AUTOMORPHISM GROUPS OF FIELDS, AND THEIR REPRESENTATIONS
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ABSTRACT. This is an updated version of [41]. We study the automorphism group G of an extension
F|k of algebraically closed fields, especially in the case of countable transcendence degree and zero
characteristic. In connection with their applications to algebraic geometry (birational geometry,
algebraic cycles, motives, differential forms and sheaves in various topologies), we study the smooth
linear and semi-linear representations of G.

Compared to [41], the principal new result is Theorem 1.1.5. It refines [35, Theorem 3.15]=[41,
Theorem 1.1.10 1)]: the objects of Zg are characterized by their irreducible subquotients.
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1. INTRODUCTION

The study of field automorphism groups is an old subject. Without any attempt of describing
its complicated history, let me just mention that many topological groups are field automorphism
groups. E.g., automorphism groups of algebraic field extensions form usual Galois groups, and
automorphism groups of function fields of algebraic varieties over topological fields contain groups
of points of algebraic groups over that fields. Besides, groups of points of p-adic groups for p < oo
(and also of finite adelic) arise also as automorphism groups of automorphic function fields. Some
continuous automorphism groups of topological fields, e.g. of the Laurent series, have been also
studied.

Let F|k be a field extension of countable (this will be the principal case) or finite transcendence
degree n, 0 <n < oo, and G = Gpy;, be its automorphism group.

Following the very general idea that a “sufficiently symmetric” (mathematical, physical or another)
system is determined by a representation of its symmetry group, one tries to compare various
“geometric categories over k”, where F'is interpreted as a “limit object”, with various categories of
representations of G.

To ensure that the representation theory of G is rich enough, F' should be “big enough”. For this
reason, F' will be usually algebraically closed. So F' is “the function field of the universal tower of
k-varieties of dimension < n”.

Some general notations, conventions and goals. Let F|k be an extension of countable or
finite transcendence degree n, 1 < n < co. In order to avoid already complicated enough Galois
theory, we assume by default that the fields F' and k are algebraically closed fields of characteristic
zero. The exceptions are §2.1, p.16, and §4.1, p.36. Following [14, 32, 44, 13] (and generalizing
the case of algebraic extensions from [20]), we endow its automorphism group G = G|, with the
topology, whose base of open subgroups is given by the stabilizers of finite subsets in F'. For a
pair of field extensions K, L of k the set of all field embeddings of L into K over k is denoted by

{L ‘& K}. Let E be a field of characteristic zero. The E-vector space with the base given by a set
S is denoted by EIS].

We study the structure of G, its E-linear and F-semi-linear representations with open stabilizers,
and their links with birational geometry, motives, differential forms and sheaves. In particular, we
look for analogues of known results of representation theory of locally compact (especially, of p-adic)
groups in the case of G.

1.1. How to translate geometric questions to the language of representation theory?
Depending on type of geometric questions we shall consider one of the following four categories
of representations of G: ®g C Smg D Zg O Adm, roughly corresponding to birational geometry
over k and its more restrictive (“less functorial”) version, birational motivic questions (such as those
concerned with the structure of Chow groups of 0-cycles) and “finite-dimensional” birational motivic
questions (such as description of “classical” motivic categories).

Smg. Usually an “algebro-geometric datum” D over F' consists of a finite number of polynomial
equations involving a finite number of coefficients a1, ...,any € F, and the group G acts on the set
of “similar” data. Then the stabilizer of D in G is open, since contains G gy

For a k-variety X, its F-subvarieties are examples of such data.

In particular, the Q-vector space Q[X(F)] of O-cycles on Xp := X xj F is a G-module. Such
representation is huge, but this is just a starting point.

Note that it is smooth, i.e. its stabilizers are open, so all representations we are going to consider
will be smooth.

Conversely, any smooth representation of G with cyclic vector is isomorphic to a quotient of the

k
G-module Q[{k(X) Tt F}] of “generic” 0-cycles on X (equivalently, formal Q-linear combinations

of embeddings of the function field k£(X) into F over k), i.e., O-cycles outside of the union of the
divisors on X defined over k, for an appropriate irreducible variety X of dimension < n over k.
2
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This follows from Lemma 3.1.3. If we fix a k-field embedding of the function field k£(X) into F' then
the module of generic 0-cycles on X becomes the representation Q[G/G pyx(x)], coinduced by the
trivial representation of G pj(x). These G-modules are very complicated.

Remarks. 1. As Q[X(F)] = P cx Q{k(x) T F'}], the representation Q[X (F')] reflects rather
the class of X in the Grothendieck group Ko(Vary) of partitions of k-varieties, than X itself.

Moreover, suppose that Z C X is such a closed subset that any subvariety of Z is birational to
infinitely many subvarieties of X \ Z, e.g. Z is a finite set of closed points of X. Then Q[X (F)] =

QX ~ 2)(F)]. M

2. Tt is not clear, whether the birational type of X is determined by the representation Q[{k(X) <
F}] of G of generic 0-cycles on X . There do exist pairs of non-birational varieties X and Y, whose

G-modules of generic 0-cycles have the same irreducible subquotients, cf. §3.5. E.g., if a map X —

k k
Y is generically finite then the pull-back induces an embedding Q[{k(Y) X F}] — Q[{k(X) A F}].

On the other hand, if X = Z x P, Y = Z' x P! and Z’ is a twofold cover of Z then there is also

k k
an embedding in the opposite direction Q[{k(X) i F}] — Q[{k(Y) Tt F'}]. What is in common

between X and Y in this example, is that their primitive motives (see below) coincide (and vanish).
But it seems that even this is not essential.
3. However, at least if n = oo, one can extract dimension of X (dim X = min{q > 0 | WCriL #+

0, where tr.deg(L|k) = ¢}) and “birational motivic” invariants “modulo isogenies”, such as Alb(X),

k
X, Q;Qk), out of W = Q[{k(X) it F'}], cf. Theorem 1.1.6 (1), (3), (4), and Proposition 4.1.11.

4. W = Q[X(F)] then Q[{k(X) Tt F'}] is a nonzero quotient of W by the submodule generated
by all WErIL with tr.deg(L|k) < ¢ for a maximal possible ¢(= dim X).

5. Consider the category of smooth k-varieties with the morphisms, given by formal Q-linear
combinations of non-degenerate generically finite correspondences, i.e. irreducible subvarieties in
the product of the source and the target, generically finite over a connected component of the source
and dominant over a connected component of the target: Hom(X,Y) = Z4mY (k(X) @, k(Y))g (=
Q[{prime ideals of k(X) ®j k(Y) of depth equal to dimY'}]) for connected X and Y.

In the case n = oo there is a full embedding of this category into the category of smooth

. k
representations of G, given by X — Z9mX (k(X) ®; F)g = Q[{k(X) Tt F}].

Denote by Sma(F) the category of smooth representations of G over a field E. This is a full
abelian subcategory of the category of all representations of G over F.

It follows from the topological simplicity of G (Theorem 2.2.1) that in the case n = oo any
finite-dimensional smooth representation of G is trivial.

Adm. Now consider a more concrete geometric category, the category of motives.

An (effective) pure covariant motive is a pair (X, ), consisting of a smooth projective variety
X over k with irreducible components X; and a projector 7 = 7% € @D, BImXi(X; ) X;) in the
algebra of correspondences on X modulo numerical equivalence. The morphisms are defined by
Hom((X', "), (X, 7)) = @, ;7 - BImXi(X; x) X!) - ). The category of pure covariant motives
carries an additive and a tensor structures:

X, P X, ) =X ][ XA or), (X.7)e(X,7):= (X xp X, 7 xp7).

A primitive g-motive is a pair (X, 7) as above, where dim X = ¢ and Hom(Y x P! (X,7)) :=
7 BI(X x, Y x P') = 0 for any smooth projective variety Y over k of dimension < ¢. E.g., it
follows from Lefschetz’s theorem on (1, 1)-classes that the category of pure primitive 1-motives is
equivalent to the category of abelian varieties over k£ with morphisms tensored with Q. It is a result
of Jannsen ([15]) that pure motives form an abelian semi-simple category. This implies that any
pure motive admits a “primitive” decomposition G}Z i Mij; ® L%, where M;; is a primitive j-motive
and L = (P!, P! x {0}) is the Lefschetz motive (cf. Remark on p.43).
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Remark. Replacing the numerical equivalence by an arbitrary adequate equivalence relation we
get a pseudoabelian tensor category of covariant Grothendieck motives.

DEFINITION. A representation W of a totally disconnected topological group is called admissible
if it is smooth and the fixed subspaces WU are finite-dimensional for all open subgroups U.

Denote by Adm = Admg(Q) the category of admissible representations of G over Q.

Note that there are infinite direct sums among admissible representations. For instance, let {A,}
be a collection of pairwise non-isogeneous simple abelian varieties over k. Then the representation

D, (Aa(F)/As(k)) of G is admissible.
Theorem 1.1.1 ([35]). Adm is a Serre subcategory in Sma := Sma(Q).

In other words, Adm is abelian, stable under taking subquotients (this is the point in the case
n = oo!) in the category of representations of G, and under taking extensions in Smg. This is
shown in |35, Corollary 6.5] using an embedding of Adm into a bigger category Zg.

Theorem 1.1.2 ([35]). If n = oo then there exists a fully faithful functor B®:

M, .— ] pure covariant | Be graded semi-simple admissible
k= k-motives representations of G over QQ of finite length

The grading corresponds to the powers of the motive IL in the above “primitive” decomposition.

Roughly speaking, the functor B®* = @?raded]}%m is defined as the space of 0-cycles over F

modulo “numerical equivalence over k”. More precisely, B® = @fraded lim Hom ([L]Pr™ @ L%J, —)
L—)

is a graded direct sum of pro-representable functors. Here L runs over the set of all subfields in F
of finite type over k, and [L]P"™ is the quotient of the motive of any smooth projective model of L
over k by the sum of all submotives of type M ® LL for all effective motives M.

Thus, the category My becomes a full subcategory of the category of graded semi-simple admis-
sible representations of G over Q of finite length.

ExAaMPLES. The motive of the point Spec(k) is mapped to the trivial representation Q in degree
0. The motive of a smooth proper curve C over k is sent to Q & Jo(F)/Jo(F) ® Q[1], where J¢ is
the Jacobian of C' and Q1] denotes the trivial representation in degree 1.

Conjecture 1.1.3. The functor B® is an equivalence of categories.

Of course, it would be more interesting to describe in a similar way the abelian category MM
of mixed motives over k, whose semi-simple objects are pure. This is one more reason to study the
category Adm of admissible representations of G.

Proposition 1.1.4 ([35]). Assuming n = oo, for any W € Adm, any abelian variety A over k and,
conjecturally, for any effective motive M one has

Ext79,,(Q, W) =0 Ext30,,(Q, M) =0

A(F Hom: W A(k)@WoM
EXti‘Sm( 09 W) = Fome e A0 ) EthﬁgM(Hl(A)’ M) = o (0 37753
ExtZgm (A(F)/A(k), W) =0 Ext v (H'(A), M) =0

As A(F)/A(k) is a canonical direct “Hy”-summand of B®*(A), we see that the admissible repre-
sentations of finite length should be related to effective motives. At least the Ext’s between some
irreducible objects are dual.

Z¢. The formal properties of Adm are not very nice. E.g., to prove Theorem 1.1.1 and Proposition
1.1.4 and also to give an evidence to Conjecture 1.1.3, one uses an inclusion of Adm into a bigger
full subcategory in the category of smooth representations of G.

DEFINITION. An object W € Smg(F) is called “homotopy invariant” (in birational sense; the

etymology comes from §3.4) if WEFIL = WEFIL for any purely transcendental subextension L’ |L in
4



F|k. The full subcategory in Smg(E) of “homotopy invariant” objects is denoted by Zg(E). (The
result will be the same, if we restrict ourselves to only those L', which are of finite type over k, cf.
[35, Corollary 6.2].)

A typical object of Z¢ is the Q-vector space CHY(XF)qg of cycles of codimension ¢ > 0 on the
scheme X Xxj F' modulo rational equivalence, for any smooth variety X over k. (This follows from

the descent property: CH* (XF)SF‘L =CH*(X1)g.)

On the other hand, if F' is an algebraic closure of F(t) in an algebraic extension of F((t)) then
usually CH*(Xz)q € Za, since FOriL(g) C FOPIL@ if 2 ¢ L. For instance, if X is an elliptic curve
u? = P(v) then k(x)((t)) > P(xt)"/? ¢ k((t))(z) and [u — P(xt)"/?,v s xt] € CHo(Xk((t)) €
CHO(Xk(x)((t)))y but ¢ CHO(XM)Q

Let us first prove the following characterization of the “homotopy invariant” representations.

Theorem 1.1.5 (n = oo). A smooth representation of G is “homotopy invariant” if and only if all
its irreducible subquotients are. In particular, the category Zg(E) is a Serre subcategory in Smg(F).

Proof. Suppose that W & Zg, but all its irreducible subquotients are “homotopy invariant”.
According to [35, Corollary 6.2], there exist a subfield L in F|k, an element z € F \. L and a vector
ve WOFILe@)  WOEFIL je., there exists o € Gpr, such that ov —v =:u # 0.

Clearly, Gp|;, ¢ Stab, U Stabm. (Indeed, if a group H is a union of a pair of its subgroups,
H = Hy U Hs, and Hy # H then hHy C Hs for any h € H ~ Hy, so Hy C Hj, and therefore,
Hy = H.) In other words, we may assume that o € Gp|r, \ Stabm.

We may replace W by the quotient by a maximal subrepresentation not containing u. Then the
subrepresentation (u) generated by u becomes irreducible, and thus, an object of Z.

By its definition, u € WEFIL@) 4 WEFIL@s) C WEFIL@on | As (u) € I and z, oz are algebraically
independent over L, we conclude that w € WEFIL. This implies that cv € WEFIL=) . On the other
hand, ov € WEFILGo) | 50 ov € WEFIL@ N WEFILEes) | By [35, Lemma 2.16], the latter space is
Ww&r IZ and finally, v € Wwer IL contradicting our assumptions.

The converse is known from Lemma 4.1.1. O

Theorem 1.1.6 ([35], n = o). (1) The inclusion functor Zg(E) — Smg(E) admits a left and
a right adjoints T, —©) : Smg(E) — Tg(E), the universal quotient and subobject in Ig(E).

(2) Adm(E) C Zg(E), i.e. any admissible representation of G is “homotopy invariant”.

k
(3) The objects Cy(xy := IQ[{k(X) it F}] for all birational classes X of irreducible varieties

over k form a system of projective generators of Lq.

(4) For any smooth proper k-variety X there is a canonical filtration Cyx) D F'oF2>o
canonical isomorphisms Crx)/F' = Q and F'/F? = Alb(Xr)q, and a non-canonical
splitting Cyx) = Q & Alb(XF)Q ® F2. The term F? is determined by these conditions
together with Hom(;(]:2 Q) = Homg (F?, A(F)/A(k)) = 0 for any abelian variety A over k.
Here Alb is the Albanese variety. (Corollary 6.24)

(5) For any smooth proper k-variety X there is a canonical surjection Cyxy — CHo(XF)q,
which is injective if X unirational over a curve (and in some other cases when CHy(X) is
“known”, e.q., if X is a quotient of even-dimensional Fermat hypersurface of degree dim X +2
or dim X + 3, such that CHy(X) is cyclic).

(6) There exist (co-) limits in Zg(F).

Two filtrations. For a representation M of G define N;M as the subspace, spanned by the
invariants M ¥ for all subfields F 7 C I of transcendence degree j over k. From the point of view
of §3.4, on the smooth G-modules, N; is “part coming from dimension < ;7. Clearly, the “level”
filtration N, is increasing and functorial.

Then the term F/W of a functorial descending filtration F* on an object W of Zg is defined as
the intersection of the kernels of all G-homomorphisms ¢ from W to the ObJeCtS W' e Zg of level

Jj, i.e., such that W' = N;W'. If W = N,W then F4™'W = 0, since ker(W i, W) =0.
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It seems that in the case of G-modules of type CHy(XF)qg for a smooth proper k-variety X this
is the motivic filtration (cf. [5] and [7]), which agrees with Theorem 1.1.6 (4).

The following two conjectures link the Chow motives and the K&hler differentials (in fact, the
holomorphic part of the de Rham cohomology, cf. Proposition 4.1.11 below) via the category Zg.

Conjecture 1.1.7 ([35]). If n = oo then the natural surjection Cyxy — CHo(X Xy F)q is an
isomorphism for any smooth proper irreducible variety X over k.
The filtration F* on Cyx) coincides with the motivic filtration on the Chow groups of 0-cycles.

Remarks. 1. One deduces from Theorem 1.1.6 (5) a description of the category of abelian varieties
over k with the groups of morphisms tensored with Q as a full subcategory of Admg C Zg in terms
of the “level” filtration Ne on smooth G-modules.

2. The conjecture of Bloch and Beilinson ([5] and [7]) on the “motivic” filtration on the Chow
groups together with the semi-simplicity “standard” conjecture of Grothendieck (asserting that nu-
merical and homological equivalences coincide on smooth proper varieties) imply that “numerical”
and rational equivalences coincide on the cycles on the spectrum of the tensor product of a pair of
fields over a common subfield. More precisely, for any smooth proper k-varieties X and Y the sur-
jective localization homomorphism CH*(X x;Y) — CH*(k(X) ®k k(Y))q “kills” the numerically
trivial cycles (cf. [4] §1.4, or [38] Prop.1.1.1), or equivalently, that C H (k(X)® F)g coincides with
B7(M) := BLI(M), where M is the maximal primitive j-submotive of (X, Ax).

If combined with the first part of Conjecture 1.1.7, this would give (when n = oo) that
(a) B® is an equivalence of categories (Conjecture 1.1.3), cf. also “Corollary” 1.1.8.1 below;

(b) any irreducible object of Zg is admissible; and
(¢) the G-modules gerW are semi-simple for any W € Zg (Conjecture 4.1.5), where N, is defined
above.

Indeed, for some collection of smooth projective j-dimensional k-varieties Y there is a surjective

k
morphism @, Q[{k(Y) it F1}] -, gréVW, which factors through @, gerCk(y), cf. Proposition

4.1.3, p.36. If Cy(y) = CHo(Y xj F)g then g Criyy = CHI(k(Y) @, F)q, so & factors through
Dy CHI(k(Y) @y, Fg.

Finally, it follows from the semi-simplicity that there exist projectors my and an isomorphism
@Dy BI((Y,7y)) — gréVW. This proves (c), and taking an irreducible W (which coincides with
gréVW for some j), we get also (a) and (b).

3. For any pair Wi, Wy € Smg 1= Smg(Q) set Wi @1 Wy := Z(W; ® Wy). As the example of
Wy = Wy = Q[F \ k] and W3 = Q shows, this binary operation is not associative on Smg.

It follows from the first part of Conjecture 1.1.7 that there is a canonical isomorphism, the
“Kiinneth formula™ Cj(xx,v) = Cr(x) ®1 Ci(y) for any pair of irreducible k-varieties X, Y. An
evidence for this “corollary” (and an unconditional proof of the “Kiinneth formula” in the case when
X is a curve) is given in §4.2, p.38.

It would follow from the “Kiinneth formula” that the restriction of ®7 to Z¢ is a commutative
associative tensor structure on Zg (compatible with the inner Hom, cf. Remark on p.24 and
Proposition 4.1.10), and that the class of projective objects is stable under ®7.

It would be interesting to find a “semi-simple graded” version of ®7 to make B® a tensor functor.

Conjecture 1.1.8 ([36]). Any irreducible object of I is contained in the algebra Q;’Ik if n = 00.

“Corollary” 1.1.8.1 ([36], n = c0). o Any irreducible object of Zg is admissible. So “Ig =~
Adm”.

o If numerical equivalence coincides with homological then B® is an equivalence of categories.

Proof. Let W be an irreducible object of Zg. There exists a smooth projective k-variety Y
and a surjection Cyyy —» W. Assuming Conjecture, the representation W embeds into Q}I,‘k for

%Ik) = I(Y, Q;f,‘k), and

thus, any homomorphism Cjyy — Q‘é'k factors through AY™Y (Yy), where A* is the space of
6
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cycles “modulo homological (de Rham) equivalence over k”. More precisely, A%™Y (Y7) is the image
of CHy(Yr)g in Hg;{/k(YF). As the singular cohomologies of the smooth complex k-varieties are

finite-dimensional, the representation AY™Y (Yy) is admissible, which implies the admissibility of
its quotient W.

To establish that B® is an equivalence of categories, it suffices to show that any irreducible
admissible representation W of G is the degree-zero component of B®(M) for some motive M.
As W is a quotient of AY™Y (Yy), this follows from the fact that AY™Y (V) coincides with the
degree-zero component of B®(Y), if numerical and homological equivalences coincide. t

Conjecture 1.1.8 is one of the main motivations for the study of semi-linear representations of G,
cf. §1.2. It has also the following geometric corollary, conjectured by S.Bloch.

“Corollary” 1.1.8.2 ([36]). If ['(X, Q)Z(z‘k) = 0 for a smooth proper variety X over k then the

Albanese map induces an isomorphism CHy(X)? — Alb(X). In that case Cyxy = CHy(Xp)q.
(The converse is well-known, cf. [30, 34].)

Proof. According to Theorem 1.1.6 (4), FQCk(X) is a direct summand of the cyclic G-module
Crx): Crx) & Q@Ale(F)QGB]:QCk(X), where Alb is the Albanese variety. Thus, if the G-module
F 2Ck( x) is non-zero then it is cyclic, and therefore, admits a non-zero irreducible quotient W € Zg.
It follows from Conjecture 1.1.8 that there is an integer ¢ > 0 and an embedding W — Q%‘k.

However, it follows from Proposition 4.1.11 that Homg(Ck(X),Qhk) = I'(X, Q;ﬂk)’ and there-

fore, Homg(Ck(X),Q%k) = Homg(Q & Ale(F)Q,Q(;,lk), if ¢ <1, so g > 2. This means that

Homg (Cr(x), Q%Ug) =TI(X, Qgﬂk) is non-zero for some integer ¢ > 2. O

& and cohomology of smooth representations. As it is explained in §1.1, (at least some)
irreducible admissible representations correspond to irreducible pure motives and the Ext-groups
between certain irreducible admissible representations are dual to the expected values of the Ext-
groups between the corresponding pure motives. Then there arise such problems as

e to find other groups Ext%,,, and Extg,, . and compare them with conjectural values of
corresponding Ext’y 1

e to enlarge Adm (or Zg) and relate this bigger category ¥ to the category of effective mixed
motives, so that in particular, ¥ would contain such (non-admissible) objects as F*/k*
(playing the role of the Tate motive, since Ext}gmc (F*/k*,Q) = Hom(k*,Q), cf. Proposi-
tion 1.1.9) and Q was still its projective object.

If it is possible to describe the abelian category MM, in a way similar to Conjecture 1.1.3 (or at
least to Theorem 1.1.2), one should probably consider the category of smooth G-modules of finite
length with no subquotients of certain type (e.g., isomorphic to F/k).

However, we shall see (after Proposition 1.1.11, p.9) that Ext}gmG(A(F)/A(k),FX/kX) # 0 for
any abelian k-variety A. Thus, the weight considerations show that in any case the relation between
MMy, and Smq cannot be very straightforward.

