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s-‘o, m e ,. .

Given an arithmetic torsionf;ee subgyoup I' of the group G of real
points of a conngctcd semisimple glqebtaic group over § the cohomologqgy
B*y(l‘\x}t) of I' can be defined as the cohomology of the complex *(T'\X;e)
of @-valued smooth differential forms on T\X , where X denotes the
associated symmetric space. This paper continues in the case of an arithmetic
subgroup T € SLn(z) the general discussion in [27], I how Eisenstein
series can be used to construct harmonic forms on T[\X which represent non-
trivial cohomology classes in H*(I'\X;¢) .

Starting with the Borel-Serre compactification T\X of T\X whose
boundary a(r\'i) is a union of finitely many faces e'(P) associated to
the proper parabolic @~subgroups of G modulo I'-conjugation one studies the

various restrictions
(1) ry : BY(M\X;@) = B*(I\X;@) - H*(e'(P),C)

of the cohomology of T onto the cohomology of Aa face. Via Eisenstein series
one tries to construct classes in H*(T\X;&) with a non-zero restriction
to 3(1‘\?('). and to get hold of cross-sections to (suitable families of) the
restrictions in (1) or, ultimately, the restriction r* : H*('\X,T) +
> B*(_a(l‘\i) ,C) in this way. For motivation and background we refer to [12],
131, [27].

This approach was initiated by Barder ([12], [13]). If the @~rank of
G is one, he has shown the existence of a subspace H* (T'\x;&) in

Eis
A*(I\X;€) which restricts
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isomorphically onto Im r and whose elements are obtained either by ewvalua-
ting suitable Eisenstein series at special points or by taking residues of
such at simple polés. Since there is almost no information concerning the
behaviour of Eisenstein series at certain values which are of interest here
the result of Harder has to be seen as an answer up to the existence of
poles. It can be made more precise in the case 'SLZ/k defined over an al-
gebraic number field k where one gets out of this a complete description
of Im r* (cf£. [12], [14]).

For groups of higher rank the situation is not investigated thoroughly.
However, as a first step, there is a general result (cf. [27], § 4) describing
in which way an Eisenstein series E(¢,A) which is associated to a cuspidal
differential form on a face e'(P) and depends on a complex parameter A
provides us with a closed harmonic form on TI'\X and with a non-trigvial class
in H*(T\X;€) if E(¢,A) is holomorphic at a special point Ao uniguely
determined by ¢ . As examples in [12], [27] show E(¢,A) may very well have
poles at such points; therefore it makes sense in dealing with the condition
of holomorphy to limit ourselves to special cases.

Given an arithmetic subgroip T of SI.n(Z) » B> 2, this paperv
discusses the questions mentioned in thé case of Eisenstein series associated
to cuspidal forms on faces e'(P) corresponding to a l-conjugacy class of
maximal parabolic @-subgroups of G = SLn(n) {i.e. faces of minimal co-
dimension in 3(TF'\X) ). Let C(P) denote the class of maximal parabolic
@-subgroups associated to P (If n = 2m is even we have to assume that P
is not of type m in the sense of 3.1.). As a main result, we construct a
subspace HX . (M\X,E) in H*(I\X,E) generated by regular Eisenstein coho-
mology classes which describes completely that part of the cohomology at

infinity of T contributed by the cusp cohomology spaces B;“P(c' Q) ,€)
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where Q runs through a set of representatives for the elements of C(P)
modulo conugation by T . By a regular Eisenstein class we mean a class
which is represented by a harmonic differential form E(#,Ao) on IM\X ob-
tained as a value of an Eisenstein series E(¢,A) at a special point Ao
where lE(Q,A) is holomorphic in Ao . We note that we are not forced to
use residues of. Eisenstein series in the description of BE (P) (N\X,@) . It

maps isomorphically under the natural restriction onto the image of

(2) BE*(N\X,0) + @ H* _ (e'(Q),D)

r* :
c(P) ,cusp cusp

and its image is of dimension equal to one half the dimension of the right
hand side in (2) for a congruence subgroup I = I'(k) .

We note that for different associate ;:lasses C(P) the corresponding
subspaces HX ., (MX,e) in H*(I'\X,T) are linearly independent.

This result is in fact a consequence of a more detailed study of the
behaviour of Eisenstein series as above at specia). points, of the correspon-
ding cohomology classes and its images under the various restri.ctiéns. Sec~
tion 2 reviews briefly, in a form convenient for us, the ingredients of the
construction of Eisenstein cohomlogy classes and some of the results in
[27),1 we will need lateron. As a first step towards the proof we show that
every cuspidal cohomology class ([¢] in H;usp(e' (P) ,£) has to be of
"tempered type” (4.3.). By some additional arguments this is a consequence
of determining (originally done by Casselman) the irreducible unitary re-
presentations of SLn(:R) which occur with non-zero multiplicity in the
cuspidal spectrum Li(l‘\snn (R)) and have non-zerc relative Liealgebra
cohomology. Since there is no reference for this we have included a proof

in section 3. This implies
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in particular a strong vanishing result for the cusp cohomology
B;usp(l‘\x,u:) ¢ H*(I"\X,€) of T outside a range [Cu(n) ,co(n)] of length
rk SL_(R) - rk SO(n) centered around the middle dimension (1/2) -dim X .
The bounds cu(n) ’ Co(n) are explicitly given in terms of n in 3.5. It
turns out, that the "cuspidal cohomology dimension” Co(n) is much smaller
than the cohomological dimension cd@(l) of T .

Since a class ([¢] in qusp(e'(P) ,&) is of "tempered type”, the
question of holomorphy of the associated Eisenstein series E(¢,A) can be
attacked by the methods developed in [27], § 6. We obtain that E(¢,A) is
holomorphic at the special point A o under a certain condition on the degree
of [¢] (cf. 4.4). This provides us with a non~trivial cohomology class
[E(¢,A°)] in H*(T\X,C) . The image of this class under the various restric-
tions rﬁ in (1) is determined in 4.4.(2)-(4). As a special case it turns
out that for a given class [¢] of a degree greater or equal to the cuspidal
cohomological dimension C_(n) the class [B(Q,Ao)l in H*(M\X,C) re-
stricts non-trivial to the class (¢] we started with and trivial to all
other faces e'(R) * e'(P) . This is obtained by a study of the constant term
of E(¢.Ao) along R and the intertwining operators involved.

Given the maximal parabolic @-subgroup (not of type m if n = 2m )

Theorem 4.7. deals then with the subspace MX,) which is generated

B (p ¢
by the regular Eisenstein cohomology classes constructed as above. Some
partial results in the case P of type m are discussed in 4.8., 4.9., and
we indicate briefly in 4.10. some consequences out of our results so far for
the structure of the cohomology df a congruence subgroup [(k) as a module
under the finite group SLn(Z/kZ) . We conclude section 4 with some
examples and remarks concerning cusp cohomology classes in B;u'p(l‘\'f,ﬂ

resp. BR* (e'(P),E) .

cusn
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In section 5 we indicate briefly how unpublished results due to Lang-
lands and Borel (cf. 5.1.(4) resp. 5.3.(5)) imply that the subspace
Ea (®) ("\X,E) constructed above is as large as possibie and describes com-
pletely that part of the cohomology at infinity of I' contributed by the
cusp cohomology spaces © H*(e'(Q),r) (cf. 5.4. - 5.6.).

I wish to thank A. Borel for helpful discussions about 5.1. - 5.3.,
and, in particular, for allowing me to sketch the main arguments for his
yet unpublished results used in there. I would also like to thank D. Vogan
and N. Wallach for some representation theoretical discussions, in particular,

for explaining the results in {33] to me.

Notation. Beside the usual conventions we fix the following ones:

{1) The algebraic groups considered here are linear and can be identi-
fied with algebraic subgroups of some g.n(t) . We follow the notations in
[1]. 1£ G is (Zariski)-connected @-group, we denote by G = G(R) the
group of real points of G . An arithmetic subgroup of G is a subgroup of
G(@) which is commensurable with ¢(G) ~ gl-n(Z) for some injective
morphism ¢ : G g—‘n defined over @ . E:or a connected Q~group G we put

°_<_;_ = M ker x2 where X runs through the group X (G) of @-morphisms from

]
G to G_I..1 . The group og_(l?.) contains each compact subgroup of G(R)
and each arithmetic subgroup of G ([9], 1.2.).

(2) With respect to the theory of representations of a Lie group with

finitely many connected components we use mainly the notations in [10].
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§ 1. Preliminaries on cohomology of arithmetic groups

1.1. Let G be a connected reductive P-group with z'ankQ G >0 and
without non-tfivinl rational character defined over @ . Let K be a maxi-
mal compact Mrmp of the groué G = G(IR) of real points of G , and
denote by X = G/K the associated symmetrxic space. Endowed with a G-invar-
iant Riemannian metric the space X is a complete Riemannian manifold with
negative curvature. Let (1,E) be a finite-dimensional (camplex) rational
representation of G . We choose an admissible scalar product on E in the
sense of Matsushima-Murakami (cf. [10], IT, 2.2). Let T ¢ G be a torsion-
free arithmetic subgroup of G . The group G operates properly and free-
lyon X, and G operates also on the space {Q¥(X;E) of smooth E-valued
differential forms on X . The quotient space TI'\X is a non-compact
K(P,l)-manitold of finite volume. Our object of concern is the Eilenberg-
‘MacLane cohomology space H*(I';E) which is usually identified in a canonical

r

way with the cohomology H¥(I'\X;E) of the subcomplex Q¥(X,E)° of I'-invar-

iant elements in Q%(X,E) , i.e. we have the identifications
(1) H¥(I,B) = H™(T\X,E) = H*(T\X,E)

where the middle term denotes singular cohomology of TI\X with coefficients

in the local system defined by (T,E) (see, for example, [10], VvII, 2).

