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VANISHING SUPERCONFORMAL INDICES AND
THE CHIRAL SYMMETRY BREAKING

V. P. SPIRIDONOV AND G. S. VARTANOV

Abstract. Superconformal indices of 4d N = 1 SYM theories with SU(N)

and SP (2N) gauge groups are investigated for Nf = N and Nf = N + 1
flavors, respectively. These indices vanish for generic values of the flavor fu-

gacities. However, for a singular submanifold of fugacities they behave like
the Dirac delta functions and describe the chiral symmetry breaking phenom-

enon. Similar picture holds for partition functions of 3d supersymmetric field

theories with chiral symmetry breaking.
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1. Introduction

We take as a starting point the remarkable observation of [1] that superconformal
indices (SCIs) of 4d supersymmetric field theories are expressed in terms of elliptic
hypergeometric integrals (EHIs) discovered in [2, 3] (for a review see [4]). SCIs
were introduced in [5] and [6] from different physical motivations. They describe
also indices of nonconformal supersymmetric field theories on curved backgrounds
flowing to a superconformal infrared fixed point [7]. In [5] the main target was
the AdS/CFT correspondence. In [6] BPS operators of N = 1 SYM theories were
studied and the equality of SCIs for Seiberg dual theories was conjectured. In
[1] this hypothsis was proven analytically for the initial Seiberg duality [8] using
mathematical properties of EHIs established in [2, 3, 9, 10]. Following this result we
systematically considered the connection of N = 1 supersymmetric field theories

1



2 V. P. SPIRIDONOV AND G. S. VARTANOV

with the theory of EHIs [11]-[16] We showed that available physical checks for
Seiberg dualities can be described by known general properties of EHIs, conjectured
many new mathematical identities and found many new physical dualities. SCI
techniques was applied also to the description of S-dualities of N = 2, 4 extended
supersymmetric field theories in [17] and [14].

In [11] it was conjectured that all ’t Hooft anomaly matching conditions are
related to the total ellipticity condition for EHIs [4]. As shown in [18] this is not
so for U(1)R and U(1)3R-anomalies. However, in [16] it was demonstrated that all
anomaly matchings for Seiberg dual theories follow from SL(3, Z)-modular trans-
formation properties of the kernels of dual SCIs. One can consider modifications
of SCIs such as the addition of charge conjugation [19], inclusion of surface opera-
tors [20, 21] or line operators [22, 23], etc. Connection of SCIs of 4d theories and
partition functions of 2d statistical mechanics models was discussed in [24]. An
interesting 5d/4d boundary field theory with the extended E7-flavor symmetry was
proposed in [25], which is based on the particular 4d multiple dual theories [11] and
W (E7)-symmetry of corresponding SCIs [3, 9]. A similar interpretation for SCIs
with W (E6)-symmetry was proposed in [26].

In this paper we would like to discuss a particular phenomenon for N = 1 SYM
theories pointed out in [27] which is known as the confinement with chiral symmetry
breaking when the global symmetry group gets broken. Originally such a physical
effect was considered for SU(N)-gauge group supersymmetric quantum chromody-
namics with Nf = N and it should be contrasted to the so-called s-confinement
occurring at Nf = N +1 (i.e., the confinement without chiral symmetry breaking).
Later the theories with quantum modified moduli space were systematically studied
in [28]. From mathematical point of view the relevant behavior of SCIs was par-
tially considered for N = 2 in [29]. We study SCIs of such theories in general case
Nf = N and show that they involve Dirac delta functions reflecting the presence of
chiral symmetry breaking. Similar considerations are fulfilled for a 4d theory with
SP (2N) gauge group and some 3d theories.

2. Superconformal index

Superconformal index counts BPS states protected by one supercharge which
cannot be combined to form long multiplets. The N = 1 superconformal algebra of
space-time symmetry group SU(2, 2|1) is generated by Ji, J i (Lorentz rotations),
Pµ (translations), Kµ, (special conformal transformations), H (dilatations) and R

(U(1)R-rotations). There are also four supercharges Qα, Qα̇ and their supercon-
formal partners Sα, Sα̇. Distinguishing a pair of supercharges, say, Q = Q1 and
Q† = −S1, one has

{Q, Q†} = 2H, Q2 =
(
Q†
)2

= 0, H = H − 2J3 − 3R/2. (1)

The SCI is defined now by the gauge invariant trace

I(p, q, y) = Tr
(
(−1)FpR/2+J3qR/2−J3

∏
k

yFk

k e−βH
)
, R = R + 2J3, (2)

where F is the fermion number operator. Parameters p and q are fugacities for
the operators R/2 ± J3 commuting with Q and Q†. Fk are the maximal torus
generators of the flavor group F with the corresponding fugacities yk. Since relation
(1) is preserved by the operators used in (2) only zero modes of the operator H
contribute to the trace.
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Table 1. Matter content of the electric theory

SU(N) SU(N + 1)l SU(N + 1)r U(1)B U(1)R

Q f f 1 1 1
N+1

Q̃ f 1 f −1 1
N+1

V adj 1 1 0 1

An explicit computation of SCIs for N = 1 theories results in the prescription
[6, 1] according to which one first composes the single particle states index

ind(p, q, z, y) =
2pq − p− q

(1− p)(1− q)
χadj,G(z)

+
∑

j

(pq)Rj/2χRF ,j(y)χRG,j(z)− (pq)1−Rj/2χR̄F ,j(y)χR̄G,j(z)
(1− p)(1− q)

. (3)

The contribution of gauge superfields lying in the adjoint representation of the
gauge group Gc is described by the first line in (3). The sum over j corresponds
to the contribution of chiral matter superfields Φj transforming as the gauge group
representations RG,j and flavor symmetry group representations RF,j . The func-
tions χadj(z), χRF ,j(y) and χRG,j(z) are the corresponding characters and Rj are
the field R-charges. The variables z1, . . . , zrank Gc

are the maximal torus fugaci-
ties of Gc. To obtain the full SCI the function ind(p, q, z, y) is inserted into the
“plethystic” exponential which is averaged over the gauge group. This yields the
following matrix integral

I(p, q, y) =
∫

Gc

dµ(z) exp
( ∞∑

n=1

1
n

ind
(
pn, qn, zn, yn

))
, (4)

where dµ(z) is the Gc-invariant measure.
Let us consider an example of the s-confining theory from [27]. Namely, take a

4d N = 1 SYM theory with Gc = SU(N) gauge group and SU(Nf )l × SU(Nf )r ×
U(1)B flavor symmetry group and Nf = N + 1. The original (electric) theory
has N + 1 left and N + 1 right quarks Q and Q̃ lying in the fundamental and
antifundamental representations of SU(N). They have +1 and −1 baryonic charges
and the R-charge R = 1/(N + 1). The field content of the described theory is
summarized in Table 1. The general Seiberg duality [8] is supposed to live in the
conformal window 3N/2 < Nf < 3N , and we see that the duality we consider lies
outside of it.

SCI of this (“electric”) theory is given by the following EHI [1]:

IE = κN

∫
TN−1

∏N+1
i=1

∏N
j=1 Γ(sizj , t

−1
i z−1

j ; p, q)∏
1≤i<j≤N Γ(ziz

−1
j , z−1

i zj ; p, q)

N−1∏
j=1

dzj

2πizj
, (5)

where T denotes the unit circle with positive orientation,
∏N

j=1 zj = 1, |si|, |t−1
i | <

1, and the balancing condition reads ST−1 = pq with S =
∏N+1

i=1 si, T =
∏N+1

i=1 ti.
Here we introduced the parameters si and ti as

si = (pq)R/2vxi, ti = (pq)−R/2vyi, (6)
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Table 2. Matter content of the magnetic theory

SU(N + 1)l SU(N + 1)r U(1)B U(1)R

M f f 0 2
N+1

B f 1 N N
N+1

B̃ 1 f −N N
N+1

where v, xi and yi are fugacities for U(1)B , SU(N + 1)l and SU(N + 1)r groups,
respectively, with the constraints

∏N+1
i=1 xi =

∏N+1
i=1 yi = 1, and

κN =
(p; p)N−1

∞ (q; q)N−1
∞

N !
, (a; q)∞ =

∞∏
k=0

(1− aqk).