As an “upper bound” for W, one can take the following full additive subcategory ®g of Sm¢g. Let
Gl be the category of smooth k-varieties, whose morphisms are compositions of smooth ones and
closed embeddings of type X — X x Y defined by k-points of Y. The objects of ®4 are limits
F(F) := lim F(Spec(A)), where F is a functor on GI, and A runs over the finitely generated

A

smooth k-subalgebras in F'. Examples of objects of ®¢ are @} Q},‘k, or A(F)q for any commutative

k k k
k-group A, and Q[{L T F}] for any L|k of finite type, but not Q[{L Tt F}]° := ker[Q[{L Tt
Fy 25 q.

Proposition 1.1.9 ([35], 5.1, 5.2). Let n = oo and A be an irreducible commutalive algebraic
group over k. Then one has Ext‘lgmG(A(F)@,Q) = 0 and therefore, Ext}gmG(A(F)/A(k),@) =
Hom(A(k), Q).
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One could guess that Ext}mG(Wl,Wg) = Ext}G(Wl,Wg) for Wy, Wy € Ig, if n = oco. This
follows from Theorem 1.1.5, when x < 1. If W, Wy € Ié and Wj is projective in Ié then
Ext‘lgmG(Wl, Ws) = EXt%G (W1, Ws) = Extrq (W1, Ws) = 0 by Lemma 4.1.1.

G

It is shown in [18] that the objects of the subcategories ®¢ and Zg of Sm are acyclic. In the
proof one interprets the smooth representations as sheaves in the dominant topology on Spec(k), and
interprets their cohomology as Cech cohomology. Details are in §3.4. There are some applications
of the acyclicity conditions to the irreducibility criteria of representations of G.

To look at a smooth representation of G “more geometrically”, one would like to associate a “more
geometric” sheaf to it, e.g. a sheaf in the smooth topology on Spec(k). This could be done, assuming
some good properties of the functors (—), from Proposition 1.2.2. (But, of course, the resulting
sheaf can be zero.) This type of questions is discussed in §4.4.

Differential forms. To compare various cohomology theories H*, one can associate with them
some G-modules, such as H*(F') := lim H*(U), where U runs over spectra of smooth subalgebras in

F finitely generated over k, or the image H}(F') in H*(F') of lim H*(X), where X runs over smooth

proper models of subfields in F' of finite type over k.

Clearly, H}(F) is an admissible representation of G over H*(k). It would follow from the semi-
simplicity standard conjecture that it is semi-simple. If H}(F') is semi-simple, one can omit the
reference to the semi-simplicity standard conjecture in Remark 2 on p.6.

In the case H* = Hyp Ik of the de Rham cohomology the graded quotients of the (descending)

Hodge filtration on HgR/k’c(F) are Hf,’ﬁc_p = lii>ncoker[Hp*1(D, Q(fj_']f_l) — HP(X, Q%Z)], where

(X, D) runs over the set of pairs consisting of a smooth proper variety X with k£(X) C F and a

normal crossing divisor D on X with smooth irreducible components. More particularly, H%ﬁ{ =
Q%m’reg C HgR/k:,c(F) is the G-submodule spanned by the spaces I'(X, Q% ;) of regular differential
forms on all smooth projective k-varieties X with the function fields embedded into F'.

Another motivation for the study of differential forms QIW i 18 the calculation of integrals. To
calculate an integral of a meromorphic differential form w on an algebraic complex variety, one can
transfer w to other variety via a correspondence. In coordinates this looks as an algebraic change
of variables. Assuming that all function fields are contained in a common field F', the problem
of description of the properties of the (iterated) integrals of w (of wy,...wy) becomes related to
determining the structure of the G-submodule in the algebra of K&hler differentials Qh . (resp., in
Q.F|/c R -+ Q}“ﬂ) generated by w (resp., by w1 ® -+ @ wn).
Let HgR/kc(F) be the image in HgR/k(F) of lim HgR/k
models of subfields in F' of finite type over k. Clearly, this is an admissible representation over
k. The Hodge filtration on €%, induces a descending filtration on Hiy /kc(F) with the graded

quotients Hf;ﬂg_p = li_n)lcoker[prl(D, Q‘Ef—l) — HP(X, Qg(_‘i)], where (X, D) runs over the same

pairs as above. More particularly, H%I?f = QqF|k reg C HY (F).

(X), where X runs over smooth proper

R/k,c

Proposition 1.1.10 ([18]). Suppose that the cardinality of k is at most continuum. Fixz an embed-
ding v : k — C to the field of complex numbers. Then

o there exist a non-canonical Q-linear isomorphism HY! = HZP  and a canonical C-anti-

Flk Flk’
: - - - P, ~ faP .
linear isomorphism (depending on ) HE\, @k, C= Hply, @k, C;

n

o the representation Hyp AF) (and thus, O ko reg

) is semi-simple for any 1 < n < co.

It follows from Proposition 4.1.11 that the “homotopy invariant” part of Q3% Q}”k, i.e., its maximal

subobject in Zg, coincides with QF‘k reg? if n = co. This confirms once more the idea that the objects

(£).

. . ° q
of Zg are of cohomological nature, since QF‘meg C HdR/k,c
8



The above examples of G-modules come from certain (pro-)varieties over k by extending the base
field to F'. More generally, to each birationally invariant functor F on a category of k-varieties, or
on a category of field extensions of k (as in Corollary 4.3.7), one can associate a G-module.

One gets two more examples of G-modules of this type from the birationally invariant functor

Div,g of algebraically trivial divisors on the category of smooth proper k-varieties, and from the

Picard functor: Divg = Uli_n} Divag(Yu)g, and Picg = Uli_r}n Pic®(Yy)q = coker[F* /k* div, Divg],

where U runs over the set of open subgroups of type Gp|z, and Yy is a smooth projective model of

FY = L over k. Clearly, HéR/k JAF) = ker[HéR/k(F) ke Divg)].

Proposition 1.1.11 ([35], 3.11). Let 1 < n < oo and A" := Pic° A be the dual abelian variety of an
abelian variety A. Then Picty = @ AY (k) @gnaa (A(F)/A(k)), where A runs over the set of isogeny
A

classes of simple abelian varieties over k.

Let us show that Ext}smc (A(F)/A(k), F*/k*) # 0 for any abelian variety A over k. The G-
module Divg fits into the exact sequence 0 — F* /k* — Divg — Picg — 0. According to
Proposition 1.1.11, any non-zero element of AY(k)q provides an embedding A(F)/A(k) into Picg),
thus inducing an extension of A(F)/A(k) by F*/k* inside Divg. To see that this extension does
not split, note that any generic F-point x of A, considered as an element of A(F)q, identifies
Homg (A(F)g, Divg) with a subspace in (Divf@)Stabw, whose elements are the Q-divisors on A,
invariant under translations by torsion elements in A(k). As the torsion subgroup in A(k) is Zariski
dense, any such divisor is zero, i.e., this subspace is zero.

It is not hard to deduce from Proposition 1.1.11 (modified in an evident way) the following

description of the representation QF|k closed for any 1 < n < oo.

Proposition 1.1.12. Let 1 < n < co.
o The maximal semi-simple subrepresentation of G in Q}?Ik closed '8 canonically isomorphic to

D ,T(A, Q}4|k) (k) ®pnd(a) (A(F)/A(k)) = (F/k) @ ke (F*/k*) @ QF|k regr Where A runs
over the set of isogeny classes of simple commutative algebraic k-groups.
o The maximal semi-simple subrepresentation of G in HdR/k( ) is canonically isomorphic

to D4 dR/k< ) ®@Enaa) (A(F)/A(k)) = k@ (F*/k*) © H dR/k; AF), where A runs over
the set of isogeny classes of simple commutative algebraic k-groups (with the zero summand
corresponding to G, ).

o The representation HéR/k( )/ (k® (F*/k*)) of G is canonically isomorphic to the direct

sum € 4 dR/k( (A))/(k @ (k(A)*/k*))] @Enaca) (A(F)/A(k)), where A runs over the set

of isogeny classes of simple abelian k-varieties.

This suggests that (i) the isomorphism classes of irreducible subquotients of H}(F') are the same
as that of Qf Flk reg: (ii) they can be naturally identified with the irreducible effective primitive

motives, and (iii) the isomorphism classes of irreducible subquotients of H*(F') are related to more
general irreducible effective motives, such as the Tate motive Q(—1) in the case of H}p Ik (F).

1.2. From linear to semi-linear representations. The representation 3, Flk of G is also an F-
vector space endowed with a semi-linear G-action.

DEFINITION. Let K be a field, H be a semigroup of endomorphisms of K and k = K.

A semi-linear representation of H over K is a K-vector space V endowed with a semi-linear
H-action, i.e., with an additive H-action H x V' — V such that o(a-v) = oa - ov for any o € H,
v € V and a € K. This is the same as a module over the associative central k-algebra K(H) :=
K ®7 Z[H] with the evident left K-action and the diagonal left H-action. We say that a semi-linear
representations of H non-degenerate if the action of each element of H is injective. (If dimg V' < 0o
this is equivalent to the condition K ®4g) o (V) =V.)

9



The semi-linear representations of H, finite-dimensional over K, form an abelian tensor k-linear
category. This category is rigid if the elements of H are invertible. The set of isomorphism classes
of non-degenerate semi-linear K-representations of H of degree r is canonically identified with the
set H'(H,GL,K).

Denote by C the category of smooth semi-linear representations of G over F'.

It is well-known after Hilbert, Tate, Sen, Fontaine... that the semi-linear representations is a
powerful tool in the study of Galois representations. We try to use them in non-Galois context,
namely, in the context of representations of G.

Once again, we are interested in linear representations of GG, especially in irreducible ones, and

more particularly, in irreducible “homotopy invariant” representations, i.e., objects of Zq.
for

There are faithful forgetful functors Smg Lor oo Lo, Smq(k), admitting left adjoint functors of

extending of coefficients to F: Smg OF o & Smg(k), where Sma(k) is the category of smooth

representations of G over k, so W — for(W @ F), or W — for(W @y, F).

The functor F®y, is faithful, but it is not full. E.g, if U C G is an open subgroup and f €
(F*/EX)V {1} then [o] — of - [0] determines an element of Endc(F[G/U]), which is not in
the subspace Endg, ) (k[G/U]). Another example: Endgp, ) (F) = k, but Ende(F @ F) =
k-id®k-(m®1), where m : F ® F — F is the multiplication map.

On the other hand, the functor Zg(k) o 05 fully faithful ([37, Lemma 0.1]), and any object
W € Zg (k) can be reconstructed from W @y F € C, cf. Lemma 1.2.3.

Though the functor F®; does not respect the irreducibility, for any irreducible W € Sm¢ the
object W ® F' € C admits an irreducible semi-linear quotient V' with an inclusion W C V.

Thus, any irreducible object Sm¢ is contained in an irreducible object of C, and the problem of
description of irreducible objects of Sm¢ splits into description of i) irreducible objects of C and ii)
their linear submodules.

Here are two arguments, suggesting that in some respects C is simpler than Smg.

o All representations A(F')/A(k) of G for all abelian k-varieties A (i.e. corresponding to all
pure 1-motives) are contained in the irreducible object Q}p‘ p of C. Namely, any sufficiently

general 1-form n € T'(A4, Qi”k) gives an embedding A(F)/A(k) — Q}Wk’ by sending a point
k(A) <% F to on € Q};‘k.

o It follows from Hilbert’s Theorem 90 that the category C admits a countable system of cyclic

k
generators: P, := F[{K,, e F'}], where K, is a purely transcendental field extension of k

of transcendence degree m.

In general, for an arbitrary group, it may well happen that there are “much more” semi-linear
representations than linear ones. E.g., if po = Q/Z acts on k(t) by ¢ : t — (t, then the space

of one-dimensional semi-linear representations H!(jeo,k(t)*) = [ Lm k(t)*/k(t™)* | /k(t)* is

enormous (and non-separated in the natural topology), though the space of one-dimensional E-
linear representations Hom(ji, EX) C Z is relatively small.

If k£ is countable then the cardinality of the set of isomorphism classes of irreducible objects of
C is continuum. (Proof. Let F’ be an algebraically closed subfield of F|k of a finite transcendence
degree. For each one-dimensional representation ¢ : G v, — k™ fix an irreducible quotient V,, € C

Gppr
of F[G/Gpp] k(G r] P Note, that there is a subrepresentation of G in Vi, FIF" isomorphic
to ¢. Let us say that ¢ ~ ¢ if V,, = Vi, If ¢ ~ 1) then there is a subrepresentation of Gpr;, in

G . . G ’ . . .
V, "' isomorphic to ¥. As |V, 71" | = |k|, the equivalence classes are of cardinality < |k|. Note,

that there are > 2IN only those of ¢, that factor through the modulus of Gpr|i- Therefore, the set

of equivalence classes of ¢ is of cardinality > 2Nl if k is countable, as we were going to show.
10



The upper bound < 2%l for cardinality of the set of isomorphism classes of cyclic objects of C
comes from the fact that there is a countable system { P, },,en of generators of C, and the cardinality
of each of P, is |k|.)

On the other hand, I am not aware of a procedure, producing that many irreducible objects
of C, even conjecturally. It would be therefore natural to restrict oneself to a “relatively small”
full subcategory in C. (For instance, such that its objects are spanned as F-vector spaces by
subrepresentations from Zg (k). Another, though a weaker, but a little bit more explicit condition,
of “being globally generated”, on the semi-linear quotients of W & F for W € Zs is given below.)

However, the category C is “simple” in the sense that there are no non-trivial proper subcategories
in it, closed under direct products and subquotients in C. More precisely,

Lemma 1.2.1. The annihilator in lim F[G/U] of any object 0 £V € C is zero.
U
For any integer m > 0 there is an embedding of P, into a direct product in C of copies of V.

Proof. If 0 # o € lim F[G/U] annihilates V then for any L of finite type over k the projection
U

0 # ap = Zfil aio; € F[G/Gp] annihilates VErIL, Fix L, 0 # v € VYFIL and a functional
¢ € Homp(V, F) such that ¢(o;v) # 0 for all 1 < ¢ < N. Then p(a(fv)) = ZZ]\LI aip(oiv) - oif
vanishes for any f € L*, contradicting to Artin’s theorem on independence of characters of L*.
Hom¢ (P, V) is a non-zero K,,-vector space (by definition, ta : [id] — t - afid] for any ¢t €
K,,). Thus, ﬂaeHomc(Pm,V) kerow C (o pex ker(Prp SN V) = 0 for any a # 0 due to the linear
independence of characters Hom(K,S, ). O

Remark. This means that the central k-algebra lim F[G/U] is topologically simple, compare
U

with [22, 23] in the case of finite Galois extensions.
Therefore, any “relatively small” subcategory of C cannot be “too nice”.

Suppose from now on (until the end of this section) that n = oco.

Valuations and associated functors ([39]). In order to associate a functor on a category of
k-varieties to a representation of GG one can try to “approximate” rings by their subfields. Evidently,
this does not work literally, but apparently works in the case of discrete valuation rings of F.

Let v : F*/k* — Q be a discrete valuation of rank 1, and O, be the valuation ring.

Set Gy :={o € G | 0(O,) = O,}. This is a maximal closed non-open subgroup in G.

Proposition 1.2.2. For any discrete valuation v : F*/k* — Q the additive functor (=), :
Smg — Smg,, W — W, = ZF’C(’)U wWCrir C W, is fully faithful and preserves surjections and
injections.

Then the additive subfunctor I' : Smg — Smg of the identity functor, defined by W +—
I'(W) := (), Wy, where v runs over the set of discrete valuations of rank 1 trivial on k, preserves
the injections.

EXAMPLE. F(Q},‘k) = Q}?Uc,reg = P (A(F)/A(k)) ®Endaa T'(A, Q}Mk), where A runs over the set
of isogeny classes of simple abelian varieties over k, is the space of regular 1-forms.

Lemma 1.2.3. If k = k then the functor Zg (k) % ¢ s fully faithful. The compositions Zg(k) s

Tofor
C — Smg(k) and Ig — Smg x, Smeq are identical.

The first part is [37, Lemma 0.1] and the second part follows from Lemmas 4.4.4 and 4.4.5.

Remarks. 1. To find a description of the Serre envelope of the abelian subcategory Zg ® F of C
is a principal problem on the way to understand the structure of the category Zg (k). Conjecture
1.1.8 can serve as an indication in that direction.
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2. It follows from Lemma 1.2.3 that any semi-linear quotient V of W ® F, with W € Zg, (in
particular, any irreducible semi-linear representation V containing a “homotopy invariant” repre-
sentation), is “globally generated”, i.e., I'(V) ® F — V is surjective.

This is the condition one can impose on the class of “interesting” semi-linear representations.
There are some reasons to expect that (—), is exact, cf. [39]. This would imply some nice properties
of the category of “globally generated” semi-linear representations.

Admissible semi-linear representations. As in the study of linear representations of any
group, it is natural to start the study of semi-linear representations with the finite-dimensional
representations. However, it will follow from Corollary 3.4.8 that they are trivial.

Theorem 1.2.4 ([35]). Any finite-dimensional smooth semi-linear representation of G over F' is
trivial, if n = oco.

DEFINITION. A smooth semi-linear representation V of G over F is called admissible if, for any
open subgroup U C G, the fixed subspace VY is finite-dimensional over the fixed subfield FV (or
equivalently, dimy, VEFIL < oo for any subfield L C F of finite type over k).

Theorem 1.2.5 ([36, 37]). The admissible semi-linear representations of G over F' form an abelian
tensor (but not rigid) category, denoted by A.
The functor HO(GF‘L, —) is exact on A for any subfield L C F, so F is a projective object of A.

The fact that A is a tensor category follows from Proposition 3.2.2.

As it is shown in [37, Lemma 3.1], one can take the quotients @, := F[G/U,] of the cyclic
generators P, of the category C for all n > 0 as cyclic generators of the category A, since
Home (Q, V) = V,.Un. Here U,, denotes the preimage in Grr. ik C G of the subgroup in G, |, of
translations by cyclotomic elements, i.e. consisting of transformations of type z; — x; + b; for all
1 < j <mn, where b; € Q.

ExXAMPLE. Denote by m the kernel of the multiplication homomorphism F ®, F' =, F', where
ko = kN Q is the number subfield of k. This is an ideal in the algebra F ®k, F'. We consider its
powers m® C F' ®y, F' as objects of C for all s > 0 with the F-multiplication on the left, via F ®@@.

Note that m*/m**! = Sym$ QL so the semi-linear representations A%(m/m?) and @%(m/m?)
are admissible for any ¢ > 0 and s > 2, if the transcendence degree of k is finite, and the object
Sym‘}Q},‘k is admissible for any s > 1.

In the case of k = Q, the field of algebraic complex numbers, the category A admits the following
explicit description.

For any ¢ > 0 and V' € A let W9V be the sum of the images of the F-tensor powers ®§q m under
all morphisms in C to V. Clearly, W* is a functorial descending filtration on the objects of A, and
it is multiplicative: (WPV}) @p (W1Vs) C WPTY(V) @ V3) for any p,q > 0 and any V;, V5 € A.

(1) The graded quotients gry}, of the filtration W* on the objects of A are finite direct sums of
direct summands of @% O}, cf. [37, Theorem 4.10]. In particular, any object of A admits
an irreducible quotient.

(2) The category A splits into the direct sum of its two full abelian subcategories, the first one
equivalent to the category of finite-dimensional k-vector spaces, and the second one — A° —
consisting of objects V such that V& =0, cf. [37, Lemma 4.13].

(3) Any object V' of A° is a quotient of a direct sum of objects (of finite length) of type
®%.(m/m?) for some ¢, s > 1 (|37, Theorem 4.10]).

(4) If V € A is finitely generated then it is of finite length and dimy, Ext’,(V,V’) < oo for any
j >0and any V' € A; if V € A is irreducible and ExtY(m/m, V') # 0 for some ¢ > 2 then
V = Sym%.QL and ExtYy (m/m?, V) 2 k ([37, Corollary 4.17]).
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(5) There are no non-zero projective objects in A° ([37, Corollary 4.14]), but @% m are it

“projective pro-generators™ the functor Home(@% m, —) = lim Hom4(®%(m/m), —) is
exact on A for any ¢ ([37, Corollary 4.16]).

Moreover, (at least if K = Q) there is a functor S : V +—— (Y + Vy(Y)), providing an equivalence
of A and the category of “coherent” sheaves in smooth topology &my, on Spec(k), cf. |37, Corollary
5.2]. By definition, the underlying category of Gmy is the category of locally dominant morphisms
of smooth k-varieties. We endow Gmy, with the pretopology, where the coverings are the smooth
surjective morphisms. Clearly, the base changes preserve the coverings.

A sheaf of O-modules on Gmy, is called “coherent” if its restriction to the small étale site (or
equivalently, to the small Zariski site) of any smooth k-variety is coherent. Here O is the structure
presheaf of the site &my (which associates to each Y € Smy its k-algebra of regular functions
O(Y)). Clearly, O is a sheaf on Gmy,.

First, one determines the restrictions of the sheaf S(V') to the projective spaces (they turn out
to be sheaves of sections of homogeneous vector bundles). This part relies on some results on
the “abstract” homomorphisms of algebraic groups, cf. [11, 26, 45|. Then the sheaves on the
projective spaces can be locally extended to the arbitrary smooth k-varieties as pull-backs under
étale morphisms to projective spaces. It is not hard to check that the sheaf S(V') is well-defined,
when the object V' € A is described explicitly, cf. |37, Lemma 5.1].

The k-linear representations of G of particular interest are admissible ones, forming a full sub-
category in Zg (k). Though tensoring with F' does not transform them to admissible semi-linear
representations,! there exists a similar functor in the opposite direction I' : A — Smg(k), the
“global sections” functor, faithful and left-exact, at least if ¥ = Q. The functor I' was already
defined on p.11, even in a greater generality. However, it is sometimes useful to associate first to
each smooth representation V of G a sheaf V on Gmy, and only after that take the “global sections”.

One has the following universal (though far from being unique) way of “globalization” of smooth
representations of G. Let V € Smg, Y be an irreducible smooth k-variety, D € Y be an irreducible
divisor, and vp be the corresponding discrete valuation of k(Y'). Choose an embedding k(YY) into
F over k and an extension v of vp to a discrete valuation of rank 1 of F'. Let F C F be a maximal
subfield over k such that v(F*) = v(k(Y)*). Set Vy.p = VEFIO) N NF(X ke cino, VErir),

Note, that in the previous construction S(V')|y = Vy is a locally free coherent sheaf on Y with the
generic fibre VEFIEY) for each V € A. The functoriality follows from the fact that for any dominant
morphism X —— Y of smooth k-varieties the inclusion of generic fibres k(X) Qk(y) VErIRY) C

VEFIECO) induces an embedding of coherent sheaves m*Vy — Vx on X.

Slightly more generally, the “coherent” sheaves are contained in the category Fl of flat (as O-
modules) “quasi-coherent” sheaves in the smooth topology. For any flat “quasi-coherent” sheaf V in
the smooth topology the k-vector space I'(Y,Vy) is a birational invariant of a smooth proper Y.
This follows from the Hartogs principle and the fact that any birational map is a composition of a
birational morphism and of the inverse of a birational morphism, which is well-defined outside of
codimension > 2, cf. [37, Lemma 5.3].