1.2. Denote by g resp. k the Liealgebra of G resp. K, and
let (m,V) be a (g,K)-module (cf. [10], O, § 2.5). The relative Liealgebra
cohomology of g mod K with coefficients in V is then defined as the
cohamology of the complex D*(g,X;V) = Hom (A*(g/k),V) with the usual

differential as in [10], I, § 1. Since the space F of K-finite vectors

(K)
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in a differentiable G-module F is a (g,K)-module in a natural way the
above notion makes also sense for F if we put then D*(g_,l(;?) =

= D*(g_rxif ) .

(K)
The space of smooth functions on T'\G with values in € will be de-

noted by C“(I'\G) . The lifting of forms via the projection G * G/K = X

induces then an isomorphism of differential complexes
r -~ )
(1) Q¥(x,B) -+ D*(g,K;C (I\G) ® E) ,
whence an isomorphism in cochomology (cf. {10], viI, 2.7.)

(2) H*(T\X,E) = H*%(g,K;C (T\G) & B) .

al_gg In this identification one can replace C“(P\G) by cextain sub-
spaces. Let U(g) be the universal enveloping algebra of g over [ . We
let C:g(I'\G) be the space of smooth functions on TI'\G which together with
their U(g)-derivatives have moderate growth (cf. [2]’. 3.2). Moreover, we
let c:mg(I‘\G) be the space of smooth functions on I'\G of uniform moder-
ate growth i.e. the exponent limiting the growth on a Siegel set can be

chosen independently of the derivatives. Using 1.2.(1) we put

(1) Qg(I‘\x,E) = D*(g_,K;c:(I‘,\G) ®E) with ?=mg resp. umg .
Then it was proved by Borel ([4], 3.2.) that the inclusions

(2) n:;ng(r\x.z) + Q3 (T\x,E) - Q¥ (I'\x,B)

induce isomorphisms in cohomology.

1.4. Let Q:(r\x,z) (resp. n*f*d(r\x,m ) denote the complex of forms

in Q*(I'\x,E) with compact support (resp. which together with their exterior



1.3

differentials are fast decreasing ([2], 3.2)). Then the natural inclusion
9:(1'\2!.&) + Q24 (N\X,E) induces an isomorphism in cohomology ({21, s5.2.),

i.e. one has via the de Rham theorem
2 = * e *
HE (T'\X;E) H¥ (R, (T\X,E)) =: HJ(T\X,R)
where H: refers to cohamology with caompact support.

1.5. Cusp cohomology. Let LZ(I‘\G) be the space of complex valued

square integrable functions on T\G , viewed as usual as a unitary G-module
via right translations. The space Li(I‘\G) of square integrable cuspidal
functions on TI'\G is a G-invariant subspace of L2(I‘\G) and it decomposes
into a direct Hilbert sum of closed irreducible subspaces Ho with finite
multiplicities m(w,I') (cf. [15] 1. § 2 or [11])

2 Lad
(1) (N6 = & mmDr .

mT&G
2 Lo ol 2

The inclusion L O(I‘\G) of the subspace of C -vectors in LO(I‘\G) into

c“(I‘ \G) induces a natural homomorphism in (g,K)-cohomology
2 n*(g_,x,ni(r,\c)“ ® E) + H¥(g,K,C (T\G) ® E) = H*(T\X,E)

which is injective ([2], 5.5). By definition, the cusp cohamology

B:us p(r\x,n) of I\X with coefficients in E is the image of the homo-

morphism in {(2). We remark that H:usp(l‘\x,z) can be identified with the

space H x,(I'\x,z) of harmonic forms in D*(g_,K;Li(I‘\G)w @ E) . This may

»
cusp
also be interpreted in terms of differential forms on TI'\x (cf. [7], § 5).
The direct sum decomposition (1) of L2(I\G) yields then

* = ,P)H (g,K:H. @ E
(3) Hyugp (T X1E) "?a m(m,IH (g,KH_ @ E)
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where 7 ¢ G runs over the finite set of equivalence classes of all irre-
ducible unitary representations of G whose infinitesimal character Xq

is equal to the infinitesimal character Xo» of the representation (T*,E%®)

contragredient to B (cf. [10], I, Thm. 5.3.).
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§ 2. Eisenstein cohomology classes for arithmetic groups

In [27], I, the use of Eisenstein series to construct cohomology
classes for an arithmetic subgroup I' of G and to describe its cohomo-
logy "at infinity" is discussed. We have to (and will) assume some famili-
arity with it. But for the convenience of the reader and also in order to

fix notations we review briefly in this section the main facts.

2.1. Preliminaries. Let P be a parabolic subgroup of G defined
over @§ , N its unipotent radical and K : P + P/N = M the canonical pro-
jection. Let S, be the maximal central @-split torus of P/N , and denote
the identity component of §P (R) by sP . A split component of P = P(IR)
is a subgroup A of a Levi subgroup of P such that A is mapped iso-

morphically via Kk onto S_ . By AP we denote the unique split component

P
of P which is stable under the Cartan involution © associated to K
(c£. [9], 1.9.). We let then M = Z (A)) be the unique G-stable Levi sub-
qroub of P . The projection KX induces a canonical isomorphism
M:M*>P/N = M(IR) , and we denote by °M the inverse image of o!(m) .
We have then P = M* N as a semidirect product, P = Ap x % and
M-OM”AP . Since M is O-stable, one has KA P =K A°M , and
KP-erP is a maximal compact subgroup of %M M and P .

Choose a minimal parabolic @-subgroup P ° of G with split component
A, - We assume that the Lie algebra a  of A  1is orthogonal to k with
respect to a symtric non-degenerate bilinear form B on g chosen as
in 1.3. [27]). (Por g semisimple B is the Killing form.) Let h be a
Cartan subalgebra of g containing a, . Let & =2(g.,h,) (resp.
OR - Q(gc,goc) ) be the set of roots of 9 with respect to !-ll: (resp.

a, ). Its elements will also be viewed as roots of G(&) with respect to
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H=2.(h) (resp. A ). For a parabolic pair (P,A) (which is, by defi-
nition, a parabolic (f-subgroup P of G with split component A ) we
denote the set of roots of P with respect to A by &(pP,A) , and
A(pP,A) is the set of simple roots of P with respect to A . Por a fixed
ordering on ¢ we denote by ot (resp. A ) the set of positive (resp.
simple) roots of & , and analogously for the IR~rxoots QR .
We fix an ordering on & = @(gt,gt) which is compatible with the orderx-
ing on the real roots Q]{ given by the choice of Po with the unique
. +
O-stable split component APo = Ay via the condition sz = Q(PO,APO) -
Let (P,A) be a parabolic pair with Ac A, . Then b=h nog_n_ is a
o
Cartan subalgebra of the Lie algebra %g of °M , and one has h=bea.
- — o F=
We set o = Q(gt,gm) = §( m.,bg) resp. AM AA~d, asin [27], 1.7..
As usual, the value of a character o on a g A 1is denoted by a(a)
o * 3 1/2
or a . The element pp e a* is defined by pp(a) = (det A4 aln) P
ae&hA.Ifoneputs p=(1/2) ] _a and p  =(1/2) ] , a then
aed M as@u

Dla = pp and Dl]_a_”p .

(e}
-0 o M

2.2. The faces in the Borel-Serre compactification. As before, let
E ———] .

I' be a torsionfree arithmetic subgroup of G . The quotient TI'\X may be
identified to the interior of a compact manifold TI'\X with corners [9];
the inclusion TP\X + '\X is a homotopy equivalence. The boundary 3(M\X)
is a disjoint union of a finite number of faces e'(Q) , which correspond
bijectively to the T'~-conjugacy classes of proper parabolic @-subgroups

of G . Denote by P the set of parabolic @-subgroups of G . For a given
P in P , P # G , we denote the natural restriction of the cohamology of

I'\X onto the cohomology of the corresponding face e'(P) in 3(T\X) by

(1) rf . HMI\X,E) + H%e'(P),E) .
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" "Let P ‘be a parabolic @-subgroup of G with O-stable split camponent
A= % ¢« N its unipotent radical. The natural projection x : P + P/N
induces then an isomorphism U : M > B/N , where M = Z_(A,) . We put
I'p = T' P resp. I'u = ' A~ N . Then the projection I‘M = K(I‘P) is an
arithmetic subgroup of P/R , and I(M = K(KA P} is a maximal compact sub-
group of P/N which is canonically iscmorphic to KA P=XAM via U .
The quotient Z, = (OP/N)/KM is again a symmetric space which we can also
view as OWKn M . Note that u-l (I‘M) is an arithmetic subgroup of n
if M 1is defined over { . It contains I' A M as a subgroup of finite

index. Then the face e'(P) inherits a fiber bundle structure from
(2) TN\ + e'(p) = I'P\OP/KA P+ TNz, .