We use also conventions

Γ(a, b; p, q) := Γ(a; p, q)Γ(b; p, q), Γ(az±1; p, q) := Γ(az; p, q)Γ(az−1; p, q),

where

Γ(z; p, q) =
∞∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj
, |p|, |q| < 1, (7)

is the (standard) elliptic gamma function.
According to [27] the dual (“magnetic”) theory is described by colorless mesons

and baryons, i.e. the dual theory has no gauge group, but it has the same flavor
symmetry. Its description is given in terms of baryons B and B̃ with U(1)B-charges
N and −N and the R-charges N/(N+1). There are also mesons of R-charge 2/(N+
1) lying in the fundamental representation of SU(N + 1)l and antifundamental
representation of SU(N + 1)r (M j

i = QiQ̃
j , i, j = 1, . . . , N + 1). We collect all

fields data in Table 2.
The SCI of the magnetic theory is

IM =
∏

1≤i,j≤N+1

Γ(sit
−1
j ; p, q)

N+1∏
i=1

Γ(Ss−1
i , T−1ti; p, q). (8)

As discovered in [1], the equality of SCIs IE = IM coincides with the mathemat-
ical identity initially established for N = 2 in [2] as the evaluation formula for an
elliptic beta integral and conjectured for general N in [3] and proven completely in
[9, 10].

Following Seiberg [27] one can integrate out one flavor to come to supersymmetric
quantum chromodynamics theory with Nf = N when the classical moduli space
is modified at the quantum level leading to the chiral symmetry breaking. From
the SCI point of view the condition of integrating out a flavor is expressed by the
following constraint on fugacities

sN+1t
−1
N+1 = pq.

Substituting this restriction into (5) and using the reflection property

Γ(z,
pq

z
; p, q) = 1,

we see that the gamma functions involving parameters sN+1, tN+1 disappear while
the expression for the dual theory (8) seems to vanish, since Γ(pq; p, q) = 0. How-
ever, this is true only for generic values of parameters si and ti, i = 1, . . . , N, and a
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more accurate analysis of the corresponding SCIs should be carried out. Namely, if
sit
−1
j → 1 for some i and j, then Γ(sit

−1
j ; p, q) diverges and we have two competing

regimes. Resolution of the emerging uncertainty can lead to a non-zero answer.
The naive prescription for building SCIs (3) and (4) does not apply in such cases.

3. Chiral symmetry breaking for Gc = SU(2)

We start our analysis of SCIs for the case of 4d N = 1 SYM theory with SU(2)
gauge group and four quark fields (Nf = 2) considered in [27]. As we will see,
SCIs vanish for generic values of fugacities and in some special cases they have
delta-function type singularities.

Let us take four parameters sj ∈ T subject to the balancing constraint
∏4

j=1 sj =
1. In the parametrization sj = e2πiφj , 0 ≤ φj < 1, one has

∑4
j=1 φj = 0 (mod 1).

Denote as Td an infinitesimal deformation of the unit circle with positive orientation
such that the points sj lie inside Td and the points s−1

j are outside Td. Particular
values of sj when such a contour does not exist represent a special interest and they
will be treated through a limiting procedure. For this set of parameters we define
the integral

IE =
(p; p)∞(q; q)∞

2

∫
Td

∏4
j=1 Γ(sjz

±1; p, q)
Γ(z±2; p, q)

dz

2πiz
. (9)

Our aim is to show that for arbitrary values of parameters sj (excluding the case
when sj = sk for j 6= k) one can evaluate this integral and come to the equality
IE = IM with

IM =
1

(p; p)∞(q; q)∞

4∑
j=2

Γ(s1sk, s1sl, sjsk, sjsl; p, q) δ(φ1 + φj), (10)

where the triple j, k, l is a cyclic permutation of (2, 3, 4) and δ(φ) is the periodic
Dirac delta-function with period 1, δ(φ + 1) = δ(φ). There are many equivalent
forms of IM , e.g.

IM = Γ(s±1
1 s±1

2 ; p, q)
δ(φ1 + φ3) + δ(φ1 + φ4)

(p; p)∞(q; q)∞
+ Γ(s±1

2 s±1
3 ; p, q)

δ(φ1 + φ2)
(p; p)∞(q; q)∞

.

It can be checked that IM is symmetric in parameters sj due to the balancing
condition

∏4
j=1 sj = 1, although this is not apparent. The equality IE = IM can

be obtained by taking accurate limits of parameters in the elliptic beta integral
which will be described below. We observe from the above relation that for generic
values of sj , j = 1, 2, 3, 4, expressions IE and IM vanish and only for the cases when
sjsk = 1 for some j 6= k one has a non-trivial result.

To make formulas (9) and (10) a little more transparent and lucid, let us assume
that we deal with the singular manifold for delta function δ(φ1 + φ3). This means
that s1s3 = 1 which also implies that s2s4 = 1 because of the balancing condition.
As a result, one has in the numerator of the integrand of IE the following expression

Γ(s±1
1 z±1, s±1

2 z±1; p, q), (11)

and the coefficient depending only on elliptic gamma functions in IM has the form

Γ(s±1
1 s±1

2 ; p, q). (12)
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Table 3. Matter content of two descriptions of SYM theory with
Gc = SU(2) and 4 quarks

SU(2) SP (4) U(1)R

Q f f 0
V adj 1 1
q TA 0

The structure of these products of elliptic gamma functions suggests the physical
meaning of the above identity IE = IM as the equality of SCIs for the taken theory
with the chiral symmetry breaking and its dual.

So, the 4d N = 1 SYM theory with SU(2) gauge group and two (left and right)
flavors has a naive SU(4) flavor symmetry group. The gauge invariant combinations
of chiral fields are

V ij = QiQj ,

where Qi, i = 1, . . . , 4, are chiral superfields in the fundamental representation of
the gauge group SU(2). They are restricted at the classical level by the following
relation

εi1i2i3i4V
i1i2V i3i4 = 0. (13)

At the quantum level this classical restriction is deformed and becomes the nonzero
pfaffian constraint

Pf V = Λ4, (14)
where Λ is some characteristic energy scale. This scale breaks the conformal sym-
metry and, so, the term “superconformal index” is misleading in this case, i.e.
it can be called like that only by its origin being a supersymmetric index for a
nonconformal theory on S3 × S1 manifold [7].

Classical SU(4) flavor symmetry group gets broken to SP (4) [27] due to the
modified quantum mechanical constraint. So, the true flavor symmetry group is
SP (4). Apart from the chiral symmetry breaking occurring for Nf = 2 flavors
it happens that the original electric theory can be described at low energies in
terms of the free fields determined by gauge invariant operators. One has here the
confinement with the chiral symmetry breaking which differs from the s-confinement
[30] studied from the SCI technique point of view in [1, 11]. The matter content of
both electric and magnetic theories is described in Table 3, where we put the matter
content of both electric and magnetic theories in two subtables one atop of another.
The first one gives the matter content of the electric theory while the second one
reproduces the confining magnetic theory (which does not have the gauge fields).

