is ϕ. We conclude that the map $\mu \mapsto \phi_{\mu}$ is a bijection from the set of conformal densities of dimension $\geq \frac{1}{2} \log (k-1)$ to the set of positive eigenfunctions of the Laplacian.

Let μ be now a conformal density of dimension d with $d<\frac{1}{2} \log (k-1)$. We know that its total mass function ϕ_{μ} is a positive λ-harmonic function, and via the representation theorem above, we have an associated conformal density $\mu^{+}=\left(\mu_{x}^{+}\right)_{x \in S}$ of dimension $d_{+}>\frac{1}{2} \log (k-1)$. In section 4, we study the correspondence $\mu \mapsto \mu^{+}$and we give,
for each $x \in S$, an explicit formula for μ_{x}^{+}in terms of μ_{x}. We see in particular that each measure μ_{x}^{+}is absolutely continuous with respect to the $\log (k-1)$-dimensional Hausdorff measure \mathcal{H}_{x} associated with the visual metric $\left|\left.\right|_{x}\right.$, and we give a formula for the Radon-Nikodym derivative $\frac{d \mu_{\dot{*}}^{+}}{d \mathcal{F}_{x}}$. The map $\mu \mapsto \mu^{+}$from the set of conformal densities of dimension $<\frac{1}{2} \log (k-1)$ to the set of conformal densities of dimension $>\frac{1}{2} \log (k-1)$ is neither surjective nor injective.

Section 5 contains different kinds of estimates on the growth of positive λ-harmonic functions along geodesic rays. These estimates, for ϕ positive λ-harmonic, are obtained in terms of the conformal density of dimension $\geq \frac{1}{2} \log (k-1)$ whose total mass function is ϕ.

All the results, with the exception of those of section 4, are discrete analogs of results contained in the paper [Sul] of Sullivan which concerns the case of hyperbolic space \mathbb{H}^{n}. The results of section 4 have also an analog for \mathbf{H}^{n} and other rank one Riemannian symmetric spaces (cf. [CP3]).

Let us note finally that, as a general rule, the "infinite negative curvature" geometry of trees, reflected for example in the ultrametric property of the visual metrics on the boundary, makes the proofs simpler than in \mathbb{H}^{n}. On the other hand, the statements are often stronger than their analogs for hyperbolic spaces.

§1.-Preliminaries

We begin by recalling the definition of the spherical functions $S_{\lambda}(n)$, and we give some of their elementary and basic properties (see for example [Bro], [Car] and [FN]). Given a real number λ, it is easy to see that there exists a unique function $S_{\lambda}: \mathbb{N} \rightarrow \mathbb{R}$ such that, for every $x \in S$, the function $y \mapsto S_{\lambda}(|x-y|)$ is λ-harmonic on S and takes the value 1 at x. Indeed, for a fixed λ, the sequence $S_{\lambda}(n)$ is determined by the order two linear recurrence relation

$$
\begin{equation*}
\frac{k-1}{k} S_{\lambda}(n+2)-(1-\lambda) S_{\lambda}(n+1)+\frac{1}{k} S_{\lambda}(n)=0 \tag{1.1}
\end{equation*}
$$

with initial conditions

$$
S_{\lambda}(0)=1 \text { and } S_{\lambda}(1)=1-\lambda
$$

For each $x \in S$ and $n \in \mathbf{N}$, let $S(x, n)$ denote the sphere in X of radius n centered at x, and let w_{n} denote the number of points in $S(x, n)$. We have $w_{0}=1$ and, for all $n \geq 1$, $w_{n}=k(k-1)^{n-1}$.

Proposition 1.1.- Let $f: S \rightarrow \mathbb{R}$ be a λ-harmonic function. Then:

$$
\begin{equation*}
\frac{1}{w_{n}} \sum_{y \in S(x, n)} f(y)=f(x) S_{\lambda}(n) \tag{1.2}
\end{equation*}
$$

for every $x \in S$ and $n \in \mathbf{N}$.
Proof.-It is clear that the function which to every point at distance n from x associates the left hand side of equation (1.2) is λ-harmonic and takes the value $f(x)$ at x.

By applying the proposition to the function $y \mapsto j^{d}(x, y, \xi)$, we obtain:
Corollary 1.2.-Let λ and d be real numbers satisfying equation (0.2). Then:

$$
\frac{1}{w_{n}} \sum_{y \in S(x, n)} j^{d}(x, y, \xi)=S_{\lambda}(n)
$$

for every $x \in S, \xi \in \partial X$ and $n \in \mathbf{N}$.
Corollary 1.3.- (cf. [Bro], Theorem 1.1) For $\lambda \leq \lambda_{0}$, we have $S_{\lambda}(n)>0$ for all $n \in \mathbf{N}$.
We shall need the following estimate on spherical functions:
Proposition 1.4.- (cf. [Bro], Theorem 1.1) For $\lambda<\lambda_{0}$, we have $S_{\lambda}(n) \sim C e^{-n d_{-}}$as $n \rightarrow \infty$, where $C=C(k, \lambda)>0$ is a constant and d_{-}is, as before, the smallest of the two solutions of equation (0.2). For $\lambda=\lambda_{0}$, we have $S_{\lambda}(n) \sim C n e^{-n d}$ where $C=C(k)>0$ is a constant and where d is the unique solution of equation (0.2).

Proof.- $S_{\lambda}(n)$ satisfies the recurrence equation (1.1), whose associated characteristic equation is:

$$
\begin{equation*}
\frac{k-1}{k} \beta^{2}-(1-\lambda) \beta+\frac{1}{k}=0, \tag{1.3}
\end{equation*}
$$

which is equation (0.2) with $\beta=e^{-d}$.
Therefore, for $\lambda<\lambda_{0}$, the general solution of (1.1) is of the form

$$
S_{\lambda}(n)=c_{1} e^{-n d_{+}}+c_{2} e^{-n d_{-}}, \quad n \geq 0 .
$$

The initial conditions give $c_{1}+c_{2}=1$ and $c_{1} e^{-d_{+}}+c_{2} e^{-d_{-}}=1-\lambda$, hence

$$
c_{2}=\frac{1-\lambda-e^{-d_{+}}}{e^{-d_{-}}-e^{-d_{+}}} .
$$

We have $e^{-d_{+}}<1-\lambda$, using $e^{-d_{-}}+e^{-d_{+}}=(1-\lambda) \frac{k}{k-1}$, which implies $c_{2}>0$.
Thus, $S_{\lambda}(n) \sim c_{2} e^{-n d_{-}}$as $n \rightarrow \infty$.
For $\lambda=\lambda_{0}$, equation (1.3) has one double solution $\beta=e^{-d}$, and the general solution of (1.1) is of the form

$$
S_{\lambda}(n)=\left(c_{1}+c_{2} n\right) e^{-n d}
$$

Using the initial conditions, we can see as before that the constant c_{2} is also positive in this case, and we have $S_{\lambda}(n) \sim c_{2} n e^{-n d}$ as $n \rightarrow \infty$, which proves the proposition.

