Positive λ -harmonic functions and conformal densities on homogeneous trees

Michel Coornaert Athanase Papadopoulos

Institut de Recherche Mathématique Avancée Université Louis Pasteur et CNRS 7, rue René Descartes 67084 Strasbourg Cedex

France

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn

Germany

Positive λ -harmonic functions and conformal densities on homogeneous trees

by

Michel Coornaert and Athanase Papadopoulos * Institut de Recherche Mathématique Avancée Université Louis Pasteur et CNRS 7, rue René Descartes, 67084 Strasbourg Cedex France

§0.—Introduction

In this paper, we study some asymptotic aspects, from a geometric point of view, of the positive eigenfunctions of the combinatorial Laplacian associated to a homogeneous tree. The results are inspired by the paper [Sul] of Dennis Sullivan, which concerns the hyperbolic spaces \mathbf{H}^{n} .

Let k be an integer ≥ 3 and X the homogeneous tree of degree k, that is, the unique simply connected simplicial complex of dimension 1 in which every vertex belongs to exactly k edges. X is equipped with the length metric in which every edge is isometric to the unit interval [0, 1]. The distance in X between two points x and y is denoted by |x - y|. We denote by ∂X the boundary (at infinity) of X, that is, the set of ends of X. Recall that the set $X \cup \partial X$ has a natural topology which makes it a compact space in which X sits as a dense open subspace.

For each $x \in X$, the visual metric $| |_x$ on ∂X is defined by the formula

$$|\xi - \eta|_x = e^{-L},$$

for each ξ and η in ∂X , where L is the length of the common path between the geodesic rays $[x, \xi]$ and $[x, \eta]$. We consider the function $j: X \times X \times (X \cup \partial X) \to \mathbb{R}$ defined by

$$j(x, y, z) = e^{|x-p| - |p-y|},$$

with p being the projection of z on the geodesic segment [x, y] (see Figure 1).

^{*} The second author is also supported by the Max-Plank-Institut für Mathematik (Bonn).

Figure 1

We have the following formula (which we shall refer to as the "formula for the change of point of view"):

(0.1)
$$|\xi - \eta|_y^2 = j(x, y, \xi)j(x, y, \eta)|\xi - \eta|_x^2.$$

All the measures considered in this paper are non-negative Radon measures. Let S denote the set of vertices of X and let d be a real number. A conformal density of dimension d on ∂X is a family $\mu = (\mu_x)_{x \in S}$ of non-trivial measures on ∂X which are absolutely continuous with respect to one another and such that, for every x and $y \in S$, we have

$$\frac{d\mu_y}{d\mu_x}(\xi) = j^d(x, y, \xi) \quad \forall \xi \in \partial X.$$

We note that a conformal density is entirely determined by its dimension and its value at a given vertex, which can be an arbitrary non-trivial measure on ∂X .

The Laplace operator Δ is defined on the space of functions on S by the formula:

$$\Delta f(x) = f(x) - \frac{1}{k} \sum_{y \sim x} f(y)$$

for every function $f: S \to \mathbb{R}$, where the notation $y \sim x$ means that x and y are the two vertices of the same edge. Given $\lambda \in \mathbb{R}$, a function $f: S \to \mathbb{R}$ is called λ -harmonic if it satisfies $\Delta f = \lambda f$.

We will be mainly interested in *positive* λ -harmonic functions, i.e. λ -harmonic functions ϕ such that $\phi(x) > 0$ for all $x \in S$. It is well-known that positive λ -harmonic functions exist if and only if $\lambda \leq \lambda_0$, where

$$\lambda_0 = 1 - 2\frac{\sqrt{k-1}}{k}.$$

(We refer to the papers [Dod] and [MW] for surveys and bibliographical references.)

Here is a fundamental example of a positive λ -harmonic function. Fix some real number d, and points $x \in S$ and $\xi \in \partial X$. Then the function

$$y \mapsto j^d(x, y, \xi)$$

is a positive λ -harmonic function on S (cf. [CP2]), with

(0.2)
$$\lambda = \frac{1}{k}(1 - e^{-d})(k - 1 - e^{d}).$$

We shall often refer to the fact that for a given $\lambda < \lambda_0$, equation (0.2) has two solutions, $d_- < d_+$, satisfying

$$(0.3) d_- + d_+ = \log(k-1),$$

and for $\lambda = \lambda_0$, it has only one solution, $d_- = d_+ = \frac{1}{2} \log(k-1)$.

Let μ be a conformal density of dimension d on ∂X . Consider the *total mass* function $\phi_{\mu}: S \to \mathbb{R}$, defined by

$$\phi_{\mu}(x) = \mu_{x}(\partial X)$$

By the definition of a conformal density, we can write, for every $y \in S$,

(0.4)
$$\phi_{\mu}(y) = \int_{\partial X} j^{d}(x, y, \xi) d\mu_{x}(\xi).$$

Therefore, ϕ_{μ} is a positive λ -harmonic function on S, with λ given again by (0.2).

The plan of the paper is the following:

In section 1, we collect a few well-known results about spherical λ -harmonic functions which will be used in the rest of the paper.

Let $\mu = (\mu_x)_{x \in S}$ be a conformal density of dimension $\geq \frac{1}{2} \log(k-1)$. We show in section 2 that, for each $x \in S$, the measure μ_x is the weak limit, as $n \to \infty$, of the measure

$$\sum_{y:|x-y|=n}\phi_{\mu}(y)\delta_{y},$$

suitably normalized to have total mass $\phi_{\mu}(x)$. (Here, δ_y is the Dirac measure at y.) Thus, in particular, a conformal density of dimension $\geq \frac{1}{2}\log(k-1)$ can be recovered from its total mass function.

In section 3, we prove a representation theorem for positive λ -harmonic functions. More precisely, we follow Martin's method (as explained in the paper [Sul]) to prove that if ϕ is a positive λ -harmonic function, then there exists a unique conformal density μ of dimension $\geq \frac{1}{2} \log(k-1)$ on ∂X whose total mass function is ϕ . We conclude that the map $\mu \mapsto \phi_{\mu}$ is a bijection from the set of conformal densities of dimension $\geq \frac{1}{2} \log(k-1)$ to the set of positive eigenfunctions of the Laplacian.

Let μ be now a conformal density of dimension d with $d < \frac{1}{2}\log(k-1)$. We know that its total mass function ϕ_{μ} is a positive λ -harmonic function, and via the representation theorem above, we have an associated conformal density $\mu^+ = (\mu_x^+)_{x \in S}$ of dimension $d_+ > \frac{1}{2}\log(k-1)$. In section 4, we study the correspondence $\mu \mapsto \mu^+$ and we give, for each $x \in S$, an explicit formula for μ_x^+ in terms of μ_x . We see in particular that each measure μ_x^+ is absolutely continuous with respect to the $\log(k-1)$ -dimensional Hausdorff measure \mathcal{H}_x associated with the visual metric $| |_x$, and we give a formula for the Radon-Nikodym derivative $\frac{d\mu_x^+}{d\mathcal{H}_x}$. The map $\mu \mapsto \mu^+$ from the set of conformal densities of dimension $< \frac{1}{2}\log(k-1)$ to the set of conformal densities of dimension $> \frac{1}{2}\log(k-1)$ is neither surjective nor injective.