Let us comment on what we have found so far. At the quantum level the original
theory with SU(4) flavor symmetry is not complete at the arbitrary point in moduli
space due to the quantum mechanical constraint. In this case SCI is equal to zero
which is described by the relation IE = IM = 0 for generic values of the fugacities
si. The points of moduli space where the chiral symmetry breaking occurs bring
the proper quantum gauge theory with its confining phase described by the dual
theory of free chiral superfields. They are related to the special fugacity values
for which SCIs diverge instead of vanishing. Based on this property we conclude
that the equality IE = IM describes the chiral symmetry breaking phenomenon for
supersymmetric quantum chromodynamics theory with Nf = 2 flavors. It should



CHIRAL SYMMETRY BREAKING 7

be stressed that although the formal expression for SCI of the electric theory (9) is
built using the general prescription for constructing SCIs, the integration measure
should be chosen in a rather careful way (one cannot use the contour T in (9)).
Moreover, for the magnetic theory (10) even the formal expression of SCI cannot
be derived using this prescription due to the appearance of the delta functions.
A naive application of the general prescription in this case would produce infinity
for the magnetic SCI, which is easily seen from the character of the absolutely
antisymmetric tensor representation TA of SP (4):

χTA,SP (4) = s1s2 + s1s
−1
2 + s−1

1 s2 + s−1
1 s−1

2 + 1. (15)

The constant 1 entering this expression formally produces the diverging factor
Γ(1; p, q) from the plethystic exponential (which means that the sum in the ex-
ponential diverges). Very formally one can interpret Γ(1; p, q) as the value of one
of the delta functions in (10) when its argument vanishes. Consider again the case
when φ1 + φ3 = 0 implying φ2 + φ4 = 0, which lead to s1s3 = s2s4 = 1. Then
in the expression (11) one easily recognizes the contribution from the character of
fundamental representation of SP (4)

χf,SP (4) = s1 + s−1
1 + s2 + s−1

2 ,

and in the expression (12) one sees only a part of the character of the TA-represen-
tation (15).

In [13] we already faced the fact that the prescription of computing SCIs in the
form given in [6, 1] requires modifications in some particular cases. Here we also see
that it does not cover theories with the quantum deformed moduli space. It would
be nice to understand how this difficulty emerges from the localization procedure
used for computing SCIs, which we do not discuss here.

4. SU(N), N > 2, gauge group case

Consider now the general N case. According to [27] there are two different
ways of getting the confinement with chiral symmetry breaking for N > 2. At the
classical level one has the following constraint

det M −BB̃ = 0, (16)

where mesons M and baryons B, B̃ are defined as

M i
ĩ

= QiQ̃ĩ, i, ĩ = 1, . . . , N,

B =
1

N !
εi1...iN

Qi1 . . . QiN ,

B̃ =
1

N !
ε̃i1...̃iN

Q̃ĩ1 . . . Q̃ĩN . (17)

In [27] it was shown that the classical constraint (16) is deformed quantum
mechanically due to the one instanton effects to

det M −BB̃ = Λ2N , (18)

where Λ is some scale. Again, one has broken conformal symmetry and our index
requires an appropriate interpretation in the context of non-conformal theories.
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Table 4. Matter content of two descriptions of SYM theory with
G = SU(N) and 2N quarks with the symmetry breaking SU(N)l×
SU(N)r → SU(N)d

SU(N) SU(N)d U(1)B U(1)R

Q f f 1 0
Q̃ f f −1 0
V adj 1 0 1
M adj 0 0
S1 1 N 0
S2 1 −N 0

4.1. Breaking to the diagonal subgroup: SU(N)l × SU(N)r → SU(N)d.
Condition (18) can be resolved by fixing

B = B̃ = 0, M i
ĩ

= Λ2δi
ĩ
, i, ĩ = 1, . . . , N, (19)

which leads to breaking of the flavor symmetry SU(N)l × SU(N)r to the diagonal
subgroup SU(N)d. As a result one has the dual theories presented in Table 4.

The electric theory SCI has the form

IE = κN

∫
TN−1

d

∏N
i,j=1 Γ(ue2πiθizj , u

−1e−2πiχiz−1
j ; p, q)∏

1≤i<j≤N Γ(ziz
−1
j , z−1

i zj ; p, q)

N−1∏
j=1

dzj

2πizj
, (20)

while the magnetic SCI is

IM =
Γ(u±N ; p, q)

(p; p)N−1
∞ (q; q)N−1

∞

∏
1≤i<j≤N

Γ(e±2πi(θi−θj); p, q)
∑
θ̃j

N−1∏
i=1

δ(χi − θ̃i),(21)

where the sum goes over permutations of parameters (θ̃1, . . . , θ̃N ) = P(θ1, . . . , θN ).
The equality IE = IM is proved in the following section. Here we use parametriza-

tion of fugacities in the exponential form and
N∏

i=1

zi = 1,
N∑

i=1

θi =
N∑

i=1

χi = 0.

For θi = χi one can easily recognize in IE contributions of the characters of respec-
tive electric theory field representations as described in Table 4. As to the magnetic
theory, the meson field M described by the adjoint representation and respective
character

χadj,SU(N) =
N∑

i,j=1

e2πi(θi−θj) − 1,

yields the θj-dependent term in (21) multiplied by the diverging factor Γ(1; p, q)N−1,
which formally plays the role of the product of delta-functions. The contribution
to IM of the scalar fields S1 and S2 is described by the terms Γ(u±N ; p, q) using
the standard prescription. So, we see that the original recipe of building SCIs
for SU(N) supersymmetric field theories with chiral symmetry breaking requires
appropriate modification in both electric (namely, correct choice of the integration
contour Td) and magnetic (correct description of singularities in the distributional
sense) instances.
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Table 5. Matter content of two descriptions of SYM theory with
Gc = SU(N) and 2N quarks with broken U(1)B

SU(N) SU(N)l SU(N)r U(1)R

Q f f 1 0
Q̃ f 1 f 0
V adj 1 1 1
M f f 0
S 1 1 0

We would like to note that for N = 4, i.e. for SU(4) gauge theory there are
several dual theories as described in [12]. This means that a similar chiral symmetry
breaking should take place in three other interacting SU(4)-gauge field theories
with Nf = 4. We have checked that the expression for SCIs (21) is invariant with
respect to transformations of elliptic hypergeometric integrals indicated in [12],
i.e. the latter theories have the same index. It would be interesting to investigate
moduli spaces and other physical properties of these multiple dual theories to see
how the chiral symmetry breaking arises in them. The general physical properties
of these and other more general dualities lying outside the conformal windows
described in [12] are not investigated appropriately yet. As a correction, we mention
that vanishing of SCIs stated in [12] is wrong in general – there are singularities
describing interesting physics and all corresponding SCIs should be reconsidered
from this point of view.

4.2. Breaking of U(1)B. The constraint (18) can be resolved also by fixing

B = −B̃ = ΛN , M i
ĩ

= 0, i, ĩ = 1, . . . , N, (22)

which lead to breaking of the U(1)B-symmetry. As a result in the infrared fixed
point one gets the dual field description as described in Table 5

The electric SCI has the same form

IE = κN

∫
TN−1

d

∏N
i,j=1 Γ(xiuzj , y

−1
i u−1z−1

j ; p, q)∏
1≤i<j≤N Γ(ziz

−1
j , z−1

i zj ; p, q)

N−1∏
j=1

dzj

2πizj
, (23)

with
∏N

i=1 zi = 1,
∏N

i=1 xi =
∏N

i=1 yi = 1, while the magnetic index has a different
form

IM =
N∏

i,j=1

Γ(xiy
−1
j ; p, q)

δ(Nϕ)
(p; p)∞(q; q)∞

, (24)

where ϕ is a real variable appearing from the exponential parametrization of the
U(1)B-fugacity, u = e2πiϕ. The equality IE = IM in this case is also proven
in the next section. Again, for discrete values of the fugacity u, uN = 1, the
electric index uses a nontrivial modification of the integration contour Td with clear
contribution from characters of the fundamental (fields Q) and antifundamental
(fields Q̃) representations. In the magnetic case the situation is trickier. The
tensor meson field M character yields the xi, yi-dependent part of the expression
(24) whereas the delta-function δ(Nϕ) is modelled by the character of the scalar
field S which has zero charges with respect to all groups and so yields Γ(t; p, q) at
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t = 1 which plays the role of the delta-function, i.e. the modification of the original
recipe of building SCIs is needed in this case as well.

Again, for N = 4 similar chiral symmetry breaking should take place in three
other SU(4)-gauge group dual theories with Nf = 4 described in [12]. We have
checked that the expression for magnetic SCI (24) is invariant with respect to
transformations of EHIs given in [12], i.e. these theories have the same index.

5. Proofs

5.1. Nf = N = 2 case. Let us prove relations for SCIs presented in the previous
section. Consider first the chiral symmetry breaking in N = 1 SYM theory with
SU(2) gauge group and Nf = 2 flavors. Properties of SCIs in this particular
case were discussed in [29, 24], but here we would like to give an independent
consideration.