We observe that the fibers are compact manifolds. In the sequel we will

identify the base space PM\ZM of the fibration with l.l-1 (I‘M)\ODVK AM.

2.3. Cohomology of a face e'(P) . Pirst of all, the cochamology of

the fiber I‘N\N in 2.2.(2) can be identified with the cohomology of the
Lie algebra n of N . Via this identification H¥(n,E) = H*(I‘N\N;E)

(c£. § 2 [27]) the natural M-module structure on the Lie algebra cohomology
H*(n,B) restricts to the action of [, on the cohamology of the fiber,
vhich inherits therefore by extension a natural M-module structure. If we

put (cf. [10], 1II, 1.4.) (where W = W(gg/hy) 1is the Weylgroup of g, )
(1) W o= wew|wlay co)
then there is an isomorphism of M-modules ([18], 5.13)

a4 - @D
(2) H*(n,B,) et P (A#p) =p
fiw)=q

(we assume E = E, has highest weight A with A ¢ hy dominant)
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where F\) denotes an irreducible M(T)-module with highest weight v ,
v e 1_:;:* .

One can construct then a natural embedding 10 : 9*(I'M\ZH,H"(9_,,E)) +
Q*(I‘P\OP/%,E) on the level of differential forms which induces (see [13],
Thm. 2.8. resp. [27], Thm. 2.7.) an isomorphism in cohomology, i.e. the
spectral sequence in cohomology associated to the fibration 2.2,(2) of

e'(P) degenerates at E, . We have

2

(3) H*(e'(P),E) = H*(T\\2,H*(n,E)) .

. 2 )
L
2.4. Cusp cohomology of a face e'(P) . The space Lo(ru\ M) of
square integrable cuspidal functions on I‘M\OM decomposes into a direct Hil-

bert sum of closed irreducible °M-invariant subgpaces Hn with finite mul-

%

tiplicities m(‘rr,I‘M) . If V1r denotes the isotypic component of = € we
may write

2 o N
(1) LT\ = G\:))A v, -

T ¢

Using 2.3.(3) the cusp cohomology of the face e'(P) is defined as

* ] = * *
(2) chsp(e (p) ,E) chsp(PM\ZM:H (213)) .

By 1.5. it can naturally be viewed as the image of the injective homomorphism
2 L .

(3) a*(°g,xM,L°(I‘M\°M) ® H*(n,E)) -+ a'(rn\zu,a*(g.n,) .

Using (1) and 2.3. we have then a finite sum decomposition

(4) B (BB = @ @  mCmK,v, e ) .

¢ wew

As in 3.2. [27] we call a non-trivial cohamology class [¢] # O in

Fw(hp) -p



2.5

n;uép""(m +E) (represented by a cuspidal form ¢ & n*(l'u\zn,u'(g_,s)) ) a

cuspidal class of type (w,w) if there exist = ¢ % with vw c,L:‘;(I‘u\ou)

and w e W such that {¢] is in the image of H*(OE.K“,V“, e ) .

FuA+p)-p
Induced by the adjoint action the split component A = Ap of P op-

erates on H¥(n,E) in a way which is also obtained by restriction from

the action of M = °M*A . This yields a decomposition of H*(n,E) into

weight spaces with respéct to A, which are already given by 2.3.(2) , i.e.

o2k Fyu(aep)-p

w(l+p)-p|lp . According to this decomposition we call an element [4¢] in

gives via restriction a multiple of an Ap-module of weight

* . » .
H*(e' (P),E) a class of weight M g ajy if [¢) e¢n (FM\ZM'Fu) .

2.5. Construction of Eisenstein series. Let O # [¢] ¢ H;usp(e'(l’) +E)
be a non-trivial cuspidal cohomology class of type (w,w) (7 € %,v ¢ WP)
represented by a harmonic cusp form ¢ & fi*(e'(P),E) . As explained in [27],

§ 4 we associate to ¢ via the differential form
‘(1) by = ¢ ale in Q* (P \X;E)

the Eisenstein series

(2) E(p,A) = § Yoo -

Y& I‘P\I‘

This Eisenstein series is first defined for all A in

(3) @h* = {Acaf|reAcp, + (29"}

where (_a_*)+ = {A ¢a*| (\,a) >0 for all a ¢ A(P,A)} and is holamorphic
in that tube. Via analytic continuation it admits a meromorphic extension
to all of g;’ . We refer to [20], [15], [23] for the general theory of
Eisenstein series. If A ¢ 5; is fixed and E($,A) is holomoxphic at this
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point, then E(¢,Ao) is an E-valued, I-invariant differential form on
X , i.e. we have E(¢,A°) & Q¥(I'\x;E) .

In the frame work of relative Lie algebra complexes this construction
is described as follows: Attaching ¢A to ¢ is given by a map (defined

in 3.6. [27])

(4) D*(°m, Ky ; ® H*(n,E,)) * D*(g,K;I ®E) .

P,m,A, (X)

\'S
W,(KM)
Here Vﬁ is the isotypic component occuring in Li(PM\OM) of the unitary
: o3 .
representation T & M , and we let (IP,W,A'IP,W,A) be the representation

induced from v.®r (viewed by trivial extension to N as a P-module)

p+A
in the sense of III, 2.2. [10] where L, denotes the onedimensional

A-module T on which A operates via v & . It is convenient to view

*
ag

the representations I as a family realized on the fixed space

?,m,A
dw(FPNA\G,V") of V -valued smooth functions on PPNA\G . Using the identi-
fication 1.2.(1) the Eisenstein form E(¢,Ao) is then obtained as the image

of ¢A under the map
(o)

(5) Eisy : D*(g,K;I ) + D¥*(g.,K;C (T\G) ® E)

®E
o P, A, (K)

induced from the (g,K)-module homomorphism

(6) B(,A) ¢ I > C(I\G)

P'TT’AOI (K)

which is given by the usual Eisenstein summation and evaluating at the point
Ao (cf£. [27], 4.1. - 4.4.).
Recall the following result ([27], Thm. 4.11.) concerning the con-

struction of Eisenstein cohomology classes.

2.6. THEOREM. - Let P be a parabolic @-subgroup of G with 6-stable

split component A, . Let (¢] ¢ H:usp(e'(P)'EA) be a non-trivial cuspidal
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cohomology class of type (m,w) (7 ¢ W,w eW) represented by a harmonic

cuspidal fom’ Pe R*(e'(?’)_,zl) . If the Eisenstein series E(¢,A) assigned

to (4] (in 2.5.) is holomorphic at the point

(1) Ao =  —w(A+p)

|2,

(which is real and uniquely determined by [¢] ) then E(¢,A°) is a closed

harmonic differential form on TI'\X and represents a non-trivial class

(B(¢,A)] in u¥(M\x;E)) .

We call such a class [E(¢,A))] a regular Eisenstein cohomology class.

2.7. The restriction of a reqular Eisenstein cohomology class. The

image of the regular Eisenstein cohomology class [E(¢,A o)] as in 2.6. under

the restriction r;’ s H*(I'\X,B) + H*(e'(Q),E) (Q a parabolic Q-subgroup

of G) is given as [B(¢,A°) i.e. equal to the restriction to e'(Q)

oller @
of the class [E(¢,,A°) Q] represented by the constant Pourier coefficient
B(¢,A°)Qe Q*(I‘Q\x,E) of E(¢,A°) along Q . The theory of the constant
term implies then various results on r‘Q’([E(dt,Ao) I (c£. [27], 1.10 resp.
4.7.). We recall the following important case: If Q is associated to P
then by definition the finite set W(AP.AQ) of isomorphisms of A, onto
AQ induced by inner automorphisms of G defining a Q-isomorphism of

M, (R) onto gQ(m is not empty, and we have

() r*(E(¢.A)]) = [gls,A ), (6, )],
Q ° sEW(AP,AQ) °°Ao Ao |e (Q

vwhere c(s,A))_, : Q*(T \x,E) + QYT \X,E) is a certain "intertwining”

sA
°

operator precisely defined in [27], 4.10. We point out that if (P,A,) resp.