Section 5 contains different kinds of estimates on the growth of positive λ -harmonic functions along geodesic rays. These estimates, for ϕ positive λ -harmonic, are obtained in terms of the conformal density of dimension $\geq \frac{1}{2} \log(k-1)$ whose total mass function is ϕ .

All the results, with the exception of those of section 4, are discrete analogs of results contained in the paper [Sul] of Sullivan which concerns the case of hyperbolic space \mathbb{H}^n . The results of section 4 have also an analog for \mathbb{H}^n and other rank one Riemannian symmetric spaces (cf. [CP3]).

Let us note finally that, as a general rule, the "infinite negative curvature" geometry of trees, reflected for example in the ultrametric property of the visual metrics on the boundary, makes the proofs simpler than in \mathbb{H}^n . On the other hand, the statements are often stronger than their analogs for hyperbolic spaces.

§1.—Preliminaries

We begin by recalling the definition of the spherical functions $S_{\lambda}(n)$, and we give some of their elementary and basic properties (see for example [Bro], [Car] and [FN]). Given a real number λ , it is easy to see that there exists a unique function $S_{\lambda} : \mathbb{N} \to \mathbb{R}$ such that, for every $x \in S$, the function $y \mapsto S_{\lambda}(|x - y|)$ is λ -harmonic on S and takes the value 1 at x. Indeed, for a fixed λ , the sequence $S_{\lambda}(n)$ is determined by the order two linear recurrence relation

(1.1)
$$\frac{k-1}{k}S_{\lambda}(n+2) - (1-\lambda)S_{\lambda}(n+1) + \frac{1}{k}S_{\lambda}(n) = 0$$

with initial conditions

$$S_{\lambda}(0) = 1$$
 and $S_{\lambda}(1) = 1 - \lambda$.

For each $x \in S$ and $n \in \mathbb{N}$, let S(x,n) denote the sphere in X of radius n centered at x, and let w_n denote the number of points in S(x,n). We have $w_0 = 1$ and, for all $n \ge 1$, $w_n = k(k-1)^{n-1}$.

Proposition 1.1.—Let $f: S \to \mathbb{R}$ be a λ -harmonic function. Then:

(1.2)
$$\frac{1}{w_n} \sum_{y \in S(x,n)} f(y) = f(x) S_{\lambda}(n)$$

for every $x \in S$ and $n \in \mathbb{N}$.

Proof.—It is clear that the function which to every point at distance n from x associates the left hand side of equation (1.2) is λ -harmonic and takes the value f(x) at x.

By applying the proposition to the function $y \mapsto j^d(x, y, \xi)$, we obtain:

Corollary 1.2.— Let λ and d be real numbers satisfying equation (0.2). Then:

$$\frac{1}{w_n} \sum_{y \in S(x,n)} j^d(x,y,\xi) = S_\lambda(n)$$

for every $x \in S$, $\xi \in \partial X$ and $n \in \mathbb{N}$.

Corollary 1.3.— (cf. [Bro], Theorem 1.1) For $\lambda \leq \lambda_0$, we have $S_{\lambda}(n) > 0$ for all $n \in \mathbb{N}$.

We shall need the following estimate on spherical functions:

Proposition 1.4.— (cf. [Bro], Theorem 1.1) For $\lambda < \lambda_0$, we have $S_{\lambda}(n) \sim Ce^{-nd_-}$ as $n \to \infty$, where $C = C(k, \lambda) > 0$ is a constant and d_- is, as before, the smallest of the two solutions of equation (0.2). For $\lambda = \lambda_0$, we have $S_{\lambda}(n) \sim Cne^{-nd}$ where C = C(k) > 0 is a constant and where d is the unique solution of equation (0.2).

Proof.— $S_{\lambda}(n)$ satisfies the recurrence equation (1.1), whose associated characteristic equation is:

(1.3)
$$\frac{k-1}{k}\beta^2 - (1-\lambda)\beta + \frac{1}{k} = 0,$$

which is equation (0.2) with $\beta = e^{-d}$.

Therefore, for $\lambda < \lambda_0$, the general solution of (1.1) is of the form

$$S_{\lambda}(n) = c_1 e^{-nd_+} + c_2 e^{-nd_-}, \quad n \ge 0$$

The initial conditions give $c_1 + c_2 = 1$ and $c_1 e^{-d_+} + c_2 e^{-d_-} = 1 - \lambda$, hence

$$c_2 = \frac{1 - \lambda - e^{-d_+}}{e^{-d_-} - e^{-d_+}}.$$

We have $e^{-d_+} < 1 - \lambda$, using $e^{-d_-} + e^{-d_+} = (1 - \lambda) \frac{k}{k-1}$, which implies $c_2 > 0$.

Thus, $S_{\lambda}(n) \sim c_2 e^{-nd_-}$ as $n \to \infty$.

For $\lambda = \lambda_0$, equation (1.3) has one double solution $\beta = e^{-d}$, and the general solution of (1.1) is of the form

$$S_{\lambda}(n) = (c_1 + c_2 n)e^{-nd}$$

Using the initial conditions, we can see as before that the constant c_2 is also positive in this case, and we have $S_{\lambda}(n) \sim c_2 n e^{-nd}$ as $n \to \infty$, which proves the proposition.

§2.—Spherical approach to conformal densities

Proposition 2.1.—Let $\lambda \leq \lambda_0$, and let d_+ be the largest solution of equation (0.2). Let x be a fixed vertex of X and $f: X \cup \partial X \to \mathbb{R}$ a continuous function. For every $n \in \mathbb{N}$, consider the function $g_n: \partial X \to \mathbb{R}$ defined by

$$g_n(\xi) = \frac{1}{w_n S_\lambda(n)} \sum_{y \in S(x,n)} j^{d_+}(x,y,\xi) f(y).$$

Then the sequence (g_n) converges uniformly to f on ∂X .