§2.-Spherical approach to conformal densities

Proposition 2.1.- Let $\lambda \leq \lambda_{0}$, and let d_{+}be the largest solution of equation (0.2). Let x be a fixed vertex of X and $f: X \cup \partial X \rightarrow \mathbb{R}$ a continuous function. For every $n \in \mathbb{N}$, consider the function $g_{n}: \partial X \rightarrow \mathbb{R}$ defined by

$$
g_{n}(\xi)=\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} j^{d_{+}}(x, y, \xi) f(y)
$$

Then the sequence (g_{n}) converges uniformly to f on ∂X.
Proof.-By Corollary 1.2, we have

$$
\begin{equation*}
\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} j^{d+}(x, y, \xi)=1 \tag{2.1}
\end{equation*}
$$

for all $\xi \in \partial X, n \in \mathbf{N}$. Therefore,

$$
g_{n}(\xi)-f(\xi)=\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} j^{d+}(x, y, \xi)(f(y)-f(\xi))
$$

Let us fix now an $\epsilon>0$. The function f is uniformly continuous on the compact set $X \cup \partial X$. Therefore, we can find an integer $K \geq 0$ such that $|f(y)-f(\xi)| \leq \frac{\epsilon}{2}$ for every y in the set

$$
W=\left\{y \in S \mid(y \cdot \xi)_{x} \geq K\right\}
$$

where $(y . \xi)_{x}$ denotes the Gromov product of the points y and ξ with respect to x, that is, the length of the common part of the geodesics $[x, y]$ and $[x, \xi[$. We have, by the triangle inequality:

$$
\begin{aligned}
\left|g_{n}(\xi)-f(\xi)\right| & \leq \frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} j^{d+}(x, y, \xi)|f(y)-f(\xi)| \\
& =\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n) \cap W} j^{d+}(x, y, \xi)|f(y)-f(\xi)| \\
& +\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n) \backslash W} j^{d+}(x, y, \xi)|f(y)-f(\xi)| \\
& \leq \frac{\epsilon}{2} \frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n) \cap W} j^{d+}(x, y, \xi) \\
& +\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n) \backslash W} j^{d+}(x, y, \xi)|f(y)-f(\xi)|
\end{aligned}
$$

Using equation (2.1), we obtain

$$
\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n) \cap W} j^{d+}(x, y, \xi) \leq \frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} j^{d+}(x, y, \xi)=1
$$

which gives

$$
\begin{equation*}
\left|g_{n}(\xi)-f(\xi)\right| \leq \frac{\epsilon}{2}+\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n) \backslash W} j^{d+}(x, y, \xi)|f(y)-f(\xi)| \tag{2.2}
\end{equation*}
$$

We remark now that $j(x, y, \xi) \leq e^{2 K-n}$ for all $y \in S(x, n) \backslash W$, and that

$$
|f(y)-f(\xi)| \leq 2\|f\|_{\infty}
$$

where

$$
\|f\|_{\infty}=\sup _{X \cup \partial X}|f| .
$$

Thus, inequality (2.2) implies

$$
\begin{equation*}
\left|g_{n}(\xi)-f(\xi)\right| \leq \frac{\epsilon}{2}+2| | f \|_{\infty} \frac{e^{(2 K-n) d_{+}}}{S_{\lambda}(n)} \tag{2.3}
\end{equation*}
$$

For $\lambda<\lambda_{0}$, we have, by Proposition 1.4, $S_{\lambda}(n) \sim C e^{-n d-}$ as n tends to ∞, where $C>0$ is some constant and where d_{-}is the smallest solution of (0.2). For $\lambda=\lambda_{0}$, we have $S_{\lambda}(n) \sim C n e^{-n d_{+}}$. Therefore, (2.3) shows that there exists an integer N such that, for all $\xi \in \partial X$ and for all $n \geq N$, we have

$$
\left|g_{n}(\xi)-f(\xi)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

This completes the proof of Proposition 2.1.
We can now prove the following
Theorem 2.2.-Let $\mu=\left(\mu_{x}\right)_{x \in S}$ be a conformal density of dimension d on ∂X, with $d \geq \frac{1}{2} \log (k-1)$. For every vertex $x \in X$ and every $n \in \mathbf{N}$, define the measure $\mu_{n, x}$ on X by the formula

$$
\begin{equation*}
\mu_{n, x}=\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} \phi_{\mu}(y) \delta_{y} \tag{2.4}
\end{equation*}
$$

where δ_{y} is the Dirac measure at y. Then the sequence $\left(\mu_{n, x}\right)_{n \in \mathbb{N}}$ converges weakly to μ_{x} in the space of measures on $X \cup \partial X$.

Proof.-Consider a continuous function f on $X \cup \partial X$ and, for $n \in \mathbf{N}$, let g_{n} be the function on ∂X defined in Proposition 2.1 (note that $d_{+}=d$ here). We have, using (0.4),

$$
\begin{aligned}
\mu_{n, x}(f) & =\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} \phi_{\mu}(y) f(y) \\
& =\frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} \int_{\partial X} j^{d}(x, y, \xi) d \mu_{x}(\xi) f(y) \\
& =\int_{\partial X} \frac{1}{w_{n} S_{\lambda}(n)} \sum_{y \in S(x, n)} j^{d}(x, y, \xi) f(y) d \mu_{x}(\xi) \\
& =\int_{\partial X} g_{n}(\xi) d \mu_{x}(\xi) \\
& =\mu_{x}\left(g_{n}\right) .
\end{aligned}
$$

Now since (g_{n}) converges uniformly to f on ∂X (Proposition 2.1), we conclude that $\mu_{n, x}(f)$ converges to $\mu_{x}(f)$ as $n \rightarrow \infty$. Therefore, the sequence ($\mu_{n, x}$) converges weakly to μ_{x}.

We note the following corollary which will be useful in the next section:
Corollary 2.3.-A conformal density of dimension $\geq \frac{1}{2} \log (k-1)$ is uniquely determined by its total mass function.

§3.-Conformal representation at infinity of positive λ-harmonic functions

In this section, we show, by following Martin's classical method, that for every positive λ-harmonic function ϕ on S, there exists a unique conformal density μ of dimension $\geq \frac{1}{2} \log (k-1)$ on ∂X whose total mass function is ϕ. The dimension of μ is equal to the largest solution of equation (0.2). The uniqueness of μ will be a consequence of Corollary 2.3 .