(Q,AQ) are standard (but the argument extends easgily to the general case)

a summand [2("A°)’Ao(¢ho) ]h. (Q) in (1) is a cohomology class in
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H:usp(e'(Q) +E})  of weight vs(pf)\)—p'a where v_ is a uniquely de-

termined element in W® with (cf. [27], 4.10)

=X

(2) v (p+)\)‘ + sk =0 resp. Y
s a o s -v_(p+A)

b

o) m s Ip,

T
Here we write °m e OMQ for the image of T e oﬁP under the bijection of

OMP onto °ﬁQ induced by s ¢ W(AP.AQ). .
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§ 3 cCusp cohomology of arithmetic subgroups of St (@)

This section is mainly devoted to prove a vanishing result outside a
certain range for the cuspidal cohomology B;usp(l’\xsa) of an arithmetic
sﬁbqroup T of SLn(Q) with arbitrary coefficients E . The proof of
this result involves to show that an irreducible unitary representation
(to,n' ) of G = SLn(l'() which contributes non-trivially to
B;u"p(;\x;l!) = G. n(u,r)n*(g,x;a: ® B) (i.e. one has m(to,l‘) # 0 and

¥eG

B*(g.xﬂl; @ E) = {0} ) is tempered. This fact will be used in § 4.
()

3:1, We consider now the case of the @-split algebraic @-group
G = SI.n/Q . Let P, be the minimal parabolic @-subgroup of G = G(R) con-
sisting of the upper triangular matrices, and let 'ro be the torus of diago-
nal matrices. An element in T, is denoted by diag(ti) . We choose as
maximal compact subgroup K = SO(n) . Then A, = {diag(t,) € T, | t, >0} is
the split component of To which is stable with respect to the Cartan in-
volution ex . Weput ¢ = O(Qc,eom) , and denote by A (resp. ") the
set of simple (resp. positive) roots with respect to the chosen ordering, i.e.
we have A = {ai | is=1,...,n~1} , where o, denotes the usual mapping
ti/ti,, om T, - The Weyl group W of g, with respect to a = is gener-

c

ated by the simple reflections v, associated to a, . Since G is split

i
over @ we may (and will) identify ¢ and .n .
The conjugacy classes of parabolic @-subgroups of G are parametrized
by subsets J of A . In particular, if Q 4is a maximal parabolic @-sub-
group of G , then it is conjugate to a standard maximal parabolic @-sub-

group Pj given by

(1) P, 3=

) = {(a,)ecla,, =0,k<c3 <1}l 3=1,...,01.

PA-{aj}
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We say that Q 1is of type j . If we put

°
Tpela.} = ( M\ xer a,)

3 ai €A
i#3
we have Pj = Z(TA—{uj}) . ij . The Gx-stable split component Aj of Pj
is given by
a-—l
RN | -
{2) A, = 4. i b=an-j,a>0,aan .
3 b
.
b
We let M, := Z(A;) and have the Langlands decomposition P, = °uj "By Ny
where we abbreviated N, = N_ . Note that we have A, = {a, € A]la, #a,} .
3 Py My i i 3
We define the element LA in G(@) by
0 ',-‘1
(3) w, T 1_-'0 .
-1
Since v, conjugates Aj into An- 3 we see that P 3 is associated to

. but not to any P, ., i®#n-j (3=1,...,n-1) . Thus the class C(P,)

Pn—j b ]

of maximal parabeolic @-subgroups Q associated to P j consists out of

groups Q of type 3 and n~j . If n = 2m 4is even, there is exactly one
associate class, namely C(Pm) whose elements Q are conjugate to its

opposite 6 = Qopp . It follows that we have in this case

(4) W(Am) = {1,Int wo} for n=2m ,

otherwise Pj is not conjugate to P, , and we have

3

(5) WA = {1} j=1,...,n1

j=m for n=2m .
Note that there are always [n/2] associate classes of maximal parabolic

@-subgroups of G = SLn(:R) .
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3:2;, Let T be a torsionfree arithmetic subgroup of G(@) = SLn(Q):
- accordingly we will denote G = SLn(:R) rg " sln(n) . K = SO(n) etc. By

1.5.(3) the cusp cohomology of »1‘ decomposes into a finite direct sum

2 -
BYepTVXIE) = HY(g,KL_(I\G) ® E) = :?& m(n,T)E* (g,K;B_ @ E)

where ¥ ¢ 8 runs over the finite set of equivalence classes of irreducible
unitary representations of G whose infinitesimal character Xq is equal
to the infinitesimal character ¥ * of the representation (t*,E*) contra-
gredient to the given finite-dimensional one (T,E) of G . In order to
establish a vanishing theorem for H;“sp(l‘\x;E) in certain degrees the fol-

lowing result is decisive.

3.3. THEOREM. - Given an arithmetic subgroup I of SLn(Q) and a

rational finite dimensional representation (t1,E) of G = SLn(R) there

is (up to equivalence) at most one (resp. two for n even) irreducible

unitary representation (w ,H ) of G such that B*(g_,l(:a: e E) = (0}
o o
and (:o,nto) occurs with non-zero multiplicity m(w O,I‘) in the cuspidal

spectrum I.g(I'\G) . Such a representation is necessarily tempered.

Remarks: (1) A precise description of such a representation (to,B' )
is given in the proof. °

(2) Analogous results can be worked out for GLn(R) . SL:(:R) along
the same lines of arguments.

{3) It seems that the last assertion is not correct in general for

other groups than the above (cf. [34]).

Proof of 3.3. Let (w,B') be an irreducible unitary representation

of SLn(l'() which occurs with non-trivial multiplicity in the right regular
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representation of SLn(R) on the space Li(l‘\snn(n)) of cuspidal func-
tions on I‘\SLn(R) . By [28] (v,H ) admits a so-called whittaker-model.
Now Kostant ({19]}, Thm. E) has shown that the irreducible admissible re-
presentations of SLn(:R) which admit a Whittaker-model are precisely the
large representations of SL (R) in the sense of Vogan ([30], § 6). (This
result was also independently obtained by Casselman and Zuckerman.) Using
the characterization given in Theorem 6.2. in [30] an irreducible (unitary)
representation of SLn(]R) which admits a Whittaker-model is therefore

infinitesimally equivalent to a representation of the form

(1 IndP,o,v

where P = °MAN is a cuspidal parabolic subgroup of SLn(R) containing
the minimal parabolic subgroup Po (cf. 3.1.), 0 ¢ °% a discrete series
representation of °4 and v a character on A . In particular, up to

equivalence the data can be given as

o 1 "mi 0 m, € Sl.;(l!)
M = € SL (R) for n odd
.. n i =1 [E]
0 . reecely
+1
resp.
m
o 1 ° m; € SL;(R)
M = "mi ¢ SLn(R) n for n even
0 " i=1,...,[-§']

and 0 =0 i is (up to index 2 for n even) a tensorproduct of discrete
series representations of the various copies of SI;(R) . In order to see
which ones of these representations (1) have non-trivial (g,K)-cohomology

with coefficients in (1,E) we use the results of Vogan-Zuckerman [33].



Depending on the highest weight A of the given finite dimensional re-
presentation (t,E) of SLn(lR) they have exhibited a certain collection
{§g}l)} of irreducible repre#entations of SL (R) (more precisely, of
s%n(C)-modules which are parametrized by ©-stable parabolic subalgebras of
sln(ﬁ) in the sense of [33] § 2) such that for any irreducible unitary re-
presentation of SLn(!U having non-zero cohomology with coefficients in
E the associated (g,K)-module is contained in that collection (Thm. 5.6.
[33]) and vice-versa as recently proved by Vogan [32]. In order to prove
our assertion we check the representations in (1) versus the collection
{ég(l)} by means of their characterization in terms of Langlands-parameters
given in [33], § 6.

For simplicity we treat the case of untwisted coefficients (i.e.
E @) first. Theorem 3.3. in [10], III gives now necessary conditions on
the data v , Xg and A which have to be satisfied if the Lie algebra

cohomology of Ind, is non-trivial. Using this and Theorem 6.16 in [33]

1G4V
it turns out for IndP,o,v as in (1) that in order to have non-zero cohomo-
logy 8*(2,K;Indp,o,v ® ¢) the character v has to be the trivial character
and o, the discrete series representation of SL;(IU of lowest O(2)-type
n-2142 (4 = 1,...,[3]) . Note that for n even °M has index two in the
product of sn;(lk)'s . 80 there are two possible representations o0 € °a
in that case. Since IndP,o,v is unitarily induced from a discrete series
representation it is a tempered representation.

Now take E an arbitrary finite dimensional rational representation
of highest weight XA . For most E there will be no irreducible unitary re-
presentations with non-trivial cohomology. By Theorem 5.3 [33] (in particular,
by formula 5.1.(a)) a necessary condition in order to have H*(g,K;B' ) BA’

non-zerc is that if we set B1 =e, -e (L = 1,...,[%4) then the pro-

n-i
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jection of A perpendicular to the span of the Bi must be purely imag-
inary. If this condition is satisfied the same theorem and the discussion
above provide (up to equivalence) a unique {(resp. two for vn even) irre-

ducible unitary representations (’o'an ) of SLn(!U with

(o]
H*(g,K;H, ® E,) = {0} and a Whittaker-model. It is of the form Ind .
"o A P,0,0
P as above in (1), 0 =60, e Q1 where o, (1= 1,...,@?) is the

+
discrete series representation of SL;(R) of lowest 0(2)-type n-2i+2+ni

for some integers n (all of the same parity) depending on ) . We omit

i
to give the precise formula since it will not be used lateron. In particular,

(no,n1r ) is a tempered representation.
o

3.4. As tempered ones these representations (wo,B'O)L in 3.3. have
trivial (g,K)-cohomology outside a certain range of length
rk SL (R) - rk SO(n) according to Proposition III, 5.3. in {10]. We will
determine the exact bounds of this range in terms of n .