Due to the birational invariance, one can define a left exact (but non-faithful) functor FI iR
Smq(k) by V — lImI'(Y,Vy), where Y runs over smooth projective models of subfields in F' of

finite type over k. Then I'(V) = I'(V). The restriction of I" to the subcategory of the “coherent”
sheaves is faithful, since T'(Y’, Vy/) generates the generic fibre of the sheaf Vy~ for appropriate finite
covers Y/ of Y, if V is “coherent”.

1Suppose that W ® F' is admissible for a smooth representation W of G for n < oco. Let us show that W is

finite-dimensional. It follows from the inclusion (W @ F)9Fiz D WEFIL ® L that dim WYFIL < oo for any L of finite

transcendence degree over k. Therefore, dim W < oo if n < co. If n = oo then W is trivial by Proposition 3.0.2, and

everything is clear. O
13



If T'(Y, Vy) has the Galois descent property then I'(V) = I'(V) is admissible. However, there is
no Galois descent property in general, and I'(V') is not admissible.

ExXAMPLE. Let Y/ be a smooth projective hyperelliptic curve, considered as a two-fold cover of
the projective line Y. Then for V = (Q}9|k)®2 the tensor square of any regular differential on Y” is
a Galois-invariant element of T'(Y’, Vy+), which is not in T'(Y, Vy) = 0.

The functor I' coincides with the composition of the forgetful functor of the “generic fibre” to
Sme¢(k) with the functor T', defined on p.11. The functor I' = I' o § is faithful on .A. However, it
is not full, and the objects in its image are highly reducible, c¢f. Example on p.11 (and it might be

added that S(Q}J‘k)(Y) =T(Y, Q%/lk))

Conjecture 1.2.6. (1) The functor Home(@% m, —) is ezact on A for any g > 0.
(2) Irreducible objects of A are direct summands of the tensor algebra @3 leﬂk'

(3) A is equivalent to the category of “coherent” sheaves on Smy.

It would follow from Conjecture 1.2.6 (1) that, e.g., Exth(Q}p‘k, F) is isomorphic to the space of

.77_1
derivations of k: anon-zero 7 € Homy (2}, k) is sent to the class of 0 — F —— QL /ker @y F —

Q}:“ﬁ — 0 in A. This is compatible with [37, Lemma 3.10].

As another evidence for Conjecture 1.2.6 (2), in addition to the case k = @Q, it is shown in [37,
Theorem 2.4] that for any L C F purely transcendental of degree m over k and any V € A any
irreducible subquotient of the L-semi-linear representation VEFIL of PGL;, 11k is a direct summand
of 7} QlL‘ .-

There exist too many smooth irreducible semi-linear representations. In particular, most of
them are not admissible. For instance, neither of quotients (including the irreducible ones) of the
cyclic object F[{L C F | L = K,}]°, consisting of formal degree-zero F-linear combinations of
algebraically closed subfields in F' of transcendence degree g over k for some integer ¢ > 1, belongs
to A, cf. [37, Corollary 3.5]. However, I do not even know, whether these objects are reducible. It is
therefore unclear, how to describe the irreducible objects of C explicitly. Thus, one cannot replace
the category A in the part (2) of Conjecture 1.2.6 by the whole category C, and has to put some
additional conditions, e.g., the one mentioned on p.11.

Remarks. 1. Assuming the part (2) of Conjecture 1.2.6, one can reformulate Conjecture 1.1.8 in
the following linguistically more convincing form:

Any irreducible object of Adm (and of Zg) is contained in an irreducible object of A.

This reformulation is based on Proposition 4.1.11.

2. It does not always make sense to study the irreducible objects of an abelian category. E.g.,
there are no irreducible objects in the quotient of the category of vector spaces over a field by
its subcategory of finite-dimensional vector spaces (as well as there are neither infinite sums, nor
products in this quotient category).

On the other hand, any sheaf of vector spaces, or a quasi-coherent sheaf F on a scheme Y admits

a quotient supported on a point p: U +— lim F(V) if p € U; U — 0if p ¢ U. Therefore, the
Vop
irreducible objects correspond to the points of Y.

1.3. Notations, conventions and terminology. Fields, their extensions, automorphisms,
etc. Let K be a field, and H be a group of its automorphisms. We consider H as a topological
group with a base of open subgroups generated by the stabilizers of the elements of K. Then H
becomes a Hausdorff totally disconnected group, i.e., any neighbourhood of its arbitrary element
contains a closed subneighbourhood.

For any collection of subsets Ky, (Ky)acr of a field K the subgroup of H, consisting of the
elements, leaving K fixed and inducing automorphisms of each of K, is closed in H. In the case,
when K, are subfields, the natural homomorphism from this subgroup to the automorphism group
of K, is continuous. We denote by Gk (k,).c; )|k, the group of automorphisms of K, leaving Ko
fixed and preserving each of Ky. Set G|, := Gk} K,-
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If K is a subfield in F then K denotes the algebraic closure of K in F, and tr.deg(F|K) is the
transcendence degree of an extension F|K (possibly infinite, but countable).

If the opposite is not stated explicitly, then F'|k is an extension of algebraically closed fields count-
able (by default) or finite transcendence degree tr.deg(F|k) =n > 1, and G := Gpy;. Everywhere,
unless stated otherwise, the characteristic of k is zero.

General notations. Q is the field of rational numbers, and a module is always a Q-vector space
(with a few exceptions, where the characteristic of k is allowed to be positive).

For an abelian group A set Ag = A® Q.

For a k-variety X and for any field extension E|k we set Xp := X X E.

IP’% denotes M-dimensional projective space over a field K.

Let R be a ring. If U is a set then R[U] denotes the free R-module with the basis U. If M is a
R-module and m € M then (m)g denotes the R-submodule in M, generated by m. If R = Z then
(m) := (m)R. Stab,, denotes the stabilizer of w.

If H is the group acting on the set S on the left (e.g., S is a group and H C S is a subgroup)
then H\S denotes the set of H-orbits (rights cosets), and if S is a subset of a set S then S\ S; is
the complement in S to S;. Ny H; denotes the normalizer of a subgroup H; in H.

If S is a set then |S| denotes its cardinality. If «,3 € S then o5 is the Kronecker symbol:
dop = 1,if @« = 3, and 6,3 = 0, if o # f.

Topological groups, their representations, measures, etc. If H is a totally disconnected
topological group, denote by H® its subgroup, generated by all compact subgroups, and by H2" the
quotient of H by the closure of its commutant. Clearly, H° is a normal subgroup in H, which is
open, at least if H is locally compact.

An H-set (or a representation of H in a vector space over a field, etc.) W is called smooth, if
the stabilizers of all the elements of W are open. A smooth representation W is called admissible,
if the fixed vectors of each open subgroup form a finite-dimensional subspace in W.

Q(x#) is the H-module of right-invariant measures on H, and xg : H — QZ is the modulus, if
H is locally compact, cf. p.16. Q(x) := Q(x¢) and x := xg if n < co.

Smp(E) is the category of smooth representations of H over a field E of characteristic zero.
Admpy(F) is its full subcategory of admissible E-representations. Zg(F) is the full subcategory of
Smq(E), consisting of the representations W of G such that WL = WEFIL for any extension
L|k in F and any purely transcendental extension L'|L in F. When discussing Z¢(E), the principal
case will be n = co. Set Smy = Smy(Q) and Zg = Z¢(Q).

The Hecke algebras Hg(H, U) for compact subgroups U in H are defined at the beginning of §3,
p.25. The identity of Hg(H,U), the Haar measure on U, is denoted by hy. There one can find
also a definition of the action of the algebra of “measures” Dg(H) := Hg(H, {1}) on the objects of
Smy(FE). Set Dg = Dg(G) and Hg(U) = Hr(G,U).

The level filtration N, is defined on p.5.

2. THE STRUCTURE OF G AND GALOIS THEORIES

In this section the principal results on the topological group G are described (in arbitrary charac-
teristic, cf. Theorem 2.2.1), such as i) its simplicity in the case n = oo; ii) simplicity of its (normal)
subgroup G°, generated by all compact subgroups. In particular, G° is dense in G if n = co. Part i)
complements a result of D.Lascar, [24]: G is simple as a discrete group, if the transcendence degree
of F|k is not countable.

Clearly, G° is open if n < oo, so the projection G —» G/G° with the discrete topology on
the target is continuous. If n = 1 Lemma 2.4.5 presents G/G° as a quotient of a certain, rather
“structured” group. It is not known much on G/G°. This is why one is usually forced to work in
the “stable” case n = oo, and to pose questions in a way to be able to avoid the knowledge of the
structure of this group.
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If n = oo it follows from the simplicity of G (|35, Corollary 2.11]) that any non-trivial continuous
homomorphism from G is injective; and if n < oo any non-injective continuous homomorphism
from G factors through G/G°. One more consequence is that there are neither non-trivial smooth
representations of G° (and of G, if n = 00) of finite degree, nor proper closed subgroups of finite
index.

Corollary ([35], 2.11). For any subgroup H of G, containing G°, and any continuous homomor-
phism m from H either 7 is injective, or the restriction of w to G° s trivial.

Let H be a locally compact group, and Q(x ) be the quotient of the free abelian group, generated
by the set of compact open subgroups of H, by the relations [U] = [U : U']-[U’] for al U’ C U. As the
intersection of any pair of compact open subgroups of H is of finite index in both of them, Q(x ) is a
one-dimensional Q-vector space, oriented by the condition [U] > 0 for any U. In other words, Q(x )
is the space of Q-valued right-invariant measures on H. The group of bi-continuous automorphisms
of H acts on it. In particular, the group H acts on it by conjugations. Let xg : H — Q7 be the
character of this representation of H, the modulus of H. It is trivial in the restriction to the (open)
subgroup H°, generated by all compact subgroups of H.

In §2.5 a locally compact group & is introduced. If n < oo then & := G, while if n = oo, there
there is a continuous group embedding & — G with a dense image. It is clear from an explicit
description of the modulus y := x that x is surjective for all 1 <n < oco.

However, I do not even know, whether the discrete group ker x/®° is trivial. If it is trivial for
n = 1 then it is trivial in general, cf. [35, Lemma 2.15].

It follows from Theorem 2.2.1 that &° is a topologically simple group.

2.1. Galois theory for compact subgroups. Let F|k be an arbitrary extension of arbitrary
fields, and G' = Gpy;, be its automorphism group. The topology on G, described in Introduction,
p.2, has been studied in [14, p.151, Exercise 5|, [32], [44, Ch.6, §6.3|, and [13, Ch.2, Part 1, §1].
It is shown there that G is a Hausdorft and totally disconnected group, and for any intermediate
subfield K in F|k the topology on G|k coincides with the restriction of the topology on G. The
subgroups G (r,).c; )|k are closed in G, since if 0(F,) C Fo, 0(F N\ Fo) C F N\ Fy and o(F) = F
then o(F,) = F,.

The Galois—Krull theory associates intermediate subfields of a Galois extension to the closed
(=compact) subgroups of the Galois group of this extension, and vice versa. Namely, one associates
to a subgroup its fixed field, and associates to a subfield the group of automorphisms leaving it
fixed.

These operations are mutually inverse to each other and admit the following direct generalization.

DEFINITION. 1. A non-empty collection £ of subfields in F' is called a sieve, if it contains all
extensions of its arbitrary element. We call the saturation of an arbitrary collection £ of subfields
in F the sieve £, whose elements are the extensions in F' of the elements of L.

2. A collection of subfields is called directed, if it contains the intersection of each pair of its
elements.

ExAMPLES. a) The saturation of collections, consisting of a single subfield, defines an embedding
of the set of subfields in F'|k to the set of sieves of subfields in F|k. b) For a descending sequence
K1 D Ky O K3 D ... of subfields K in F'|k, over which F' is algebraic, the collection of all the
extensions of all Kj is a directed sieve. Clearly, the saturations of the collections (Kj);>1 and
(Kj)jes coincide for any infinite subset S of the natural numbers.

aEI}

Proposition 2.1.1. There is a morphism of unitary monoids (transforming the compositum of
subfields to the intersection of subgroups), inverting the inclusions, injective, if char(k) = 0 and F
1s algebraically closed,

(1) B : {subfields in F' over k} — {closed subgroups in G},

given by K — Aut(F|K) =: Gpg. It preserves the neutral elements: k — G. The image of (8

is stable under the passages to sup-/sub- groups with compact quotients; if F' is algebraically closed
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then the fibres of B consist of the subfields of I with the same sets of perfect subfields containing
them; 3 induces compatible bijections

directed sieves consisting of such A subgroups of G, exhausted by
K in F|k that F|K are Galois extensions compact subgroups
1 saturation

subfields K in F'|k such that B .
F|K is a Galois extension - {compact subgroups in G’}

U
subfields K in F'|k such that there is
a subfield L in K|k of finite type C compact open
such that F|K’ is a Galois extension only < { subgroups in G } '
for K/ = K if K’ is a subfield in K|L

The latter set is non-empty if and only if G is locally compact. In particular, it is non-empty if
transcendence degree of F|FC is finite (e.g., if F = F and n < 00).

The inverse correspondences in the cases B and C are given by G D H —— F! (the fived subfield
in F of H). O

The correspondence B can be found in [32, §3, Lemma 1|, or [44, Prop.6.11]; and C can be found
in [14], or follows immediately from loc.cit., or [44, Prop.6.12]. In the case of an algebraically closed
F there are the perfect closures K in F' of subfields of finite type over k such that F|K is a Galois
extension on the left hand side of C. The correspondence A is induced by the maps

subgroups in G, generated — sieves consisting of subfields
by compact subgroups = in F|k, over which F' is algebraic

given by 8 : G D H +— (F¢ C F)¢, where C runs over the compact subgroups in H, and
v: L Uker Grk-

ExXaMPLES. 1. If F is algebraically closed then those subfields of F'|k, over which F'is a Galois
extension, are the perfect subfields containing k, over which F is algebraic. If, moreover, n = 1 then
the proper subgroups in the image of § are the compact subgroups.

2. Let char(k) = 0, F' = k(z), and let H be generated by Gpjy((z—a)2) for all a € k. Fix an

embedding F < k((z=1/°°)), and define the action of the translations by the elements of k on the
formal Puiseux series in the evident way. This gives a group embedding k — G. Let I" be the image
of k — G. Then the multiplication Gpy,2) X I' — H is bijective. Clearly, the intersection of H
with the union of the compact subgroups in G is not a group.

3. The group G may be locally compact, even if tr.deg(F|F®) = co. E.g., let a polynomial
P(X,Y,Z) over k define a surface with no birational automorphisms, and let z,y;, where i € Z,
be independent variables, and let z; satisfy the conditions P(7%z,y;,2;) = 0 for all i € Z and some
element 7 € Gy ), of infinite order (e.g., 7o = x + 1 if char(k) = 0, or 7z = qv if ¢ € k™ \ fieo)-
Set F' = k(x,9i,2 | i € Z). Then Gpj) = {1}, i.e., the group is discrete. On the other hand,
G contains such an element o that oz = 72, oy; = Y41 and 0z; = z;41 for all ¢ € Z, and thus,
F¢=F =

4. The map H — FH inverts the order, but in general it is not compatible with 5. If F is
algebraically closed then it is left inverse to the restriction of 3 to the perfect subfields, any perfect
subfield is of type F¥ and G contains the automorphism groups of all extensions in F|k as its
subquotients. But H — F does not respect the monoid structure: G P ks GLER(+1)2) )k —
k, but Girp@)yie N Gire(@rn2)ye = Grike) — k@) # k.

5. Further examples can be found in [33].

2.2. Topological simplicity of G° and of G. From now on the field F' will be algebraically
closed.
We say that a topological group is topologically simple, if its arbitrary closed normal proper
subgroup is trivial.
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Theorem 2.2.1 ([35], 2.9). If n < oo then any non-trivial subgroup in G normalized by G° is dense
in G°. If n = oo then any non-trivial normal subgroup in G, e.g. G°, is everywhere dense.

Here F|k is an arbitrary extension of algebraically closed fields of an arbitrary characteristic. In
particular, the subgroup G° of GG, generated by the compact subgroups, is open and topologically
simple, if n < oo; if n = 0o then G is topologically simple.

Remarks. 1. If n = 1 and char(k) # 0 then the separable closure of k(x) in F is generated by
the G°-orbit of x for any x € F' \ k, cf. Proposition 3.3.1.

2. An argument of [24] shows that G is simple as a discrete group provided that transcendence
degree F' over k is not countable.

It follows from the following lemma that G° is dense in G, if n = co.

Lemma 2.2.2. Let L be a subfield of F' such that tr.deg(F'|L) = co. Then Gp, is the closure of
the set of products of all pairs of elements of all compact subgroups in G,

Proof. Let 0 € Gpj;,. We have to show that the restriction of o to any finite subset S C F
coincides with the restriction of the product of a pair of elements of some compact subgroups in
Gp|r- Let T'C F be a subset of order |S| such that the elements of 7" are algebraically independent
over L(S,0(S)). Choose a subfield K in the algebraic closure of L(T"), isomorphic to L(S) over L.
Clearly, there are elements 71,72 of some compact subgroups such that 7, interchanges L(S) and
K, m interchanges L(c(S)) and K, and o71|s = 0|s. O

Proposition 2.2.3 ([35], 2.14, [39], 2.5). Let Ly and Lo be subfields of F such that Li() Lo is
algebraic over Ly () Lo and tr.deg(F|L2) = oo, or tr.deg(Li|Ly () L2) < co. Then the subgroup in
G, generated by Gpr, and Gpr, is dense in Gp|r,, L, -

Remark. This (and [35, Lemma 2.16|, cf. proof of Lemma 2.2.4) is an analogue of the following
result from [3]: the Lie algebra of differentiations Der(F|Li () L2) is topologically generated by its
Lie subalgebras Der(F|L;) and Der(F|Ls2). (A base of open Lie subalgebras in Der(F|L) is given
by the annihilators of finite subsets in F'.)

Lemma 2.2.4. Let Lo C L1 C Lo be a pair of non-trivial purely transcendental extensions in F
of finite type. Let & be a transitive permutation group of a transcendence base S of La over Ly,
exlending a transcendence base of Ly over Lo. Let H be a subgroup in Gp|r,, preserving Lo and
projecting onto a subgroup in G|, containing &. Then the subgroup G’ in G, generated by Grir,
and H, coincides with Gp)r, .

Proof. G’ contains the subgroups, conjugated to G F|z, by all elements of H. In particular, G’
contains the subgroups G'|r,(5-{z}) for all z € S. According to [35, Lemma 2.16], for any subfield L
in F, and any subset .S in F' consisting of elements, algebraically independent over L, the subgroup
generated by the subgroups Gp|p(s.(.}) for all x € S, is dense in Gp|r. Therefore, G’ coincides
with GF|L0 . O

2.3. Open and maximal proper subgroups; Galois theories, [39]. The study of smooth
representations of G and of stabilizers of their vectors leads to the study of open subgroups of G.
For any tr.deg(F|k) = n < oo there is a morphism of commutative associative monoids with the
(minimal) unity, inverting inclusions, (transforming the intersection of subgroups to the algebraic
closure of the compositum of subfields, and the unity G to the unity k)

) algebraically closed subfields of F' o
o : {open subgroups of G} — { of finite transcendence degree over k [ AIL

It is determined uniquely by the following equivalent conditions:
e cach open subgroup H C G contains G p|o(p) @s a normal subgroup? and, if possible, a( H) #
F
® Gpjo(r) € H and the transcendence degree of a(U) over k is minimal.

2%i.e. H contains in the normalizer Gira(myk of Grlam)-
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In particular, for any non-trivial algebraically closed extension L # F of k of finite transcendence
degree in F' the normalizer Gyp 3 in G of G (which is evidently open) is maximal among the
proper subgroups of G.

In the case n = oo any open proper subgroup of G is contained in a maximal proper open
subgroup of G; and any maximal proper open subgroup of G is of type G(p ryx for some L € All,
L # k. Besides that, o(H) = a(NgH).

Questions. 1. The preimage of any proper subgroup of a prime (finite) index in Q7 under the
modulus character, if n < oo, is one more type of maximal open proper subgroups, not encounted
by Proposition 2.3. Any compact subset of G is contained in infinitely many subgroups of this type.
Are there any other maximal proper open subgroups?

2. Do there exist closed subgroups not contained in maximal proper ones?

3. Can the maximal proper open subgroups be realized as stabilizers in irreducible (semi-)linear

representations (if n = oo) of G7 The answer would be negative, if the representations Q[{[L] | k C

L C F, tr.deg(L|k) = m}]|° (vesp., F[{[L] | k € L C F, tr.deg(L|k) = m}|° € C) turned out to be
irreducible for all m > 1.

In the case of arbitrary transcendence degree the stabilizers of discrete valuations of rank one is
another type of closed, but now not open maximal proper subgroups, cf. Proposition 2.4.3. Using
them, one associates functors on categories of smooth k-varieties to the representations of G, cf.
§1.2, p.11.

Remarks. 1. If n < oo and H C G is contained in neither subgroup of type G(r ryx, where
L € ATl \ {k, F}, then F is algebraic over the subfield, generated over k by the H-orbit of z for
any x € F k.

2. If tr.deg(L|k) = tr.deg(F|L) = oo then G p 1y 18 maximal among closed proper subgroups

of G, i.e.., the subgroup H, generated by G{F,Z}\k and by any o € G such that o(L) # L, is dense
in G. Question. Can one replace the condition “tr.deg(F|L) = oo” by the condition “F # L"?

3. If subfields K and L are in general position then the subgroup G (FE.I}k is contained in
exactly three maximal proper open subgroups of G: G (FRMk G (FI}k and G (F L}k since if
o € G preserves neither of K, L and KL then (o, G (FR.I} v =G.

The union of proper open subgroups of G is characterized in the following way.

Corollary 2.3.1 ([39]). The union of proper open subgroups of G is everywhere dense in G, and
does not coincide with G if n = co. The following properties of an element 0 € G are equivalent:

(1) o does not belong to the union of the proper open subgroups of G,
(2) W =W for any smooth G-set W,

2
(3) there are no non-zero o-invariant finite-dimensional F-vector subspaces in Q}?\k'

Remark. If n = oo then any countable free group H = *jcgZ can be embedded into G in
such a way that its intersection with any proper open subgroup in G is trivial. Namely, choose a
transcendence base of F'|k, and enumerate it by the elements of H: {z;, | h € H}. Define an action
of the generators {h; | j € S} of H on the transcendence base by hjzy, = zp 5. Clearly, this action
extends, though not uniquely, to F.

Let A = A, := F(o,07 ") be the algebra of endomorphisms of the additive group F generated by
F and by o*! for some o € G. Clearly, A is a Buclidean simple central F{?)-algebra, cf. [31]. The
set of o-invariant algebraically closed subfields in F'|k injects into the set of A-submodules in Q}’I k

by L— F X, Qhk

Suppose now that n = oo and o does not belong to the union of the proper open subgroups of
G. In particular, Q}TI , 18 a torsion-free A-module of at most countable rank. In a standard manner
one checks that the finitely generated torsion-free A-modules are free.
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An example of the A-module Q},‘k of rank 1, which is not free, is given by F' = k(xz;,y; | i € Z, j € N),
where z;,y; are algebraically independent, we set yo = o and ox; = x;41, oy; = yj—1 +y;. The
rank of the A-module Q}?| ;. 18 an invariant of the conjugacy class of 0. What are the others?