Proof.-By Corollary 1.2, we have

(2.1)
$$\frac{1}{w_n S_{\lambda}(n)} \sum_{y \in S(x,n)} j^{d_+}(x,y,\xi) = 1,$$

for all $\xi \in \partial X, n \in \mathbb{N}$. Therefore,

$$g_n(\xi) - f(\xi) = \frac{1}{w_n S_\lambda(n)} \sum_{y \in S(x,n)} j^{d_+}(x,y,\xi) \big(f(y) - f(\xi) \big).$$

Let us fix now an $\epsilon > 0$. The function f is uniformly continuous on the compact set $X \cup \partial X$. Therefore, we can find an integer $K \ge 0$ such that $|f(y) - f(\xi)| \le \frac{\epsilon}{2}$ for every y in the set

$$W = \{ y \in S \mid (y.\xi)_x \ge K \},\$$

where $(y.\xi)_x$ denotes the *Gromov product* of the points y and ξ with respect to x, that is, the length of the common part of the geodesics [x, y] and $[x, \xi]$. We have, by the triangle inequality:

$$\begin{split} |g_{n}(\xi) - f(\xi)| &\leq \frac{1}{w_{n}S_{\lambda}(n)} \sum_{y \in S(x,n)} j^{d_{+}}(x,y,\xi) | f(y) - f(\xi) | \\ &= \frac{1}{w_{n}S_{\lambda}(n)} \sum_{y \in S(x,n) \cap W} j^{d_{+}}(x,y,\xi) | f(y) - f(\xi) | \\ &+ \frac{1}{w_{n}S_{\lambda}(n)} \sum_{y \in S(x,n) \setminus W} j^{d_{+}}(x,y,\xi) | f(y) - f(\xi) | \\ &\leq \frac{\epsilon}{2} \frac{1}{w_{n}S_{\lambda}(n)} \sum_{y \in S(x,n) \cap W} j^{d_{+}}(x,y,\xi) | f(y) - f(\xi) | \\ &+ \frac{1}{w_{n}S_{\lambda}(n)} \sum_{y \in S(x,n) \setminus W} j^{d_{+}}(x,y,\xi) | f(y) - f(\xi) | . \end{split}$$

Using equation (2.1), we obtain

$$\frac{1}{w_n S_{\lambda}(n)} \sum_{y \in S(x,n) \cap W} j^{d_+}(x,y,\xi) \le \frac{1}{w_n S_{\lambda}(n)} \sum_{y \in S(x,n)} j^{d_+}(x,y,\xi) = 1,$$

which gives

(2.2)
$$|g_n(\xi) - f(\xi)| \le \frac{\epsilon}{2} + \frac{1}{w_n S_\lambda(n)} \sum_{y \in S(x,n) \setminus W} j^{d_+}(x,y,\xi) | f(y) - f(\xi) | .$$

We remark now that $j(x, y, \xi) \leq e^{2K-n}$ for all $y \in S(x, n) \setminus W$, and that

$$|f(y) - f(\xi)| \le 2||f||_{\infty},$$

where

$$||f||_{\infty} = \sup_{X \cup \partial X} |f|.$$

Thus, inequality (2.2) implies

(2.3)
$$|g_n(\xi) - f(\xi)| \le \frac{\epsilon}{2} + 2||f||_{\infty} \frac{e^{(2K-n)d_+}}{S_{\lambda}(n)}.$$

For $\lambda < \lambda_0$, we have, by Proposition 1.4, $S_{\lambda}(n) \sim Ce^{-nd_-}$ as n tends to ∞ , where C > 0 is some constant and where d_- is the smallest solution of (0.2). For $\lambda = \lambda_0$, we have $S_{\lambda}(n) \sim Cne^{-nd_+}$. Therefore, (2.3) shows that there exists an integer N such that, for all $\xi \in \partial X$ and for all $n \geq N$, we have

$$|g_n(\xi) - f(\xi)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This completes the proof of Proposition 2.1.

We can now prove the following

Theorem 2.2.—Let $\mu = (\mu_x)_{x \in S}$ be a conformal density of dimension d on ∂X , with $d \geq \frac{1}{2} \log(k-1)$. For every vertex $x \in X$ and every $n \in \mathbb{N}$, define the measure $\mu_{n,x}$ on X by the formula

(2.4)
$$\mu_{n,x} = \frac{1}{w_n S_\lambda(n)} \sum_{y \in S(x,n)} \phi_\mu(y) \delta_y$$

where δ_y is the Dirac measure at y. Then the sequence $(\mu_{n,x})_{n \in \mathbb{N}}$ converges weakly to μ_x in the space of measures on $X \cup \partial X$.

Proof.—Consider a continuous function f on $X \cup \partial X$ and, for $n \in \mathbb{N}$, let g_n be the function on ∂X defined in Proposition 2.1 (note that $d_+ = d$ here). We have, using (0.4),

$$\begin{split} \mu_{n,x}(f) &= \frac{1}{w_n S_\lambda(n)} \sum_{y \in S(x,n)} \phi_\mu(y) f(y) \\ &= \frac{1}{w_n S_\lambda(n)} \sum_{y \in S(x,n)} \int_{\partial X} j^d(x,y,\xi) \, d\mu_x(\xi) f(y) \\ &= \int_{\partial X} \frac{1}{w_n S_\lambda(n)} \sum_{y \in S(x,n)} j^d(x,y,\xi) f(y) \, d\mu_x(\xi) \\ &= \int_{\partial X} g_n(\xi) \, d\mu_x(\xi) \\ &= \mu_x(q_n). \end{split}$$

Now since (g_n) converges uniformly to f on ∂X (Proposition 2.1), we conclude that $\mu_{n,x}(f)$ converges to $\mu_x(f)$ as $n \to \infty$. Therefore, the sequence $(\mu_{n,x})$ converges weakly to μ_x .

We note the following corollary which will be useful in the next section:

Corollary 2.3.—A conformal density of dimension $\geq \frac{1}{2}\log(k-1)$ is uniquely determined by its total mass function.

§3.—Conformal representation at infinity of positive λ -harmonic functions

In this section, we show, by following Martin's classical method, that for every positive λ -harmonic function ϕ on S, there exists a unique conformal density μ of dimension $\geq \frac{1}{2} \log(k-1)$ on ∂X whose total mass function is ϕ . The dimension of μ is equal to the largest solution of equation (0.2). The uniqueness of μ will be a consequence of Corollary 2.3.

We shall follow the lines of the proof of the corresponding theorem of Sullivan (Theorem 2.11 of [Sul]), adapted to the discrete setting. For this purpose, we need to recall a few facts from discrete potential theory. For further details, we refer the reader to ([Mey], chapter 9). From now on, we suppose $\lambda \leq \lambda_0$.

The transition kernel $P: S \times S \to \{0, \frac{1}{k}\}$ is defined by

$$P(x,y) = \frac{1}{k}$$
 if $|x - y| = 1$

and P(x, y) = 0 otherwise.

The λ -Green kernel $G_{\lambda}: S \times S \to [0, \infty]$ is defined by

$$G_{\lambda}(x,y) = \sum_{n=0}^{\infty} (1-\lambda)^{-n-1} P^n(x,y),$$

where $P^0 = I$ is the identity kernel, defined by I(x,y) = 1 if x = y and I(x,y) = 0 otherwise, and where P^n is the matrix product, defined by induction on n by the formula

$$P^{n+1}(x,y) = \sum_{z \in S} P^n(x,z) P(z,y).$$

Let us note that by a result of Kesten (see for example [CP2],§5), we have an explicit formula for $\lambda \leq \lambda_0$,

(3.1)
$$G_{\lambda}(x,y) = \alpha e^{-|x-y|d_{+}},$$

where d_{\pm} is, as before, the largest solution of equation (0.2), and

$$\alpha = \frac{1}{1 - \lambda - e^{-d_+}}$$

Let us recall also that any kernel $K : S \times S \to [0, \infty]$ acts on the set of positive functions on S by the formula

$$Kf(x) = \sum_{y \in S} K(x, y)f(y).$$

for every $f: S \to [0, \infty]$.