We shall follow the lines of the proof of the corresponding theorem of Sullivan (Theorem 2.11 of [Sul]), adapted to the discrete setting. For this purpose, we need to recall a few facts from discrete potential theory. For further details, we refer the reader to ([Mey], chapter 9). From now on, we suppose $\lambda \leq \lambda_{0}$.

The transition kernel $P: S \times S \rightarrow\left\{0, \frac{1}{k}\right\}$ is defined by

$$
P(x, y)=\frac{1}{k} \text { if }|x-y|=1
$$

and $P(x, y)=0$ otherwise.
The λ - Green kernel $G_{\lambda}: S \times S \rightarrow[0, \infty]$ is defined by

$$
G_{\lambda}(x, y)=\sum_{n=0}^{\infty}(1-\lambda)^{-n-1} P^{n}(x, y)
$$

where $P^{0}=I$ is the identity kernel, defined by $I(x, y)=1$ if $x=y$ and $I(x, y)=0$ otherwise, and where P^{n} is the matrix product, defined by induction on n by the formula

$$
P^{n+1}(x, y)=\sum_{z \in S} P^{n}(x, z) P(z, y) .
$$

Let us note that by a result of Kesten (see for example [CP2],§5), we have an explicit formula for $\lambda \leq \lambda_{0}$,

$$
\begin{equation*}
G_{\lambda}(x, y)=\alpha e^{-|x-y| d_{+}} \tag{3.1}
\end{equation*}
$$

where d_{+}is, as before, the largest solution of equation (0.2), and

$$
\alpha=\frac{1}{1-\lambda-e^{-d_{+}}} .
$$

Let us recall also that any kernel $K: S \times S \rightarrow[0, \infty]$ acts on the set of positive functions on S by the formula

$$
K f(x)=\sum_{y \in S} K(x, y) f(y)
$$

for every $f: S \rightarrow[0, \infty]$.
The function $f: S \rightarrow \mathbb{R}$ is said to be λ-superharmonic if it satisfies $\Delta f \geq \lambda f$, or, equivalently, $f \geq(1-\lambda)^{-1} P f$, where $P f$ is defined by

$$
P f(x)=\sum_{y \in S} P(x, y) f(y) .
$$

Proposition 3.1.—Let $\lambda \leq \lambda_{0}$. Consider a function $f: S \rightarrow[0, \infty[$. Then, the following two properties are equivalent:
(i) f is λ-superharmonic and satisfies

$$
\lim _{n \rightarrow \infty}(1-\lambda)^{-n} P^{n} f=0
$$

in the sense of pointwise convergence.
(ii) There exists a function $g: S \rightarrow\left[0, \infty\left[\right.\right.$ such that $f=G_{\lambda} g$.

Proof.- Suppose that property (i) is satisfied. Let $g=(1-\lambda) f-P f$. Since f is λ-superharmonic, we have $g \geq 0$. On the other hand, the identity

$$
f=\sum_{i=0}^{n-1}(1-\lambda)^{-i-1} P^{i} g+(1-\lambda)^{-n} P^{n} f
$$

shows that $f=G_{\lambda} g$ since, by hypothesis, we have $(1-\lambda)^{-n} P^{n} f \rightarrow 0$ as $n \rightarrow \infty$. Therefore, f satisfies property (ii).

Conversely, suppose that f satisfies property (ii). From the relation $f=G_{\lambda} g$, we deduce $f=(1-\lambda)^{-1} g+(1-\lambda)^{-1} P f$, which implies $f \geq(1-\lambda)^{-1} P f$, and f is λ-superharmonic. Furthermore, we can write

$$
\begin{gathered}
f=(1-\lambda)^{-1} g+(1-\lambda)^{-1} P\left((1-\lambda)^{-1} g+(1-\lambda)^{-1} P f\right) \\
=(1-\lambda)^{-1} g+(1-\lambda)^{-2} P g+\ldots+(1-\lambda)^{-n} P^{n-1} g+(1-\lambda)^{-n} P^{n} f,
\end{gathered}
$$

hence $(1-\lambda)^{-n} P^{n} f$ appears as the $n-t h$ remainder of a convergent series, and therefore tends to 0 .

Proposition 3.2.-Let $\lambda \leq \lambda_{0}$, and let $f: S \rightarrow[0, \infty[$ be λ-superharmonic. Then, there exists a sequence of functions $g_{n}: S \rightarrow\left[0, \infty\left[\right.\right.$ such that $f=\lim G_{\lambda} g_{n}$ in the sense of pointwise convergence.

Proof.- Let us fix a basepoint $x \in S$, and for all $n=0,1,2, \ldots$, let χ_{n} denote the characteristic function of the ball $B(x, n)$ of radius n centered at x. Consider the sequence of functions $f_{n}=\min \left\{f, n G_{\lambda} \chi_{n}\right\}$. Being the minimum of two λ-superharmonic functions, f_{n} is itself λ-superharmonic.

For a given point $y \in S$, let us take n large enough so that y belongs to the ball $B(x, n)$. We can write in this case:

$$
G_{\lambda} \chi_{n}(y)=\sum_{z \in S} G_{\lambda}(y, z) \chi_{n}(z) \geq G_{\lambda}(y, y) \geq(1-\lambda)^{-1}
$$

Therefore, there exists an integer n_{0} such that for every $n \geq n_{0}$, we have

$$
n G_{\lambda} \chi_{n}(y) \geq n(1-\lambda)^{-1}
$$

which implies $f_{n}(y)=f(y)$ for all n large enough. Thus, f is the increasing limit of $\left(f_{n}\right)$.
We prove finally that for every $n=0,1,2, \ldots$, the function f_{n} is of the form $G_{\lambda} g_{n}$, with $g_{n} \geq 0$. By proposition 3.1, it suffices to show that we have $\lim _{j \rightarrow \infty}(1-\lambda)^{-j} P^{j} f_{n}=0$ pointwise.

Let us fix the integer $n \geq 0$. It is easy to see, by induction, that for every $j=0,1,2, \ldots$, we have

$$
(1-\lambda)^{-j} P^{j} f_{n} \leq \min \left\{(1-\lambda)^{-j} P^{j} f,(1-\lambda)^{-j} P^{j} n G_{\lambda} \chi_{n}\right\}
$$

Now using Proposition 3.1, we have

$$
\lim _{j \rightarrow \infty}(1-\lambda)^{-j} P^{j} f=\lim _{j \rightarrow \infty}(1-\lambda)^{-j} P^{j} n G_{\lambda} \chi_{n}=0
$$

This completes the proof of Proposition 3.2.
Now we are ready to prove the following
Theorem 3.3.-Let ϕ be a positive λ-harmonic function on S. Then there exists a unique conformal density μ of dimension $\geq \frac{1}{2} \log (k-1)$ on ∂X whose total mass function is ϕ. The dimension of μ is equal to d_{+}, the largest solution of equation (0.2).