In the case F = k(x; | i € Z), where x; are algebraically independent and ox; = x;41, one has
A= Q};‘k, a — adrxg, so the set of A-submodules in Q}:‘k is in bijection with the set of left ideals
in A, i.e., with the set of monic (non-commutative) polynomials in o with non-zero constant term.
E.g., the polynomial o 4+ 1 corresponds to k(z; +x;41 | i € Z) # F.

One more Galois theory, [39]. Now, as a corollary for n = oo, we get a complete, though
not very explicit, Galois theory of algebraically closed extensions of countable transcendence degree
(a question of Krull, c¢f. [21]), i.e., a construction of all subgroups H of G, coincident with the
automorphism groups of F' over the fixed subfields F'H.

One can characterize

(1) the normalizers G g,y of Gpj in G for all L € AIl \ {k} as the maximal open proper
subgroups of G;

(2) the subgroups Gy, for all L € AIl\ {k} as minimal closed non-trivial normal subgroups
in G{p ryk (this follows from the topological simplicity of G);

(3) subgroups G| of G for all non-trivial extensions L|k in F' of finite type as the open
subgroups containing normal co-compact subgroups of type G FIT from (2) (this follows

from the classical Galois theory for L|k);
(4) the proper subgroups in the image of 3 as intersections of subgroups from (3).

Remark. The subgroups Gpp, of G for all extensions L|k in F' of finite type and transcendence
degree one are the subgroups from (3) with the only maximal proper subgroup of G containing
them.

2.4. Valuations and associated subgroups, [39]. Let O, be a valuation ring in F', m;, = O,~\ O}
be the maximal ideal, and k(v) be the residue field of v. If &k C O,, fix a subfield ¥k C F’' C O,
identified with x(v) by the reduction modulo m,. In this case x(v) is of characteristic zero (and
algebraically closed).

Set Gy :={0 € G | 0(O,) = Oy}. This is a closed subgroup in G.

The valuation group ' := F*/OX =2 Q" is totally ordered: v(z) > v(y) if and only if zy~! € O,,
where v : F* — T is the natural projection.

We call r = dimg I" the rank of v. We assume that it is finite.

Assume that the characteristics of a field L and of the residue field k of a valuation w of L
are equal. Then w is called discrete, if L is algebraic over the subfield generated by a lift of a
transcendence base of x and by a lift of a basis of the valuation group. In particular, v is discrete
if and only if the transcendence degree of F over F’ is equal to 7.

Choose an arbitrary algebraically closed F’ in F, over which F is of transcendence degree r,

a transcendence base x1,...,z, of F|F’ and embeddings F' — lim F’((m}/N)) e ((:r,lﬂ/N)) over
N*}
F'(z1,...,2,). In this case v(z]") < --- <wv(z]") for all my,...,m, > 0.

If r < oo and 0(0O,) C O, for some o € G then o € Gy, since o induces a surjective endomorphism
of I', i.e. an automorphism.

It is well-known, [48], or |2, Chapter 5, Exercise 32|, that for any valuation ring O, with a
valuation group I' the map p — (v(O, \ p)) gives a bijection between the set SpecO, of prime
ideals in O, and the set of isolated subgroups in I. Moreover, v(O, \p) is the set of all non-negative
elements of the corresponding isolated subgroup of I'. Thus, there are exactly r 4+ 1 prime ideals in
O,.

REMARKS. 1. If p # 0 is a non-maximal prime ideal of finite codimension in O, and O, := (Oy,);
then G, C G, (since any element o € G,, preserves p, thus also O, \p, i.e. induces an automorphism
of OU/).

2. The inclusion G, C G{F,OU ik is proper for r > 1, i.e. GG, is not maximal.

[m1
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Let P; be the set of discrete valuation rings of rank r in L, containing k, admitting also the
following description.

Let C; be the set of chains of irreducible normal subvarieties up to codimension 7 on an irreducible
proper normal variety X over k. Any proper surjection with irreducible fibres, e.g. a birational
morphism, X’ — X induces an embedding C% — Cyr, (Z' > -2 Z) = WD - D W),
where W9 := X’ and W/ is the proper preimage of Z7 under the restriction of 7= to WJ~! for
1 <j<r (and 7w, : Wi — Z;). If L is of finite type over k then P; = lim CY%, where X runs

X‘)
over the models of L|k, and P = lim Pj. For instance, if C'is a smooth projective curve over k
L
then Pkl;(c) is the set of closed scheme points of C.

Any proper surjection X’ —— X induces embeddings Z[C%] — Z[C%,] and Z[C%]° — Z[C%/]°,
where Z[C]° := ﬂ;;é ker (Z[C}}] — zZ[cy ]), C% denotes the set of chains with no component of
codimension j and C% — CY’ is the omitting of such component.

Let 11" := lim Z[P}]°, where L runs over the set of subfields in F|k of finite type over k. Then

one can deﬁne a morphism of smooth G-modules gra, HgR/k( ) Res —I?®k by Res(ozdt1 ARV dtq) =

degq sen(o)alp, , - (Dy1y O Dyyoz) D <+ D ﬂjle =: Di.4), where D is given locally by
t; = 0 and « is regular in a neighbourhood of t; = --- =1, = 0.

Lemma 2.4.1. If0 <7 <n+1 < oo then the group G acts transitively on the set of pairs (v, A),
where v : F*[k* — T' = Q" is a discrete valuation of rank r and A = Z" is a lattice in T'. The

stabilizer of (v,A) acts transitively on the set of mazimal subfields F in F|k such that v(F*) = A.
The residue field of F' coincides with k(v) (in particular, it is algebraically closed).

The G-action on x(v) induces a homomorphism G, — G(y)x- Let
Gl={0eG,|or—rem,foranyz € O} = {0 €G | % €1+m, for any v € O}

be its kernel, the “inertia” subgroup.

Let L be the function field of a d-dimensional variety over k, I C {1,...,r} be a subset and
k
Oy € P, p € P Let 0,1 be the set of all embeddings o : L L5 F such that 0=1(0,) = O, and
o(L*)NT; # ( “YNT—g ifand only if 1 <i<randie€l.
Proposition 2.4.2. Ifm := max(0,r+d—n) < [I| < M :=min(d,r) then Oy, 1 is a non-empty G-
k
orbit. The set {L </—> F} of embeddings of L into F overk isa disjoint um'on of Opu.1. In particular,
QUL & Pl = @M, @,y Qlts) & w()]) and GA(L & P} = 112, (PHUC).
|I| = r then the stabilizers of Op, 1 are isomorphic to 7r x Gr(w)|r(p) (and they are compact if
d=mn).
Valuations and maximal subgroups. EXAMPLE. If n = 1 and C is a smooth proper curve

k
over k then to any valuation v the decomposition {k(C') T F} = C(F)\ C(k) = g (mo ~ {0})
is associated.

Proposition 2.4.3. For any O, € P}; the subgroup G, is mazimal among the closed subgroups of
G.

In the proof one checks that for any pair of distinct O,, O, € Pr the subgroup, generated by G,

and G, is dense in G , i.e. it acts transitively on {L /i F'} for any L|k of finite type. The problem
can be reduced to the case of n = 1, where v and v’ are interpreted as compatible collections of
points on the “universal tower” of curves over k. Then it remains to show that for any pair of
distinct points p, ¢ € C(k) on a smooth proper curve C over k there exist a level Cg of this tower
and a morphism from Cjs to C, sending the pair (vg,v3) to (p,q).
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Lemma 2.4.4. The group G. := {0 € G, | ox/x € 1 +m, for any x € F*} C G} is discrete if
n < oo.

If n =7 = 1 define ¢ : G} — T'U{+o00} by p(c) = v(ox/x — 1) for any x € m, . {0}, or
xz € F\O,. Clearly, ¢ is independent of x and determines a bounded non-archimedian bi-invariant
distance on G.. The logarithmic distance transforms the adjoint Gy-action on G} to the natural
Gy-action on T' = Q. Using the Puiseux series, it is not hard to show that the self-map of G},
o — oV, is injective for any N € N.

Let GL(B) := {0 € G | ¢(0) > B}, where 8 € I @ R. This is a normal subgroup in G2.
Then G = GL(0) = GL(0)*, where GL(B)" = Uy Gl(y) = {0 € G} | p(o) > B}. Clearly,
GL(B) # GL(v), if B # ~. The group GL(3) is “very unipotent”. For instance, there is a canonical
isomorphism G(3)/GL(8)t == Hom(I',m!®), where

L D

Lemma 2.4.5. GL(B) is surjective over G/G® for any 3 € T @ R.

2.5. A “dense” locally compact “subgroup” & of G. It is well-known ([14, 32, 44, 13]) that in
the case of algebraically closed F' the group G is locally compact if and only if n < oco.

Let n = oo and {z1,x9,...} be a transcendence base of F|k. Set L, := k(zm,Tm+1,...) C F.
Then Ly = (L1 D Ly D L3 D ...) is a descending sequence of subfields in F. Set & = &, :=

U Gpir,,- We take the set {G g, } of subgroups for all subfields L in F|k of finite type as a base
m>1
of open subgroups.

Geometrically (in a sense, analogous to §3.4), this corresponds to an inverse system of infinite-
dimensional irreducible k-varieties given by finite systems of equations. They are related by domi-
nant morphisms affecting only finitely many coordinates.

Then

e & is locally compact (since F' is algebraic over L1), but is not unimodular;

e the inclusion & into G is continuous with dense image (since (,,,~q Lm = k).

To describe the modulus x == xe : & — QJ, for each ¢ € GriL,, © ® choose a subfield
L in F|L,, of finite type, over which F' is algebraic, e.g., generated over L,, by a transcendence
base of F|Ly,. Then [Gpr] = [Lo(L) : L™ - [Gprop)] and [Gpy)] = [Lo(L) : o(L)™eP] -
[GFLo(r)] for any o € G, where —insep i the purely inseparable closure in Lo(L). Therefore,

_ [Lo(Lyo(Lyer)
X(U) - [LO—(L):Linsep] .

For any integer ¢ > 1 there is an element of &, leaving fixed all the elements of a transcendence
base of F|k, except one, t, on which its acts as t — t?7 —¢. Thus, x is surjective for any 1 < n < oo.

In particular, the group & is compactly generated for neither 1 < n < oo, since otherwise the
value group of the modulus was finitely generated, which is not the case for Q.

Examples of smooth semi-linear representations of &. We say that subsets I and J of N
are commesurable if 7 ~ (I NJ) is finite and |I ~ (INJ)| = |J ~ (I NJ)|. Denote by [I] the class of
subsets in N, commesurable with the subset I. This is a countable set.

Define ka as an F-vector space with the base {dxj; A dxj, ANdxj, A... | J € [I]}, where

F|
J = (j1 < jo <j3s<...). The group & acts naturally on Qg]‘k

we get the representation Q%“{. If I = N then we get a representation of degree 1. If J = N~ [

then there is a non-degenerate pairing Qg]‘k QF Q%]k — Q[IEI']k, natural if some I € [I] is fixed. Tt
]

follows from [36, Lemma 7.7] that the semi-linear representation Flk 15 irreducible.
Let M be the set of all self-maps f of N such that lim f(m) = oco. Define Q%k as an F-vector
m—0o0

If I is finite of cardinality ¢ then

space with the base {dzfq) ® dzjo) @ drp3) @ ... | f € M}. The G-action is defined naturally.
Define Qgﬂk as an F-vector subspace in Q%k, spanned by the &-orbit of dz (1) ®@dz 2y @dT(3)®@. ..

22



2.6. Automorphisms of G. The group G is quite rigid in the sense that the group of its continuous
automorphisms is “of the same size” as G. Namely, it coincides with the group of field automorphisms
of F preserving the algebraically closed subfield k. If n > 1 this follows from a stronger result of
F.A.Bogomolov: any isomorphism between absolute Galois groups (and even between their maximal
pro-p-quotients by the second term of the lower central series) of the function fields of k-varieties of
dimension >1 is induced by an isomorphism between these function fields. The principal part of the
proof in this case consists of checking that all abelian subgroups of rank >1 in the absolute Galois
groups are contained in decomposition subgroups of various valuations, see [8, 9] and also [10].

If n = 1 this is shown in [40]. The general idea is as follows. The open compact subgroups
of G° is the same as the absolute Galois group of function fields of curves over k with a marked
F-rational generic point. This curves can be described functorially in terms of the topological group
G° as projective schemes over Q. E.g., the absolute Galois group of function fields of rational curves
over k is the same as the open compact subgroups U such that Ng(U)/U is infinite and has no
abelian subgroups of finite index. In this case the decomposition subgroups in U2 are parametrized
by the set of parabolic subgroups P in Ng(U)/U = PGLgk: the subgroup Dp = Z(1) consists
of elements of U?P, fixed under the adjoint P-action. For an arbitrary open compact subgroup
U = Gpp, the decomposition subgroups in U ab can be described as the maximal subgroups in the

closure of the additive envelope of the images of the transfers G%b‘k(x) — G%'TL forall z € L N\ k,
whose projections to G%]Tk(x) (with respect to the embedding G}?L — [lecrw G}?k(m), induced
by inclusions G|, € Gpjk()) are subgroups of finite index in some decomposition subgroups in

Gah .
Flk(z)
This implies that an automorphism of G° induces an automorphism of the whole collection of

curves, i.e., an automorphism of F. A slightly more general statement looks as follows.

Theorem 2.6.1 ([40], 4.2). Let n =1, and H be a subgroup of G, containing G°. Then NGF|Q(H)
is contained in the group NGF‘Q(G) of automorphisms of F', preserving k, and the adjoint action of
NGy (H) on H induces an isomorphism of N ,(H) onto the group of continuous open automor-
phisms of H. If H D ker x then Ng o (H) = N, o (G°).

3. GENERAL PROPERTIES OF SMOOTH REPRESENTATIONS OF (G AND THEIR REALIZATIONS

Before discussing the representations of G, let us make some general remarks on the category
Smp(FE) of smooth E-representations of an arbitrary totally disconnected topological group H.

0. It is well-known (cf., e.g., [43, Exposé 1V, §2.4-2.5] or [19, §8.1, Example 8.15 (iii)]), that the
smooth H-sets and their H-equivariant maps form a topos.

Let € = T(H, B) be a category, whose objects are the elements of some base B of open subgroups
of H and Homg(U,V) = {h € H | (UL~ 2 V}/U. The composition is defined in the natural way.
We endow ¥ with the maximal topology, i.e., we assume that any sieve is covering. Then the sheaves

of sets, groups, etc. are identified with the smooth H-sets, groups, etc.: F + lim F(U) (this is a
UeB
smooth H-set, since its arbitrary element belongs to the image of some F(U), and, by definition,

the U-action on it is trivial) and W + (U +— WVY).

E.g., if B = {1} (and in particular, H is discrete) then there is a unique object * in ¥, and
Homg (%, %) = H.

Let B be the set of open subgroups in G of type G, (where L|k is an extension of finite type),

and T = T(G, B). Then Home(Grip, Gryx) = {h € G | h(L) € K}/Gpyp = {h: L5 K} is the
set of field embeddings over k. When n = oo, Lemma 3.4.1 describes the smooth G-sets as sheaves
on a slightly different site, in the “dominant topology”.

1. a) There are enough injectives in the category Smpy(FE). Namely, the forgetful functor
Smpy(E) — Vecg admits a right adjoint I: for any E-vector space V define I(V') as the smooth

part of the module of V-valued functions on H, i.e., I(V) := lim Maps(H/U, V).
Ueb
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The group H acts on I(V) by translations of the argument. It follows from the semi-simplicity
of the category of E-vector spaces Vecg that I(V) is injective. If V' is a smooth H-module then
there is an H-equivariant embedding V- — I(V), v — (h — hv).

b) The objects E[H/U], where U € B, form a generating system of Smy(F), i.e., any smooth
cyclic E-representation of H is a quotient of E[H /U] for some U € B. There are < 2max(1H/ULIE])
quotients of the representation E[H/U]. Thus, there are < max(|B|,sup 2@*(H/ULIED) cyclic E-

U
representations of H. In the case H = G we get the bound < 2max(ELIED If H is locally compact,

but not unimodular, then there are > max(2"0#(H)) |E|) irreducible representations. E.g., if
n < oo then in the case of H = G we get the bound > max(2N| |E]). Lower bounds in the case of
H = G can be found in Proposition 3.5.2.

¢) There are direct sums, direct products, tensor products and the inner Hom functor in the
category Smpy(FE). They are the smooth parts of the corresponding functors on Vecgy. Namely, the
direct product of a family in Smy(FE) is the smooth part of its set-theoretic direct product, and
Hom (Wi, Ws) = Ule Hom gy (W1, W2), where U runs over open subgroups in H. The functor

Hom (W, —) is right adjoint to the functor — ®@p W:

Homgy, , () (W1 @ W, W2) = Hompgy) (W1 @ W, W2) = Hompg(y) (W1, Hompg (W, W2)) =
= Homp(g) (W1, Hom(W, W2)) = Homgy,, () (W1, Hom(W, W2))

for any Wi, W, W € SmH(E)

d) If ¢ : Hy — H;y is a homomorphism with a dense image then the pull-back functor ¢~
Smpy, — Hy-mod is fully faithful. (Proof. Let W1, Wy € Smy,, a € Homp, (o~ W1, o~ 1W3),
v € Wy and o € Hy. Let S be the common stabilizer of the elements v and «(v). Choose some
element o’ € p~1(0S) C Hy. Then a(ov) = a(o'v) = o'a(v) = ca(v). 0)

If o is continuous then o=t factors through ¢* : Smpy, — Smy,.

If the homomorphism ¢ is continuous and with dense image then the functor ¢* admits a right
adjoint ¢, : W — Uy WU>xm 2 where U runs over open subgroups of H;. In particular, ¢*
preserves the irreducibility. (Proof. The Hi-action on ¢, W is defined as follows. If w € we )
and o € Hy then ow := ¢’w, where ¢’ € Hy and ¢(0’) € oU, which is independent of o”. 0)

ExamMpLE. The forgetful functor Smg — &-mod is fully faithful, preserves the irreducibility,
factors through r : Smg — Sme, and r admits a right adjoint: W — (J; (),,>1 WOFILLm | where
L runs over the set of all subfields of finite type in F|k. -

2. If any open subgroup of H contains an open subgroup of infinite index (e.g., H = G and
n = oco) then there are no non-zero projective objects in the category of smooth representations of
H.

(Proof. Let W be a projective object in the category of smooth E-representations of H. Choose
a generating system {e;};es of the representation W. This gives rise to a surjective homomor-

1.

phism €, ; E[H/Stab,] . W. Fix an element iy € J and for each j € J fix an open subgroup
Uj of infinite index in Stabe; N Stab%. As W is projective, the composition of m with the sur-
jection ¢, E[H/U;] — @;c; E[H/Stabe,] splits, and therefore, there exists an element in

@D,c; E[H/Uj] with the same stabilizer as e;,. However, as E[H/Uj]Stabeio = 0, this would imply
that e;, = 0, and thus, W = 0. )

3. a) If H is locally compact (e.g., H = &, cf. §2.5, for any n < oo) then the category Smy(E)
has enough projectives. Namely, any smooth H-module is a quotient of a direct sum of objects of
type E[H /U] for some open compact subgroups U of H.

However, the G-modules E[G/U]| are too complicated, cf. §3.5. Besides that (Proposition
3.5.2), there are “too many” (> max(2™ |k|,|E|)) smooth irreducible representations of G for
any 1 < n < oo. (This is one of the reasons to study rather Zg from the following §4, where the
objects are supposed to be more controllable than in Smg(FE), since it is expected that they are of

“cohomological nature”, cf. §1.1.)
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b) The category Adm(F) of admissible representations of any totally disconnected group H is
closed under extensions and under the passages to subobjects in Smy(E).
If H is locally compact then Admpg(E) is a Serre subcategory in Smy (E).
4. Representation theory of locally compact groups is largely determined by representation theory
of Hecke algebras. Though, let H be arbitrary.
Define Dg(H) := lim E[H/U], where E is a characteristic-zero field and the projective system
U

is formed with respect to the projection E[H/V] ™% E[H/U] and H/V — H/U, induced by the
inclusions V' C U of open subgroups of H. For any v € Dg(H), 0 € H and an open subgroup U let
v(cU) be the [ocU]-coefficient in the image of v in E[H/U]. Clearly, any continuous homomorphism
H — H' induces a homomorphism of algebras Dy (H) — Dg(H’).

For each smooth E-representation W of H define a pairing Dg(H) x W — W by (r,w) —
ZJGH/U v(oU) - ow, where U is an arbitrary open subgroup in the stabilizer of w, e.g., U = Stab,,,.
Clearly, the result is independent of the choice of U. This determines a Dg(H )-module structure on
W. When W = E[H/U], this pairing is compatible with the projections vy, so it gives rise to a
pairing Dg(H) x lim E[H/U] — lim E[H/U] = Dg(H), and thus, an associative multiplication

U U

Dg(H)xDg(H) —— Dg(H), extending the convolution of the compactly supported measures. (The
support of v is the minimal closed subset S in the semi-group lim H/U such that v(cU) = 0 for
U

oU, that does not meet S.)

The Hecke algebra of a pair (H,U), where U is a compact subgroup in H, is the subalgebra
Hi(H,U) == hy * Dp(H) * hy in Dg(H) of U-biinvariant measures. Here hy; is the Haar measure
on U, defined by the system (hy)y = [U : UOV]™! > oevyunvioV] € QH/V] for all open
subgroups V' C H. hy is the unity of the algebra Hg(H,U) and hyhyr = hy for a closed subgroup
U’ C U. For any smooth E-representation W of H the Hecke algebra Hp(H,U) act on WY, since
WY = hy(W).

When H is locally compact, and U is open and compact, this definition of the Hecke algebra is
equivalent to the usual one, and for each smooth E-representation W of H the Hecke algebra act
on WY in the usual way, cf. [6].

In the case of H = G and n < oo the Hecke algebras become the algebras of non-degenerate
correspondences on some n-dimensional k-varieties, cf. §3.1, p.27.

5. The smooth representations of any compact group are semi-simple. Let U C H = G be a
compact subgroup, p be a non-zero smooth irreducible representation of U over Q, and o € H be
an element such that 0 "!Ho C H. Define the representation p° of U by (7,u) — (o~ '70)u for all
7 € U and u € p. Let W be a smooth representation of G. Then the multiplicity my (p) > 0 of p in

%M. It is finite, if W is admissible. Define an embedding Homy (p, W) —
oA

u —  oA(u)
Homy (p?, W) by A — o\ L7 |l 7 . In particular, if my(p) # 0, then also

W is equal to

(o~ tro)u 22, ToA(u)
mw(p°) # 0. Clearly, Endy(p) € Endy(p%). Therefore, my (p) = mw (p°), if o "'Ho = H.