The function $f: S \to \mathbb{R}$ is said to be λ -superharmonic if it satisfies $\Delta f \geq \lambda f$, or, equivalently, $f \geq (1-\lambda)^{-1} P f$, where P f is defined by

$$Pf(x) = \sum_{y \in S} P(x, y)f(y).$$

Proposition 3.1.—Let $\lambda \leq \lambda_0$. Consider a function $f: S \to [0, \infty[$. Then, the following two properties are equivalent:

(i) f is λ -superharmonic and satisfies

$$\lim_{n \to \infty} (1 - \lambda)^{-n} P^n f = 0,$$

in the sense of pointwise convergence.

(ii) There exists a function $g: S \to [0, \infty]$ such that $f = G_{\lambda}g$.

Proof.— Suppose that property (i) is satisfied. Let $g = (1 - \lambda)f - Pf$. Since f is λ -superharmonic, we have $g \ge 0$. On the other hand, the identity

$$f = \sum_{i=0}^{n-1} (1-\lambda)^{-i-1} P^i g + (1-\lambda)^{-n} P^n f$$

shows that $f = G_{\lambda}g$ since, by hypothesis, we have $(1 - \lambda)^{-n}P^n f \to 0$ as $n \to \infty$. Therefore, f satisfies property (ii).

Conversely, suppose that f satisfies property (*ii*). From the relation $f = G_{\lambda}g$, we deduce $f = (1 - \lambda)^{-1}g + (1 - \lambda)^{-1}Pf$, which implies $f \ge (1 - \lambda)^{-1}Pf$, and f is λ -superharmonic. Furthermore, we can write

$$f = (1 - \lambda)^{-1}g + (1 - \lambda)^{-1}P((1 - \lambda)^{-1}g + (1 - \lambda)^{-1}Pf)$$

$$= (1-\lambda)^{-1}g + (1-\lambda)^{-2}Pg + \dots + (1-\lambda)^{-n}P^{n-1}g + (1-\lambda)^{-n}P^nf,$$

hence $(1 - \lambda)^{-n} P^n f$ appears as the *n*-th remainder of a convergent series, and therefore tends to 0.

Proposition 3.2.—Let $\lambda \leq \lambda_0$, and let $f: S \to [0, \infty[$ be λ -superharmonic. Then, there exists a sequence of functions $g_n: S \to [0, \infty[$ such that $f = \lim G_{\lambda}g_n$ in the sense of pointwise convergence.

Proof.— Let us fix a basepoint $x \in S$, and for all $n = 0, 1, 2, ..., let <math>\chi_n$ denote the characteristic function of the ball B(x, n) of radius n centered at x. Consider the sequence of functions $f_n = \min\{f, nG_\lambda\chi_n\}$. Being the minimum of two λ -superharmonic functions, f_n is itself λ -superharmonic.

For a given point $y \in S$, let us take n large enough so that y belongs to the ball B(x,n). We can write in this case:

$$G_{\lambda}\chi_n(y) = \sum_{z \in S} G_{\lambda}(y, z)\chi_n(z) \ge G_{\lambda}(y, y) \ge (1 - \lambda)^{-1}$$

Therefore, there exists an integer n_0 such that for every $n \ge n_0$, we have

$$nG_{\lambda}\chi_n(y) \ge n(1-\lambda)^{-1},$$

which implies $f_n(y) = f(y)$ for all n large enough. Thus, f is the increasing limit of (f_n) .

We prove finally that for every n = 0, 1, 2, ..., the function f_n is of the form $G_{\lambda}g_n$, with $g_n \ge 0$. By proposition 3.1, it suffices to show that we have $\lim_{j\to\infty} (1-\lambda)^{-j} P^j f_n = 0$ pointwise.

Let us fix the integer $n \ge 0$. It is easy to see, by induction, that for every j = 0, 1, 2, ..., we have

$$(1-\lambda)^{-j}P^j f_n \leq \min\{(1-\lambda)^{-j}P^j f, (1-\lambda)^{-j}P^j n G_\lambda \chi_n\}.$$

Now using Proposition 3.1, we have

$$\lim_{j \to \infty} (1 - \lambda)^{-j} P^j f = \lim_{j \to \infty} (1 - \lambda)^{-j} P^j n G_\lambda \chi_n = 0.$$

This completes the proof of Proposition 3.2.

Now we are ready to prove the following

Theorem 3.3.—Let ϕ be a positive λ -harmonic function on S. Then there exists a unique conformal density μ of dimension $\geq \frac{1}{2} \log(k-1)$ on ∂X whose total mass function is ϕ . The dimension of μ is equal to d_+ , the largest solution of equation (0.2).

Proof.— Let x be again a basepoint in S. By Proposition 3.2, there exists a sequence of functions $g_n: S \to [0, \infty]$ such that the sequence $f_n = G_\lambda g_n$ converges pointwise to ϕ .

For every $n \ge 0$, we define the measure $\nu_{n,x}$ on S by

$$\nu_{n,x} = \sum_{z \in S} G_{\lambda}(x,z) g_n(z) \delta_z,$$

where δ_z denotes the Dirac measure at z.

The total mass of $\nu_{n,x}$ is equal to

$$\sum_{z \in S} G_{\lambda}(x, z) g_n(z) = G_{\lambda} g_n(x) = f_n(x).$$

As $f_n(x)$ converges to $\phi(x)$, the total mass of $\nu_{n,x}$ is bounded, and we can find a subsequence $\nu_{n_i,x}$ which converges weakly to a measure μ_x on the compact set $S \cup \partial X$. Let us show now that the support of μ_x is necessarily contained in ∂X .

From the relation $f_n = G_{\lambda}g_n$, we deduce that $g_n = (\Delta - \lambda I)f_n$. Therefore, for every $z \in S$, we have

$$g_{n_i}(z) = (\Delta - \lambda I) f_{n_i}(z).$$

As $n_i \to \infty$, we have $f_{n_i}(z) \to \phi(z)$, and

$$\lim_{n_i \to \infty} g_{n_i}(z) = \lim_{n_i \to \infty} (\Delta - \lambda I) f_{n_i}(z) = (\Delta - \lambda I) \phi(z) = 0$$

Therefore, for every vertex $z \in S$, we have

$$\mu_x(\{z\}) = \lim_{n_i \to \infty} \nu_{n_i,x}(\{z\}) = \lim_{n_i \to \infty} G_\lambda(x,z)g_{n_i}(z) = 0.$$

The support of μ_x is therefore contained in ∂X .