Take the s-confining theory with the same gauge group SU(2) and Nf = 3 fla-
vors studied in [27]. Note that all s-confining theories were thought to be classified
in [30], however other examples of such theories were discovered in [11] using the
SCI technique. Since for Gc = SU(2) the fundamental and antifundamental repre-
sentations are equivalent, the flavor group extends to SU(6) and quark fields unify
to its fundamental representation. Denoting t−1

1,2,3 = s4,5,6 in (5) we come to the
electric SCI

IE =
(p; p)∞(q; q)∞

2

∫
T

∏6
j=1 Γ(sjz

±1; p, q)
Γ(z±2; p, q)

dz

2πiz
(25)

where |sj | < 1 and
∏6

j=1 sj = pq. This integral is known as the elliptic beta integral
and its evaluation [2] yields the magnetic SCI (cf. with (8))

IM =
∏

1≤j<k≤6

Γ(sjsk; p, q). (26)

It is possible to reduce the equality IE = IM to the Nf = 2 case by taking the
limit

s5s6 = pqeε, ε → 0. (27)
Indeed, from the inversion relation for Γ(z; p, q) one has Γ(s5z, s6z

−1; p, q) → 1 and
integral (25) simplifies to (9), where the integration contour should be inevitably
deformed due to the balancing condition s1s2s3s4 = 1 emerging for ε = 0.

Let ε be a small positive number. Denote

s1 = αw, s2 = αw−1, s3 = βy, s4 = βy−1. (28)

Then

IM = Γ(s5s6, α
2, β2, αβw±1y±1; p, q)

6∏
m=5

Γ(αsmw±1, βsmy±1; p, q). (29)

Because
Γ(s5s6; p, q) =

ε→0
ε(p; p)∞(q; q)∞ + O(ε2), (30)

the integral IE (25) is proportional to ε and, for generic values of other parameters,
it vanishes for ε = 0. However, for special values of α, β, w, and y one has poles in
(29) and corresponding singularities may alter the integral value. Let us consider
the situation for singular points w = y (corresponding to s1s4 = 1), w = y−1

(corresponding to s1s3 = 1), and α2 = 1 (corresponding to s1s2 = 1).
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The balancing condition s5s6α
2β2 = pq can be written in the form

αβ = e−ε/2. (31)

Actually, on the right hand side of (31) one may have the minus sign, but it can
be removed by the change y → −y in the original notation and therefore we stick
to the positive sign in (31). Keeping ε > 0 one has |αβ| < 1, i.e. it is possible to
choose |α|, |β| < 1. Suppose that w, y ∈ T, i.e. |w|, |y| = 1. Then all parameters of
the elliptic beta integral are of modulus less than 1 and its evaluation (29) holds
true.

To see the nature of singularities emerging at y = w±1 let us assume that α2 6= 1,
multiply IE by a function f(y) holomorphic near the unit circle and integrate over
the variable y:∫

T
f(y)IE

dy

2πiy
= Γ(s5s6, α

2, β2; p, q)
6∏

m=5

Γ(αsmw±1; p, q)

×
∫

T
f(y)Γ(αβw±1y±1; p, q)

6∏
m=5

Γ(βsmy±1; p, q)
dy

2πiy
. (32)

Since we may keep absolute values of s5 and s6 sufficiently small, so that |βs5,6| <
1, there are no problems with the integration of s5,6-dependent elliptic gamma
functions in (32). The term Γ(αβw±1y±1; p, q) has the following sequences of poles
and zeros

• poles: yin = αβw±1piqj , yout = 1
αβ w±1p−iq−j ;

• zeros: y = 1
αβ w±1pi+1qj+1, αβw±1p−i−1q−j−1,

where i, j ∈ Z≥0 and the in-poles converge to zero y = 0 and out-poles go to infinity.
Because of the taken constraints the unit circle separates in and out poles for ε > 0.
However, for ε → 0 one has αβ → 1 and two pairs of poles at αβw±1 and w±1/αβ
start to pinch T. Therefore we deform the contour of integration T to C such
that only the residues of the αβw±1-poles are picked up during this deformation
and there are no singularities lying on C. These distinguished poles are simple for
w2 6= 1 (i.e., s1 6= s2), which is assumed in the following. As a result we obtain∫

T
f(y)IE

dy

2πiy
= Γ(s5s6, α

2, β2; p, q)
6∏

m=5

Γ(αsmw±1; p, q)

×

(
f(αβw)

(p; p)∞(q; q)∞
Γ((αβ)2, (αβw)2, w−2; p, q)

6∏
m=5

Γ(βsmαβw,
sm

αw
; p, q)

+
f(αβw−1)

(p; p)∞(q; q)∞
Γ((αβ)2, (αβw−1)2, w2; p, q)

6∏
m=5

Γ(βsmαβw−1,
smw

α
; p, q)

+
∫
C

f(y)Γ(αβw±1y±1; p, q)
6∏

m=5

Γ(βsmy±1; p, q)
dy

2πiy

)
,

where we used the relation

lim
x→1

(1− x)Γ(x; p, q) =
1

(p; p)∞(q; q)∞
.

The residue factors Γ((αβ)2; p, q) diverge for ε → 0, but Γ(s5s6, (αβ)2; p, q) = 1 and
we obtain the finite product. However, the integral over C remains finite and its
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product with Γ(s5s6; p, q) vanishes. As a result, for ε = 0 we obtain∫
T

f(y)IE
dy

2πiy
=

Γ(α±2, w±2; p, q)
(p; p)∞(q; q)∞

(f(w) + f(w−1). (33)

Denote y = e2πiθ, w = e2πiχ and pass to the integration over real variable θ.
Because of the arbitrariness of the function f(y), we can give to the function IE a
distributional sense and write

(p; p)∞(q; q)∞
2

∫
Td

Γ(αw±1z±1, α−1y±1z±1; p, q)
Γ(z±2; p, q)

dz

2πiz
(34)

=
Γ(α±2, w±2; p, q)
(p; p)∞(q; q)∞

(δ(θ + χ) + δ(θ − χ)),

where δ(θ) is the 1-periodic Dirac delta-function. Note that the limit ε → 0 in-
evitably forces to change the integration contour in IE from T to Td, which is a
deformation of T such that the sequences of poles αw±1piqj and α−1y±1piqj with
i, j ∈ Z≥0 lie inside Td and their reciprocals are outside of this contour. If |α| < 1
then some poles from the second set lie outside T, i.e. the contour deformation is
not infinitesimal. For symmetric functions f(z) = f(z−1), the equality (34) has an
interpretation as the inversion relation for an integral operator introduced in [31],
which was demonstrated in [32]. In turn it was identified in [33] with one of the
Coxeter relations for permutation groups.

Consider now the singularities of IE at α2 = 1. For that we multiply IE by
a holomorphic function f(α) and integrate over α along the contour C which is a
deformation of T near the points α = ±1 such that it passes in between the points
α = 1 and α = e−ε/2 on the one side and points α = −1 and α = −e−ε/2 on
the other side. Again, in the limit ε → 0 two pairs of poles pinch the integration
contour and we deform C to an infinitesimal deformation of T such that both points
α = ±1 lie inside it, and pick up α = ±1 pole residues. Repeating considerations
similar to the previous case we obtain∫

C
f(α)IE

dα

2πiα
= Γ(s5s6, e

−ε/2w±1y±1; p, q)
∫
C

f(α)Γ(α2, e−εα−2; p, q)(35)

×
6∏

m=5

Γ(αsmw±1, e−ε/2α−1smy±1; p, q)
dα

2πiα

=
ε→0

Γ(w±1y±1; p, q)
(p; p)∞(q; q)∞

f(1) + f(−1)
2

.

Denote α = e2πiϕ and pass to the integration over the real variable ϕ ∈ [0, 1[.
Then we can write in the distributional sense

(p; p)∞(q; q)∞
2

∫
Td

Γ(αw±1z±1, α−1y±1z±1; p, q)
Γ(z±2; p, q)

dz

2πiz
(36)

=
Γ(w±1y±1; p, q)
(p; p)∞(q; q)∞

δ(ϕ) + δ(ϕ− 1/2)
2

.