Proof.- Let x be again a basepoint in S. By Proposition 3.2, there exists a sequence of functions $g_{n}: S \rightarrow\left[0, \infty\left[\right.\right.$ such that the sequence $f_{n}=G_{\lambda} g_{n}$ converges pointwise to ϕ.

For every $n \geq 0$, we define the measure $\nu_{n, x}$ on S by

$$
\nu_{n, x}=\sum_{z \in S} G_{\lambda}(x, z) g_{n}(z) \delta_{z},
$$

where δ_{z} denotes the Dirac measure at z.
The total mass of $\nu_{n, x}$ is equal to

$$
\sum_{z \in S} G_{\lambda}(x, z) g_{n}(z)=G_{\lambda} g_{n}(x)=f_{n}(x)
$$

As $f_{n}(x)$ converges to $\phi(x)$, the total mass of $\nu_{n, x}$ is bounded, and we can find a subsequence $\nu_{n_{i}, x}$ which converges weakly to a measure μ_{x} on the compact set $S \cup \partial X$. Let us show now that the support of μ_{x} is necessarily contained in ∂X.

From the relation $f_{n}=G_{\lambda} g_{n}$, we deduce that $g_{n}=(\Delta-\lambda I) f_{n}$. Therefore, for every $z \in S$, we have

$$
g_{n_{i}}(z)=(\Delta-\lambda I) f_{n_{i}}(z)
$$

As $n_{i} \rightarrow \infty$, we have $f_{n_{i}}(z) \rightarrow \phi(z)$, and

$$
\lim _{n_{i} \rightarrow \infty} g_{n_{i}}(z)=\lim _{n_{i} \rightarrow \infty}(\Delta-\lambda I) f_{n_{i}}(z)=(\Delta-\lambda I) \phi(z)=0
$$

Therefore, for every vertex $z \in S$, we have

$$
\mu_{x}(\{z\})=\lim _{n_{i} \rightarrow \infty} \nu_{n_{i}, x}(\{z\})=\lim _{n_{i} \rightarrow \infty} G_{\lambda}(x, z) g_{n_{i}}(z)=0
$$

The support of μ_{x} is therefore contained in ∂X.
We can write

$$
\begin{aligned}
f_{n_{i}}(y) & =\sum_{z \in S} G_{\lambda}(y, z) g_{n_{i}}(z) \\
& =\sum_{z \in S} \frac{G_{\lambda}(y, z)}{G_{\lambda}(x, z)} G_{\lambda}(x, z) g_{n_{i}}(z) \\
& =\int_{S} \frac{G_{\lambda}(y, z)}{G_{\lambda}(x, z)} d \nu_{n_{i}, x}(z) .
\end{aligned}
$$

By (3.1), we have

$$
\frac{G_{\lambda}(y, z)}{G_{\lambda}(x, z)}=\frac{\alpha e^{-|y-z| d_{+}}}{\alpha e^{-|x-z| d_{+}}}=j^{d_{+}}(x, y, z) .
$$

Therefore, we can write

$$
f_{n_{i}}(y)=\int_{S \cup \partial X} j^{d+}(x, y, z) d \nu_{n_{i}, x}(z) .
$$

Letting $n_{i} \rightarrow \infty$, we obtain

$$
\phi(y)=\int_{S \cup \partial X} j^{d+}(x, y, z) d \mu_{x}(z)=\int_{\partial X} j^{d+}(x, y, \xi) d \mu_{x}(\xi)
$$

Therefore, the uniquely defined conformal density of dimension d_{+}which takes the value μ_{x} at x, has ϕ as total mass function.

Uniqueness of μ follows from Corollary 2.3. This completes the proof of Theorem 3.3.

Remark. In [CP2], we give a probabilistic interpretation of the conformal density μ in terms of the random walk on S with transition probabilities

$$
P_{\phi}(x, y)=(1-\lambda)^{-1} \frac{\phi(y)}{\phi(x)} P(x, y)
$$

for every $x, y \in S$. More precisely, μ_{x} is $\phi(x)$ times the hitting probability at infinity of the random walk starting at x, with probability 1 .

§4.-On the correspondence $\mu \mapsto \mu^{+}$

For each $x \in S$, let \mathcal{H}_{x} denote the $\log (k-1)$-dimensional Hausdorff measure on ∂X associated to the visual metric $\left|\left.\right|_{x}\right.$, and normalized so that $\mathcal{H}_{x}(\partial X)=1$. We recall a few basic properties of \mathcal{H}_{x}. First, it is the only probability measure on ∂X which is invariant by the full isometry group of X fixing the vertex x. From this symmetry property, we see that all the closed balls of a given radius (for the metric $\left|\left.\right|_{x}\right.$) have the same \mathcal{H}_{x}-mass. In fact the mass of a closed ball of radius e^{-n} centered at a point in ∂X is equal to $\frac{1}{w_{n}}$, where w_{n} is defined, as before, as the number of points on a sphere of radius n in X centered at a vertex. Let us note also that $\mathcal{H}=\left(\mathcal{H}_{x}\right)_{x \in S}$ is a conformal density on ∂X of dimension $\log (k-1)$. This can be deduced from the fact that \mathcal{H} is the conformal density which is associated by Theorem 3.3 to the constant function $\phi=1$ (which is 0 -harmonic).