We can write

$$f_{n_i}(y) = \sum_{z \in S} G_{\lambda}(y, z) g_{n_i}(z)$$

=
$$\sum_{z \in S} \frac{G_{\lambda}(y, z)}{G_{\lambda}(x, z)} G_{\lambda}(x, z) g_{n_i}(z)$$

=
$$\int_S \frac{G_{\lambda}(y, z)}{G_{\lambda}(x, z)} d\nu_{n_i, x}(z).$$

By (3.1), we have

$$\frac{G_{\lambda}(y,z)}{G_{\lambda}(x,z)} = \frac{\alpha e^{-|y-z|d_+}}{\alpha e^{-|x-z|d_+}} = j^{d_+}(x,y,z).$$

Therefore, we can write

$$f_{n_i}(y) = \int_{S \cup \partial X} j^{d_+}(x, y, z) \, d\nu_{n_i, x}(z).$$

Letting $n_i \to \infty$, we obtain

$$\phi(y) = \int_{S \cup \partial X} j^{d_+}(x, y, z) \, d\mu_x(z) = \int_{\partial X} j^{d_+}(x, y, \xi) \, d\mu_x(\xi).$$

Therefore, the uniquely defined conformal density of dimension d_+ which takes the value μ_x at x, has ϕ as total mass function.

Uniqueness of μ follows from Corollary 2.3. This completes the proof of Theorem 3.3.

Remark. In [CP2], we give a probabilistic interpretation of the conformal density μ in terms of the random walk on S with transition probabilities

$$P_{\phi}(x,y) = (1-\lambda)^{-1} \frac{\phi(y)}{\phi(x)} P(x,y)$$

for every $x, y \in S$. More precisely, μ_x is $\phi(x)$ times the hitting probability at infinity of the random walk starting at x, with probability 1.

§4.—On the correspondence $\mu \mapsto \mu^+$

For each $x \in S$, let \mathcal{H}_x denote the $\log(k-1)$ -dimensional Hausdorff measure on ∂X associated to the visual metric $| |_x$, and normalized so that $\mathcal{H}_x(\partial X) = 1$. We recall a few basic properties of \mathcal{H}_x . First, it is the only probability measure on ∂X which is invariant by the full isometry group of X fixing the vertex x. From this symmetry property, we see that all the closed balls of a given radius (for the metric $| |_x$) have the same \mathcal{H}_x -mass. In fact the mass of a closed ball of radius e^{-n} centered at a point in ∂X is equal to $\frac{1}{w_n}$, where w_n is defined, as before, as the number of points on a sphere of radius n in X centered at a vertex. Let us note also that $\mathcal{H} = (\mathcal{H}_x)_{x \in S}$ is a conformal density on ∂X of dimension $\log(k-1)$. This can be deduced from the fact that \mathcal{H} is the conformal density which is associated by Theorem 3.3 to the constant function $\phi = 1$ (which is 0-harmonic).

Proposition 4.1.—Let $\xi \in \partial X$ and $x \in S$, and let $\alpha < \log(k-1)$. Then the function h_{α} on ∂X defined by

$$h_{\alpha}(\eta) = \frac{1}{|\xi - \eta|_x^{\alpha}}$$

belongs to $L^1(\mathcal{H}_x)$ and satisfies

$$\int_{\partial X} h_{\alpha} \, d\mathcal{H}_x = \frac{1}{k} + \frac{k-2}{k} (1 - \frac{e^{\alpha}}{k-1})^{-1}.$$

We shall denote this value of $\mathcal{H}_{x}(h_{\alpha})$ by I_{α} .

Proof.— For each $n \in \mathbb{N}$, let E_n be the set of points $\eta \in \partial X$ such that the projection of η on the geodesic ray $[x, \xi]$ is at distance n from x. The function h_{α} is constant and equal to $e^{\alpha n}$ on E_n . Therefore, $\mathcal{H}_x(h_{\alpha})$ is the limit as N tends to ∞ of

$$I_{\alpha}(N) = \sum_{n=0}^{N} e^{\alpha n} \mathcal{H}_{x}(E_{n})$$

We have $\mathcal{H}_x(E_0) = \frac{k-1}{k}$. For every $n \ge 1$, we note that $E_n = B_n \setminus B_{n+1}$, where B_n is the closed $||_x$ -ball of radius e^{-n} centered at ξ . Therefore

$$\mathcal{H}_x(E_n) = \frac{1}{w_n} - \frac{1}{w_{n+1}} = \frac{1}{k(k-1)^{n-1}} - \frac{1}{k(k-1)^n} = \frac{k-2}{k(k-1)^n}.$$

This gives

$$I_{\alpha}(N) = \frac{k-1}{k} + \frac{k-2}{k} \sum_{n=1}^{N} \frac{e^{n\alpha}}{(k-1)^n},$$

which converges since $\alpha < \log(k-1)$, with limit I_{α} .

Corollary 4.2.—Let m be a measure on ∂X and $\alpha < \log(k-1)$. Then the function

$$\eta \mapsto \int_{\partial X} \frac{dm(\xi)}{|\xi - \eta|_x^{\alpha}}$$

belongs to $L^1(\mathcal{H}_x)$.

Proof.— This is an immediate consequence of the preceding proposition and Fubini's theorem.

Theorem 4.3.—Let $\mu = (\mu_x)_{x \in S}$ be a conformal density on ∂X of dimension $d_- < \frac{1}{2} \log(k-1)$, and for each $x \in S$, let μ_x^+ be the measure on ∂X which is absolutely continuous with respect to \mathcal{H}_x with Radon-Nikodym derivative given by the formula

$$\frac{d\mu_x^+}{d\mathcal{H}_x}(\xi) = \frac{1}{C} \int_{\eta \in \partial X} \frac{d\mu_x(\eta)}{|\xi - \eta|_x^{2d_-}},$$

where $C = I_{2d_{-}}$, using the notations of Proposition 4.1. Note that this function is in $L^{1}(\mathcal{H}_{x})$, by Corollary 4.2.

Then, $\mu^+ = (\mu_x^+)_{x \in S}$ is a conformal density on ∂X of of dimension $d_+ = \log(k-1) - d_-$. Furthermore, μ_+ is the unique conformal density of dimension $\geq \frac{1}{2} \log(k-1)$ having the same total mass function as μ .

Proof.— Let us show first that μ^+ is a conformal density of dimension d_+ .