Note, that for any pair of compact subgroups U, Us C G any pair of their smooth representations
intertwine in the usual sense, i.e., there exist ¢ € G and a non-zero ¢ € Hom(py, p2) such that if
gk1 = kog and k; € U;, i € {1,2} then ¢p1(k1) = p2(k2)p. Namely, there exists g € G such that
P1lting—1Usg a0d p2|upngu,g—1 are trivial (if p; are of finite length). This can be explained by the
fact that the representation F' (and therefore, the irreducible representation F/k) of G contains
all smooth irreducible (and thus, finite-dimensional) representations of U; (Hilbert’s Satz 90). It is
easy to show that the same holds for F'* /k*.

It is shown in |35, Appendix A, Theorem A.4] that for any compact subgroup K in G the centres
of the Hecke algebras Hg(K) and Hg(G°, K) of the pairs (G, K) and (G°, K) (the definition of
G° is in §1.3 of the introduction) coincide with F - hg, if n < oo, i.e., consist of scalars. This is a
negative result, especially, compared to the analogous questions for p-adic groups.
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In some cases the morphism groups between geometric objects can be identified with the mor-
phism groups between the corresponding G-modules (cf. Propositions 3.1.5 and 3.3.2, and Corollary
3.1.6).

We establish (in Corollary 3.4.9) that the cohomological dimensions of Sm¢ and of C (of smooth
semi-linear representations of () are infinite when n = oc.

By analogy with the Langlands correspondences, one can call the irreducible representations of
G in the image of the functor B" cuspidal, where B" is a functor on the category of primitive
n-motives, defined (in a greater generality) in §4. For groups GL over local non-archimedian fields
there are several equivalent definitions of quasi-cuspidal representations. One of them (finiteness):
the supports of all matrix coefficients of a smooth representation W of a topological group (i.e., the
functions on this group of type (ow,w) for some vector w € W and a vector with an open stabilizer
w in the dual representation) are compact modulo centre. However, it is shown in [35, Proposition
4.6] that for n < oo any such representation of any subgroup of G, containing G°, is zero. This is
deduced from the irreducibility of smooth representations F/k and/or F*/k* of the subgroup G°
of G, and their faithfulness as modules over the corresponding algebras of measures on G: for any
1 <n < oo the annihilator of F'/k in Dy as well as the annihilator of F*/k* in Dg are trivial (|35,
Proposition 4.2]).

In the case n = oo one can establish some analogues of Hilbert’s Satz 90. In particular, as it
follows from Corollary 3.4.8, any smooth G-torsor under a smooth G-group B(F) is trivial for any
algebraic k-group B. However, there are interesting examples of torsors in the case n < oco.

According to Proposition 1.1.9, Ext}SmG(Q)(A(F)/A(k‘),@) = Hom(A(k),Q) if n = co and A is
an irreducible commutative algebraic k-group. If A is an abelian variety then A(F)/A(k) = B(AY)
(here AV := Pic°A is the dual abelian variety), where B! is a functor on the category of primitive
1-motives, defined (in a greater generality) in §4. Therefore, it is natural to compare this equality
with the identity Ext}ka(Q(O), H(A)) = A(k)q in the category of mixed motives over k.

If A = Gy, then the identity Ext}\/le (Q(0),Q(1)) = k* ® Q suggests that the smooth repre-
sentation F*/k* of G may admit a motivic interpretation, analogous to Q(1), though it is not
admissible.

The last section 3.5 contains examples of pairs of distinct extensions of finite type L; and Lo
of k with the same collections JH(L;) and JH(L9) of irreducible subquotients of representations

Q[ Ly Tt F}] and Q[{L2 Tt F'}]. In two of these examples the primitive motives of maximal level
of models of L1 and of Ly are trivial. In one more example L; = k(X) and Lo = k(P4 X) where
X is a product of generically twofold covers of projective spaces (e.g., hyperelliptic curves) over k,
at least one of which is a curve of genus < 1. Thus, it is not excluded that JH(L) depends only on
tr.deg(L|k).

Let us first generalize the fact that there are no finite-dimensional non-trivial smooth represen-
tations of G if n = co.

Proposition 3.0.2. Let W € Smg(FE), and for some subfields Ly G Ly in F|k the subspaces
WOEFILT and WEFITs be finite-dimensional and non-zero. Then W& = WLy # 0. In particular,
if n = 00 and dimpg WEFL < o for any L of sufficiently big finite transcendence degree over k then
W s trivial.

Proof. The representation WOrLT of G%ﬂ ., and the representation WOYrLs of GOL—Q‘ ., are trivial.
Therefore, any vector w € WYFITT is fixed under the action of the subgroup H in G, generated by
the subgroups G pz; (in Gyprry, XGr GOLT\k) and Gy proy XGro G%Q\k' It follows from Lemma

2.2.4 that this subgroup H coincides with G. O

3.1. Hecke algebras and correspondences. Let Hg(U) := Hg(G,U) = hy « Dg * hy.

Proposition 3.1.1. (1) Let H be a totally disconnected topological group and T be a filtering
family of its compact subgroups, i.e. such that any open subgroup contains an element of T'.
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Then a smooth E-representation W of H is 1rreducible, resp. semi-simple, if and only if the
He(H,U)-module WY is irreducible, resp. semi-simple, for each compact subgroup U € T.

EXAMPLE. Let H = G and T consists of compact subgroups U with F'V purely inseparable
over a purely transcendental extension of an extension of k of finite type.

(2) Let Wj for j = 1,2 be smooth irreducible E-representations of H and WYV # 0 for some
compact subgroup U. Then W1 is equivalent to W if and only if the Hg(H, U)-modules WV
and WY are equivalent.

(3) For each open compact subgroup U C H and each irreducible E-representation T of the
algebra Hg(H,U) there is a smooth irreducible representation W of H with 7 = WU,

Proofs from [6, Proposition 2.10] and [35, Lemma 3.2| go through with almost no modifications.

Remark. It would be natural to replace the semi-simplicity or irreducibility conditions for rep-
resentations of Hecke algebras from Proposition 3.1.1 by the corresponding conditions on the rep-
resentations of groups Gp;, for algebraically closed extensions F 'lk in F of finite transcendence
degree. For a certain small (but important) class of representations this is done in Lemma 4.3.1.
The following lemma is a very preliminary step in the general direction.

Lemma 3.1.2 ([18]). Let n = oo, H be a subcategory in Smg, closed under passages to subobjects,
and F'|k be an algebraically closed extension in F of finite transcendence degree. The following
conditions on the subcategory H and F' are equivalent.

1) For any W € H any Gpr-submodule U C WEFIF coincides with the Grr-submodule of
| |
Gpip
G p|pr-invariants in G-submodule, spanned by U: U = <U>GF‘F .
k
(2) For any W € H any surjection Q[{L & FYN — W in Smg induces a surjection of

k _
G ppr-invariants Q[{ L A FIN — worir Smpry,, where F' = L.

— k
(3) For any extension L|k in F of finite type, where F' = L, and any Q C Q[{L /;> FYN such

that the quotient belongs to 'H, one has HémG(GF\F’u Q) =0.

For any irreducible variety Y over k with the function field k(Y) = FU for a compact open
subgroup U in G one can identify the Hecke algebra Hg(U) with the Q-algebra of non-degenerate
correspondences on Y (i.e., of formal linear combinations of n-subvarieties in Y x; Y dominant over
both factors Y'). This follows from the following Lemma and the facts that

e the set of double classes U\G/U can be identified with a basis of Hg(U) as a Q-space via
[0] — hy * o * hy;

e that irreducible n-subvarieties in Y x; Y dominant over both factors Y are in a natural
bijection with the set of maximal ideals of the algebra FU ®;, FU.

Lemma 3.1.3 ([35], 3.3). Let L, K C F be field subextension of k with tr.deg(L|k) = q < oc.
Then the set of double classes GF‘K\G/GF‘L is canonically identified with the set of all points in
Spec(L ®y K) of codimension > q — tr.deg(F|K) (so Gpx\G/Gp, =Max(L ey K), if F = K).
Here G /Gy, is the set of all embeddings of L into F' over k.

Let A?(Y') be the quotient of the Q-vector space Z4(Y') of cycles on a smooth proper variety
Y over k of codimension ¢ by the Q-vector subspace Z9(Y') of cycles ~-equivalent to zero for an
adequate equivalence relation ~. According to Hironaka theorem on resolution of singularities, each
smooth variety X admits an open embedding i into a smooth proper variety X over k. Then A%(—)

can be extended to arbitrary smooth variety X as the cokernel of the map Z%(X) -, Z9(X)
induced by restriction of cycles. This is independent of the choice of variety X .3

JE— N — A
3since for any pair of smooth compactifications (X, X/) of X there is their common refinement X «— X - X/,

-\ B* —, (@) —

i* factors through Z2(X) 2 Z4(X") —— Z9(X) and i*Z%(X) = (i")* 24(X").
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In the standard way one extends the contravariant functors A9( ) and Z9( ) to contravariant
functors on the category of smooth pro-varieties over k. Namely, if for a set of indices I, an inverse
system (X)) er of smooth varieties over k is formed with respect to flat morphisms and X is the
limit, then Z9(X) = lim Z9(Xj), where the direct system is formed with respect to the pull-

jeEI—
backs, and similarly for A?( ). Then A?(X) is the cokernel of P, Z4(X;) — Z9(X). This is
independent of the choice of the projective system defining X.

In particular, as for any commutative k-algebra R the scheme Spec(R) is an inverse limit of a
system of k-varieties, AY(R) := A?(Spec(R)) is defined. Any automorphism « of the k-algebra
R induces a morphism of a system (X)) cr defining Spec(R) to a system (a*(Xj;));jer canonically
equivalent to (Xj);er, and therefore, induces an automorphism of A4(Yg) for any k-scheme Y. This
gives a contravariant functor from a category of varieties over k to the category of Aut(R|k)-modules.

In what follows X will be of type Y for a k-subscheme Y in a variety over k.

The homomorphism of algebras Ho(U)(U) — AY™Y (Y x; Y) is surjective for any smooth
projective Y, where k(Y) C F and U = Gpjyy). This can be seen from the following “moving
lemma”, applied in the case X1 = Xo =Y and Z = X x; X5. (Its present form is suggested by
the referee of [35].)

Lemma 3.1.4 (|35, 3.4). Let Z,X1,...,X, be irreducible projective varieties over k, and let
z 2 X be surjective maps. Let o C Z be an irreducible subvariety of dimension at least

max dim X;. Then « is rationally equivalent to a linear combination of some irreducible subva-
1<;<r

rieties in Z surjective (under the maps p;) over all X;’s.
In particular, the natural projection Z9(k(X) ®; k(Y)) — CHY(X X Y) is surjective for g <
dim X <dimY; and Z9(k(Y) ®k F) — CHY(YF) is surjective for ¢ < dimY < n.

Proposition 3.1.5 ([35], 3.6 +¢). Let Y be a smooth irreducible proper variety over k and dimY <
n. Let X be a smooth variety over k, and W be a quotient G-representation of AY(Xpg) for some
q > 0. Then there are canonical isomorphisms AY(Xyy) — Homg (AS™Y (Yr), AY(XF)) and

Homg (AY™Y (Yr), W) = Homg (Z4™Y (k(Y) @, F), W)
Proof uses Lemmas 3.1.4, 3.1.3 and elementary intersection theory.

Corollary 3.1.6 ([35], 3.7). For any field L' of finite type and of transcendence degree m < n
over k, any field L of finite type over k and any integer ¢ > m there is a canonical isomorphism
AL ®p L') -~ Homg(A™(L' @ F), AY(L ®j, F)), where the both groups are zero if ¢ > m.

3.2. Invariants of subgroups and tensor products.

Lemma 3.2.1. Let W be a smooth G-set, and L be an extension of k in F. Then WEFIL =
ULOCL WGF|L0, where Ly runs over extensions of k of finite type.

The proof is identical to the proof of [35, Lemma 6.1].

Proposition 3.2.2. Let E be either F, or any characteristic zero field with the trivial G-action,
and let Wy, Wo be smooth semi-linear representations of G over E. Assume that either a subgroup
H C G admits no non-trivial smooth finite-dimensional semi-linear representations over FE, or

tr.deg(F|k) = oo and H = G for a field extension L of k in F. Then one has (W1 @p W)l =
WH @pu WH.

(This is not true if tr.deg(F|k) < oo. Namely, if Wi and Wy are non-trivial mutually dual
representations of G of degree one then (W) ®p W2)¢ = E¢ but W& = W§ =0.)

“Conversely”, if for a subgroup H C G one has (W1 @p Wo)? = WH @ gu W then the field FH
15 algebraically closed.

(This is a tiny generalization of [36, Lemma 7.5], the proof is similar.)
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3.3. G- and G°-modules of type A(F)/A(k), where A is a commutative k-group, mor-
phisms between them and a separable closure of a one-dimensional extension of k.

Proposition 3.3.1. If n = 1 then the G°-orbit of x generates the separable closure K, of k(x) in F
for any x € F k. More precisely, K /k* is an irreducible G°-module, and K /k is an irreducible
G°-module if char(k) # 2.

The G°-modules F/k and F* k> are irreducible if either char(k) =0, or 2 <n < oco.

Proof. Let A be the additive subgroup of F' generated by the G°-orbit of some x € F' k. Tt
is shown in [35, Prop. 4.1] that if char(k) # 2 then A is a subfield of F. Besides that, if M is
the multiplicative subgroup of F'* generated by the G°-orbit of some x € F' \ k then M (J{0} is a
G°-invariant subfield of F'.

Clearly, A= M| J{0} = F if n > 2. If n = 1 then Gal(F|Q(G°z)) is a compact normal subgroup
in G°, i.e., it is trivial by Theorem 2.2.1. Thus, the extension F|Q(G°x) is purely inseparable.

Let us show that k(G°z) is a separable extension of k(z). Equivalently, that if oz = z for some
N > 1 then k(x,o0x) is a separable extension of k(z). Let P(x,ox) be a minimal polynomial. Then
Prdx + Prrd(oz) =0 € Qi(%m”k, where either Py # 0, or Pr; # 0 as otherwise P = QP for another
polynomial Q. If P;; # 0 then k(x,0z) is a separable extension of k(x). If Py # 0 then k(x,ox)
is a separable extension of k(ox), and thus, k(z,0~'z) is a separable extension of k(x). Then the
subfield, generated over k by z,0 'z,..., 0~ V=Yg = gz, is a separable extension of k(z). O

Proposition 3.3.2 ([35], 3.6, 4.3). Let 1 < n < oo. Let A and B be reduced irreducible group
schemes over k. Then the natural map Hom(A, B) — Homg (A(F'), B(F')), where Hom(A, B) :=
Homyroup schemes/x (A, B) and Homg is the set of G-homomorphisms, is bijective.

Suppose that the k-groups A and B commutative and simple. Then

Hom(A, B)g — Homg (A(F)/A(k), B(F)/B(k)) <> Homg: (A(F)/A(k), B(F)/B(k)).

Unfortunately, the proof of the second part consists of checking individual cases: A and B are
simple abelian varieties, G, or Gyy,.

3.4. The dominant topology, acyclicity of certain smooth representations of G and co-
homological dimension ([18]). In this section we are going to identify the smooth representations
with the abelian sheaves on a “small” site, and interpret the smooth cohomology (i.e. Ext5,, . (Q,-))
as Cech cohomology of sheaves.

We shall assume that F'|k is an extension of algebraically closed fields of characteristic zero of
countable transcendence degree.

Let ®my be the category of smooth morphisms of smooth k-schemes. We endow ®my, with the
pre-topology, where the coverings are the dominant morphisms.

Lemma 3.4.1 ([18], 1.1). The category of sheaves on ®my, is equivalent to the category of smooth
G-sets.

To a sheaf one associates its “generic fibre”, i.e.;, lim F(U), where U runs over the smooth
U—>

integral k-varieties with the function field embedded into F' over k.

Proposition 3.4.2. Let the transcendence degree of an extension F'|k in F be infinite. Then
HZO (GF|W>W) =gz’ (Gpp, W @Q) =0 for any smooth G-module W.

Smg Smg
Cech cohomology.

k k k
Lemma 3.4.3. The complex (--- — Q[{L(Y?) Tl F}] — Q{L(Y) Tt F}] — Q[{L it F}] — 0)
is acyclic for any L-variety Y. If L = k and Y is smooth and proper then the compleres --- —

Criy2) = Cyiyy = Q— 0 and - - — CHy(Y?)g — CHo(Y)g — Q — 0 are also acyclic.

Corollary 3.4.4. For any W € Ig the complez 0 — W& — WEFk) — WEFR - s exact.
In particular, 0 — CHY(X)qg — CHY(Xyy))g — CHY(Xyy2))g — - .. is ezact.
29



As 7 is right exact, we get from Lemma 3.4.3 the following

k
Corollary 3.4.5. Sending the function field L of a k-variety to Q[{L </—> F}] € Smg, resp. to
Cp € 1g, defines a sheaf on Dmy with values in Sm(()f, resp. in Igp. (]

Denote by H* the Cech cohomology.

Corollary 3.4.6 ([29], Ch.III, Corollary 2.5). H* coincides with H* for any sheaf if and only if
H* transforms any short exact sequence of sheaves to a long ezact sequence of Cech cohomologies.

For any extension K of k in F' with I’ of infinite transcendence degree over K fix a tran-
scendence basis {x1,z9,23,...} = {mgK),xéK),ng),...} of F over K. For each m > 0 set
F = K(zgm,zom.3,T9m5,...), and for each j > 0 fix a self-embedding o; of F over K such

that oj|p, =id if j > s and oj|p, = 0s|p, + Fs — Fyy1 if j < s. For any extension L of K we fix
Ly C Fj isomorphic to L over K and set Lg := o{(Lo).
00—01+02

o0—01
For a G-module W set LW* := (WCrFILo —— WOPILen — 5 WOPILoLi — ),

Proposition 3.4.7. Hgmc (Gpig, W) = HY( EW®) for any smooth representation W of G and any
algebraically closed extension K Dk in F.

Acyclicity of “geometric” G-modules and cohomological dimension of Smg. As in the
proof of Lemma 3.4.1, we associate to a presheaf F on ©my and a filtered union O = lim A

U
of finitely generated smooth k-subalgebras A a smooth Aut(O|k)-set F(O) := lim F(Spec(A)).
A‘)

Our main examples of O will be F and O,,. o
Let us show that F(F)“FI¥" = F(F') for any F' = F’ C F with tr.deg(F’|k) = co.

(As it shows the example of the presheaf F : U — T'(U, ®?9 Qlﬁ/k), the condition F' = F’ is

essential.)
Fix an isomorphism « : F — F’ over k. Then o* : lim F(U) — lim F(V), where
= v—
OU) C F and O(V) C F’ are smooth. For any U there is JUE G such that oloy = alow), 50
lim F(V)= lim oF(U)=FF)" cf. Lemma 4.1.2.
v/ U,o) ™

Assume that F is endowed with transformations i% ;- : F(X x; Y) — F(Y) for any smooth
X,Y and any x € X(k) such that %y © xPry = idgy) and %y, 7 0 ZPIy,y = zP1y 0 i%y,
where xpry : X XY — Y is the projection.

Let R be a presheaf of commutative rings, and F be an R-module. Then the representation F(F)
is an R(F)-module, and such representations (for a fixed R and for all F) form a tensor category
with respect to the operation ®@g(p). In particular, the category of representations of type F(F)
for F taking values in commutative groups is tensor.

Corollary 3.4.8 ([18]). HZ (G, W) = 0 for any W € Ig; HE, (G, F(F)) = {x} for any group-
valued F; and HZ (G, F(F)) = 0 for any F with values in commutative groups.

EXAMPLES of representations of type F(F') as in Corollary 3.4.8 are A(F') for any group k-variety
A, or A(F)/A(k), if A is commutative, CHo(Xp)g, Qpjt rogr QF Q}?\k(ﬂ %1k closed> 2P lkg exacts and
HS. . (F) for any kg C k. (Corresponding functors are: A(O), or A(O)/A(k), CHo(X Xk (—))q:

dR/ko
° o 1 ° ° °
F(_’Qom)v o Qoikor X0 ko closed $XOko exact: A0 HdR/ko(O)‘)

Corollary 3.4.9 (|18]). (1) The categories Smqg and C (c¢f. §1.2) admit systems of acyclic

k k
generators {Q[{L Tt F}}r and {F[{L T F})} 1, where L runs over the subfields of finite

type over k, containing any given extension of k of finite type.

(2) Cohomological dimensions of Smq and C are infinite.
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Al-invariance of some presheaves. Let V} be a category of k-varieties, containing all smooth
varieties. Let £ be a category, where all self-embeddings are isomorphisms (e.g., an abelian category
such that for any object the multiplicities of its irreducible subquotients are finite?).

An L-valued presheaf F on Vj, is Al-invariant, if F(U) = F(U x Al) for any U € V.

Consider any pretopology on Vj such that Al — Speck, (A} ~ {0}) [[(A} ~ {1}) — Al and
Gmyr — Gmp, © — 22 are coverings (in particular, F(AL) — F (G, x) is injective for any
X € Vi and any sheaf on V).

Proposition 3.4.10 ([18]). Any sheaf F on Vi with values in L is Al-invariant.

For a proof one has to note that A' x A’ \ A1 is isomorphic to its quotient by the permutation o
of the two multiples A!, and therefore, as open dense embeddings are covers, F(U x A! x A') embeds
into the Go-invariant part of F(U x Al x Al), i.e., o acts trivially. As U x Al — U is a cover,
pr; = pry oo, and F(U) is the equalizer of the injections pri,pry : F(U x Al) = F(U x Al x A1),
induced by the projections, we get that F(U) — F(U x Al) is an isomorphism.

Proposition 3.4.11. o Any sheaf in dominant topology F is birationally invariant and has the
Galois descent property, i.e. for any Galois coveringY — X one has F(X) = F(Y)AutY1X),
o Any A'- and birationally invariant presheaf F with the Galois descent property is a sheaf.

Proof.

e This is clear, since étale morphisms with dense images are coveringand Y xxY =Y [[---[[Y
for (copies correspond to the elements of Aut(Y|X), the first projection is identical on each
copy and the second projection on the copy corresponding to g € Aut(Y'|X) is given by g).

e Clearly, any birationally invariant A'-invariant Galois-separable presheaf is separable: if
Y — X is a cover, i.e. a smooth dominant morphism, then for any sufficiently general
dominant map ¢ : Y --» P9 (where § = dimY — dim X) we can choose a dominant étale
morphism Y — Y so that the composition Y Y --» X x P is Galois with the group H,
and therefore, the composition F(X) — F(X x P%) — F(Y) — F(Y) is injective. In
the commutative diagram

FX) -  FY) = FY xxY)
T T T

F(X) — F(Y) = FY xxY)
T T 1

F(X) — FXxP) = F(X xPxP)

the vertical arrows are injective, so it suffices to show the exactness of the upper row.
Let f be an element of the equalizer of F(Y) = F(Y xx Y), considered as an element of
F(YxxY). Then f € F(Y xxY) Tt and f € F(Y xx V) 50 f € F(Y xxY)H*H —
F(X x P x P%) = F(X). O

3.5. Coinduced representations. Let K, L, M be a triple of algebraically closed field extensions

of k. Denote by i% the coinduction functor W — Z[{K it L} @2(G ) W from the category of
smooth FE-representations of Gk |y to the category of smooth E-representations of G ;. Clearly, if
K and L are isomorphic then ’Lf( is an equivalence of categories. If K is a subfield of L then the
functor zf( coincides with the functor W~ Z[G ;] S/ (T W, and z§ is the identity functor.