Proposition 4.1.-Let $\xi \in \partial X$ and $x \in S$, and let $\alpha<\log (k-1)$. Then the function h_{α} on ∂X defined by

$$
h_{\alpha}(\eta)=\frac{1}{|\xi-\eta|_{x}^{\alpha}}
$$

belongs to $L^{1}\left(\mathcal{H}_{x}\right)$ and satisfies

$$
\int_{\partial X} h_{\alpha} d \mathcal{H}_{x}=\frac{1}{k}+\frac{k-2}{k}\left(1-\frac{e^{\alpha}}{k-1}\right)^{-1}
$$

We shall denote this value of $\mathcal{H}_{x}\left(h_{\alpha}\right)$ by I_{α}.
Proof.- For each $n \in \mathbb{N}$, let E_{n} be the set of points $\eta \in \partial X$ such that the projection of η on the geodesic ray $\left[x, \xi\right.$ [is at distance n from x. The function h_{α} is constant and equal to $e^{\alpha n}$ on E_{n}. Therefore, $\mathcal{H}_{x}\left(h_{\alpha}\right)$ is the limit as N tends to ∞ of

$$
I_{\alpha}(N)=\sum_{n=0}^{N} e^{\alpha n} \mathcal{H}_{x}\left(E_{n}\right)
$$

We have $\mathcal{H}_{x}\left(E_{0}\right)=\frac{k-1}{k}$. For every $n \geq 1$, we note that $E_{n}=B_{n} \backslash B_{n+1}$, where B_{n} is the closed $\left|\left.\right|_{x}\right.$-ball of radius e^{-n} centered at ξ. Therefore

$$
\mathcal{H}_{x}\left(E_{n}\right)=\frac{1}{w_{n}}-\frac{1}{w_{n+1}}=\frac{1}{k(k-1)^{n-1}}-\frac{1}{k(k-1)^{n}}=\frac{k-2}{k(k-1)^{n}}
$$

This gives

$$
I_{\alpha}(N)=\frac{k-1}{k}+\frac{k-2}{k} \sum_{n=1}^{N} \frac{e^{n \alpha}}{(k-1)^{n}}
$$

which converges since $\alpha<\log (k-1)$, with limit I_{α}.
Corollary 4.2.— Let m be a measure on ∂X and $\alpha<\log (k-1)$. Then the function

$$
\eta \mapsto \int_{\partial X} \frac{d m(\xi)}{|\xi-\eta|_{x}^{\alpha}}
$$

belongs to $L^{1}\left(\mathcal{H}_{x}\right)$.
Proof.- This is an immediate consequence of the preceding proposition and Fubini's theorem.
Theorem 4.3.- Let $\mu=\left(\mu_{x}\right)_{x \in S}$ be a conformal density on ∂X of dimension $d_{-}<$ $\frac{1}{2} \log (k-1)$, and for each $x \in S$, let μ_{x}^{+}be the measure on ∂X which is absolutely continuous with respect to \mathcal{H}_{x} with Radon-Nikodym derivative given by the formula

$$
\frac{d \mu_{x}^{+}}{d \mathcal{H}_{x}}(\xi)=\frac{1}{C} \int_{\eta \in \partial X} \frac{d \mu_{x}(\eta)}{|\xi-\eta|_{x}^{2 d}-}
$$

where $C=I_{2 d_{-}}$, using the notations of Proposition 4.1. Note that this function is in $L^{1}\left(\mathcal{H}_{x}\right)$, by Corollary 4.2.

Then, $\mu^{+}=\left(\mu_{x}^{+}\right)_{x \in S}$ is a conformal density on ∂X of of dimension $d_{+}=\log (k-1)-$ d_{-}. Furthermore, μ_{+}is the unique conformal density of dimension $\geq \frac{1}{2} \log (k-1)$ having the same total mass function as μ.

Proof.- Let us show first that μ^{+}is a conformal density of dimension d_{+}.
For x and $y \in S$, and for every continuous function f on ∂X, we have:

$$
\begin{aligned}
& \int_{\xi \in \partial X} f(\xi) j^{d_{+}}(x, y, \xi) d \mu_{x}^{+}(\xi) \\
& =\int_{\xi \in \partial X} f(\xi) j^{d+}(x, y, \xi) \frac{1}{C} \int_{\eta \in \partial X} \frac{d \mu_{x}(\eta)}{|\xi-\eta|_{x}^{2 d_{-}}} d \mathcal{H}_{x}(\xi) \\
& =\frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{j^{d+}(x, y, \xi) d \mu_{x}(\eta)}{|\xi-\eta|_{x}^{2 d_{-}}} d \mathcal{H}_{x}(\xi) \\
& =\frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{j^{d_{+}+d_{-}(x, y, \xi) j^{d-}(x, y, \eta) d \mu_{x}(\eta)}}{|\xi-\eta|_{x}^{2 d_{-}} j^{d}-(x, y, \xi) j^{d-}(x, y, \eta)} d \mathcal{H}_{x}(\xi) \\
& =\frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{j^{d_{+}+d_{-}(x, y, \xi) j^{d_{-}-(x, y, \eta) d \mu_{x}(\eta)}}}{|\xi-\eta|_{y}^{2 d_{-}}} d \mathcal{H}_{x}(\xi)
\end{aligned}
$$

(using formula (0.1) of "change of point of view")

$$
=\frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{d \mu_{y}(\eta)}{|\xi-\eta|_{y}^{2 d}} j^{d^{+}+d_{-}}(x, y, \xi) d \mathcal{H}_{x}(\xi)
$$

(since the conformal density $\left(\mu_{x}\right)$ is of dimension d_{-})

$$
=\frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{d \mu_{y}(\eta)}{|\xi-\eta|_{y}^{2 d_{-}}} d \mathcal{H}_{y}(\xi)
$$

(using (0.3) and since \mathcal{H}_{x} is conformal of dimension $\log (k-1)$).
This proves that μ^{+}is a conformal density of dimension d_{+}.
Now, with ϕ_{μ} and $\phi_{\mu}+$ denoting respectively the total mass functions of the conformal densities μ and μ^{+}respectively, we have, for every $x \in S$,

$$
\begin{aligned}
\phi_{\mu^{+}}(x) & =\frac{1}{C} \int_{\eta} \int_{\xi} \frac{d \mu_{x}(\xi)}{|\xi-\eta|_{x}^{2 d_{-}}} d \mathcal{H}_{x}(\eta) \\
& =\frac{1}{C} \int_{\xi}\left(\int_{\eta} \frac{d \mathcal{H}_{x}(\eta)}{|\xi-\eta|_{x}^{2 d_{-}}}\right) d \mu_{x}(\xi) \\
& =\int_{\xi} d \mu_{x}(\xi) \\
& =\phi_{\mu}(x)
\end{aligned}
$$

This completes the proof of Theorem 4.3.
Example.-Let $\mu=\left(\mu_{x}\right)_{x \in S}$ be a conformal density of dimension $d=0$. In this case, μ_{x} does not depend on x, and the total mass function of μ is constant. Then, $\mu^{+}=\left(\alpha \mathcal{H}_{x}\right)_{x \in S}$ where the constant α is the common mass of the μ_{x} 's.
Corollary 4.4.—Let $\nu=\left(\nu_{x}\right)_{x \in S}$ be a conformal density of dimension $\geq \frac{1}{2} \log (k-1)$. Assume that ν_{x} is not absolutely continuous with respect to \mathcal{H}_{x} for some (or, equivalently,
for all) $x \in S$. Then, there is no conformal density of dimension $<\frac{1}{2} \log (k-1)$ having the same total mass function as ν.