For x and $y \in S$, and for every continuous function f on ∂X , we have:

$$\begin{aligned} \int_{\xi \in \partial X} f(\xi) j^{d_{+}}(x, y, \xi) \, d\mu_{x}^{+}(\xi) \\ &= \int_{\xi \in \partial X} f(\xi) j^{d_{+}}(x, y, \xi) \frac{1}{C} \int_{\eta \in \partial X} \frac{d\mu_{x}(\eta)}{|\xi - \eta|_{x}^{2d_{-}}} \, d\mathcal{H}_{x}(\xi) \\ &= \frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{j^{d_{+}}(x, y, \xi) \, d\mu_{x}(\eta)}{|\xi - \eta|_{x}^{2d_{-}}} \, d\mathcal{H}_{x}(\xi) \\ &= \frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{j^{d_{+}+d_{-}}(x, y, \xi) j^{d_{-}}(x, y, \eta) \, d\mu_{x}(\eta)}{|\xi - \eta|_{x}^{2d_{-}} j^{d_{-}}(x, y, \xi) j^{d_{-}}(x, y, \eta)} \, d\mathcal{H}_{x}(\xi) \\ &= \frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{j^{d_{+}+d_{-}}(x, y, \xi) j^{d_{-}}(x, y, \eta) \, d\mu_{x}(\eta)}{|\xi - \eta|_{y}^{2d_{-}}} \, d\mathcal{H}_{x}(\xi) \end{aligned}$$

(using formula (0.1) of "change of point of view")

$$= \frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{d\mu_y(\eta)}{|\xi - \eta|_y^{2d_-}} j^{d_+ + d_-}(x, y, \xi) d\mathcal{H}_x(\xi)$$

(since the conformal density (μ_x) is of dimension d_{-})

$$= \frac{1}{C} \int_{\xi \in \partial X} f(\xi) \int_{\eta \in \partial X} \frac{d\mu_y(\eta)}{|\xi - \eta|_y^{2d_-}} d\mathcal{H}_y(\xi)$$

(using (0.3) and since \mathcal{H}_x is conformal of dimension $\log(k-1)$).

This proves that μ^+ is a conformal density of dimension d_+ .

Now, with ϕ_{μ} and ϕ_{μ^+} denoting respectively the total mass functions of the conformal densities μ and μ^+ respectively, we have, for every $x \in S$,

$$\begin{split} \phi_{\mu+}(x) &= \frac{1}{C} \int_{\eta} \int_{\xi} \frac{d\mu_x(\xi)}{|\xi - \eta|_x^{2d_-}} d\mathcal{H}_x(\eta) \\ &= \frac{1}{C} \int_{\xi} \left(\int_{\eta} \frac{d\mathcal{H}_x(\eta)}{|\xi - \eta|_x^{2d_-}} \right) d\mu_x(\xi) \\ &= \int_{\xi} d\mu_x(\xi) \\ &= \phi_{\mu}(x). \end{split}$$

This completes the proof of Theorem 4.3.

Example.—Let $\mu = (\mu_x)_{x \in S}$ be a conformal density of dimension d = 0. In this case, μ_x does not depend on x, and the total mass function of μ is constant. Then, $\mu^+ = (\alpha \mathcal{H}_x)_{x \in S}$ where the constant α is the common mass of the μ_x 's.

Corollary 4.4.—Let $\nu = (\nu_x)_{x \in S}$ be a conformal density of dimension $\geq \frac{1}{2} \log(k-1)$. Assume that ν_x is not absolutely continuous with respect to \mathcal{H}_x for some (or, equivalently,

for all) $x \in S$. Then, there is no conformal density of dimension $< \frac{1}{2} \log(k-1)$ having the same total mass function as ν .

§5.—On the radial growth of positive λ -harmonic functions

In this section, we study the asymptotic growth of a positive λ -harmonic function along geodesic rays.

Let us first fix some notation. Consider a positive λ -harmonic function ϕ on S. We denote, as before, by $d_{-} \leq d_{+}$ the solutions of equation (0.2). For $x \in S$, $n \in \mathbb{N}$ and $\xi \in \partial X$, we denote by (x, n, ξ) the point in S situated on the geodesic ray $[x, \xi]$ at distance n from x. Define the *exponential growth coefficient* of ϕ in the direction ξ as

$$\operatorname{gr}_{\phi}(\xi) = \limsup_{n \to \infty} \frac{1}{n} \log \phi(x, n, \xi).$$

It is clear that $\operatorname{gr}_{\phi}(\xi)$ does not depend on x, since two geodesic rays anding at ξ eventually coincide.

Proposition 5.1.—There exists a constant $C = C(k, \lambda) > 0$ such that, for all points $x, y \in S$, we have

$$\phi(y) \le C\phi(x)e^{nd_+}$$

where n = |x - y|.

Proof.— Proposition 1.1 shows that $\phi(y) \leq \phi(x)w_n S_{\lambda}(n)$. Using proposition, 1.4, we have $w_n S_{\lambda}(n) \leq \text{Const.}e^{nd_+}$. This proves the formula.

Corollary 5.2.—For all $\xi \in \partial X$, we have $-d_+ \leq gr_{\phi}(\xi) \leq d_+$.

Examples.

1.— Fix $x_0 \in S$, $d_0 \in \mathbb{R}$, $\xi_O \in \partial X$ and take $\phi(x) = j^{d_0}(x_0, x, \xi_0)$. Then, $\operatorname{gr}_{\phi}(\xi) = -d_0$ for $\xi \neq \xi_0$ and $\operatorname{gr}_{\phi}(\xi_0) = d_0$. 2.— For $\phi(x) = S_{\lambda}(|x - x_0|)$ with $\lambda \leq \lambda_0$, we have, for every $\xi \in \partial X$, $\operatorname{gr}_{\phi}(\xi) = -d_-$.

Given the positive λ -harmonic function ϕ , let $\mu = (\mu_x)_{x \in S}$ be the unique conformal density of dimension $\geq \frac{1}{2} \log(k-1)$ with total mass function ϕ . We recall that μ is of dimension d_+ . We shall see now how to use μ to get estimates on the radial growth of ϕ .

Theorem 5.3.—Let $x \in S$ and let ξ be a point in ∂X which is not in the support of μ . Then, there exist C > 0 and $N \in \mathbb{N}$ such that, for all integers $n \geq N$,

$$\phi(x, n, \xi) = Ce^{-nd_+}.$$

In particular, we have $c_{\phi}(\xi) = -d_+$.

Proof.— Let us set $y = (x, n, \xi)$. For each $i \in \mathbb{N}$, let E_i be the set of points in ∂X whose projection on the geodesic ray $[x, \xi]$ is at distance *i* from *x*. As ξ is not in the support of

 μ , there is an integer N such that every point in the support of μ is in E_i for some $i \leq N$. Therefore,

$$\phi(y) = \int_{\partial X} j^{d_+}(x, y, \eta) \, d\mu_x(\eta)$$

=
$$\int_{E_0 \cup E_1 \cup \dots \cup E_N} j^{d_+}(x, y, \eta) \, d\mu_x(\eta).$$

We remark now that $j(x, y, \eta) = e^{2i-n}$ for all $\eta \in E_i$ and $i \leq n$. Therefore we have, for all $n \geq N$,

$$\phi(y) = \sum_{i=0}^{N} e^{(2i-n)d_{+}} \mu_{x}(E_{i})$$
$$= Ce^{-nd_{+}}$$

with $C = \sum_{i=0}^{N} e^{2id_{+}} \mu_{x}(E_{i}).$

In the next lemma, we prove a general property of the visual metric $| |_x$ on ∂X which will be useful in the proof of the subsequent theorem.