As in [10], III, 4.3. we put for a Lie group L with finitely many

connected components and with reductive Liealgebra Lie(L) and a maximal

compact subgroup Q of L

(1) 2q(L}) = dim L - dim Q

(2) zo(L) = rkL-1xkQ

and we define then

(3) 2q, (L) = 2q(L) - £ (L) .

Note that qo(L) is an element in 2Z .
If L is now of connected type with finite center (in the sense of

[10], 0, 3.1.) then we have for an irreducible tempered (Lie(lL),Q)-module V
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and a rational ﬁri;tte dimensional representation (t,E) of L that (cf.

110}, 111, 5.3.)

(4) Bl(Lie(L),Q;v @ B) = 0 for q ¢ [q, (L),q (L) + £ ()]

q < rkRL,q > 2q(L) - rkRL

We apply this now to the case L = SLn(J'R) and Q = SO(n) . Then

2q(sL_(R)) = n2-1 -9_(_“5:& = dim(SL_(R) /S0(n))

(5)
n
zo(sx.n(n)) = n-1 - [51

(wvhere [ ] denotes the Gauss-bracket) and therefore we get

{ (1/4)n2 n=2m
(6) (SL(R)) = 1/2 (dim X - £ (SL_(R)) =
%™ o' n (1/4) (n%-1)  n=2m+1
resp. )

-—-——"”‘4’ 1.y n=om
&) qo(snn(m)) + lo(snn(m) = 2 .

{n+1)

—-;'— -1 n = 2m+i

We abbreviate the values in the second equation of (6) by Cu(n) and the

values in (7) by Co(n) ,» 1l.e. we put
(8) Cu(n) = qo(SLn(R)) resp. Co(n) = qo(SLn(R)) + 2°(SLn(R))

One sees that the intervall [Cu(n) ,co(n)] of length rk SLn(n) - rk SO(n)
is concentrated around the middle dimension (1/2) dim X .

As a consequence of 3.3. we obtain now

3.5. PROPOSITION. - Let T be an arithmetic subgroup of SLn(Q) '

and (T7,E) a rational finite dimensional representation of SLn(:n) . Then

one has for the cusp cohomology HZ, sl?(l‘\ltK;E) of T with coefficients in E
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the following vanishing result

q . =
Beusp (T\XiE) 0 for q ¢ [c (n),c (n)]
where 2
n
vy n even
cu(n) = n2-1
2 n odd
resp.
2
12:%%—21 -1 n even
C (n) =
L)

2
An+)” 1 n odd

4 —



§ 4 Holomorphy of certain Eisenstein series at special points

and éori'QSponding cohomology classes

Given an arithmetic subgroup T ¢ SLn(z) , 0 > 2 , we consider now
Eisenstein series E(¢,A) associated to cuspidal forms ¢ on faces e’(P)
corresponding to a I'-conjugacy class of maximal parabolic @-subgroups of
G = SLn(R) . We discuss the question of holomorphy of E(¢,A) at special
points, the construction of corresponding cohomology classes and its be-
haviour under the various restrictions to the cohomology of the faces in

3(r\X) . This study allows us to construct the subspaces )(I‘\x,d:) in

*
BZ(p
B* (T\X;C) and to obtain the results on them described in § 0 .

4.1. lLet P be a maximal parabolic @-subgroup of G = SLn(R) with
split component AP = A and Langlands decomposition P = °MaN . Without
loss of generality we may (and will) assume that (P.AP) is standard i.e,
is the group of real points of a standard maximal parabolic @-subgroup
Pp{a} ©f SL,(@ , acd and A, c A . Note that dim A =1 and that
we may identify a* with € in a natural way by the condition Pp = 1.

-z

Let [¢] = 0 be a cuspidal cohomology class in H;usp(e'(P) ,&) of type
(,w) , ¥ a % T Wae WP . We consider the-Eisenstein series E(¢,A)

associated to [9] by 2.5.. It is first defined for A in the region
(g;)* = {Acat|Rere p, + an*}
= {Acaz|(Re Aya) > (py,0) ,a ¢ A(P,A)}

but it admits a meromorphic extension to all of 5;: . By a general result

(cf. [15] v, § 7, Thm 7 resp. Lemmata 98, 99) the possible poles of E(¢,A)

 for arbitrary A with (Re A,a) > 0 can only occur in the real intervall
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1 = {Acazlmh=0,(,n > (e Ao 20}

are simple, and there are only finitely many poles in I . The other possible
poles of E(¢,A) 1lie in the region {A ¢ ak | (Re A,a) < 0,a e A(P,A)) .
Since we are interested by 2.6. in evaluating E(¢,A) at the point

A = -w(p)

° the following lemma by which Ao is expressed as a multiple

la

of a is useful.

4.2. LEMMA. - Let P =P

a-{a} be a standard maximal parabolic @-sub-

group of SLn(nU with split component A . For w ¢ WP , one has

dim N
2

(1) Ao = -w(p)lé. = (-

+ L(w)) - ula .

The Lie algebra cohomology H*(n,E) 1is an °M-A-module and as such can
be decomposed according to the weights with respect to A . The A-weights

are determined by a theorem of Kostant recalled in 2.3., 2.4.. For w ¢ WP ’

L(w)

the weight w(p)-pla occurs in H (n,C) where 2(w) denotes the length

of w . Since H*(n,f) is naturally embedded as a (95 6 a)-stable summand

e o ¢

of A*n* e« ([18], 5.7.) w(p)-pla is among the weights for A
under the natural action of A . The simple root o in A(P,A) occurs in

each rootspace of N with multiplicity one, hence we have

(2) W(p)-pla = -’.(w)a|a
resp.
(3) Pla ™ (1/2) a§¢* 8|£ = (1/2)dim N * °|a

and formula (1) follows.

Remark: Since we know already by 2.6. that Ao = -w(p)“ is real for

a given cuspidal class of type (m,w) , ¥ ¢ °f ' W 6 w’ . 4.2, shows that
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A varies between Pp and -p

o on the "real axis" and that A° lies in

P
the real intervall I if A(w) > (1/2) » dim N .

One of the main steps in dealing with the question of holomorphy of
E(¢.A) at the special point Ao is the following result which says,
roughly spoken, that each unitary representation of °M which contributes
non~trivially to the cusp cohomology B;usp(e'(P) ,C) of the face e'(P)

has td be tempered.

4.3. PROPOSITION. - Let P = °MAN be a maximal parabolic @-subgroup

of sL (R) .

(1) 1f LI °% is an irreducible unitary representation of M

such that there exists a non-trivial cuspidal cohomology class

] = o .
(4] ¢ Blusp e’ (P).0) u:°ﬁ w:w" B* (Om,KyiV, @ F ) o) of type (¥ ,w)
for some w ¢ W ¢+ then %, is a tempered representation.

(2) The following vanishing result for the cusp cohomology of e'(P)

holds

q ' - [+ o) o)
Heusp(®' ()/@) =0 for q ¢ [a (M ,q (M) + £ (M) + dim N]

with qo( ) resp. !.o( ) as defined in 3.4..

The proof reduces more or less to the arguments given in the proof of
3.3.. We may assume that P is a standard maximal parabolic @-subgroup of
type 3 . Then °4 is a subgroup of index 2 in the direct product

A= SI.;(R) x SI.:_ {R) . Given an irreducible unitarv (°3,KH)-mdu1¢

p)
(0,H,) there exists an irreducible unitary (°m,Kg)-module (3,Hy) such
that 3 viewed as (°5.l%) -module is isomorphic to ¢ or decomposes into a

direct sum 0 © 0’ . One can describe 3 with the help of the induced



(m,Kg)

module Ind(E'KM) (0,8) =: Ind ¢ (cf. 0.3. 25. in [31]), and the first
(resp. second) case corresponds to the fact that the induced module 1Ind ¢
is reducible (resp. irreducible). If now (o,H o) has non-zero cohomology
with coefficients F then also (B,Ha) has non-zero
(E,Kﬁ) -cohomology. This follows from the results of Vogan-Zuckerman [33]
and Vogan [31], [32]. Depending on F they have constructed a certain
collection {AS(F)} of irreducible unitary (OE,KM)-mdules such that each
irreducible unitary (OE,KM) -module with non-zero cohomology with
coefficients F 1is contained in that list. Using this description of
(G,Bc) (resp. (G,Ha)), the alternative characterization of the és(F) by
means of the Zuckerman-functor ({31], 6.3) our claim follows from the com~
putation of the cohomology of the modules with coefficients in F
in [31] 6.3.4. (cf. also 5.5 in [33]).

This discussion applies to the irreducible unitary (ol_n.,&M)-mdule
corresponding to the irreducible unitary T, 6 °f4 with non-trivial multi-

plicity m(uo,I‘M) in Li(I‘M\OM) and non-zero cochomology

o
* . Vv

H*( m,KM,vﬂo ®F (p)-p) - But now one has that #%_  has to have a Whittaker
model; therefore the same line of arguments as in the proof of 3.3. shows

;(R) x Sin‘_j(B) which has non-zero

cohomology and admits a Whittaker model is unitarily induced from a discrete

that the representation # of M= sL

series representation, and hence also L is tempered. This proves (1).