Equivalently we can write δ(ϕ) + δ(ϕ − 1/2) = 2δ(2ϕ), because of the periodicity
of the delta-function. For these considerations to be valid we have to assume that
y±1w±1 6= 1, i.e. the previously considered regime of parameters and the current
one should not overlap, which we assumed.
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Return now from notation (28) to the original one si = e2πiφi , which means
that φ1 = ϕ + θ, φ2 = ϕ − θ, φ3 = −ϕ + χ, φ4 = −ϕ − χ. Then the arguments
of our delta-functions are 2ϕ = φ1 + φ2, θ + χ = φ1 + φ3, and θ − χ = φ1 + φ4.
Therefore summing right-hand sides of (34) and (36) we come to the expression for
magnetic SCI (10) which we wanted to prove. Note that due to our constraints on
the parameters the supports of three delta-functions do not overlap.

5.2. The higher rank case, Nf = N > 2. Consider the general case Nf =
N > 2. The situation with breaking SU(Nf )l × SU(Nf )r × U(1)B → SU(Nf )d ×
U(1)B is similar to the one described above for y = w±1. Analysis of the U(1)B-
breaking, SU(Nf )l × SU(Nf )r × U(1)B → SU(Nf )l × SU(Nf )r, is analogous to
the investigation of α2 = 1 singularities above.

We start from the s-confining theory with SU(N) gauge group with Nf = N +1
flavors. The electric theory SCI is

IE = κN

∫
TN−1

∏N+1
i=1

∏N
j=1 Γ((pq)

1
2(N+1) xivzj , (pq)

1
2(N+1) y−1

i v−1z−1
j ; p, q)∏

1≤i<j≤N Γ(ziz
−1
j , z−1

i zj ; p, q)

N−1∏
j=1

dzj

2πizj
,

(37)
where

∏N+1
j=1 xj =

∏N+1
j=1 yj = 1, so that the balancing condition is satisfied auto-

matically. It admits exact evaluation yielding the magnetic theory SCI

IM =
N+1∏
i=1

Γ((pq)
N

2(N+1) x−1
i vN , (pq)

N
2(N+1) yiv

−N ; p, q)
N+1∏
i,j=1

Γ((pq)
1

N+1 xiy
−1
j ; p, q). (38)

As in the previous considerations we would like to integrate out one flavor by
taking the limit (pq)

1
N+1 xN+1y

−1
N+1 = pqeε, ε → 0. Introduce new variables ai, bi,

and u:

xi =
ai

x
1/N
N+1

, yi =
bi

y
1/N
N+1

, i = 1, . . . , N, v = (pq)−
1

2(N+1) x
1/N
N+1u,

which will play the role of fugacities for Nf = N reduced theory,
∏N

i=1 ai =∏N
i=1 bi = 1. Then the indices take the form

IE = κN

∫
TN−1

∏N
i,j=1 Γ(aiuzj , e

−ε/Nb−1
i u−1z−1

j ; p, q)∏
1≤i<j≤N Γ(ziz

−1
j , z−1

i zj ; p, q)

×
N∏

j=1

Γ(x
N+1

N

N+1uzj , y
−N+1

N

N+1 u−1z−1
j e−ε/N ; p, q)

N−1∏
j=1

dzj

2πizj
(39)

and

IM = Γ(pqeε, uN , e−εu−N ; p, q)
N∏

i,j=1

Γ(e−ε/Naib
−1
j ; p, q)

×
N∏

i=1

Γ(x
N+1

N

N+1a
−1
i uN , e−εy

−N+1
N

N+1 biu
−N ; p, q)

×
N∏

i=1

Γ(pqeεy
N+1

N

N+1b
−1
i , pqeεx

−N+1
N

N+1 ai; p, q). (40)
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In the limit ε → 0 this expression vanishes for generic values of the parameters.
The singular manifold of fugacities requiring special consideration is determined by
the poles of elliptic gamma functions in (40). The fugacity xN+1 (or yN+1) is an
arbitrary variable which we can give values keeping corresponding poles away from
T. Therefore for fugacities ai, bi, u near the unit circle the only singular points of
interest are ai = bj and uN = 1. In order to see the structure of singularities in
the first case, we multiply IE (or IM ) by a holomorphic function f(b1, . . . , bN ) and
integrate over the variables b1, . . . , bN−1 ∈ T. The multipliers Γ(e−ε/Naib

−1
j ; p, q)

have the poles

in : bj = e−ε/Nai, i = 1, . . . , N, j = 1, . . . , N − 1,

lying inside T, and

out : b−1
N = b1 . . . bN−1 = eε/Na−1

i , i = 1, . . . , N,

lying outside T for any particular bk. Since ai ∈ T, for ε → 0 all in poles approach
T from inside. Positions of the out poles depend on the order of integration in bi

and their values. Suppose we integrate first over b1, then b2, etc. Then for the pole
b1 = eε/N/ajb2 . . . bN−1 there exist such values of b2, . . . , bN−1 ∈ T that b1 = eε/Nak

for k = 1, . . . , N and for ε → 0 we have pinching of the integration contour near
the points b1 = ak. To escape such a pinching we shrink the integration contours
a little to pick up the residues of the bi = e−ε/Nai poles lying inside T (like in the
N = 2 case). After taking sequentially N − 1 “residues of residues” in integration
variables, say at the point bi = ai, on the last step we obtain the term

Γ(e−ε/NaNb−1
N ; p, q) = Γ(e−ε; p, q),

which diverges and, being multiplied by Γ(pqeε; p, q), yields the finite answer. Evi-
dently, we can take residues in arbitrary possible order bi = e−ε/Naj , j = 1, . . . , N,
each of which yields different final result. Only the highest order residues sur-
vive in the limit ε → 0 since all lower order residues vanish due to the multiplier
Γ(pqeε; p, q). As a result we obtain

∫
TN−1

f(b1, . . . , bN )IM

N−1∏
j=1

dbj

2πibj
=

ε→0

Γ(u±N ; p, q)
(p; p)N−1

∞ (q; q)N−1
∞

(41)

×
∏

1≤i<j≤N

Γ(aia
−1
j , a−1

i aj ; p, q)
∑
ãj

f(ã1, . . . , ãN ),

where summation goes over all permutations of parameters appearing from different
orders of taking residues, (ã1, . . . , ãN ) = P(a1, . . . , aN ).

To tackle the singularities at uN = 1 we multiply IM by a holomorphic function
f(u) and integrate over u along the contour which is an infinitesimal deformation of
T passing in between the points u = e2πik/N and u = e−ε/Ne2πik/N , k = 0, . . . , N−1.
Then we deform the integration contour and pick up the residues at u = e2πik/N .
For ωN = 1 one has

lim
u→ω

(1− ω/u)Γ(uN ; p, q) = − 1
N(p; p)∞(q; q)∞

.
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The contours for computing residues are oriented clockwise, which results in an
extra minus sign and yields∫

Td

f(u)IM
du

2πiu
=

∏
1≤i,j≤N

Γ(aib
−1
j ; p, q)

1
N(p; p)∞(q; q)∞

N−1∑
k=0

f(e2πik/N ). (42)

Introducing the angular variables ai = e2πiθi , bi = e2πiχi and u = e2πiϕ, we can
write in the distributional sense

κN

∫
TN−1

∏N
i,j=1 Γ(e2πi(θi+ϕ)zj , e

−2πi(χi+ϕ)z−1
j ; p, q)∏

1≤i<j≤N Γ(ziz
−1
j , z−1

i zj ; p, q)

N−1∏
j=1

dzj

2πizj

=
Γ(u±N ; p, q)

(p; p)N−1
∞ (q; q)N−1

∞

∏
1≤i<j≤N

Γ(aia
−1
j , a−1

i aj ; p, q)
∑
θ̃j

N−1∏
k=1

δ(χk − θ̃k)

+
∏

1≤i,j≤N

Γ(aib
−1
j ; p, q)

δ(Nϕ)
(p; p)∞(q; q)∞

, (43)

where the sum
∑

θ̃j
goes over all N ! permutations of the variables (θ1, . . . , θN ) and

δ(Nϕ) = (1/N)
∑N−1

k=0 δ(ϕ− k/N). This is a general formula describing simultane-
ously both cases of chiral symmetry breaking.