$\S 5 .-$ On the radial growth of positive λ-harmonic functions

In this section, we study the asymptotic growth of a positive λ-harmonic function along geodesic rays.

Let us first fix some notation. Consider a positive λ-harmonic function ϕ on S. We denote, as before, by $d_{-} \leq d_{+}$the solutions of equation (0.2). For $x \in S, n \in \mathbf{N}$ and $\xi \in \partial X$, we denote by (x, n, ξ) the point in S situated on the geodesic ray $[x, \xi[$ at distance n from x. Define the exponential growth coefficient of ϕ in the direction ξ as

$$
\operatorname{gr}_{\phi}(\xi)=\underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \log \phi(x, n, \xi)
$$

It is clear that $\operatorname{gr}_{\phi}(\xi)$ does not depend on x, since two geodesic rays anding at ξ eventually coincide.

Proposition 5.1.-There exists a constant $C=C(k, \lambda)>0$ such that, for all points $x, y \in S$, we have

$$
\phi(y) \leq C \phi(x) e^{n d_{+}}
$$

where $n=|x-y|$.
Proof.- Proposition 1.1 shows that $\phi(y) \leq \phi(x) w_{n} S_{\lambda}(n)$. Using proposition, 1.4, we have $w_{n} S_{\lambda}(n) \leq$ Const. $e^{n d_{+}}$. This proves the formula.
Corollary 5.2.-For all $\xi \in \partial X$, we have $-d_{+} \leq g r_{\phi}(\xi) \leq d_{+}$.

Examples.

1.- Fix $x_{0} \in S, d_{0} \in \mathbb{R}, \xi_{O} \in \partial X$ and take $\phi(x)=j^{d_{0}}\left(x_{0}, x, \xi_{0}\right)$. Then, $\operatorname{gr}_{\phi}(\xi)=-d_{0}$ for $\xi \neq \xi_{0}$ and $\mathrm{gr}_{\phi}\left(\xi_{0}\right)=d_{0}$.
2.- For $\phi(x)=S_{\lambda}\left(\left|x-x_{0}\right|\right)$ with $\lambda \leq \lambda_{0}$, we have, for every $\xi \in \partial X, \operatorname{gr}_{\phi}(\xi)=-d_{-}$.

Given the positive λ-harmonic function ϕ, let $\mu=\left(\mu_{x}\right)_{x \in S}$ be the unique conformal density of dimension $\geq \frac{1}{2} \log (k-1)$ with total mass function ϕ. We recall that μ is of dimension d_{+}. We shall see now how to use μ to get estimates on the radial growth of ϕ.

Theorem 5.3.-Let $x \in S$ and let ξ be a point in ∂X which is not in the support of μ. Then, there exist $C>0$ and $N \in \mathbf{N}$ such that, for all integers $n \geq N$,

$$
\phi(x, n, \xi)=C e^{-n d_{+}}
$$

In particular, we have $c_{\phi}(\xi)=-d_{+}$.
Proof.- Let us set $y=(x, n, \xi)$. For each $i \in \mathbf{N}$, let E_{i} be the set of points in ∂X whose projection on the geodesic ray $[x, \xi[$ is at distance i from x. As ξ is not in the support of
μ, there is an integer N such that every point in the support of μ is in E_{i} for some $i \leq N$. Therefore,

$$
\begin{aligned}
\phi(y) & =\int_{\partial X} j^{d_{+}}(x, y, \eta) d \mu_{x}(\eta) \\
& =\int_{E_{0} \cup E_{1} \cup \ldots \cup E_{N}} j^{d_{+}}(x, y, \eta) d \mu_{x}(\eta) .
\end{aligned}
$$

We remark now that $j(x, y, \eta)=e^{2 i-n}$ for all $\eta \in E_{i}$ and $i \leq n$. Therefore we have, for all $n \geq N$,

$$
\begin{aligned}
\phi(y) & =\sum_{i=0}^{N} e^{(2 i-n) d_{+}} \mu_{x}\left(E_{i}\right) \\
& =C e^{-n d_{+}}
\end{aligned}
$$

with $C=\sum_{i=0}^{N} e^{2 i d_{+}} \mu_{x}\left(E_{i}\right)$.
In the next lemma, we prove a general property of the visual metric $\left|\left.\right|_{x}\right.$ on ∂X which will be useful in the proof of the subsequent theorem.

Lemma 5.4.-Let m be a measure on ∂X. Then, for m-almost all $\xi \in \partial X$, we have

$$
\inf _{0<r<1} \frac{m(B(\xi, r))}{r^{\log (k-1)}}>0
$$

where $B(\xi, r)$ denotes the closed ball of center ξ and radius r, with respect to the visual metric $\left|\left.\right|_{x}\right.$.

Proof.- Let

$$
A=\left\{\xi \in \partial X \text { such that } \inf _{0<r<1} \frac{m(B(\xi, r))}{r^{\log (k-1)}}=0\right\} .
$$

We prove that the m-measure of A is zero.
Let us fix $\epsilon>0$. For each $\xi \in A$, we can find a real number r_{ξ} with $0<r_{\xi}<1$ such that

$$
m\left(B\left(\xi, r_{\xi}\right)\right) \leq \epsilon r_{\xi}^{\log (k-1)}
$$

We use now the fact that given any two closed balls in the ultrametric space ($\partial X,| |_{x}$), then either one of them contains the other or they are disjoint. Therefore, we can find a countable family of points $\left\{\xi_{i}\right\} \subset A$, and associated real numbers $\left\{r_{i}\right\}$ such that the family of closed balls $\left\{B\left(\xi_{i}, r_{i}\right)\right\}$ centered at ξ_{i} and of radii r_{i} covers A, with these balls being two by two disjoint. We deduce that

$$
m(A) \leq \sum_{i} m\left(B\left(\xi_{i}, r_{i}\right)\right) \leq \epsilon \sum_{i} r_{i}^{\log (k-1)}
$$

Now from the definition of the visual metric, we see that we can suppose without loss of generality that each of the radii r_{i} is of the form $e^{-n_{i}}$, with $n_{i} \in \mathbf{N}^{*}$, and we recall the fact that the $\mathcal{H}_{x}-$ measure of a closed ball of radius $e^{-n_{i}}$ is equal to

$$
\frac{1}{w_{n_{i}}}=\frac{1}{k(k-1)^{n_{i}-1}}=\frac{k-1}{k} e^{-n_{i} \log (k-1)}=\frac{k-1}{k} r_{i}^{\log (k-1)} .
$$