' - o " -
We recall Hi . (e'(P),q) '?Oﬁ B*("m,K,;V, © H*(n,€)) . Then asser

tion (2) follows from 3.4.(4) and (1).

Remarks: (1) 1In the same way one sees, that for a fixed w ¢ "p one

EY  (r.\z

o . [} o
cusp' M M'FW(p)-p) =0 for q &§ [qo( M g M+ & ( M) ]
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{2) .An analogue for an arbitrary parabolic {@~subgroup of G = s:.n(m
is proved by similar arquments.

4.4. THEOREM. - Let T ¢ SL (Z) be a torsionfree subgroup of finite

index, n > 2 ; let P be a maximal parabolic @-subgroup of SL (R) with

Langlands decomposition P = °MAN as in 2.1., and suppose that P 1is not

of type m if n = 2m . Let

[ ] = ° H
Wle B pe@mo = 8. &, mCaxv, er,, )

be a non-trivial cuspidal cohomology class of type (w,w) , 7 ¢ % ¢ Ve W

and degl¢] = p = q+2(w) . We have

(1) If £(w) > 1/2(dim N) , then the Eisenstein series E(¢,A) ,A ¢ a2,

associated to [4] is holomorphic at Ao = -wip) |a . The Eisenstein form

E(#,AO) ¢ QP(I'\X;€) 1is closed and harmonic and represents a non-trivial

-

cohomology class in HP(I'\X:E) (called regular Eisenstein cohomology class).

Let Q be an arbitrary parabolic @-subgroup of SLn(R) ¢ Q= sr.n(n) '

and denote by ra the restriction of H*(I'\X;C) on the cohomology

H*(e'(Q),T) of the correggond‘ing face e'(Q) in the boundary of T\X .

Then we have if 2(w) > 1/2(dim N) (where " ?" denotes conjugation by

H ¢ SLn(R) ).

(2) for QP rpEM,A)]) = (4]

(3) for Q4P and @ A PPP  rm([EWADD = O
T SL (@)

) for @ ~ PPP ra(le(e, A = 0
()

Af degle) = qra(w) > g (“Mi+2 M)+ (dim N - L(W)

212 1'5([3(¢0A°)]) - [s(.'Ao)'Ao(’Ao)]|‘.(Q’

otherwise where s ¢ W(AP,AQ) {cf. 2.7.).
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Proof of 4.4. ad (1): Let 0 = [¢]le¢ azusp(e-(p),c) of type (¥,w),

T € oﬁ , W e wp . The representation n ¢ Oﬁ is tempered by 4.3.(1),

Lemma 4.2. and the assumption £(w) > 1/2(dim N) imply that the point

Ao = —W(D)la = (-(1/2)dim N + z(w))ula lies in the real intervall
1 = {A¢ atx|m A =0, (p,,0) > (Re A,a) > 0}

where the Eisenstein series E(¢,A) has only finitely many possible poles
and these are simple. But in fact, since P is not symmetric (in the sense
of [17] Thm. 7) and 7 is tempered E(¢,A) has no poles in I as shown in
6.4.(1) [27] under these assumptions. The argument given in [27] relies on
the fact that the Langlands quotient J(P,n,Ao) associated to the given
data (P,n,Ao) is not unitarizable as (g,K)-module. It follows that E(¢,A)
is holomorphic in A° = -w(p)lg.. The other assertions in (1) are given

by 2.6.

ad (2): We recall (cf. 2.7. or [27], 1.10.) that the restriction of

the class [E(¢,A°)] under ra is equal to the restriction to e'(Q) of

the class [E(¢,AO)Q] represented by the constant Fourier coefficient

E(¢,Ao) € Q*(PQ\x,m) of E(¢.A°) with respect to Q , i.e. we have

Q

ré([EW,Ao)]) = [E(¢'AO)Q]|3'(Q) .

If we consider now the case that Q 1is not associated to P and take into
account that prk(Q) > prk(P) = 1 then ra([E(¢,A°)] = 0 because the

constant Fourier coefficient E(¢,A ), vanishes identically (cf. [27]

Q
4.11.(2) resp. Corollary 2 to Lemma 33 in [15}). If we assume now that Q
is associated to P we know (cf. 2.7.)

(5) ro((ed,a)) = § (cis,A)_, (& )], .
0 ° s Swayn) o'sA A |e'(Q)



In dealing with the terms on the right hand side we have to distinguish

three cases:

(1) Q is I~conjugate to P : This implies e'(Q) = e'(P) (by
7-7.(1) in [9]) and we can assume P = Q . Since WA, = {1} by 3.1.(5)

the sum on the right hand side of (5) reduces to the term

rotIEW@,A D)D) [1A)y (9 M eu(q)

[}

[¢A°] |e| Q)

[é]

by 4.9. and 4.11.(6) in [27].

(i) @ is SLn(Q)—conjugate, but not I'-conjugate to P : Therefore

there is an element g ¢ SLn(Q) with P9 = Q , and AQ = Ag is a split
component of Q . Since P is not of type m if n = 2m we know that

W(a,) = {1} . Hence we have
WA, A = gW(Ap) = {1nt g‘“p}

i.e. the only element s ¢ W(AP,AQ) is induced by an element g ¢ SLn(Q)
with PY = 9 . As explained in 4.8. in [27] the intertwining operator
g(s,Ao)sAo associated to s is given as a sum over terms which are
parametrized by the set I'(s) = I' A Pg-IQ . But under the assumptions made
in this case the set I'(s) is empty. Indeed, let Yy be an element in T(s).

Then y = pg-iq with pc¢ P, Q@ « Q , and we would have
-1 -1 -1 -1
Yy Py = 9 'gp Ppg q = Q ,

contradicting the fact that Q is not I'-confugate to P . It follows that
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ra([E(¢,Ao)]) = 0 also in this case. Observe that we have now proved as-

sertions (2) and (3) completely.

(iii) @Q 1is not SLn(Q)-conjugate to P , but is SLn(Q)—conjggate

to P°PP . For simplicity we assume first P =P, and Q = Pn- for

i i
some i, i=1,...,n~1 . The element v, € SLn(Q) defined in 3.1.(3) sat-

isfies w A.w_l =A . , and we have (cf. 3.1.)
o'io n-i

wa A ) = {mt wOIAi} 3

We will write s for the only element in W(Ai,Ah } . As before, the re-

-i

striction of [E(¢,A°)] on Hp(e'(Pn ),L) is given by

-1

(6) £ (EW@,ADD = le(s,A)_, (4, )4 /o .
Pn-i o) = o sAo Ao le (Pn-i)

P ' -
This is a cohomology class in chsp(e (Pn_i),m) of weight vs(p) pla

P - "n-i
where v_ is a uniquely determined element in W n-i with (cf. 2.7.)
(7) v_{(p) +sh = 0
sPa s
and
8 =
© xsw x-vs(p)lb
-n-1i,C
We claim now that for A = -w(p)
o le,
dim N
(9) SAOIa = - - 2 )an-ila
-n-1i -n~i
. -1
Since ai(woawo ) -an_i(a) for a e a-i and
Ao = (£(w) - (1/2)dim Ni)uila by 4.2. formula (9) is easily seen. This
-i
allows us to determine the weight vs(p)-p|a . By condition (7) and

-n-i



formula (9) for sAo we get

(10) Vs(p)!a = ~({-(w) + (1/2)d4im Ni)un—ila
-n-i -n-i
Using the identities plin-i = ((1/2)dim Nn-i) oy and dim N, = dim N _,
we see
(11) v_(p)-p = (R(w) - dim N .)a
s lgn—i n-i'‘n-ila .
o .
Now we recall that as ( Mn- i An—i) -module
Bt(gn-i't) = G;Pn-i Fop)-
vewW Pl-p
L(v) = t
and (cf. proof of 4.2.)
vip)-p = p - &v)a__. = p
24 Pa-i n-1 TP
= ~L(Via__
n ilgn_i

‘
Comparing this with (11) we see that Ve is an element in W i of length

(12) l.(vs) = dim N ;- £(w) .

i

(We note that this last condition alone does not uniquely determine Ve as
an example in the case SL3 already shows.)

We assume now for the degree of [¢] that

(13) degl¢] = p = g+i(w) > q°(°ui) + z°(°ui) + (dim N -2(w) .

o
1) = "o( Mn-i

degree of the restricted class rgn-i([E“'A"”) = [g(s,Ao) 'Ao“Ao” l°'(Pn-1)

We observe that qo(oui) = qo.oun—i) resp. LO(OM ) . Thus the
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is greater then qo(oun_i) + z°(°un_i) + L(vs) by (12). On the other hand

we know that this class (indeed, the representing differential form

g(s,Ao)sAo(¢Ao) ) is of weight vs(p)—plén_i with 2(v)) = dim N__.-2(w)
which can only possibly occur in B;usp(e'(Pn-i)'c) in a range up to the

degree qo(OMn_i) + Eo(oMn_i) + l(vs) by the remark (1) aftér 4.3.. This
implies that we have rp([E(¢,Ao)]) =0 .