Interestingly, for N = 4 the expression (43) has an extended symmetry generated
by the reflection of fugacities and multiplication by some elliptic gamma functions
described in [12] in association with three more dual theories with nontrivial SU(4)-
gauge group interaction.

5.3. The case Nf < N . Take the electric theory with Gc = SU(2) and a single
flavor Nf = 1. Corresponding SCI has the form

(p; p)∞(q; q)∞
2

∫
C

Γ((pq)−
1
2 e±iθz±1; p, q)

Γ(z±2; p, q)
dz

2πiz
, (44)

where the integration contour C separates the poles converging to zero from their
reciprocals. It can be formally obtained from the Nf = 2 index by setting α =

√
pq.

For generic values of θ this integral vanishes, as a consequence of the elliptic beta
integral evaluation. However, it is not completely clear for which values of θ there
are singularities allowing one to obtain a non-zero answer in the distributional
sense. It is not legitimate to simply substitute α =

√
pq into (34) since that

relation was obtained under the condition |βs5|, |βs6| < 1 and for α → √
pq one

has β2 → (pq)−1 so that s5s6β
2 → 1 and there emerge additional pinchings of the

y-variable integration contour.
Consider SCI for the pure SU(2) SYM theory, i.e. the Nf = 0 case. This theory

has R-symmetry anomaly and the corresponding SCI is described not by an EHI,
but by a theta hypergeometric integral [3] (i.e. no balancing condition is satisfied):

Ipure,SU(2) =
(p; p)∞(q; q)∞

2

∫
T

1
Γ(z±2; p, q)

dz

2πiz
. (45)

This index can be evaluated explicitly. To compute it, we use the inversion formula
for elliptic gamma functions

1
Γ(z±2; p, q)

= θ(z2; p)θ(z−2; q),
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where the theta function is defined as

θ(z; p) = (z; p)∞(pz−1; p)∞ =
1

(p; p)∞

∑
k∈Z

(−1)kpk(k−1)/2zk.

Applying the latter series expansion for theta functions twice we get

Ipure SU(2) =
1
2

∑
k,l∈Z

(−1)k+lpk(k−1)/2ql(l−1)/2

∫
T

z2(k−l) dz

2πiz

=
1
2

∑
k∈Z

(pq)k(k−1)/2 =
1
2
(pq; pq)∞θ(−1; pq). (46)

Using the plethistic exponential we can also write

Ipure SU(2) = (pq; pq)∞(−pq; pq)2∞ = exp
(
−

∞∑
n=1

(pq)n + 2(−pq)n

n(1− (pq)n)

)
. (47)

The physical meaning of this relation is not completely clear. Perhaps, the right-
hand side expression in (47) hints on the formation of the gaugino condensate [34].

6. Chiral symmetry breaking for Gc = SP (2N)

Consider chiral symmetry breaking in a N = 1 SYM theory with the gauge
group SP (2N). Let us start from the s-confining theory with Gc = SP (2N) and
2N + 4 quarks studied in [35] with the identification of the number of flavors as
Nf = N + 2. Corresponding (electric) SCI is [1, 11]

IE =
(p; p)N

∞(q; q)N
∞

2NN !

∫
TN

∏
1≤i<j≤N

1
Γ(z±1

i z±1
j ; p, q)

×
N∏

j=1

∏2N+4
m=1 Γ(tmz±1

j ; p, q)

Γ(z±2
j ; p, q)

dzj

2πizj
, (48)

where |tm| < 1 and the balancing condition reads
∏2N+4

m=1 tm = pq. The dual (mag-
netic) theory is described by colorless mesons forming the TA-representation of
SU(2N + 4) group with the index

IM =
∏

1≤m<s≤2N+4

Γ(tmts; p, q). (49)

The equality IE = IM was suggested in [36] and proved in [9, 10]. As in the
previous Gc = SU(N) case we integrate out two quark fields by restricting the
corresponding chemical potentials t2N+3t2N+c+4 = pq. As a result, dependence on
t2N+3 and t2N+4 disappears from IE which yields formally the index of the theory
with 2N +2 chiral fields. For generic values of other fugacities, IM is equal to zero,
but there are delta-function singularities for a singular submanifold of fugacities.
For the taken SP (2N)-gauge group the conformal window where the general Seiberg
duality is supposed to be valid has the form 3(N + 1)/2 < Nf < 3(N + 1), our
duality corresponds to Nf = N + 1 and lies outside this window.

A theory with SP (2N) gauge group and quantum modified moduli space was
described in [35]. The matter content for corresponding electric and magnetic
theories is presented in Table 6. The mesonic fields are composed as Mij = QiQj ,
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Table 6. A 4d theory with Gc = SP (2N) and 2N + 2 quarks
exhibiting the chiral symmetry breaking

SP (2N) SP (2(N + 1)) U(1)R

Q f f 0
V adj 1 1
M TA 0

where the SP (2N) symplectic trace is assumed making the mesons gauge invariant.
The quantum moduli space of vacua satisfies the constraint

Pf M = Λ2(N+1),

with some energy scale Λ which breaks the conformal symmetry with appropriate
consequences for interpreting our SCIs.

Naively the electric theory has the SU(2(N + 1)) flavor group with 2N + 1
independent fugacities. Corresponding fundamental representation character has
the form

χf,SU(2N+2)(x) =
2N+2∑
i=1

xi, (50)

where xi are fugacities for maximal torus generators of SU(2N + 2) restricted by
the constraint

∏2N+2
i=1 xi = 1. The chiral symmetry breaking reduces this naive

flavor group to SP (2N). Therefore it is necessary to describe how the character
(50) reduces to the fundamental representation character of SP (2N)

χf,SP (2N+2)(y) =
N+1∑
i=1

(yi + y−1
i ), (51)

where y1, . . . , yN+1 are maximal torus fugacities without constraints. Evidently,
this can be done if one identifies half of xi variables with yj and forces the rest
of xi-variables to coincide with y−1

j (which resolves automatically the balancing
condition). This observation hints that one should realize the constraints xixj =
1, i 6= j, for all possible splittings of xi-variables into pairs.

In order to find the structure of IE in the case of chiral symmetry breaking, we
set t2N+3t2N+c+4 = pqeε in (48) and (49) and consider the limit ε → 0. Then,
expression (49) contains the multiplier Γ(pqeε; p, q) tending to zero which can be
overpowered only by the poles of other elliptic gamma functions. Because now∏2N+2

j=1 tj = e−ε, in the limit ε → 0 we can identify tj = xj . Originally, the equality
IE = IM was obtained for |ti| < 1 for all i, however it can be meromorphically
continued to arbitrary values of the parameters. To test the singularities we multi-
ply IM by an arbitrary holomorphic function f(t1, . . . , tN+1) weighted by a specific
product of elliptic gamma functions and integrate over t1, . . . , tN ∈ T:∫

TN

ρ(t)f(t1, . . . , tN+1) IE

N∏
k=1

dtk
2πitk

, ρ(t) =
1∏

1≤i<j≤N+1 Γ(titj ; p, q)
,
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where we assume that the balancing condition is resolved in favor of the variable
tN+1:

tN+1 =
e−ε∏N

k=1 tk
∏N+1

l=1 tl+N+1

.