Proposition 3.5.1. e There is a natural isomorphism of functors HO(GM|L, —)o z% = z[L(

o If K is embeddable into L and L is embeddable into M then the functors zﬁ/f o zf( and ’L%
are naturally isomorphic.

4The multiplicity of an irreducible object X in W is defined inductively: it is 0 if for any filtration W 2 Y D Z
the quotient Y/Z is not isomorphic to X; it is N > 0 if there is a filtration W DY D Z such that Y/Z = X and the
sum the multiplicities of X in W/Y and in Z is N — 1. By Jordan-Hélder theorem, the multiplicity is well-defined.
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e For any smooth E-representation W1 of G, and any smooth E-representation Wo of Gy,
one has HomE[GMlk}(iﬁ/[(Wl),iAK/[(Wg)) = HomE[GL‘k](Wl,if((Wg)).
In particular, if K is embedded into L then
e the coinduction functor zf( 15 fully faithful,
e the functor HO(GL‘K, —) is its left quasi-inverse and
e the representation ’i%{WQ 1s “homotopy invariant”, cf. §1.1, p.4, if and only if either Wy =0
or K = L (therefore, the natural morphism if(WGF\K — W is never injective for non-zero
W e I(;).
Proof. One has

HomE[GAﬂk](iy(Wl)’ /I’%(Wz)) = HomE[G{NLL}‘k](Wl? 7/%(W2)) = HomE[GL‘k}(W17 (Z%(W2))GJW‘L)

k
Suppose that 3", a;0; ®w; is a shortest presentation of an element of the module i}/ (Ws) = Z[{ K Tt
M}] ®72/G ] We, which is fixed by the group G- Then, for each i, the orbit Gy o, considered
as a subset of the set of subfields in M |k isomorphic to K, should be finite. This can happen if and

k
only if 0 (K) C L, ie., (i (Wa)) St = ZI{K £ L}] @216, Wa.
Assume that K is properly embedded into L. Let K’ be a non-trivial purely transcendental

E —
extension of K. There is such a field embedding ¢ : K </—> K’ that its Gﬁ| -orbit consists of the
same amount of embeddings as the Gﬁ| go-orbit of its image. Therefore, the sum of elements of

the Gﬁu{,—orbit of £ ® v is non-zero in z%((Wz) for any non-zero v € Ws and does not belong to
(i (Wa)) e 0

In this section we give an example (in Proposition 3.5.3) of a pair of essentially distinct open
compact subgroups U and U’ in G such that there are embeddings of E-representations E[G /U] —
E[G/U'] and E[G/U’'] — E|G/U] of G. This implies that the irreducible subquotients of E[G /U]
and of F[G/U’] are the same. In this example the primitive motives of the maximal level of models
of the fields FU and FU coincide (and vanish). However, as it shows the example of Proposition
3.5.4, the coincidence of the collections of irreducible subquotients is a rather general phenomenon.

But let us start with some general remarks.

Remarks. 0. If U C U’ C H are subgroups, and index of U in U’ is finite then there is a natural
embedding E[H/U'] — E[H/U], [u] = X penyu, hor—uv (M-

1. Representations of G/G°. Let E be an arbitrary field, and U be a compact open subgroup
of G. Then any irreducible E-representation of G, that factors through G/G°, is a quotient of the
E-representation E[G/U] of G.

Proposition 3.5.2. Let 1 < n < oo, F'|k be an algebraically closed extension in F of a finite tran-
scendence degree, and ¢ be a smooth irreducible E-representation of Gpry,. Let W be an irreducible
quotient of the (cyclic, generated by any non-zero element of VO = [id] ® @) representation
V = E[G/Gp ] ®B[Gyr,) P Then there are < max(|k|,|E|) irreducible subrepresentations of

Gpii, one of which is p, in WOl

There are > |k| smooth irreducible E-representations of G. There are exactly 2N smooth irre-
ducible E-representations of G, if k and E are countable.

Proof. Note, that there are [Hom(Q7, E*)| = max(2N,|E|) one-dimensional representations of
Gpr — B, factorizing through the modulus of Gpr. For each ¢ choose W =: W,,. We say
that ¢ ~ ¢ if W, = Wy,. As \WYrIF | < |W| = max(|kl|,|E]), the cardinalities of the equivalence
classes are < max(|k|,|E|). Therefore, |[{¢}/ ~ | > max(2N,|E|), if it is > max(|k|, |E|), i.e. if
2N > |k and 2N > |E|. In any case, there are |k| smooth irreducible representations of G of type
(A(F)/A(k)) ® E, where A is an elliptic curve over k without complex multiplication. O

2. Twists by one-dimensional representations. Let n < oo, and ¢ be a homomorphism

from G/G° to E*. Consider E[G/U]|(¢) as the same E-vector space as E[G/U], but with the
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G-action by [o] —— ¢(7) - [ro]. Then A,([o]) := ¢(0) - [0] gives an isomorphism of representations
E[G/U] 2% E[G/U(¢) of G.

This implies that for any irreducible E-representation W of G the multiplicities of W and of
W (y) in E[G/U] coincide. It is likely, however, that these multiplicities are infinite.

E.g., let L be an extension of k of finite type and of transcendence degree ¢ in F'. Then, at least
if certain conjectures hold, any motivic G-module of level < ¢ is a subquotient of Q[G/Gp|.] of
infinite multiplicity. To see this, fix a transcendence base x1,...,x, of L over k. Then there is a
surjection Q[G/Gpjr] — QSF|k, given by [1] — xsy1dzy A -+ Adxs for any s < g. Any motivic
G-module of level s is a submodule of Q}‘ .. of infinite multiplicity. (In the case s = 1 this is shown
in Proposition 1.1.12.)

Purely transcendental extensions of quadratic extensions.

Proposition 3.5.3 ([35], Corollary 7.3). Let L” C F be a subfield, finitely generated over k, and
F # L". For some u € \/(L")* ~(L")* and some t € F, transcendental over L", set L = L"(u,T),
where T = (2t — u)?, and L' = L"(t). Then for U = Gp| and U' = Gy there are embeddings
E|G/U’'| — E|G/U] and E|G/U] — E[G/U"].

This results from the following combinatorial claim ([35, Lemma 7.2]).
Let H be a group and U and U’ be Subgroups of H such that UNU' is of index two in U:
=(UNUYUa(UNU"). Suppose that T --- 75 # 1 for any integer N > 1 and for any collection

€]~ (€] +[€]
Tiy...,7Nn € U'c N U. Then the morphism of E-representations E[H/U] ———— E[H/U’'] of H

18 mjectwe

Proposition 3.5.4 ([35], 7.4). Fiz an odd integer m > 1 and let m —1 <n < co. Fiz a collection
T1,...,Tm of elements in I with the only relation > 7, a:j =1 over k, where d € {m+1,m+2}. Set
L' = k(xl, ceyT) and L = (L”)<616§ em) where e;x; = (% -x; for a primitive d-th root of unity .
Let L' be a mazimal purely transcendental extension of k in L. Then if U = Gpir and U = Grips

the E-representations E[G /U] and E|G/U’] of G have the same irreducible subquotients.

Proposition 3.5.5. Let g1,...,gn be rational involutions of a k- variety X, generating an infinite
k
group. Then the natural map of E-representations r : E[{k(X) Tt F}] — @;VZI E[{k(X)'9: Tt

F}] of G is injective.

Proof. If a non-zero 0-cycle « is in the kernel of r, and P is a point in the support of «, then the
support of « contains the (g1, ..., gn)-orbit of the point P. As this orbit is infinite, but the support
of « is finite, we get the contradiction, i.e., a = 0. O

ExampPLES. 1. Let X be an algebraic k-group, g1 : @ — 2~ and go : © +— h-2~!, where h € X (k)

k k
is a point of infinite order. Then the E-representations E[{k(X) T F}] and E[{k(K (X)) Tt F}]

of G have the same irreducible subquotients, where K (X) is the quotient of X by the involution g;
(the Kummer variety).

2. It Y} are generically twofold covers of projective spaces over k, at least one of which, for example

Y1, is a curve of genus < 1 then there are embeddings of G-representations [{k(H] 1Y) &= &

L /k , /k
F}] — @Y, E[{k(TITi<jen, j2i Yi)([BY) = F}H00 — E[{k(PY) < F}NT!, where d; = dimY;
and d =Y I, d;

4. HOMOTOPY INVARIANT REPRESENTATIONS OF GG

In this section we continue describing the abelian category Zg (cf. §1.1, p.4 and further).
The category Zg is closed under taking subquotients in Smg (Lemma 4.1.1). If n = oo then a
smooth representation of G is “homotopy invariant” if and only if all its irreducible subquotients
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are (Theorem 1.1.5).% If n = oo then the subcategory Z is closed under the inner Hom functor on
Sme (Proposition 4.1.10). It follows from Lemma 3.4.1 and Proposition 3.4.10 that Zg(E) contains
the category Admg(E) of admissible representations of G (Theorem 1.1.6(2)), if n = co. A direct
(but essentially the same) proof can be found in [35, Proposition 6.4].

The inclusion functor Zg < Sm¢g admits a left adjoint Z = ( {iLnL CL)®DQ : Smg — Ig, cf.

§4.6, so any morphism from W € Sm¢ to an object of Zg factors through ZW € Zg (Proposition
4.1.3).

In the case n = oo there are no non-zero projective objects in Smqg (Remark on p.24). Unlike
Smg, there are enough projective objects in Zg (Theorem 1.1.6 (3)). Namely, the objects Cp, :=

IQH{L Tt F'}] for all field extensions of finite type L|k form a system of projective generators of Zg.
The sheaf X — Cj,x) on Dmy, with values in Z} (Corollary 3.4.5) in Al-invariant (Lemma 4.1.6).

For any smooth irreducible proper k-variety X there is a natural surjection Cy(x) — CHy(X xp
F)g. The first part of Conjecture 1.1.7 asserts that this is an isomorphism if n = co. If X is a
curve then this is verified in Corollary 4.1.7. It is explained in Remark 3 on p.6 that this conjecture
implies the existence of a commutative associative tensor structure on Zg.

There are some reasons to expect that the category of mixed motives can be linked to a full
subcategory of the category of smooth G-modules, whose objects have “motivic” irreducible sub-
quotients. In particular, by analogy with the Hodge theory, it is conjectured (Conjecture 4.1.5) that
the adjoint quotients of the level filtration N, are semi-simple for any object of Zg. This implies
easily (“Corollary” 4.1.5.1) that the level filtration N, is strictly compatible with morphisms in Zg.
In particular, extensions of G-modules from Zg of lower level by irreducible G-modules from Zg of
higher level are (canonically) split. In turn, Conjecture 4.1.5 follows from the first part of Conjecture
1.1.7 and from the “motivic” conjectures, c¢f. Remark 2 on p.6.

It is desirable to extend the category Z¢ in order to be able to consider such G-modules as F'* /k*,
and to extend the filtration N, on Zg to a “weight filtration” in such a way that it was still strictly
compatible with the morphisms.

Note, that this is not true for the filtration Ny on the arbitrary smooth G-modules. E.g., any
irreducible admissible G-module of level 1 (corresponding to an abelian variety) admits a non-trivial
extension by the irreducible G-module F* /k* (which is also of level 1), cf. p.9.

Usually, the weight of an irreducible object W7 is greater than the weight of an irreducible object
Wa, if Ext! (W1, Ws) # 0, so weight(Q) <weight(F* /k*) <weight(A(F)/A(k)) for any abelian
variety A over k, which is not good, if A(F')/A(k) corresponds to the motive Hi(A) of weight 1. To
resolve this “contradiction” one could try to use a grading of rank > 1.

This bigger category should admit a duality functor, which is absent in the case of the category
Ia.

We summarize the principal results of §4.3, except those mentioned in §1.1, in the following way.

Theorem 4.0.6. (1) For any 1 <n < oo and q > 0 there is a functor BI:

{pure primitive g-motives over k} B semi-simple admissible G-modules
pure p q ’ of finite type and of level ¢ ’

fully faithful for ¢ < n. (The level of a G-module W is an integer q such that NJW = W
and Ng_1W =0 for the filtration N,, defined on p.5.)

(2) If n < oo then there is a bilinear symmetric non-degenerate G-equivariant form on the
G-module B" (M) with values in the oriented G-module Q(x) of degree 1, where M =
(X, Ay(x)) is the mazimal primitive n-submotive of the motive (X, Ax) and dim X = n.

This form is definite, if for the (n — 1)-cycles on the 2n-dimensional complex varieties
numerical and homological equivalences coincide (e.g., if n < 2), and therefore, B™ factors
through the subcategory of “polarizable” G-modules (i.e., admitting a positive form as above).

5If n < oo then there exist non-trivial extensions of Q by Q, i.e., the category Z¢ is not closed under extensions
in Smg.
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This follows directly from Corollary 3.1.6 and Propositions 4.3.2, 4.3.11, 4.3.13. Roughly speak-
ing, the functor 27 is defined as the space of 0-cycles over F' modulo “numerical equivalence over
k”. Details are in §4.3, p.42, where it is shown that it is pro-representable. It follows from Propo-
sition 4.3.9 that B4((X,n)) depends only on the birational class of X. Moreover, it follows from
Proposition 3.3.2 that the composition of the functor B! with the foretful functor to the category
of G°-modules is also fully faithful, and the functor B! from Theorem 4.0.6(1) is an equivalence of
categories if n = oo, cf. §4.1.

Conjecture 1.1.3 admits the following form, “convenient for checking in particular cases”.

Conjecture 4.0.7. For any q > 0 the functor B9 is an equivalence of categories if n = co.

One can show that if U # 0 is a quotient of F* then the functor U® : ZTo — Smg is fully
faithful. Therefore, there exist other fully faithful functors from the category of pure motives to the
category of smooth graded representations of G, besides B®, cf. also Lemma 1.2.3. However, these
functors do not preserve the irreducibility.®

There are some indications that the category of primitive n-motives “is not too far” from the cat-
egory of polarizable (in the sense of Theorem 4.0.6(2)) G-modules (at least if n < 2). In particular,
the vanishing of the subspaces in the polarizable G-representations fixed by the compact subgroup
Gp|L(z) (here L|k is a subextension in F', and x is an element of I, transcendental over L, such that

F = L(z)), corresponds to the triviallity of the primitive n-submotives of the motive (Y x P! ),
where dimY < n. However, one has to impose some extra conditions, since it can be easily deduced
from Proposition 3.3.2 and the full faithfulness of the functor B! that for any G-module W there is
at most one character ¢ such that W (vy)) = B! (M) for a pure 1-motive M, cf. [35, Corollary 4.5],
but the twists of polarizable G-modules by the characters of G of order 2 are also polarizable.

Possible links to mixed motives. There are several cohomology theories of algebraic varieties
are related by comparison isomorphisms and behave in a parallel way. This led A.Grothendieck,
P.Deligne, A.A Beilinson et al to a conjecture on existence of a universal cohomology theory — with
values in an abelian category of mixed motives — and on identities between the extension groups
between these cohomological objects and K-groups.

The references for this circle of ideas are, e.g., [5], [16].

For smooth projective varieties this theory is given by the Grothendieck motives, but only under
assumption that numerical and homological equivalences coincide.

V.A . Voevodsky, M.Levine and M.Hanamura (cf. [46, 25, 12]) have defined triangulated categories,
supposed to be equivalent to the derived category of mixed motives. The principal difficulty consists
of constructing of a t-structure, whose core was the desired abelian category of mixed motives.
This would be possible, if the “standard” (including Beilinson’s) conjectures were proved, cf. [4].
(It should follow from Conjecture 1.1.7 that Zg is equivalent to a localization of the homotopy
t-structure on the Voevodsky triangulated category of motives.)

Another approach, due to Deligne and Jannsen, cf. [17], consists of considering of compatible
collections of “realizations”. Here the difficulties are related to the Hodge and Tate conjectures.

As it is mentioned in §1.1, to a given cohomology theory H* one can associate the G-module
H}(F) = lii)nH*(Y)/NlH*(Y), where Y runs over all smooth proper irreducible varieties over k

with function fields embedded into F', and N*® is the coniveau filtration. Clearly, H(F') € Zg and
if H*(k) is finite-dimensional over a field E then H}(F) € Admg(E).

Then (assuming that numerical and homological equivalences coincide) H}(F') is a semi-simple
G-module, admitting a decomposition H;(F) = @, H*(M) ®gna(ar) B(M), where M runs over
the isomorphism classes of irreducible primitive motives (as in Proposition 1.1.11). This implies, in

bW ® U is irreducible only if U is irreducible and W % U. Therefore, if U # 0 is a quotient of A(F') for a
commutative k-group A then one may suppose that A is simple and it is not an abelian variety, i.e. either G,,, or

Ga, and that U = A(F)/A(k). f W = E(F)/E(k) for an elliptic curve E over k then the morphism W ® U 20 Q%‘k
is non-zero and it is not injective, where w is a non-zero regular 1-form on E, and 7 is a non-zero invariant 1-form on
A, ie., W®U is reducible.
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notations of §4.3, that H*(N) = @, Homg(BF(N), H}(F)) for any motive N. Thus, the realization
functor (on the category of pure motives over k), corresponding to a theory H*, can be decomposed
into a composition of the functor B® and a (contravariant) functor Homg(—, HX(F')) (on the category
of G-modules).

4.1. The category Zg, level filtration, differential forms...

Lemma 4.1.1 ([35], 6.6). The functor HO(GF‘L, —) : Ig — Vectq is exact for any field extension
L of k in F. Ig is closed under taking subquotients in Smg.

For each integer ¢ > 0 letfg be the full subcategory in L with the objects W such that WCriF =0
for any algebraically closed F' with tr.deg(F'|k) = q — 1. Then {I{.}4>0 is a descending filtration
of Iz by Serre subcategories.”

This implies that Admg(E) is an abelian Serre subcategory in Smg(E), [35, Corollary 6.5].

Lemma 4.1.2 ([35], 6.7). If F'|k is an extension in F of infinite transcendence degree then the

functor HU(GF‘W, —) from Smg to SmGﬁk is an equivalence of categories (inducing an equiva-

lence of Iz and IGF\k)' The functor HO(GF‘K,f) from Smqg to Vectg is exact if and only if
tr.deg(K|k) = tr.deg(F|k)(< 00).

The proof makes use of a field isomorphism F — F”_ identical on k.

The functor Z. The level filtration N, on a G-module M is defined on p.5. Equivalently,
N;M is the minimal subrepresentation of G in M, containing M CFIF; for some algebraically closed
F; C F. Clearly, N, is a functorial (restriction to N;M of any G-homomorphism M — M’
factors through N;M’) non-negative increasing (N;M C N;i1M) multiplicative (with respect to
the tensor products: Njy;(M;® Ma) O Ny My ® N;Ms) filtration, which is exhausting on the smooth

representations (M = ;5o N; M, if M is smooth).

Proposition 4.1.3 ([35], 6.8). For any integer ¢ > 0 any W € Smq admits a quotient T'W € 17,
such that any G-homomorphism from W to any object of Ig; factors through ZTTW. The functor

Smg AN T4, given by W —— T9W , is right ezact and T9W = IW /Ny IW.

One can deduce the existence of the functors Z7 from general categorical facts, cf. [27, §5.8].
However, they are constructed in [35] “explicitly”, which makes a link from the generators of Zg to
the Chow groups of 0-cycles rather transparent, cf. [35, Proposition 6.17]:

Proposition 4.1.4. If n = oo then for any irreducible variety X over k the kernel of the natural

k
projection Q[{k(X) T F}] — Cyx) is the sum over all curves y € (k(X) ®; F')1 of the subspaces

spanned by those linear combinations of generic (with respect to some field of definition of the
curves y) F-points of the curves {y} that are linearly equivalent to zero on any compactification of
the normalization of {y}.

EXAMPLE. Let A be a one-dimensional group scheme over k£, m > 1 be an integer, and W = N,W
be a smooth representation of G, where ¢ <n — 1. Then Z(S™A(F) ® W) = 0, if either m is even,

or A =G,, or A = G,,. In particlar, the natural projection A(F)%N — /\gndQA A(F)g induces an

isomorphism I(A(F)%N) AN I(Agnd@A A(F)q), if n > N — 1. (This is shown in [35, p.204] when
EndA = Z; the general case is similar.)

Remark. 7 is not left exact. E.g., it transforms embedding k¥ — F to k — 0.
Conjecture 4.1.5. If n = oo then for any 7 > 0 and any W € g the representation gerW of G
s semi-simple.

A full subcategory of an abelian category B is called a Serre subcategory, if it is closed under taking subquotients
and extensions in B.
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This is clear, when j = 0, and can be easily deduced from Corollary 4.1.8, when j = 1.

“Corollary” 4.1.5.1. Suppose that n = oo and Conjecture 4.1.5 holds for any 0 < j < q—1. Let
L|k be an extension of finite type and tr.deg(L|k) < q. Then

o the functor I9 is exact on Lg (which is equivalent to the strict compatibility of the filtration
No C -+ € Ng_1 with morphisms in Ig);
o the algebra A = CH® (Spec(L ®y L))q of correspondences modulo rational equivalence is
semi-simple and its length is finite,® where s = tr.deg(L|k).
The first part of this “Corollary” is proved in [35, Corollary 6.10], and the second one is evident

from the formula A = Endg(W), where W := CH® (Spec(L ®, F))q = grNW is semi-simple and
cyclic.

Remark. The inclusion Q[G/Gpr]° — Q[G/Gp)z] is an example of a morphism of smooth
G-modules, which is not strictly compatible with the filtration N, since N deg(zjt)QIG/Gr|L]°
coincides with

Z aq o] Z ae = 0 for any F’ with tr.deg(F'|k) = tr.deg(L|k) ¢,
[0]eG/Gr L o(L)CF’

which is different from Q[G /G |r]°; whereas Q[G/G (L] = Nir.deg(Lk)QIG/GF|L]-

Lemma 4.1.6 ([35], 6.12). For any 1 < n < oo, any subfield L1 C F of finite type over k, and any
unirational extension Lo of L1 in F of finite type there is a natural isomorphism Cp, — Cp,.

The objects of Zg of level 1. For any W € Smg there is a surjection @eeWGF\F’ (eyg —
N1W, where F'|k is an algebraically closed extension in F with tr.deg(F’|k) = 1. This means that
to describe the objects of Z¢ of level 1, it suffices to treat the case of W = (e)¢, where Stab. 2 Gp|r,
with L = k(X)) for a smooth proper curve X over k of genus g > 0. Then W is dominated by Cf.
Let Pic/ X be the Picard variety of the linear equivalence classes of divisors on X of degree j.