Therefore, we have

$$
m(A) \leq \frac{k}{k-1} \epsilon \sum_{i} \mathcal{H}_{x}\left(B\left(\xi_{i}, r_{i}\right)\right) \leq \frac{k}{k-1} \epsilon \mathcal{H}_{x}(\partial X)=\frac{k}{k-1} \epsilon
$$

We conclude that $m(A)=0$, and the lemma is proved.
The measures μ_{x} being absolutely continuous with respect to one another, they have the same sets of measure 0 . Therefore, we can say that a certain property holds " μ-almost everywhere" if it holds μ_{x}-almost everywhere for some (or equivalently for all) $x \in S$.
Theorem 5.5.-There exists $C>0$ such that, for μ-almost all $\xi \in \partial X$,

$$
\phi(x, n, \xi) \geq C e^{-n d-}
$$

In particular, we have $g r_{\phi}(\xi) \geq-d_{-}$for μ-almost all $\xi \in \partial X$.
Proof.-Let ξ be an arbitrary point in ∂X. We set, as before, $y=(x, n, \xi)$ and we denote, for each $i \in \mathbf{N}$, by A_{i} the set of points in ∂X whose projection on $[x, y[$ is at distance i from x. Let B_{i} be the closed ball in $\left(\partial X,| |_{x}\right)$ of radius e^{-i} centered at ξ. We have $A_{i}=B_{i} \backslash B_{i+1}$ for $i=0,1, \ldots, n-1$ and $A_{n}=B_{n}$. We note also that $j(x, y, \eta)=e^{2 i-n}$ for all $\eta \in A_{\mathrm{i}}$. Therefore,

$$
\begin{aligned}
\phi(y) & =\int_{\partial X} j^{d+}(x, y, \eta) d \mu_{x}(\eta) \\
& =\sum_{i=0}^{n} e^{(2 i-n) d_{+}} \mu_{x}\left(A_{i}\right) \\
& =e^{-n d_{+}} \sum_{i=0}^{n-1} e^{2 i d_{+}}\left(\mu_{x}\left(B_{i}\right)-\mu_{x}\left(B_{i+1}\right)\right)+e^{n d_{+}} \mu_{x}\left(B_{n}\right) .
\end{aligned}
$$

Using Abel's summation formula, we obtain

$$
\phi(y)=e^{-n d_{+}}\left(\mu_{x}\left(B_{0}\right)+\sum_{i=1}^{n}\left(e^{2 i d_{+}}-e^{2(i-1) d_{+}}\right) \mu_{x}\left(B_{i}\right)\right),
$$

which implies

$$
\begin{equation*}
\phi(y) \geq e^{-n d_{+}} \sum_{i=1}^{n}\left(e^{2 i d_{+}}-e^{2(i-1) d_{+}}\right) \mu_{x}\left(B_{i}\right) \tag{5.1}
\end{equation*}
$$

By Lemma 5.4, there is a constant $C_{0}>0$ such that, for μ-almost all $\xi \in \partial X$ and all $i \in \mathbf{N}$, we have

$$
\begin{equation*}
\mu_{x}\left(B_{i}\right) \geq C_{0} e^{-i \log (k-1)} \tag{5.2}
\end{equation*}
$$

Inequalities (5.1) and (5.2) imply that, for μ-almost all ξ, we have

$$
\begin{aligned}
\phi(y) & \geq e^{-n d_{+}} \sum_{i=1}^{n}\left(e^{2 i d_{+}}-e^{2(i-1) d_{+}}\right) C_{0} e^{-i \log (k-1)} \\
& =C_{0} e^{-n d_{+}}\left(1-e^{-2 d_{+}}\right) \sum_{i=1}^{n} e^{i\left(2 d_{+}-\log (k-1)\right)} \\
& \geq C e^{-n d_{+}} e^{n\left(2 d_{+}-\log (k-1)\right)} \\
& =C e^{n\left(d_{+}-\log (k-1)\right)}
\end{aligned}
$$

where $C>0$ is some constant. This proves Theorem 5.5 since we have $d_{+}-\log (k-1)=d_{-}$, by equation (0.3).

Theorem 5.6.-Let A be a Borel subset of ∂X. Assume that $\mu_{x}(A)>0$ for some (or, equivalently, for any) $x \in S$. Assume furthermore that there exists some real number σ such that $g r_{\phi}(\xi) \leq \sigma$ for all $\xi \in A$. Then, the Hausdorff dimension of A (with respect to the visual metrics) is $\geq d_{+}-\sigma$.

Proof.-As before, the proof relies on the existence of the following representation:

$$
\phi(y)=\int_{\partial X} j^{d+}(x, y, \xi) d \mu_{x}(\xi)
$$

Let $\epsilon>0$ be a fixed real number. For each $N \in \mathbf{N}$, define the set

$$
\begin{equation*}
A(N)=\left\{\xi \in A \mid \phi(x, n, \xi) \leq e^{n(\sigma+\epsilon)} \forall n \geq N\right\} . \tag{5.3}
\end{equation*}
$$

Then A is the increasing union of the $A(N)$'s and therefore we can find an integer N such that $\mu_{x}(A(N))>0$. We fix such an integer N.

Let ξ be an element of $A(N)$, let y be a point on $[x, \xi[$ satisfying $|x-y|=n \geq N$ and let $B \subset A(N)$ be the closed ball (for the induced metric) of center ξ and radius e^{-n}. For every $\eta \in B$, we have $j(x, y, \eta)=e^{n}$, which implies

$$
\phi(y) \geq e^{n d_{+}} \mu_{x}(B) .
$$

Using (5.3), we have also

$$
\phi(y) \leq e^{(\sigma+\epsilon) n} .
$$

Therefore, we have

$$
\mu_{x}(B) \leq e^{\left(\sigma+\epsilon-d_{+}\right) n}
$$

Thus, for all $\xi \in A(N)$ and for any closed ball B of $A(N)$ of radius $r \leq e^{-N}$, we have

$$
\begin{equation*}
\mu_{x}(B) \leq r^{-\sigma-\epsilon+d_{+}} . \tag{5.4}
\end{equation*}
$$

Consider now an arbitrary covering of $A(N)$ by closed balls of radii $\leq e^{-N}$. Using again the fact that given any two closed balls in ∂X, either one of them is contained in the other or they are disjoint, we can extract a countable subcover $\left\{B_{i}\right\}$ of closed balls which are two by two disjoint. Each of the balls B_{i} satisfies

$$
\mu_{x}\left(B_{i}\right) \leq r_{i}^{-\sigma-\epsilon+d_{+}},
$$

where r_{i} is the radius of B_{i}. Therefore, we have

$$
0<\mu_{x}(A(N)) \leq \sum_{i} \mu_{x}\left(B_{i}\right) \leq \sum_{i} r_{i}^{-\sigma-\epsilon+d_{+}}
$$