Lemma 5.4.—Let m be a measure on ∂X . Then, for m-almost all $\xi \in \partial X$, we have

$$\inf_{0 < r < 1} \frac{m(B(\xi, r))}{r^{\log(k-1)}} > 0,$$

where $B(\xi, r)$ denotes the closed ball of center ξ and radius r, with respect to the visual metric $| |_x$.

Proof.— Let

$$A = \{\xi \in \partial X \text{ such that } \inf_{0 < r < 1} \frac{m(B(\xi, r))}{r^{\log(k-1)}} = 0\}$$

We prove that the m-measure of A is zero.

Let us fix $\epsilon > 0$. For each $\xi \in A$, we can find a real number r_{ξ} with $0 < r_{\xi} < 1$ such that

$$m\bigl(B(\xi,r_{\xi})\bigr) \leq \epsilon r_{\xi}^{\log(k-1)}$$

We use now the fact that given any two closed balls in the ultrametric space $(\partial X, ||_x)$, then either one of them contains the other or they are disjoint. Therefore, we can find a countable family of points $\{\xi_i\} \subset A$, and associated real numbers $\{r_i\}$ such that the family of closed balls $\{B(\xi_i, r_i)\}$ centered at ξ_i and of radii r_i covers A, with these balls being two by two disjoint. We deduce that

$$m(A) \leq \sum_{i} m(B(\xi_i, r_i)) \leq \epsilon \sum_{i} r_i^{\log(k-1)}.$$

Now from the definition of the visual metric, we see that we can suppose without loss of generality that each of the radii r_i is of the form e^{-n_i} , with $n_i \in \mathbb{N}^*$, and we recall the fact that the \mathcal{H}_x -measure of a closed ball of radius e^{-n_i} is equal to

$$\frac{1}{w_{n_i}} = \frac{1}{k(k-1)^{n_i-1}} = \frac{k-1}{k} e^{-n_i \log(k-1)} = \frac{k-1}{k} r_i^{\log(k-1)}.$$

Therefore, we have

$$m(A) \leq \frac{k}{k-1} \epsilon \sum_{i} \mathcal{H}_x (B(\xi_i, r_i)) \leq \frac{k}{k-1} \epsilon \mathcal{H}_x(\partial X) = \frac{k}{k-1} \epsilon.$$

We conclude that m(A) = 0, and the lemma is proved.

The measures μ_x being absolutely continuous with respect to one another, they have the same sets of measure 0. Therefore, we can say that a certain property holds " μ -almost everywhere" if it holds μ_x -almost everywhere for some (or equivalently for all) $x \in S$.

Theorem 5.5.—There exists C > 0 such that, for μ -almost all $\xi \in \partial X$,

$$\phi(x, n, \xi) \ge C e^{-nd_{-}}$$

In particular, we have $gr_{\phi}(\xi) \geq -d_{-}$ for μ -almost all $\xi \in \partial X$.

Proof.—Let ξ be an arbitrary point in ∂X . We set, as before, $y = (x, n, \xi)$ and we denote, for each $i \in \mathbb{N}$, by A_i the set of points in ∂X whose projection on [x, y] is at distance i from x. Let B_i be the closed ball in $(\partial X, ||_x)$ of radius e^{-i} centered at ξ . We have $A_i = B_i \setminus B_{i+1}$ for i = 0, 1, ..., n-1 and $A_n = B_n$. We note also that $j(x, y, \eta) = e^{2i-n}$ for all $\eta \in A_i$. Therefore,

$$\begin{split} \phi(y) &= \int_{\partial X} j^{d_+}(x, y, \eta) \, d\mu_x(\eta) \\ &= \sum_{i=0}^n e^{(2i-n)d_+} \mu_x(A_i) \\ &= e^{-nd_+} \sum_{i=0}^{n-1} e^{2id_+} \left(\mu_x(B_i) - \mu_x(B_{i+1}) \right) + e^{nd_+} \mu_x(B_n) \end{split}$$

Using Abel's summation formula, we obtain

$$\phi(y) = e^{-nd_+} \big(\mu_x(B_0) + \sum_{i=1}^n (e^{2id_+} - e^{2(i-1)d_+}) \mu_x(B_i) \big),$$

which implies

(5.1)
$$\phi(y) \ge e^{-nd_+} \sum_{i=1}^n (e^{2id_+} - e^{2(i-1)d_+}) \mu_x(B_i).$$

By Lemma 5.4, there is a constant $C_0 > 0$ such that, for μ -almost all $\xi \in \partial X$ and all $i \in \mathbb{N}$, we have

(5.2)
$$\mu_x(B_i) \ge C_0 e^{-i\log(k-1)}.$$

Inequalities (5.1) and (5.2) imply that, for μ -almost all ξ , we have

$$\begin{split} \phi(y) &\geq e^{-nd_{+}} \sum_{i=1}^{n} (e^{2id_{+}} - e^{2(i-1)d_{+}}) C_{0} e^{-i\log(k-1)} \\ &= C_{0} e^{-nd_{+}} (1 - e^{-2d_{+}}) \sum_{i=1}^{n} e^{i(2d_{+} - \log(k-1))} \\ &\geq C e^{-nd_{+}} e^{n(2d_{+} - \log(k-1))} \\ &= C e^{n(d_{+} - \log(k-1))}, \end{split}$$

where C > 0 is some constant. This proves Theorem 5.5 since we have $d_{+} - \log(k-1) = d_{-}$, by equation (0.3).

Theorem 5.6.—Let A be a Borel subset of ∂X . Assume that $\mu_x(A) > 0$ for some (or, equivalently, for any) $x \in S$. Assume furthermore that there exists some real number σ such that $gr_{\phi}(\xi) \leq \sigma$ for all $\xi \in A$. Then, the Hausdorff dimension of A (with respect to the visual metrics) is $\geq d_+ - \sigma$.

Proof.—As before, the proof relies on the existence of the following representation:

$$\phi(y) = \int_{\partial X} j^{d_+}(x, y, \xi) \, d\mu_x(\xi).$$

Let $\epsilon > 0$ be a fixed real number. For each $N \in \mathbb{N}$, define the set

(5.3)
$$A(N) = \{\xi \in A \mid \phi(x, n, \xi) \le e^{n(\sigma + \epsilon)} \; \forall n \ge N\}.$$

Then A is the increasing union of the A(N)'s and therefore we can find an integer N such that $\mu_x(A(N)) > 0$. We fix such an integer N.