For simplicity we have assumed Q = Pn__i ; otherwvise Q = Pg_i .
geSL(@ ,g=1 and ('Q,'A) := (ég,ag) is a minimal parabolic @-sub-
group of G with respect to which (Q,Ag) is standard. Then

Q
lines by considering the weight of [g(s,Ao)sA (¢A )]le
o o

WA, ,A)) = {int 9|a ° wO} , and the argument runs exactly along the same
n-i

. Q) - One only has

to use the analogues 'W , 'W2 of W , W n-1 " iven by fixing a new minimal

parabolic (-subgroup of SLn(R) .

4.5. The assumption made in assertion 4.4.(4) is rather technical.
However, we can rephrase the statement in a slightly weaker but more con-
venient form. Since the cohomology classes [¢] e H;usp(e'(P),c) of type
(w,w) considered in 4.4. satisfy the inequality £&(w) > (1/2)dim N we can

weaken the assumption in 4.4.(4) to
(1) degl¢]l = q+i(w) > q°(°M) + zo(°u) + [(1/2)dim N] + 1 .

The lower bound on the right hand side is independent of the chosen P and
can be related to another bound associated to the cusp cohomology of T .

This is implied by the following

LEMMA. - Let P be a maximal parabolic @-subgroup of SLn(ll) with

Langlands decomposition P = °MAN . Then we have (cf. 3.4.(2), (3), (8)

for notation)
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@ g O+t O 2N Ly . o)

where co(n) is the highest degree in which there is possibly a

non-vanishing cusp cohomology class in B;usp(P\x:t) .

Let P be of type J ; then we have the following formulas

(3) 2q(°m)

(3214 @-p2-p - QLU o)) (ndo)))

O,
(4) zo( M)

(3-1) + (@-3-1) - (1 + [131])
and we obtain

(5) a, °m)

n

O o
2q(M) - zo( M)
= /a0 tmen 2one2(d) + 153
One checks for n = 2m+1
L2y - @2
and for n = 2m

3§ even

ol

M d B -

nof s

-1 3} odd

Since cne has for n = 2m+1 , m > 1 , that dim N is even and

SN = 2D o148 formulas (4), (5) and (6) imply

a0+t Cw o+ B2 4 - amen? -
o] o 2

which is equal to Co(n) by 3.5..

The cases n = 2m , j even resp. J odd are similarly checked.
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In the following we retain the notation and assumptions in Theorem 4.4.
and 4.5., in particular we have the maximal parabolic @~subgroup P is

not of type m if n = 2m .

4.6. COROLLARY. - Let [¢] e H;usp(e‘ (P),C) be a non-trivial cohomo-

logy class of type (w,w) , 7 & ] , W& WP , and degl¢] = p > Co(n) R

then the associated Eisenstein series evaluated at Ao = -w(p) Ia represents

2 non-trivial cohomology class in aP (I'\X;€) whose restriction to a face

e'(Q) in 3(r\X) is given by

[o] for Q~pP
(1) rg([E(¢.Ao)]) = {j r

0 otherwise

The non-trivial class [¢] e Hq(o_l_q,KM;vﬂ @F ) of type (m,w) has

w(p)-p

degree
P = @tw >c (n) = q (“m+i (°M + [(1/2)din N] + 1

by 4.5.. This implies that &(w) > (1/2)dim N . Indeed, if 2&(w) < (1/2)dim N,
we would have q > 9, (OM) + z°(°u) . But in this degree there is no non-

trivial cusp cohomology with coefficients in F by remark (1) after

wi{p)-p
4.3..

4.7. THEOREM. - Let T ¢ SLn(z) be a torsionfree subgroup of finite

index, n > 2 ; let P be a maximal parabolic @-subgroup of SLn(R) . and

denote its associate class of parabolic @~subgroups of SL,(R) by cC(P) .

We assume that P 1is not of type m if n = 2m . Let HE(P) ('\X;t) be the

subspace in H*(I'\X;&) which is generated by the regular Eisenstein cohomo-

logy classes [E(¢,A°)] constructed by 4.4. for all Q in a set of repre-

sentatives of TI\C(P) and all non-trivial classes [¢] ¢ B2asple’ (@) /@)
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of type (*,w with *¢ %, , wew? and L > (1/2)ain N, - Then
(1) Am B (M\X;0) > (1/2)aim D Y (e (Q) @)
Q e\C(P) P

(2) Under the restriction

2 ¢ BTONKD » & H* (e’ (Q) ,T)
Qa Ir\c(p)

the space ng(P)(P\x;m) is mapped isomorphically onto

<2 Bzusp(e'(g),m) for q 2 C (n) (we refer to 3.4. for the defini-
QeT\c(p)

tion of Co(n) resp. 4.5., 4.6.).

The space Hg(P)(P\x;m) is generated for q> Co(n) by regular classes
[E(#.Ao)]', (4] e ngsp(e'(Q),m) , whose restrictions to the cohomology of a

face e'(R) are given by 4.6. as

4] R is P-conjugate to Q
(3) rlclew,A ) =
0 otherwise

This implies (2).

If we consider now a class [¢] # 0 in ngsp(e'(Q),m) with

o ,
9, ("Mg) + (1/2)dim N, < g < C (n) the information on the image of (B(e,A)]
under the various restrictions is not as good as above in (3). Indeed, in
general we only know that for a given class [¢] of type (7,w) with

£(w) > (1/2)dim N

Q
(4] R is I'-conjugate to Q
: [ets,A ) _, (6, 2]y, R is SL_(@)-conjugate
@ Ae@w.A)h = 4 o'sh A" et (m) oo
L 0 otherwise

holds. But recall that in the second case in (4) [g(s,Ao)sAo(¢A°)]le.(R)
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is a class in H;usp(e'(R),E) of type (sﬂ,vs) with uniquely determined

Sa ‘OA and v s_wR with 2(v_ ) = dim N
] s

R " L(w) (cf. 4.4.(ii1)). If

we assume now that the given class [¢] of >type (v,w) satisfies the
strict inequality £(w) > (1/2)dim NQ then it follows by using dim NR =

dim NQ that the classes rg([E(t,Ao)]) » R is SL (@) -conjugate to QOPP R

are not contained in the sum

& ®  (r \z.E (a)) .
Ser\C(P) ptr = q cusp Ms S -S

r> (1/2)dim Ns
This implies that the dimension of Hg(P) (T X;&) 1is at least as large as
the one of this space, i.e.

(M\x;0) > dim D D B (r \z.,8(n)) .
- SeT\C(P) pir = q cusp Hs s’ S

r>(1/2)dim N

: q
(5) dim HC(P)

s

Besides the classes just described there are also possibly regular

Eisenstein classes [E(¢,A°)] in HX o, (T\X;C) which are built up by a
non-trivial [¢] e a;usp(e'(g),a:) , Q & T\C(P) , of type (7,w) with £&(w) =
= (1/2)dim NQ . Observe that we have then Ao =0 by 4.2. in this case

and that [g(s,O)o is a class of type (sw,Vs) with '-(Vs) =

(¢o)] le* (R)
= (1/2)dim Np = f£(w) for an R which is SLn(Q)-conjuqate to QOPP. Assertion

(1) follows now directly from these considerations and the following arqu-
ment. For a fixed maximal parabolic @-subgroup Q of SLn(:R) there is a
natural isomorphism given by the usual s-operator between the two spaces of

harmonic cusp forms (cf. 1.5.)

FXn 1))

p
(6) B o (T,\ 2 0B 0

r - . D-p
“cusp My Ho(gh) > BOTHTLN\ 2

Q Q

Q
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where 2 = %M ,D=dimZ_and d = dim N. . We note that a cuspidal
Q o Q )

Q Q-
X
dif.tqrential form ¥ ;n EcPusp(rnQ\ zQ,B _(QQ)) of weight w(p)-p

(= -L{w)a if Q=P } with respect to the action of A. on B (n.)
la a-{a} Q -Q

is transformed under the » - operator into a cuspidal harmonic form of weight

-2p0 - (wip)~p) (= -(dim NQ- z(w))uli if ¢ = pA—{a})' In particular, (6)

induces an isomorphism

7 , ~ r
n & P (rMQ\zQ,a‘(x_;)) 5 @ P (rMQ\zQ,n (a )

P,r cusp Q p,r cusp
r<(1/2)dim NQ r>(1/2)dim NQ

or, of course, more general, (6) induces an isomorphism

q [] 5 T-q ]
(8) B ple’ @0 > 5.3 (e 0,0

where T = dim e'(Q) = D+d . Assertion (1) is now implied by (6), (7) if
we take into account the additional regular Eisenstein classes [E(¢,0)]
described above. Since we don't know if the restriction xX([E(¢,001) (for
R conjugate to Qopp by 8L (@) ) vanishes or not we axre forced to allow

inequality in (1).

Remark: The proof of 4.7. brings a somewhat more precise but also more
elaborate statement than (2) namely the restriction of Hq(l‘\i,m) onto

D ® (I \2 B (n))
QeT\C(P) ptr = q cgup HQ Q Q

r>(1/2)dim NQ

is surjective for each q (where the rii;ht hand side lives at all i.e.