We deduce that the $\left(d_{+}-\sigma-\epsilon\right)$-dimensional Hausdorff measure of $A(N)$ is >0, which implies that the Hausdorff dimension of $A(N)$ is $\geq d_{+}-\sigma-\epsilon$. Making $\epsilon \rightarrow 0$, we conclude that this dimension is $\geq d_{+}-\sigma$. Therefore, the Hausorff dimension of A itself is $\geq d_{+}-\sigma$, which proves the theorem.
Corollary 5.7.—We have $g r_{\phi}(\xi) \geq-d$ - for μ-almost all $\xi \in \partial X$.
Proof.- Let $\sigma<-d$ and suppose that there exists a Borel subset $A \subset \partial X$ such that for every $\xi \in A$, we have $\operatorname{gr}_{\phi}(\xi) \leq \sigma$. By Theorem 5.6, the Hausdorff dimension of A is $\geq d_{+}-\sigma>d_{+}+d_{-}=\log (k-1)$, contradicting the fact that $\log (k-1)$ is the Hausdorff dimension of ∂X. We conclude that $\mathrm{gr}_{\phi}(\xi)>\sigma$ for μ-almost all $\xi \in \partial X$.

Let For every $n \in \mathbf{N}^{*}$, let define $\sigma_{n}=-d_{-}-\frac{1}{n}$, and let $E\left(\sigma_{n}\right)$ be the set of points $\xi \in \partial X$ such that $\operatorname{gr}_{\phi}(\xi) \leq \sigma_{n}$. For all n, we have $\mu_{x}\left(E_{n}\right)=0$. The set of points satisfying $\operatorname{gr}_{\phi}(\xi)<-d_{-}$is the countable union of the $E\left(\sigma_{n}\right)$'s. The proof of the corollary follows.

Now we use the Fatou-type theorem given in [CP1] for conformal densities of the same dimension, and the proof of Theorem 5.6, to obtain the following

Theorem 5.8.- The following four statements are equivalent:
(i) $g r_{\phi}(\xi)=-d_{-}$for $\mu-$ almost all $\xi \in \partial X$.
(ii) $g r_{\phi}(\xi) \leq-d_{-}$for μ-almost all $\xi \in \partial X$.
(iii) For all $x \in S$, the measure μ_{x} is absolutely continuous with respect to the $\log (k-$ 1)-dimensional Hausdorff measure \mathcal{H}_{x} on ∂X.
(iv) There exists a point $x \in S$ such that he measure μ_{x} is absolutely continuous with respect to the $\log (k-1)$-dimensional Hausdorff measure \mathcal{H}_{x} on ∂X.

Furthermore, if one of these conditions is satisfied, then, for μ-almost all $\xi \in \partial X$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi(x, n, \xi)}{S_{\lambda}(n)}=\frac{d \mu_{x}}{d \mathcal{H}_{x}}(\xi) . \tag{5.5}
\end{equation*}
$$

In particular, there is a constant $C=C(k, \lambda)>O$ such that, for μ-almost all $\xi \in \partial X$, we have

$$
\phi(x, n, \xi) \sim C \frac{d \mu_{x}}{d \mathcal{H}_{x}}(\xi) e^{-n d_{-}}
$$

as $n \rightarrow \infty$. (Note that we already knew that $g r_{\phi}(\xi)=-d_{-}$for μ-almost all ξ, by Corollary 5.7).

Proof.- $(i) \Rightarrow(i i)$ is trivial. Let us prove $(i i) \Rightarrow(i i i)$.
Assume that $\operatorname{gr}_{\phi}(\xi) \leq-d_{-}$for μ-almost all $\xi \in \partial X$. Let us fix $x \in S$. By the proof of Theorem 5.6, taking $\sigma=-d_{-}$, we have, for every Borel subset $A \in \partial X, \mathcal{H}_{x}(A)>0$ if $\mu_{x}(A)>0$. Therefore, μ_{x} is absolutely continuous with respect to \mathcal{H}_{x}. This proves (iii).

The equivalence (iii) $\Leftrightarrow(i v)$ follows from the definition of a conformal density.
Let us prove finally that $(i v) \Rightarrow(i)$ and that (iv) imples the relation (5.5). We suppose therefore that there is a point $x \in S$ such that the measure μ_{x} is absolutely continuous with respect to \mathcal{H}_{x}. Let ν be the (unique) conformal density of dimension d_{+}such that $\nu_{x}=\mathcal{H}_{x}$. By symmetry, we have $\phi_{\nu}(x, n, \xi)=S_{\lambda}(n)$ for all $\xi \in \partial X$. Recall now that μ and ν have the same dimension d_{+}. Therefore we can apply to them the Fatou-type theorem of [CP1], and we obtain formula (5.5). By Proposition 1.4, we have $S_{\lambda}(n) \sim C e^{-n d_{-}}$, which implies $\operatorname{gr}_{\phi}(\xi)=-d_{-}$. This proves (i).

Bibliography

[Bro] R. Brooks, The spectral geometry of k-regular graphs, Journal d'Analyse Mathématique, 57 (1991), 120-151.
[Car] P. Cartier, Harmonic analysis on trees, Proceedings of Symposia in Pure Mathematics, vol. XXVI, 419-424, American Math. Society, 1973
[Coo] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific Journal of Mathematics, 159, No. 2 (1993), 241-270.
[CP1] M. Coornaert and A. Papadopoulos, A Fatou-type theorem for functions associated to conformal densities on the boundary of a metric tree, prépublication No. 1993/039, Université de Strasbourg, 1994.
[CP2] M. Coornaert and A. Papadopoulos, Récurrence de marches aléatoires et ergodicité du flot géodésique sur les graphes réguliers, prépublication No. 1994/005, Université de Strasbourg, 1994.
[CP3] M. Coornaert and A. Papadopoulos, (paper in preparation).
[DK] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, Contemp. Math. 73 (1988), 25-40.
[FN] A. Figà-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Math. Society Lecture Notes Series, vol. 162, 1991.
[Mey] P. A. Meyer, Probabilités et Potentiel, ed. Hermann, Paris, 1966.
[MW] B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), 209-234.
[Sul] D. Sullivan, Related aspects of positivity in Riemannian manifolds, J. Diff. Geom. 25 (1987), 327-351.

[^0]: * The second author is also supported by the Max-Plank-Institut für Mathematik (Bonn).