Proposition 4.1.7 ([35], 6.20 + 6.21). Let X be a smooth projective curve over k, k(X) be its func-
/k

tion field, ZF*(k(X) @k F) be the kernel of the natural projection Q[{k(X) & F}| — Pic(Xr)g
2
and Q[{k(X) c/—> F}]° be the group of generic degree-zero O-cycles over F. If n = oo then

k
IZ5(k(X) @ F) =0, ZQ[{k(X) </—> F}]° = Pic®(XF)q and Cyx) = Pic(XF)q.
The proof is based on the facts that i) sufficiently big symmetric powers of a smooth projective
curve are projective bundles over its Jacobian; ii) [35, Lemma 6.18]: the G-module Z{* (k(X) ®y F)

is generated by wy = Zj\le oj — Z;vzl 7; for all N > 0, where (o1,...,0N;71,...,7N) is the
generic F-point of the fibre over zero of the morphism XV x;, XV 2N, Pic° X, sending a point

(z1,...,ZN;Y1,--.,yN) to the class of Z?le(:pj — ;).

Corollary 4.1.8 ([35], 6.22 + 6.23). If n = oo then A(F)q is a projective object of I for any
abelian k-variety A, and any object of Zg of level 1 is a direct sum of a trivial module and a quotient
of a direct sum of modules A(F)q for some A by a trivial submodule.

The inner Hom.
L k
Corollary 4.1.9 ([35], 6.25). The inclusion Q[{L(X) et F}] € Q{k(X) il F}] induces a

L
surjection of Gp|r-modules Q[{L(X) </—> F}] — Cyx) for any extension L of k in F with

tr.deg(F|L) = oo and any irreducible k-variety X.

8Together with “Corollary” 1.1.8.1 this would imply that in particular the algebra A is finite-dimensional over Q.
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Theorem 1.1.5 and the following Proposition indicate a connection between Zg and the category
of effective homological motives. In §4.3 one discusses also non-effective motives.

Proposition 4.1.10 ([35], 6.26). The inner Hom functor on Smq (cf. §3, p.24) induces an inner
Hom functor on Ig, if n = oco. The level of Hom(Wy,Wa) is < q, if Wi, Wo = N,Ws € I and
qg<1.
EXAMPLE. Representing G as the cokernel of a closed embedding Gm‘ Fx) G
k

of topological groups, one gets a G-action on the set of orbits {k(Y) — F(X)}/Gal(F(X)|F(X)).
Then Hom(Ck(X), CHQ(YF)Q) = CH()(YF(X))Q.

{F(X), FHE(X)

Remark. Unlike the objects of Z¢ (in the case n = oo), for any totally disconnected topological
group H there are many smooth representations H with non-trivial contragredients. Namely, the H-
equivariant pairing Q[H/U|®Q[H /U] — Q, given by [o]|®[7] —— 0, if [0] # [7], and [¢0]®[0] — 1,
defines an embedding of Q[H /U] into its contragredient. Here U is any open subgroup of H.

Proposition 4.1.11 ([36], 7.6). Let W € Zg and q¢ > 0 be an integer. Then
o any G-homomorphism W —- Q% Q}r‘k factors through W — Q%ﬂk C ®% Q};lk;

o for any smooth proper k-variety Y a field embedding k(YY) <5 F over k induces an imjection
o(W)N L*QZ(Y)U{ — I'(Y, Q‘{,lk), and there are the following canonical isomorphisms

(2) Home (Cryy, ®F Q) < DY, Q3 ,) — Homg(CHo(Yr), @F Qi)

The first isomorphism is functorial with respect to the dominant morphisms Y — Y’ the
second one 1is functorial with respect to arbitrary morphisms Y — Y.

Sketch of the proof. w € Q% Q},‘k is interpreted as a rational section of the coherent sheaf

Qg/ﬂk’AY on a smooth projective k-variety Y. The principal idea: if w is not in the span of the
images of I'(Y, Q;,‘k) for smooth proper k-varieties Y then the direct image fuw = tr ppy(w) of
w is a fixed non-zero element of the G-module, generated by w, for an appropriate finite morphism
f:Yy — }P’%. To ensure that f.w # 0, one uses the poles. Even if w has no poles, but does not
belong to Q;;‘ &> its direct image under an appropriate finite ramified morphism has poles.
4.2. The “Kiinneth formula” and tensor structure. A tensor structure on Zg. As it shows
Example after Proposition 4.1.3 on p.36, Zg is not closed under tensor products in Smqg. Define
W1 ®7 Wy by I(Wl & Wz).

It can be seen from the following example that this operation is not associative on Smg. Let

k
W; = Q{k(X;) Tt F'}] for some irreducible k-varieties X;, 1 < j < N, N > 2. Then W1 ® --- ®
k
Wy = &b Q[{k(x) Tt F}], s0 Z(W; ® - - - ® W) is isomorphic to the direct sum

z€Spec(k(X1)®k - @rk(XN))
over all x € Spec(k(X1) ®y -+ ® k(Xn)) of the representations Cy(y). If X1 = Xy = A} then
IW1 =1IWsy = Q, and therefore, W1 @7 (W @7 Q) = W1 @7 IW, =ZIW7 = Q.
On the other hand, by Noether’s Normalization Lemma, (W) @7 W2)®7Q = Z(W; ®W3) contains
submodules, isomorphic to Cy(x) for any curve X over k.

Lemma 4.2.1 ([35], 6.27 + 6.28). Let n = co. Then for any finite collection of smooth irreducible
proper k-varieties Xy, ..., Xn there is a canonical surjective morphism I () : Cr(X1xpxp Xn) —
7 (Ck(Xl) R C’k(XN)) of G-modules.

If Crxy x e xpxn) = CHo((X1 X - X XN)F)q then I(a) is an isomorphism.

If Z(«) is an isomorphism then Q1 is associative, the class of projective objects of I is closed

under @7, and W1 @z - Q@ Wy =Z (W1 ®--- @ Wx).
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The “Kiinneth formula” for products with curves. The restriction map 7 +— T]k ®T]k

defines a G-homomorphism Q[{k(X) ®x k(Y") X Fy Cr(x) @ Cr(yy- It follows from Lemma

4.2.1 that « is surjective, which gives a surjection Cy(xx,y) — Cr(x) @7 Cr(y)-

- k -
For arbitrary A € Cyxy and B € Cyy) choose some liftings A € Q[{k(X) T F}] and B €

Q[{k(Y) Tt F}] such that all embeddings from A and from B are pairwise in general position.’

One has to check that the class of A x B € Q[{k(X x; Y) Tt F}] in Cyxx,y) is independent

~ ~ ~ k ~ k
of the choice of A and B. If some other liftings A" € Q[{k(X) A F}] and B’ € Q[{k(Y) i F}]

k
are defined similarly, choose some lifting B" ¢ Q[{k(Y) T F}] of B such that all embeddings

from A and from B/ as well as from A’ ‘and from B " are pairwise in general position. Then
Ax B - A’xB’:(A A’) B”+A><( B”)+A’ (B” B’).
N /

k
Thus, one has to check the following condition *x y: if the class of ) a;7; € Q{k(X) — F}]
i=1

k
in Ci(x) is zero and all 7; are in general position with respect to o : k(Y) c/—> F' then the class of

N k
vi= > ai(r,0) € Q{k(X xY) X F}]in Cy(xx,y) is zero. Also, one has to check the condition
i=1
*Y’X.l
By definition of the functor Z, there exist purely transcendental extensions L;|Lj, elements o €

Gpi

Q[{k(X) & F}] i and §; € Gp|r; such that éaﬂi = Zj(fjaj — ).

If o is in general position with respect to the compositum L of all 7;(k(X)) then there exists
k € Gpg, such that ko =: o’ is in general position with respect to the compositum of all L;. Then
v i=ky =3 ai(n,0") =3 (6o —aj) @0’ Set Kji= Lo’ (k(Y)) and K := Li0o'(k(Y')). Then

'€ Ql{k LG LL ISR I dental extension of K, and there exi
aj@o’ € Q[{k(X xxY) < F}] ", K} is a purely transcendental extension of K, and there exist

&; € Gpjor(k(y)) Such that 5;\% = 5j‘L;.- This implies that v = 3_,(£(a; ® 0’) — a; ® 0’) belongs,

k
by definition of the functor Z, to the kernel of the projection Q[{k(X x; Y) it FY] — Crxx,v)s

and therefore, the same is true for ~.

Let us check that the conditions xxy and *y x are equivalent. Let a generic curve C on Y,
passing through o, be defined over a field containing all 7;(k(X)). Then o is linearly equivalent to
a linear combination (3 of generic points of C' (which are therefore generic points of V). Then the
image of v in Cy(xx,y) coincides with the image of ), a;7; x (0 — ), which shows the implication
*Y,X = *X)Y-

EXAMPLE. Let us check the condition xxy in the case, when X is a smooth proper curve.
Let K = o(k(Y)). Then ), a;7; is a generic divisor on the curve Xg over K, linearly equivalent
to zero. According to [35, Lemma 6.18], the G'pjg-module of generic divisors on Xx over K,

M

linearly equivalent to zero, is generated by the elements wy = ) (0 — a}) for all M > 0, where
j=1

(01y.. o0 Ji, ... ,UM) is a generic F-point of the fibre over 0 of the morphism X?(/[ XK Xi\(/[ —

Pic® Xk, sending (z1,...,Za; Y1, - - -, Yar) to the class of Z (zj—yj). Clearly, the compositum of all
]7

0j(k(X))o(k(X)) is in general position with respect to K. The same is true for any other element

in the G g-orbit of wy. Therefore, as we have already seen above, the image of ), a;(7, ) in
Cr(xx,Y) 18 zero.

9First, choose arbitrary A and B. For each point P of the support of B choose a generic curve Cp passing through
P, on which P is a generic point with respect to a field of definition of Cp. Replace P by a linearly equivalent linear
combination of points of Cp in general position with respect to A. Then we get the desired B.
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Thus, one has a canonical G-module surjection Cyx) ® Cpyy — Ci(xx,Yv), at least if X is a
curve, and the composition Cy(xx,y) — Crx) ®7 Cryy — Cr(xx,y) is identical.

Corollary 4.2.2. Ifn =00, X andY are irreducible k-varieties, and X is a curve then Ci(xx,y) =
Crx) @1 Ci(y)-

EXAMPLE. Let X;, 1 < j < N, and Y be irreducible k-varieties. Assume that all Xj,
possibly except one of them, are curves. Let ¥ --» X;, 1 < j < N, be dominant maps.

Then there is a natural morphism Cyyy — O~y Indeed, in this case there is a natu-
k(IT=1 X5)
k
ral morphism ®;V:1 Crxy) — O LX) such that its composition with Q[{k(Y) it F}] —
=

/k /k
QUIL{k(X;) & F} = QL Qk(X;) & F}] —» Qi Cix;,) factors through Ciy). As-

suming that the functor (—), from Proposition 1.2.2 is exact (cf. also p.44), one can construct a

natural morphism Cypy — Cy(x) for any irreducible divisor D on any irreducible k-variety X, cf.
Corollary 4.4.8.

4.3. Geometric construction of admissible representations. Now we turn to constructing
of a supply of semi-simple admissible representations of G. Conjecturally, in the case n = oo all
semi-simple admissible representations of G are obtained in this way.

Set BY(X) = AY(X), if ~ is numerical equivalence (over k!). As before, Xp := X xj E for any
k-variety X and any field extension E|k.

Recall, that B?(X) is a limit of certain quotients of Q-vector spaces of numerical equivalence
classes of cycles of codimension g on the smooth proper k-varieties, but not over F, even if X = Yp,
cf. p.27 before Lemma 3.1.4.

Lemma 4.3.1. Let W € Smg. If Homg(Z9™ X (k(X) @ F), W) = Homg(CHo(XFg), W) for any
smooth proper k-variety X then W is semi-simple if and only if the G pi-modules WO gre
semi-simple for all algebraically closed F' of finite transcendence degree over k.

Proof. Clearly, W € Zg. By Proposition 3.1.1, G-module W is semi-simple if and only if for
any L C F of finite type over k and any purely transcendental extension L'|L in F with L/ = F
the module WEFIL' = WCFIL gver the Hecke algebra Haypy = hyDhy 2 (hprohp | 0 € G)g
is semi-simple. Here hy/ is the Haar measure on Gpr,. As W is a quotient of a direct sum of
objects of type CHy(XF)g, the action D@ WEFIL — QG/GpiL]® WYFIL — W factors through
CHy(Yr)o® WErIL — W, where Y is a smooth proper model of L|k, cf. Proposition 3.1.5. Then
the action Heg,, , factors through CHo(Yivy)o = hyCHo(YF)q.

In other words, the action of HGF\L’(G) on WEFIL is determined by the action of HGZ\L(Gf\k)’

so the semi-simplicity of the HGF‘ L,(G)—module WCFIL is equivalent to its semi-simplicity as a
Hey,, (Ggpp)-module. O

L|L

Proposition 4.3.2. G-module Bg( := BY(XF) is admissible and semi-simple for any smooth proper
k-variety X and any ¢ > 0. If ¢ € {0,1}, or ¢ = dim X < n then B% is of finite length.

Proof. By the standard argument, we may assume that k is embedded into the field C of complex
numbers, and thus, for any smooth irreducible proper d-dimensional k-variety Y with k(Y) =:
L C F, the space B(Xp)9FIL is a quotient of a finite-dimensional space Z4(X X} Y)/ ~pomC
H?1((X %3 Y)(C),Q(q)), so the representation BY(Xr) is admissible.

By Proposition 3.1.5 and Lemma 4.3.1 (with W = BY(Xp), WErL' = WErL = BI(X,)), the
semi-simplicity of the G-module BY(XF) is equivalent to the semi-simplicity of the HGZ\L(GZ| )"
modules BY(Xp) for all L C F as above.

The kernel of AY(X x;Y) — AY(Xjy)) is a AYY x}, Y)-submodule in A9(X x; Y), since
a o 3 = prys,(prisa - pras Q) for its arbitrary element o and for any element 3 € ALY %, Y), so the

projection to Y of the support of oo (3 is contained in pry((D xx Y) [ )supp(f3)) for some divisor
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D on Y. As its dimension is equal to d — 1, the divisor D cannot dominate Y. This implies that
A%(Xj,y)) carries a natural A4(Y x; Y)-module structure.
According to [15], the algebra BY(Y x; Y) is semi-simple, so the B*(Y x} Y')-module BY(Xpyy)

is also semi-simple. By the moving Lemma 3.1.4, the ring homomorphism HGI‘L(GZ‘]C) —

BYY x,Y), induced by the identification of the Hecke algebra HGZ\L(Gflk) with the algebra of
non-degenerate correspondences on Y (cf. p.27), is surjective. This endows any B(Y xjY')-module

with a structure of a (semi-simple) HGI‘L(GZ‘k)—module.

The length of any cyclic semi-simple G-module, in particular of B()i(imX (Lemma 3.1.4), is finite.
It follows from Lefschetz’ theorems on hyperplane section and on (1,1)-classes that Bg( is a
subquotient of B‘}{ for any smooth ¢-dimensional plane section H of X, so the length of B§< is also
finite. ]

Corollary 4.3.3. Homg(BY(L' @y F), BP(L ® F)) = 0 for any pair of fields L, L’ of finite type
over k with tr.deg(L|k) = p, tr.deg(L'|k) = q and p # q.

Proof. If either p > n, or ¢ > n, then at least one of the modules BY(L' @y, F') and BP(L ®y F) is
zero, so we may assume that max(p, ¢) < n. By Proposition 4.3.2, the G-modules BY(L' ® F) and
BP(L ®y, F) are semi-simple, so Homg(BY(L' @y, F), BP(L ®y, F')) is isomorphic to Homeg(BP(L ®y,
F),BY(L' ® F)), so we may assume that p > ¢. Then, by Corollary 3.1.6, Homg(BI(L' ®j
F),BP(L®y F)) = BP(L®y L") = 0. O

Corollary 4.3.4 ([35], 3.12). For any smooth irreducible k-variety X of dimension < n+ 1 and
for ¢ € {0,1,2,dim X} there ezists a unique G-submodule in B% = BY(X xj F), isomorphic to
Bi(k(X)® F).

For each open compact subgroup U C G and a smooth irreducible k-variety Y with k(Y) = FY
define a semi-simple G-module (of finite length) B, as the minimal one among such that the
Ho(U)-module (B%,)V is isomorphic to BY(Z xj Y). By Proposition 3.1.1, it exists and it is
unique.

Lemma 4.3.5 ([35], 3.13). Let X, Y and Z be smooth irreducible k-varieties, dim X = dimY =
n > dim Z, and p,q > 0 be integers.

Then Homyy ) (BY(Z % Y), BP(k(X) ® k(Y))) = 0, if either ¢ = dimZ < p, or ¢ = n and
dimZ <p,orqg>nandp+q>dimZ +mn, or ¢ <p and q € {0,1}.

Proposition 4.3.6 (|35], 3.14). Let X and Y be smooth irreducible k-varieties, and either q €
{0,1,2}, or ¢ =dim X = dim Y. Then there is a unique submodule in B1(X X Y') over the algebra
(BIMX (X xp X) @ BIMY(Y x Y)P), isomorphic to its quotient BI(k(X) ® k(Y)).

The existence of such submodule follows from the semi-simplicity of the module B4(X xj Y)
(|15]). The uniqueness follows from Lemma 4.3.5.

Representations contragredient to the motivic ones. For each open compact subgroup
Uin & (cf. §2.5) fix a smooth proper irreducible k-variety Yy and an embedding of its function
field into I such that FY = k(Yy)L,, for an integer m > 1, where k(Yy) and L,, are algebraically
independent over k, ie. dimyYy = m — 1. Let ny := dimy Yy. If Y}; is another variety with
the same properties then there is a canonical isomorphism B"QJ((Y(})L) = B"U((Yy)r), induced by
direct image isomorphisms of type B"U ((Yy)r) = B"HI((Yy x P?)p).

For any ordered pair of open compact subgroups U 2 U’ in & one can choose smooth proper irre-
ducible k-varieties Y77, Y7 and embeddings of their function fields into F such that FY = k(Yy) Ly,
and FU' = k(Yy:)Ly, for an integer m > 1, and k(Yy)k(Yy) and L, are algebraically indepen-
dent over k. Then the direct image homomorphism induces a canonical embedding B"V ((Yy)r) —
B (Y )).

This enables us to form an inductive system (B"V((Yy)r(x)))u, where U runs over the set of

open compact subgroups in &.
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Corollary 4.3.7. Let X and Y be smooth irreducible proper k-varieties. then the Q-vector spaces
BdlmX(Xk.(y)) and Bdle(Yk(X)) are naturally dual to each other. If dim X < n then this duality
induces a non-degenerate ®-equivariant pairing of admissible &-modules

BdimX(XF) ® Uhi>n BnU((YU)k(X)) — Q(x)-

Proof. Let n > dimY > dim X. By Proposition 3.1.5,
BdimX(Xk(y)) _ Homg(BdimY(YF), BdimX(XF))

and BY™Y (Y} x)) = Homg(BY™X(Xp), BY¥™Y (Yp)). By Proposition 4.3.2, the representations
BYMY(Vr) and BY™X(Xp) of G are semi-simple, and their lengths are finite. For any a €
BYImX (X, y)) and B € Bdimy(Yk(X)) set (a- B) = tr(ao B) (= tr(f o «)). Here a and 3 are
considered as G-homomorphisms. If o # 0 then there is an element v € BdimY(Yk(X)) such that

o oy is a non-zero projector in EndgBY™ X (XF), so the form ( - ) is non-degenerate. Define a

form B X (Xp)® lim B™ ((Yir)px)) — Q(x) by a®B +— (a-B)-[U] for any a € BIX (X p)U
U*}

and 3 € B" ((Yu)r(x))- This is well-defined by the projection formula. O

t

The projector Aj(x). For any pair of varieties X,Y let be the transposing of cycles,

induced by X x Y =5 Y x X. Denote by Apx) = tAk(X) the identity (diagonal) element in
BIMX(k(X) @, k(X)), considered as an element of the ring B X (X x; X).

Lemma 4.3.8 ([35], 3.15, 3.16). For any irreducible smooth proper k-variety X of dimension
n the element Ayxy is a central projector of the algebra B"(X xy X). The left (equivalently,
the right) ideal, generated by Ay(x), coincides with (the image of the ring) B"(k(X) ® k(X)).
Apx)BYI™ X (X)) = B X(k(X) @ L) for any field extension L|k.

Proposition 4.3.9 ([35], 3.17). (X,Ayx)) is the mazimal primitive n-submotive of the motive
(X, Ax) for any irreducible smooth proper n-dimensional k-variety X. The motive (X, Ay(x)) is a
birational invariant of X.

The birational invariantness of (X, Ay(x)) follows from the birational invariantness of YPrim for
any smooth projective k-variety Y, cf. p.42 below.

Corollary 4.3.10 ([35], 3.18). Let X and Y be smooth irreducible proper k-varieties, and dim X =
dimY = n. Then Ak(X) : Bn(X Xk Y) = BTL(X Xk Y) : Ak(y) = Ak(X) . Bn(X Xk Y) . Ak(y)
is a unique (B"(X Xj X) ® B"(Y X Y)P)-submodule in B™"(X X Y), isomorphic to its quotient
B"(k(X) @ k(Y)). Similarly, B(k(X) @k k(Y)) = Agxy - BUX X Y) - Agyy for ¢ =0, 1.

The functors B® and BY. For a smooth projective k-variety Y let the motive YP"™ be defined
as the intersection of the kernels of all morphisms ¢ : Y — M ® L for all possible effective motives
M, or equivalently, YP"™ is the cokernel of the morphism Y. ¢p: @ M ®L — Y (with the

MgL-2y
same M). Clearly, Y +—— YP"™ is a functor from the category of smooth projective varieties to the
category of pure motives. Any birational map is a composition of a blow-up and a blow-down with
smooth centres ([1, 47]). As a blow-up does not affect YP"™ (cf. [28]), this implies that YPH™ is an
invariant of the function field k(Y). According to the Hironaka theorem, for any extension L|k in
F of finite type there is a smooth projective k-variety Y|7) with the function field L, and therefore,

we get a canonical projective system of motives {Y&Tm} 1, indexed by the subfields L in F of finite

type over k.
Now define the functor B® = @BM in Theorem 1.1.2 from the category of pure motives to the

category of graded Q-vector spaces, by setting B/ = lim Hom (Y[%]"im ® L%, —) for its degree i
L—)

component. Let also B9 denote the restriction of BIY to the subcategory of primitive g-motives.
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rim

G acts on the projective system {Y[Iz]1
BI(M) and B*(M).

—1
b by Y AN Yoz, o(L) 2 L, so G acts on the limits

Remark. Any pure motive M = (X, ) is isomorphic to b M;; @ L% where M;; is a
0<i,j,i+j<dim X
primitive j-motive and L. = (P, P! x {0}), so Bl (M) = @D, 97(M,;). This is proved by induction on
dimension d of X as follows. Let Myg = ﬂ<p ker(p), where ¢ runs over the morphisms from M to the
motives of type (Y xP*, A) for all Y with dimY < d. (By Proposition 4.3.9, Mog = (X, 70 Ay x)).)
As the length of M is < dimg End(M) < oo, the motive M/Myq can be embedded into a finite
direct sum of motives (V; x P, A) with dimY; < d. As (Y; x PL,A) = (V;,A) @ (Y;,A) @ L, the
induction is completed. In fact, the decomposition M = b ]\A/fij, where ]\Zj is isomorphic
0<i,j,i+j<dim X

to M;; ® L®, is canonical, since ]\Zj is the sum of the images of all morphisms ¢ : N @ L& — M
for all possible primitive j-motives N.