Let ξ be an element of A(N), let y be a point on $[x, \xi]$ satisfying $|x - y| = n \ge N$ and let $B \subset A(N)$ be the closed ball (for the induced metric) of center ξ and radius e^{-n} . For every $\eta \in B$, we have $j(x, y, \eta) = e^n$, which implies

$$\phi(y) \ge e^{nd_+} \mu_x(B).$$

Using (5.3), we have also

$$\phi(y) \le e^{(\sigma+\epsilon)n}.$$

Therefore, we have

$$\mu_x(B) \le e^{(\sigma + \epsilon - d_+)n}.$$

Thus, for all $\xi \in A(N)$ and for any closed ball B of A(N) of radius $r \leq e^{-N}$, we have

(5.4)
$$\mu_x(B) \le r^{-\sigma - \epsilon + d_+}.$$

Consider now an arbitrary covering of A(N) by closed balls of radii $\leq e^{-N}$. Using again the fact that given any two closed balls in ∂X , either one of them is contained in the other or they are disjoint, we can extract a countable subcover $\{B_i\}$ of closed balls which are two by two disjoint. Each of the balls B_i satisfies

$$\mu_x(B_i) \le r_i^{-\sigma - \epsilon + d_+},$$

where r_i is the radius of B_i . Therefore, we have

$$0 < \mu_x(A(N)) \le \sum_i \mu_x(B_i) \le \sum_i r_i^{-\sigma - \epsilon + d_+}$$

We deduce that the $(d_+ - \sigma - \epsilon)$ -dimensional Hausdorff measure of A(N) is > 0, which implies that the Hausdorff dimension of A(N) is $\geq d_+ - \sigma - \epsilon$. Making $\epsilon \to 0$, we conclude that this dimension is $\geq d_+ - \sigma$. Therefore, the Hausorff dimension of A itself is $\geq d_+ - \sigma$, which proves the theorem.

Corollary 5.7.—We have $gr_{\phi}(\xi) \geq -d_{-}$ for μ -almost all $\xi \in \partial X$.

Proof.— Let $\sigma < -d$ and suppose that there exists a Borel subset $A \subset \partial X$ such that for every $\xi \in A$, we have $\operatorname{gr}_{\phi}(\xi) \leq \sigma$. By Theorem 5.6, the Hausdorff dimension of A is $\geq d_{+} - \sigma > d_{+} + d_{-} = \log(k-1)$, contradicting the fact that $\log(k-1)$ is the Hausdorff dimension of ∂X . We conclude that $\operatorname{gr}_{\phi}(\xi) > \sigma$ for μ -almost all $\xi \in \partial X$.

Let For every $n \in \mathbb{N}^*$, let define $\sigma_n = -d_- - \frac{1}{n}$, and let $E(\sigma_n)$ be the set of points $\xi \in \partial X$ such that $\operatorname{gr}_{\phi}(\xi) \leq \sigma_n$. For all n, we have $\mu_x(E_n) = 0$. The set of points satisfying $\operatorname{gr}_{\phi}(\xi) < -d_-$ is the countable union of the $E(\sigma_n)$'s. The proof of the corollary follows.

Now we use the Fatou-type theorem given in [CP1] for conformal densities of the same dimension, and the proof of Theorem 5.6, to obtain the following

Theorem 5.8.— The following four statements are equivalent:

(i) $gr_{\phi}(\xi) = -d_{-}$ for μ -almost all $\xi \in \partial X$.

(ii) $gr_{\phi}(\xi) \leq -d_{-}$ for μ -almost all $\xi \in \partial X$.

(iii) For all $x \in S$, the measure μ_x is absolutely continuous with respect to the $\log(k-1)$ -dimensional Hausdorff measure \mathcal{H}_x on ∂X .

(iv) There exists a point $x \in S$ such that he measure μ_x is absolutely continuous with respect to the $\log(k-1)$ -dimensional Hausdorff measure \mathcal{H}_x on ∂X .

Furthermore, if one of these conditions is satisfied, then, for μ -almost all $\xi \in \partial X$, we have

(5.5)
$$\lim_{n \to \infty} \frac{\phi(x, n, \xi)}{S_{\lambda}(n)} = \frac{d\mu_x}{d\mathcal{H}_x}(\xi)$$

In particular, there is a constant $C = C(k, \lambda) > O$ such that, for μ -almost all $\xi \in \partial X$, we have

$$\phi(x,n,\xi) \sim C \frac{d\mu_x}{d\mathcal{H}_x}(\xi) e^{-nd}$$

as $n \to \infty$. (Note that we already knew that $gr_{\phi}(\xi) = -d_{-}$ for μ -almost all ξ , by Corollary 5.7).

Proof.— $(i) \Rightarrow (ii)$ is trivial. Let us prove $(ii) \Rightarrow (iii)$.

Assume that $\operatorname{gr}_{\phi}(\xi) \leq -d_{-}$ for μ -almost all $\xi \in \partial X$. Let us fix $x \in S$. By the proof of Theorem 5.6, taking $\sigma = -d_{-}$, we have, for every Borel subset $A \in \partial X$, $\mathcal{H}_{x}(A) > 0$ if $\mu_{x}(A) > 0$. Therefore, μ_{x} is absolutely continuous with respect to \mathcal{H}_{x} . This proves (*iii*).

The equivalence $(iii) \Leftrightarrow (iv)$ follows from the definition of a conformal density.

Let us prove finally that $(iv) \Rightarrow (i)$ and that (iv) imples the relation (5.5). We suppose therefore that there is a point $x \in S$ such that the measure μ_x is absolutely continuous with respect to \mathcal{H}_x . Let ν be the (unique) conformal density of dimension d_+ such that $\nu_x = \mathcal{H}_x$. By symmetry, we have $\phi_{\nu}(x, n, \xi) = S_{\lambda}(n)$ for all $\xi \in \partial X$. Recall now that μ and ν have the same dimension d_+ . Therefore we can apply to them the Fatou-type theorem of [CP1], and we obtain formula (5.5). By Proposition 1.4, we have $S_{\lambda}(n) \sim Ce^{-nd_-}$, which implies $\operatorname{gr}_{\phi}(\xi) = -d_-$. This proves (i).

Bibliography

[Bro] R. Brooks, The spectral geometry of k-regular graphs, Journal d'Analyse Mathématique, 57 (1991), 120-151.

[Car] P. Cartier, Harmonic analysis on trees, Proceedings of Symposia in Pure Mathematics, vol. XXVI, 419-424, American Math. Society, 1973

[Coo] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific Journal of Mathematics, **159**, No. 2 (1993), 241-270.

[CP1] M. Coornaert and A. Papadopoulos, A Fatou-type theorem for functions associated to conformal densities on the boundary of a metric tree, prépublication No. 1993/039, Université de Strasbourg, 1994.

[CP2] M. Coornaert and A. Papadopoulos, Récurrence de marches aléatoires et ergodicité du flot géodésique sur les graphes réguliers, prépublication No. 1994/005, Université de Strasbourg, 1994.

[CP3] M. Coornaert and A. Papadopoulos, (paper in preparation).

[DK] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, Contemp. Math. **73** (1988), 25-40.

[FN] A. Figà-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Math. Society Lecture Notes Series, vol. 162, 1991.

[Mey] P. A. Meyer, Probabilités et Potentiel, ed. Hermann, Paris, 1966.

[MW] B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), 209-234.

[Sul] D. Sullivan, Related aspects of positivity in Riemannian manifolds, J. Diff. Geom. 25 (1987), 327-351.