Multiplication of IE by ρ(t) removes a number of singularities which are associated
with the zero locus of ρ(t). However, the latter singularities can be restored later
on by the permutational symmetry in variables ti. Replacing IE by IM we come to
the expression

Γ(pqeε; p, q)
∏

N+2≤i<j≤2N+2

Γ(titj ; p, q)
∫

TN

f(t1, . . . , tN+1)

×
N∏

i=1

2N+2∏
j=N+2

Γ(titj ; p, q)
2N+2∏

j=N+2

Γ(
tje

−ε∏N
k=1 tk

∏N+1
l=1 tl+N+1

; p, q)

×
2N+2∏
j=1

Γ(tjt2N+3,
pqeεtj
t2N+3

; p, q)
N∏

k=1

dtk
2πitk

. (52)

Consider singularities of the integrand near the integration contours. For ε > 0 we
can take |tj | = e−ε/(N+2) < 1, i = N + 1, . . . , 2N + 2, so that in the limit ε → 0
one has ti → T for i = 1, . . . , 2N + 2. Let us take the absolute values of t2N+3 and
t2N+4 sufficiently small, so that the poles of the elliptic gamma functions on the
last line in (52) do not approach T and stay harmless. Then the relevant poles are

out : ti = t−1
j , i = 1, . . . , N, j = N + 2, . . . , 2N + 2,

lying outside T and

in :
N∏

i=1

ti =
e−εtj∏N+1

l=1 tl+N+1

, j = N + 2, . . . , 2N + 2,

lying inside T. Consider first the integral in t1. There always exist such values of
t2, . . . , tN that the in poles approach T from inside at the points t1 → t−1

j , j =
N + 2, . . . , 2N + 2, and there emerge pinchings of T by in and out poles. These
poles are simple provided tj 6= tk, j 6= k, which we assume. To deal with that
we inflate a little all integration contours T and pick up the resides of all out
poles. These residues have singularities of a similar structure and one can continue
taking these “residues of residues” in t2, t3, etc until the last integration variable
tN . Considering the sequence of residues at ti = t−1

N+1+i, on the last step one
obtains the diverging multiplier Γ(tN+1t2N+2; p, q) = Γ(e−ε; p, q) which cancels the
vanishing factor Γ(pqeε). Similar situation holds for any other possible sequence of
taking pole residues. In the limit ε → 0 only these highest order residues survive,
since if one misses at least one residue in the intermediate step, no divergency is
taking place and the corresponding term vanishes.

As a result, we obtain∫
TN

f(t1, . . . , tN+1)∏
1≤i<j≤N+1 Γ(titj ; p, q)

IE

N∏
k=1

dtk
2πitk

=
ε→0

∏
N+2≤i<j≤2N+2 Γ(titj , t−1

i tj , tit
−1
j ; p, q)

(p; p)N
∞(q; q)N

∞

∑
t̃j

f(t̃−1
N+2, . . . , t̃

−1
2N+2),
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where (t̃N+2, . . . , t̃2N+2) = P(tN+2, . . . , t2N+2) is any permutation of the parame-
ters.

Denote now tj = e2πiφj and use real variables φj to write IE as a distribution.
The full set of singularities of IE , which was partially reduced after multiplication
by ρ(t), is restored from complete S2N+2-group permutational symmetry of the
index.

Because of the balancing condition
∑2N+2

i=1 φi = 0 we have 2N + 1 independent
variables φi. Assume as before that φN+1 is fixed by other parameters. Consider
an arbitrary split of the set Φ = (φ1, . . . , φ2N+2) into two (N +1)-term groups Φ1 =
(φ̃1, . . . , φ̃N , φ̃N+1 = φN+1) and Φ2 = (φ̃N+2, . . . , φ̃2N+2). Then we pair parameters
in i-th position, i = 1, . . . , N , in these groups and impose the constraints φ̃i +
φ̃N+1+i = 0. Because of the balancing condition, the remaining pair of parameters
satisfies the constraint φN+1 + φ2N+2 = 0 automatically. Now we form a sum of
products of delta-functions ∑

SN+1(Φ2)

N∏
i=1

δ(φ̃i + φ̃N+1+i),

where the sum goes over all possible (N + 1)! permutations of elements of the set
Φ2. Evidently this sum is also symmetric under N ! permutations of the elements in
the first set Φ1 and 2N permutations of φ̃i with φ̃N+1+i belonging to different sets.
Using this auxiliary building block, we can write the final relation for our SCIs in
the following form

IE =
(p; p)N

∞(q; q)N
∞

2NN !

∫
TN

d

∏
1≤i<j≤N

1
Γ(z±1

i z±1
j ; p, q)

×
N∏

j=1

∏2N+2
i=1 Γ(e2πiφiz±1

j ; p, q)

Γ(z±2
j ; p, q)

dzj

2πizj
= IM =

1
(p; p)N

∞(q; q)N
∞

(53)

×
∑

(Φ1
⋃

Φ2)/SN
2

∏
1≤i<j≤N+1

Γ(e2πi(±φ̃i±φ̃j); p, q)
∑

SN+1(Φ2)

N∏
i=1

δ(φ̃i + φ̃N+1+i),

where the first sum goes over all possible splits of Φ into Φ1 and Φ2 modulo 2N

permutation of the paired parameters. In the electric SCI the integration contour
Td is a deformation of T such that it separates sequences of the integrand poles
converging to zero from their reciprocals, i.e. e2πiφi lie inside Td and e−2πiφi are
outside Td.

It is not difficult to see that one can replace fixed φN+1 by any other parameter
and it will give the same result, i.e. the final answer is S2N+2-group symmetric.
Therefore, one may replace both sums in (53) by a single sum over all permutations
of φi, i = 1, . . . , 2N + 2, and divide it by (2N + 2)N !2N counting the number of
equal terms. For N = 1 relation (53) coincides with the equality of SCIs considered
in Sect. 3.

We conclude that the electric SCI is non-vanishing only on the support of in-
dicated products of delta-functions. For each such product one has the reduction
of the character of fundamental representations of SU(2N + 2)-group down to the
corresponding character of SP (2N + 2)-group, as prescribed by the chiral symme-
try breaking and naive recipe of building SCIs. On the dual side the products of
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elliptic gamma function coincide with the φi-dependent part of SCIs for free meson
fields forming the TA-representation of SP (2N + 2)-group with the character

χTA, SP (2N+2) =
∑

1≤i<j≤N+1

∑
µ=±1,ν=±1

e2πi(µφi+νφj) + N.

The formal prescription for building SCIs would yield from the constant N the
diverging factor Γ(1; p, q)N , which in our rigorous consideration is replaced by the
product of delta functions divided by (p; p)N

∞(q; q)N
∞. We see again that for theories

with chiral symmetry breaking the standard recipe of constructing SCIs requires a
careful modification.

An interesting situation arises in the rank 3 case, i.e. for the SP (6)-gauge group
with 8 chiral superfields. In this case the multiple duality phenomenon takes place,
which follows from the considerations of [11] for the special value of the corre-
sponding U(1)-group fugacity t =

√
pq. These theories lie outside of the conformal

window and their content was described in [12]. This means that there are three
more interacting field theories with the same gauge group and 8 quarks showing
the chiral symmetry breaking whose “superconformal” indices should coincide with
the one for our electric/magnetic theory. However, the expression (53) does not
satisfy this property – it is not invariant under the transformation of fugacities
from W (E7)-group accompanied by multiplication of the index by certain products
of elliptic gamma functions [11]. Under these transformations new combinations
of the delta-functions emerge which were forbidden by our constraints on the pa-
rameters, i.e. a more careful extended analysis of the situation is needed which we
postpone to a later time.

As to such extended symmetries for indices we mention that the considerations of
W (E7) and W (E6)-invariant SCIs in [25, 26] should be reducible to one more level
down to the W (F4)-symmetric instance. Namely, there should exist some combina-
tion of infinite products of fugacities after multiplication by which the combination
of delta-functions in IM for Nf = N = 2 or for more general theories of [11] should
be invariant with respect to the Weyl group W (F4). Again a more detailed inves-
tigation of emerging singularities may be required and the consideration of such a
possibility lies beyond the scope of the present work.

7. 3d theories with chiral symmetry breaking

Recently there was a breakthrough in investigation of 3d supersymmetric field
theories due to the calculation of partition functions (see, e.g. [37, 38, 39]). As
shown in [40] (see also [41, 42]) 4d superconformal indices can be reduced to 3d
partition functions which yields a reduction of the related 4d Seiberg dualities to
3d SYM or CS theory dualities. To our knowledge this scheme is the most efficient
way of producing 3d dualities after appropriate amendment of the superpotentials
[43].