Proposition 4.3.11 ([35], 3.19). Ifdim X = g < n and M = (X, w) is a primitive g-motive then
B9(M) = BO(M) = 7BI(XF).

The proof uses an equivariant version of resoluiton of singularities and [15].
It follows from Proposition 4.3.11 and Lemma 4.3.8 that

Corollary 4.3.12 ([35], 3.20). Ak(X)Bd(X Xk Y) = Bd(k‘(X) 2y k‘(Y)), and Ak(X)Bq(X Xk Y)
vanishes for any q < d := dim X, any irreducible smooth proper k-variety X and any irreducible
smooth k-variety Y.

“Polarization” on B"(k(X) ®; F) and polarizable G-modules.

Proposition 4.3.13 (|35], 3.21). For any irreducible k-variety X of dimension n there exists a
symmetric G-equivariant non-degenerate pairing

B (k(X) & F) @ B"(k(X) &1, F) = Q)
such that (p*(), - ) = (- ,p«(+)) for any generically finite rational map p. In particular, { , ) induces
a non-degenerate pairing between the submodules W := 1 B"(k(X)®y F) and ‘W = 'mB"(k(X)®j
F) for all projectors m € B™(k(X) ® k(X)).
If for the (n — 1)-cycles on the 2n-dimensional complex varieties numerical equivalence coincides
with homological one then ( , ) is (—1)"-definite. E.g., this is true for n < 2.

The form (a,v) € Q(x) is defined as (a -7) - [U], where a,y € B"(k(X) ® F') are fixed by a
compact open subgroup U C G, @,7 are the images of a, v € B"(k(X) @, k(Yy)) in B"(X x;Yy) in
the sense of Proposition 4.3.6. Here Yy is a smooth proper k-variety with the function field k(Yy),
identified with FV, and ( - ) is the intersection form on B™(X xj Yy). By the projection formula,
(cr,7) is independent of the choices made, and (p*(-), - ) = ( -, p«(+)).

The rest of the proof uses the standard intersection theory, Lemma 4.3.5, and Hodge index
theorem.

4.4. Valuations and associated functors, [39]. In this section to each smooth representation of
G we associate a sheaf in the smooth topology on Spec(k). For that to each smooth k-variety X,

its scheme-theoretic point p € X and an embedding k(X,) — F we associate a collection Jx , of
subfields in F', and define the stalks by Wx ), := WEFIkGD) 0 (ZF,/GJX ) WGF\F”>.
Naturally, for each ¢ > 0 we would like to obtain the sheaf Q%‘ i from the smooth representation
q
Qpik
more natural) — ®'(]9 Q%’JI i» and another with the Galois descent property. The “homotopy invariance”

of G. There are two options for the representation @, Q};‘ . one “homotopy invariant” (and

means that for any projective bundle X — Y over a smooth proper base Y the induced map of
sections is an isomorphism.
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The “’globalization” functor. For any collection J of subfields F” C F the additive functor
QW= ey WErIF” on Smg preserves the surjections, if any element of J is contained in an
element of J of an arbitrary big finite, or countable transcendence degree over k, and the injections
in general.

Remark. If a collection J consists of all purely transcendental extensions of k then ® ](Q%,l B =
Q%k if n > ¢, and ®J(Q;},|k7reg) = 0 for any ¢ > 1. Therefore, in general ®; is not exact, even if
n = 0o.

In particular, to any discrete valuation ring O, € Py, one can associate the set J of all its subfields.
We consider the following functor ®;: (=), : Smg — Smg,, W = Wy :== > 4 WCFla(r) =
ZUGGI, WCFle(F) C W. Set r.(w) .= ﬂovepg W, and I' := I', i.e., I', are additive functors on
Smg to itself.

Exanere. QUL & FYl, = QUL & 0,3 and (FIL & FY)), = 0, 2 0,)] (and al these
modules are zero, if tr.deg(L|k) > n —r); D'(Q[{L it F})) =T (F[{L Tt F}])=0,if L # k.
Lemma 4.4.1. If n = oo then there are canonical tsomorphisms

Homg (W, W') = Homg, (W,,, W') = Homg, (W,,, W)
for any W.W' € Sme. In particular, the functor (=), : Smg — Smg, is fully faithful.

REMARK. Clearly, the functor (—), does not preserve the irreducibility: usually the surjection
w, — HO(GI,, W,) is non-trivial and non-injective. E.g., the length of the G,-module (F/k) is
41 (F/k)y = Op/k 2 my = p1 2 p2 2 -+ 2 p,. However, (—), preserves the existence of a
cyclic vector: if W € Smg is cyclic then the Gp//p-module WEF/F' admits some cyclic vector w
(as HO(GF/F,, —-): Smg — SmGF,/k is an equivalence of categories), and thus, w generates the
Gy-module W,,. It follows from Lemma 4.4.1 that if W is irreducible and W,, is semi-simple then
W, is irreducible.

Lemma 4.4.2. Let J be a collection of algebraically closed subfields F” C F of countable transcen-
dence degree over k. Then the functor ®; is exact if and only if one of the following equivalent
conditions on J holds:

o for any integer N > 1, any extension L of k of finite type, any collection of embeddings
k k
& L L F; such that F; € J for all1 < j < N, and any o : L L F' there is an element

k
a € Q[G] such that a&; =0 for all1 < j < N and coc — o € Q[{L it F"| F"e J}];
o for any irreducible k-variety X, any integer N > 1, any collection of dominant k-morphisms
fi + X — Y; such that dimY; < dim X for all 0 < j < N and fo factors through f; for

k
neither of 1 < 7 < N, and any generic point o : k(Yp) </—> F there is a generic 0-cycle

a € QX(F)] such that (fj)sa = 0 for all 1 < j < N, and (fo)sa — o € Q[{k(Y0) A

F" | F" e Y.

The conditions of Lemma 4.4.2 are satisfied for ¢ in general position with respect to the com-
positum of all £;(L). This and the following fact suggest that the functor (—), can be exact.

Proposition 4.4.3. Let H be an algebraic k-group, N > 1 be an integer, and H; be a k-subgroup
for each 0 < i < N. Suppose that H; normalizes H; for each pair 0 < i < j < N, and H; is
contained in Hy for neither 1 < i < N. Denote by f; : H — H/H; the corresponding projections.
Then there exits a 0-cycle o € Q[H(F)] such that (f;)sa =0 for any 1 <i < N, and (fo).a # 0.
More explicitly, almost all 0-cycles of type (hy — 1)---(hny — 1), where h; € H; for all 1 <1i < N,
satisfy these conditions.

Denote by T =T, = Iy, : Smg — Zg the left adjoint of the inclusion functor Zg — Smg,

k
and set Cf, := Tp|,Q[{L Tt F'}] for any finitely generated extension Lk, c¢f. Theorem 1.1.6 (3).
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k
Lemma 4.4.4. If n = oo and r = 1 the projection Q[{k(X) it Ou}] — Cyx) is surjective

for any irreducible variety X over k. In particular, (Cyx))v = Ci(x), and W, = W (and thus,
L(W) =W, =W) for any W € Ig.

Lemma 4.4.5. Suppose that n = oco. Then (W1 @ Wa), C (W1), ® (Wa), and T'(W; @ Wa) C
L(Wh) @ T(Wa) for any Wi, Wy € Smqg. However, (W @ W), # W, @ W, if W = Q[F \ k.
If either W1 is a quotient of A(F) for some commutative algebraic k-group A, or W1 € g, then
(W1 @ Wa)y = (W)y @ (Wa)y for any Wa € Smg.

Remark. 1. If W carries an F-vector space structure F'® W — W then, by Lemma 4.4.5, W,
carries an O,-module structure: (F@W), = O,@W, — W,,. Clearly, the morphism F®o, W, —

k
W is injective, but not surjective, as it shows the example of W = F[{L </—> F}].
2. Clearly, I', preserves injection, but not surjections. Namely, let W := ®f€vF — QN1 be

Flk
given by a1 ® -+ ® ay +— aidag A -+ - Aday. Then W, = ®f€V Oy, if n > 2N, so (®g71 911‘7'\190)” =

B Qb for any kg C k; and T(Q@) F) = k, but T (Q,) = Dy e for any 7 > 1, cf. [39]. In
the case n = oo one can also use Lemma 4.4.5.

For an integral normal k-variety X with k(X) C F let B(X) be the set of all discrete valuations
of F of rank one, trivial on k such that their restrictions to k(X) are either trivial, or correspond
to divisors on X.

Set W(X) := WEreO N (), o) W W

Clearly, if a dominant morphism U — X transforms the divisors on U to divisors on X then
B(U) CV(X), so W(X)CW(U).

If X = Uy UU; then B(X) = B(U;) UB(Uy), since X! = U UU;, so W(X) = W(U;) N W(Us),
ie, U W(U) for open U C X is a Zariski sheaf on X.

Remark. WYFIk) N W, depends only on the restriction of v to k(X), since the set of Grirx)-
orbits GFWX)\G/GU of valuations of F' coincides, by Proposition 2.4.2, with the set of discrete

valuations of k(X) of rank < r. E.g., if the restriction of v to k(X) is trivial then WEFIkx) C W,

k k

ExaMpPLES. 1. If V =Q[{L & F}],or V=F[{L T F}] then V(U) = 0 for any non-trivial field
extension L|k of finite type and any smooth U over k.

2. If V= Qf,, then V(U) = Q%) for any smooth U over k.

3. fV = Sym%Q}jlk then V(U) C SymZ(U)Q}C(U)‘k consists of elements with poles (with respect
to the lattice Syms@(U)Q}Q(U)‘k) of order < s for any smooth curve U over k.

Note, that V is functorial with respect to all morphisms of smooth k-varieties; I'(V') is “homotopy
invariant” if and only if s = 1.

4. IV =W ®F for some W € Zg then V(U) = (WGF\W ® C’)(U))GWWU) for any irreducible
smooth affine U over k, where O(U) is the integral closure of O(U) in F.

Consider the following site . The objects of § are the smooth k-varieties. The morphisms
in § are the locally dominant morphisms, transforming the non-dominant divisors to divisors.
The coverings are smooth morphisms, surjective over the generic point of each divisor downstairs.
Denote by Shv($)) the category of sheaves on §. Consider the functor ® : Shv($)) — Smg, given
by F — F(F) := lim F(Spec(A)) € Smg. Here A runs over the smooth k-subalgebras of F.

A—)

EXAMPLE. If j < 1 then F: X +— ZJ(X[) is a sheaf on §), and F(F) = Z/(L ®; F). In particular,
® is not faithful, since F(F)=01if j=1and L = k.

Proposition 4.4.6. A choice of embeddings into F' over k of the function fields of all irreducible
k-varieties determines a functor Smg — Shv($)), V — V.

Question. Is it right adjoint to ®7
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The “specialization” functor.

Lemma 4.4.7. If r = 1 and n = oo then HO(GI),—U) gwes functors Smg — SmGK(ka and

wik-  The natural homomorphisms of G x-modules WCriFr HO(GI,,WU) are
surjective for all W € Smq. They are isomorphisms, if the functor (=), is ezxact.

Ia — IGN(

Corollary 4.4.8. For any smooth irreducible divisor D on any smooth proper irreducible k-variety
X there is a natural morphism Cypy — Clx), if (=) s evact for r = 1, making commutative
Ck:(D) — CH()(DF)Q
the diagram ! ! .
Crxy —» CHo(Xr)g

This would be evident if the first part of Conjecture 1.1.7 hold true.

Lemma 4.4.9. Let F be a functor on the category of smooth k-varieties (and of all their mor-
phisms). Suppose that F(Oy) = F(F)y, cf. p.30. Then HQ(G:E,}"(F)U) = F(k(v)).

ExAMPLES. 1. For a smooth proper k-variety X and ¢ > 0 the functor F : Y — CHY(X x;Y)
satisfies the assumptions of Lemma 4.4.9, and F(F) = CHY(XF).

The isomorphism Ho(Gl, CHY(Xp)) = CHY(X, ) is nothing but the specialization homomor-
phism CHY(Xp) — CHY(X,,) (cf. [42]), which is Gl-invariant, and thus, factors through the

coinvariants HO(GI,, CHY(XF)).

2. The functor F : Y — I'(Y, Q.?Uc)’ where Y is a smooth compactification of Y, also satisfies

the assumptions of Lemma 4.4.9, and F(F) = F(F), = Ok reg
The reduction modulo the maximal ideal induces a surjection QZ,)U‘ B Q;(U)‘ ,, and an isomor-

phism Ho(Gl, Diires) = oo s O
3. F:Y — Q[O(Y)] is an example of a functor with F(O,) = Q[O,] # F(F), = Q[O, ~ (k +

m, )] @ Q[k]. However, even in this case one has HO(GI,,]:(F)U) = F(k(v)) = Q[r(v)].

Corollary 4.4.10. Let X be an irreducible variety over k with the function field embedded into F,
and Y C X be an irreducible divisor. The discrete valuations v : F* /k* — T of F' of rank 1 such
that k(X) N Oy = Oxy (so k(v|px)) = k(Y)) form a single Gp(x)-orbit. Then any embedding

k ~
kE(Y) Tt F induces a canonical isomorphism WEFIk) = Ho(GL, W,)Grire0NGe i (2, is ezact.

~

Proof. By Lemma 4.4.7, WO 2, HO(G}L,,W@). One can show that the sequence 1 —
GF|L N G:r, — GF|L NG, — Gn(v)|n(v|L) — 1 is exact, which implies that

Gl‘(/ V) k(v ~
) 2 Ho(Gl, W) rienGe — Ho(G W) S, O

(WGF‘F/

Restrictions on the objects of Z; and on the quotients of objects of Zg ® F. Suppose
that n = oo.

One gets from Lemma 1.2.3 the conditions V,, ®p, F' =V and I'(V) @ F — V for any W € Zg
and any semi-linear quotient V' of W ® F (“the interesting objects of the category C of smooth
semi-linear representations of G' are globally generated”). However, it remains to check that these
conditions are non-empty on the set of irreducible objects.

Corollary 4.4.11. Let I(, be the mazimal full subcategory of g, such that for its objects W the
map WCrr HO(G]:, W) is an isomorphism, where v is a discrete valuation of rank 1 trivial on
k. If n = oo then I7, is an abelian subcategory, closed under passages to the subquotients in Zg.

The proof uses Lemmas 4.1.2 and 4.4.7. It follows from Conjecture 1.1.7 that 7/, = Zq.

Let Z (resp., C_) be the (maximal) full subcategory of Sm¢ (resp., of C), whose objects W
satisfy W = W, (resp., W = F ®p, W,). Clearly, these subcategories are closed under taking the
quotients and contain Zg (resp., Zg ® F).
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Lemma 4.4.12. Assume that (=), is ezact. Then I/, (resp., C_) is a Serre subcategory in Sme
(resp., in C). Moreover, Iér +71a.

The inclusion functors Ig — Smg and C— — C admit right adjoints W — T'(W) and V —
N, (F ®0, V), respectively, but do not admit left adjoints.

Remark. Assuming that Corollary 4.4.10 holds, the following construction should give a fully
faithful functor from Ig to a category of (birationally invariant) functors on the smooth k-varieties
with all, not necessarily smooth, morphisms, which is a right quasi-inverse of ® : F — F(F), cf.
p-45.

As usually, we assume that the function fields of irreducible k-varieties Y C X are embed-
ded into F. For any W € I/, the natural homomorphism WPk —s HO(G:E, W) factors through
WErkx) — HO(G;E, W,)¢*NGrike) | By Corollary 4.4.10, the space HQ(G;';, W,)GeNGrIE) is canon-
ically isomorphic to WEFIk(Y) if E(X)NO, =0xy. O

4.5. Restriction of the objects of Z; to some special Galois subgroups, and Z-induction.
In the spirit of Howe, Bushnell-Kutzko et al., one can study the smooth representations of a locally
compact group, restricting them to open compact subgroups.

In the case of group G and n = oo, if one restricts oneself to the subcategory Zg then a natural
replacement of open compact subgroups is the open compact subgroups of &, cf. Proposition 4.6.1.
Fix a subfield K in F', purely transcendental over k, over which F' is algebraic.

Let IT be the set of isomorphism classes of all (non-zero) smooth irreducible representations p of
U = Gpg over Q, and W be a smooth representation of G. Then, as a U-module, W' is isomorphic
to a direct sum of all representations p € II with some multiplicities m(p) > 0. Let 0 € G be
an element such that o(K) C K. The twist p” of a representation p of U, and an embedding
Homy (p, W) — Homy (p?, W) were defined in §3, p.25. It was mentioned there that if m(p) # 0
then m(p?) # 0. Besides, m(p) = m(p?), if o(K) = K.

Remark. Tt was mentioned at the beginning of §3, p.25 that any pair p, p’ € II intertwine.

The restriction of the Z-induction functor Smy — Zg to the finite-dimensional p is defined
by p — W, = Z(Q[G] ®QIG,v] p), where FX°r? is unirational over L, L|k finitely generated and

U-invariant. In general, the functor of the Z-induction is defined by the additivity.

Conjecture 4.5.1. (1) There are finitely many (or there are no) isomorphism classes of irre-
ducible objects of I conlaining a given irreducible smooth representation of Gk, where
K is purely transcendental over k and F' s algebraic over K.
(2) Any irreducible object of I contains an irreducible (smooth) representation of Gy that
does not enter in any other irreducible object of Lg.

Remarks. 1. There are many irreducible smooth representation of G|k, entering in neither of

objects of Zg. Any non-trivial p € II such that F*'? D K is unirational (e.g., purely transcendental)
over k is an example of such representation.

2. Examples of representation of G'p|g, entering into a unique irreducible object of Zg, are the
trivial one-dimensional and such non-trivial irreducible p € SmGFl x> entering into at least one

object of Z¢, that F*®'P is a purely transcendental extension of the function field of a smooth
projective curve over k with a simple (non-zero!) Jacobian.

3. Let us deduce the part (1) of this Conjecture from the motivic conjectures and Conjecture
1.1.7.

Let p be an irreducible smooth representation of Gp|g, and F kerp he a finite extension of K, i.e.
a purely transcendental extension of L, which is of finite type over k. If W contains p then G|
has a fixed vector. If W is irreducible then there is a surjection C;, — W. Let us show that,
assuming “all the conjectures”, C'y has only a finitely many irreducible quotients. The quotients of
level j are the quotients of grizCr. If C, coincides with the Chow group CHo(Xr)q for any smooth
projective model X of an extension L|k, and the filtration F* coincides with the motivic one then
gri=Cy, is determined by the motive H24mX =3 (X Q(dim X)) = HI(X,Q(j)). We may thus assume
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that X is j-dimensional. In that case the quotients of level j are the summands of the semi-simple
representation grj»VCHo(XF)Q = CHy(k(X) ® F)q of finite length.

4.6. Alternative descriptions of Zg. There are (at least) three more ways to describe the cate-
gory Zg: 1) as the category of non-degenerate modules over an associative idempotented algebra;
2) as a full subcategory in Smg; 3) as a category of homotopy invariant sheaves of vector spaces in
the dominant topology on Spec(k), cf. §3.4.

“Homotopy invariant” representations as non-degenerate modules. If n = co then the
action of the associative algebra Dg := lim E[G/U] of the “oscillating” measures on G (for which
U

all open subgroups and their translates are measurable), cf. the beginning of §3, p.25, on any
object of Zg(FE) factors through the action of its quotient Cg := lim Cp ® E, since the morphism
L

EG/GpiL] ®F WEFIL — W of representations of G factors through I(EG/GpiL] ®F WErIL) =
CL@WCrL — W.

For any compact subgroup U in G the action of its Hecke algebra Hg(U) := hy * Dg * hy on
WY factors through the action of its quotient Cg(U) := hy * Cg * hy in Cg for any W € Zg(E).
E.g., if FU is purely transcendental over L and L is of finite type k then Cp(U) = CLU ®F =
EndIG(E) (CL X E)

Let Hz := limlim CLF‘K be the associative idempotented algebra without unity. The images

hg of the HaaI; measuies on G|k for purely transcendental extensions K of subfields of finite type
over k in F' over which F' is algebraic, are projectors in the algebra Hz.
Then the category Z¢ is equivalent to the category of non-degenerate modules over Hz, i.e. such
modules W that W = HzW.
The algebra Hr is isomorphic to the Hecke algebra (of locally invariant measures with compact
support) of neither locally compact group, since any, e.g. finite-dimensional, subspace in lim Cf
L

is a left ideal in Hz, which never happens in the Hecke algebras. Indeed, if there is a non-zero
finite-dimensional left ideal a in the Hecke algebra of a locally compact group H then the union
of the supports of the measures in a is compact and left-invariant, and therefore, the group H is
compact. Then the smooth representations of H are semi-simple. It follows from the Mittag-Leffler
property of the system (C¥);, and from Theorem 1.1.6 (4) that lim C¥ # 0.

L

The categories Zg and Admg. The category Zg admits also a description in terms of the
locally compact group & from §2.5, if n = oco. Namely, define Zg as the full subcategory in Sme
with “homotopy invariant” objects W: WEFILLm = WEFILLm(S) for any m > 1, any extension L|k
in I of finite type and any transcendence base S of F' over LL,,.

Proposition 4.6.1. If n = oo then the forgetful functor to the category of &-modules induces the
following equivalences of categories: I — Te and Admg — Ze N Adme.

Proof. To construct a quasi-inverse functor Zg — Zg we have to define the value of ov for some
given W € Zg, v € W and o € G. There exist a subfield L C F of finite type over k and an integer
m > 1 such that the stabilizer of v contains Gp|rr,,. Let LLpy = L'Lyy, where L' C F is of finite
type over k, and let L' and L,, be algebraically independent over k.

Let N > m’ be an integer such that L'oc(L’) and Ly are algebraically independent over k. Take
any o' € Gp|r, such that o'|f/ = o[z and set ov := o’v. One has v € WORIE L — WErILy | 5o
ov is independent of particular choices of N and of o”.

Now we check independence of L’. Suppose that v € WO L WO L Since v €
WGF‘L/L”Lm’+M”, it suffices to treat the case L'’ C L”. As above, we choose an integer N > m”
such that L”o(L") and Ly are algebraically independent over k, and some o” € Gz, such that

o"|pn = o|pr. Then ¢” can also serve as a o/, i.e., 0’'v = o'v.
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This gives us a map G x W — W. Clearly, this is a linear action, and the stabilizer of v contains
the open subgroup G|z, and thus, W becomes an object of Zg.

As L; is purely transcendental over L; 1 for any j > 1, and the admissible representations of G
are “homotopy invariant”, the forgetful functor induces Admg — Adme, thus giving the second
equivalence. O

Remarks. 1. There exist admissible representations of & outside of Zg, e.g. Q(p) & I for any
non-trivial character p of &.

2. Zg is closed under taking subquotients and direct products (cf. §3, p.24), but not under
extensions in Sme. As any morphism from W € Smeg to an object of Zg factors through the
canonical map to the direct product over all morphisms from W to representatives of all isomorphism
classes in Zg, there is a functor 7 : Smg — Zg left adjoint to the inclusion functor Zg — Smg.

The Z-induction functor from §4.5 is the composition of the coinducing Smy — Sme, of Z and
of the equivalence from Proposition 4.6.1.
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