To realize the 4d/3d reduction in the simplest s-confining theory one considers
a special limit of the elliptic beta integral. First one parametrizes the variables as

p = e2πirω1 , q = e2πirω2 , sj = e2πirφj , z = e2πiru

and then takes the limit r → 0. To simplify the integrals one uses the Ruijsenaars
limit for elliptic gamma function

Γ(e2πiru; e2πirω1 , e2πirω2) =
r→0

e−πi(2z−ω1−ω2)/12rω1ω2γ(2)(u;ω1, ω2), (54)
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where

γ(2)(u;ω1, ω2) = e−
πi
2 B2,2(u;ω1,ω2)

(e2πi(u−ω2)/ω1 ; e−2πiω2/ω1)∞
(e2πiu/ω2 ; e2πiω1/ω2)∞

(55)

is the hyperbolic gamma function and B2,2(u;ω) is the second order Bernoulli
polynomial,

B2,2(u;ω) =
u2

ω1ω2
− u

ω1
− u

ω2
+

ω1

6ω2
+

ω2

6ω1
+

1
2
.

The following conventions are used below γ(2)(a, b;ω) := γ(2)(a;ω)γ(2)(b;ω) and
γ(2)(a± u;ω) := γ(2)(a + u;ω)γ(2)(a− u;ω). The function γ(2)(u;ω1, ω2) has poles
at u = −nω1 −mω2 for n, m ∈ Z≥0, zeros at u = nω1 + mω2 for n, m ∈ Z>0 and
satisfies the inversion relation γ(2)(u, ω1 + ω2 − u;ω1, ω2) = 1.

Taking the limit r → 0 along the negative imaginary axis and assuming that
Re(ω1), Re(ω2) > 0 one gets the following reduction of the electric SCI (up to some
diverging factor, see e.g. [40])

Ired
E =

∫ i∞

−i∞

∏6
k=1 γ(2)(φk ± u;ω1, ω2)

γ(2)(±2u;ω1, ω2)
du

2i
√

ω1ω2
, (56)

where the balancing condition has the form
∑6

k=1 φk = ω1 +ω2 and the integration
contour separates sequences of poles going to infinity on the right- and left-hand
sides of the imaginary axis. The magnetic theory SCI reduces to (up to the same
diverging factor as in IE)

Ired
M =

∏
1≤j<k≤6

γ(2)(φj + φk;ω1, ω2). (57)

Impose now the constraint φ5 + φ6 = ω1 + ω2 + ε and take the limit ε → 0. The
limiting balancing condition takes the form φ1 + . . . + φ4 = 0, and we can take all
φi as purely imaginary numbers, φm = igm, gm ∈ R. Let us apply the scheme of
consideration of singularities of the previous section in the present setting using the
relation

2πi lim
g→0

g γ(2)(ig;ω1, ω2) =
√

ω1ω2

for computing the residues. As a result we obtain the expressions

Ired
E =

∫
C

∏4
m=1 γ(2)(igm ± u;ω1, ω2)

γ(2)(±2u;ω1, ω2)
du

2i
√

ω1ω2
, (58)

where the integration contour is an infinitesimal deformation of the imaginary axis
such that the poles u = igj +nω1 +mω2, n, m ∈ Z≥0, lie to the right of C and their
reciprocals u → −u are to the left of C. The magnetic theory yields

Ired
M =

√
ω1ω2

(
γ(2)(±ig1 ± ig2;ω1, ω2)(δ(g1 + g3) + δ(g1 + g4))

+ γ(2)(±ig2 ± ig3;ω1, ω2)δ(g1 + g2)
)
, (59)

where δ(g) is the standard (non-periodic) delta-function. The equality Ired
E = Ired

M

expresses coincidence of partitions functions of two N = 2 3d theories whose matter
content is the same as in Table 3 with the replacement 4d → 3d. This example
of chiral symmetry breaking corresponds to the Nf = N = 2 case duality in the
considerations of [43].
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Table 7. A 3d theory with the chiral symmetry breaking

U(1) SU(2) U(1)R

Q f f 0
Q̃ f f 0
V adj 1 1
q adj 0

Denote now

g1 = µ + x, g1 = µ− x, g3 = −µ + y, g4 = −µ− y

and take the limit µ → +∞. Using the asymptotic properties of the hyperbolic
gamma function for Im(ω1/ω2) > 0,

lim
u→∞

e
πi
2 B2,2(u;ω)γ(2)(u;ω1, ω2) = 1, for arg ω1 < arg u < arg ω2 + π,

lim
u→∞

e−
πi
2 B2,2(u;ω)γ(2)(u;ω1, ω2) = 1, for arg ω1 − π < arg u < arg ω2,

we can see that Ired
E = γZE , where γ is the diverging factor γ = exp(−2πµ(ω−1

1 +
ω−1

2 )), and

ZE = eπi(x2−y2)/ω1ω2

∫ i∞

−i∞
γ(2)(±ix− u,±iy + u;ω1, ω2)

du

2i
√

ω1ω2
. (60)

Similarly, Ired
M = γZM , where

ZM =
√

ω1ω2γ
(2)(±2ix;ω1, ω2)(δ(x− y) + δ(x + y)). (61)

There are only two delta-functions since the argument of the third one goes to
infinity, g1 + g2 = 2µ → +∞, i.e. it does not give contributions. The multiplier
eπi(x2−y2)/ω1ω2 can be dropped in ZE , since ZE vanishes for x 6= ±y.

The identity ZE = ZM expresses the equality of partition functions of two dual
3d N = 2 supersymmetric field theories described in [44]. The (real) electric theory
has U(1) gauge group and Nf = 2 chiral fields with the broken U(1)A symmetry and
naive SU(2)l × SU(2)r flavor group broken to the diagonal subgroup SU(2). The
magnetic theory has no local gauge group symmetry and consists of only confined
meson fields. The matter content of these dual theories is presented in Table 7.

Again, the original recipe of building 3d partition functions [37] requires a mod-
ification for theories exhibiting chiral symmetry breaking — in the electric part
the contour of integration should be chosen appropriately and in the magnetic
part contributions of constant terms in the characters of representations yielding
γ(0;ω1, ω2) should be replaced by delta-functions. In the above example, the mag-
netic theory meson fields form the adjoint representation of SU(2) flavor group with
the character x2 + x−2 + 1. The latter constant “1” formally yields in ZM the fac-
tor γ(0;ω1, ω2), which should be replaced in reality by

√
ω1ω2(δ(x− y) + δ(x + y)),

where x and y are fugacities of the naive SU(2)l × SU(2)r flavor group. We would
like to stress that our interpretation of vanishing partition functions differs from
the one made in [45] where corresponding partition functions were equal to zero due
to the mass parameters lying in the general position. Evidently one can proceed
in the similar manner and consider other examples of 4d dual theories with chiral
symmetry breaking and reduce them to 3d partners exhibiting similar phenomenon
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[43]. In particular, it is possible to consider 3d partners of the 4d theories described
in [12] and find multiple dualities with this property.

8. Conclusion

To conclude, as a continuation of our previous considerations of the relation
between properties of elliptic hypergeometric integrals and superconformal indices
[11]-[16], we have described how to compute these indices in the theories with
chiral symmetry breaking. The original prescription [5, 6] needs modification in
this case and the theory of elliptic hypergeometric integrals yields the required
recipe. The chiral symmetry breaking mechanism is reflected in the appearance
of delta-functions in the indices of original theories with naive chiral symmetry
such that their support yields constraints on the fugacities describing the quantum
deformed moduli spaces with real symmetries. This mechanism survives in the
4d → 3d reduction simply by the reduction of corresponding 4d superconformal
indices to 3d partition functions.

The results from the analysis of SCIs or partition functions allow one to find
easily the field content of the theories. However, a deeper physical investigation of
our results is needed. Namely, the physical meaning of the index in this situation
should be reconsidered with an explanation of the emergence of delta-functions
from the localization procedure.
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