Q,
q29q, HQ) + 1/2(dim NQ) ).



4.8. A remark in the case of a parabolic subgroggrqf type m if

n = 2m . The final argument given in 4.4. to show that the Eisenstein se-
ries E(¢,A) associated to a given cuspidal class [¢] e H;usp(e'(P).E)

of type (n,w) , T e Onm : W6 wP is holomorphic at Ao = -w(p)la relied
on the fact that the Langlands quotient J(P,t,Ao) correspondiA; to the
given data (P,n,Ao) is not unitarizable. Since this question doesn't

have such a simple answer for P = Pm if n = 2m we had to exclude this
case from our discussion (cf. also [17], Thm. 7). Indeed, fix one of the
irreducible unitary representations w of OHP which have Whittaker model

and non-trivial cohomology B*(ogP 'K"P ;ﬁl) . Write Aq =q-a, with
m
m

9 €R ,q>0 and note Pp = %-' mz-am . Then the Langlands quotient
m

J(Pm,n,Aq) corresponding to the data (Pm,u,Aq) is unitary for
q < (1/2) *m , and, for example, one has for m = 2 exactly that
J(Pm,n,Aq) is unitarizable if and only if 0 < q < 1 . By giving estimates
for a bound (smaller than (1/2)m2 )} up to which J(P,w,Aq) can be unitary
similar results can be obtained for m > 2 (cf. 4.9. for a first step in
this direction).

Therefore the discussion of possible poles of E(¢,A) in the case of
a maximal parabolic {-subgroup of type m if n = 2m needs some additional
information which we don't know completely up to now. It is helpful to deal
with this question in an adelic setting. However, it has been shown for
suitable T ¢ SI.n(Z) of finite index and a suitable function ¥ that the
associated Eisenstein series E(y,A) has a simple pole at Aqb = (1/2)DP.
f.e. q= (1/0)m® (cf. [29] 3.4.1. resp. [16]).

Nevertheless, the following is true (The analogue for P not of type

m if n = 2m is already contained in 4.4.):
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- 4:;9, PROPOSITION. - Let ns2u,n>2,l'csnn(z) a torsionfree

subgroup of finite index and let P be a maximal parabolic @-subgroup of

SL,(R) "of type m . Let 4] ¢ Béusp(e'(P) ,€) be a non-trivial cuspidal
cohomology class of type (¥,w,) , ¥ ¢ ana w, the longest element in

w’ . Then BE(¢,A) is holomorphic at Ao = —wp(p) la , and the Eisenstein

form B(‘.AO) represents a non-trivial cohomology class in H*(I'\X;€) .

The restrictions of [B(Q,AO)] under ra ., © an arbitrary parabolic @-sub-

group of SL (R) , can be described analogously as in 4.4. resp. 4.6..

Since ¥ 1is a tempered representation by 4.3.(1) the assertion reduces

to 6.4.(2) in [27].

4.10. On E*(TOI\X;@) as SL (Z/kZ)-module. We conclude this
section with an application of 4.4., 4.6. and 4.9. to the natural structure
of the cohomology H*(I'(k)\X;C) of a full congruence subgroup of level k
in SLn(Z) as a module of SLn(Z)/I‘(k) = SLn(Z/kZ) . As a particular
case we show that it contains a submodule which is related via induction of
representations of finite groups in a certain way to the cusp cohomology
B;“p(l"(k)\X';t) of the full congruence subgroup TI'(k) of level k in
SL,., (%) . This relation reflects in a simple, but striking manner the in-
ductive procedure to build up at least part of the Eisenstein cohomology of
T'(k) out of the cusp cohomology of the TI(k)'s in the various SLj(z) '
i=2,...,n~1 .

For brevity we only sketch the main steps.

We consider the full congruence subgroup [I'(k) of SLn(z) of level

k,k>3.wWe fix k once and for all, and write (a little bit careless)

(1) £S5 = P(k)\SLn(Z) = SI-n(ZlkZ) .
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In a natural way the group SLn(Z) operates on the Borel~-Serre compacti-

fication T(k)\X , and induces an action of _SL on H*(I'(k)\X),L) resp.

£

H*(3(I'(k)\X) ,€) . Let P_ be the standard parabolic @-subgroup of SL, (R)

J
of type J ¢ A (cf. 3.1.) and define with respect to the fixed T(k) the

subgroup fPJ of SL by

£

(2) P (I‘(k)r\PJ)\(SLn(Z)r\PJ) .

Then one can organize all faces e'(P) in 3(F(k)\X) which correspond to

a parabolic @-subgroup P of type J as an induced bundle

(3) S = . SL X e' (PJ)

£Fs

which is a disjoint union of copies of e' (PJ) ; it has a natural action of

fSL extending the previous one of on e' (PJ) {cf. for this construc-

£
tion {21], § 3). Its cohomology as gSL-module is given by

fSI.
(4) H*(S;,C) = Ind [a*(e* (P);@)]
b4 J
£J
fSL
where Ind P denotes the induced representation.
£J -

We restrict now to the case of a standard maximal parabolic @-subgroup
P, of type A - {ai} . i=1,...,n-1; then H¥(e'(P ),0) =

= H*(T _\2,  ,H*(n ,C)) in the notation of 2.3.. Let
L -i

My = (TRIAMIN(SL (Z) A'M) xesp. N, := (T(k)AN\(SL (Z)n N,)

Then one has an exact sequence

ﬂ',i
) 1o+ Ny > P oMy 1,

and £P i is a split group extension of f"i by fN:I. . The fPi-mdule struc-
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ture on n*(e'(!i) ,&) 4is the pullback under %, of the flli—mv:»clule struc-

i
ture of H*(T \z)l ,H*(n,,T)) induced by the action of SL (Z) °M, on
LA -i n i

r“i\ Zu1 resp. H* (‘_\1:‘), .
If we consider now, for example, only cuspidal cohomology classes [¢]
in a;usp("(?i) &) of type (w,wpi) , B € Oﬁi , and degree q + z(upi)
Py

where vp denotes the longest element in W then the corresponding
i

Eisenstein series E(4,A) 1is holomorphic at Ao = -, {p) |a = Pp by 4.4.,
-1

i i
4.6. and 4.9.. The harmonic form B(¢,Ao) represents a non-trivial cohomo-

logy class in B* (I (k)\X;T) of degree q+!,(wp ) = q+dim N, whose restric-

i
tions are given by
q+t (v, ) (¢] for @ ~ P,
(6) N 1Ay = T (k) .
0 otherwise

This follows by 4.6., 4.9. from the fact that q+R(w, ) > q_(*M)+2(w, ) >
i 1

2 C,(n) . Since the restriction

ey G B*(I'(k)\X,E) - @ B*(e'(P),C)
i P¢ F\C(Pi)
is compatible with the natural action of £SL on both sides (cf. {9] 7.6. :

gee’'(p) = e‘(Pq) for g ¢ SLn(Q) ) the result above shows that

SL dim N

£ 1
[ Ind & [n;mp(l‘“i\ zui.a (n,.@)]

is a _SL-submodule of ge * dim N’-(I'(k)\i('.!ll) .

4

Similar results can be worked out by means of cuspidal classes [¢] of

other types with £(w) > (1/2) dim N .

In particularx, fixing 41 =1 (or i = n-1) we have °Hl = SLrt‘_l(R)

and !.(wP ) = dim N, = n-1 . If we denote by TI''(k) (resp. X' ) the con-
1

gruence subgroup of level k of SL‘;‘_I(Z) (resp. SLn_l(:R)/SO(n-l))
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we see that as @~vector spaces

dim "1(91,1‘)) = H* (T (K)\X',T)

*
8) Busp Ty 7y, o8 % 1sp

cusp 1

and the fni—module structure on the left hand side restricted to
SL,_,(Z/kZ) < ¢y coincides with the natural action of SL _,(Z/kZ)
on B;usp(l"(k)\x';d:) . Together with (7) this illustrates our remark at

the beginning of this paragraph.

4.11. Remarks and examples. (1) For n =4 let (k) <.SL4(EZ)

be a congruence subgroup with k > 3 . The cohomological dimension cd(I(k))
of T(k) is 6, Egusp(r(k),m) =0, q=*4,5and, in particular, C_(4) =5 .
Let P be a maximal parabolic {-subgroup-of SL4(li) of type 1 or 3 ;
- q ' - o WP r
then dim N, = 3 and chsp(e (p),) °chsp(ru\zu'a (n,€)) 4in the no-
tation of 2.4.. Since I‘M = '(k) ¢ SL3(Z) the right hand side vanishes
for p#= 2,3 . By 4.6., 4.7. there is a subspace in agu,)(r(k)\x;c) q=5
2

(r \ZH,BB (E:c) )

resp. q = 6 which is mapped isomorphically onto chsp M

resp. qusp(rn\zu'n3 (n,c)) . Using 4.10.(8) the dimension of each of these
spaces is at least k(k+i) for k a prime with k = 3 mod 8 and
k £ -1 mod 3 by the result in [22].

(2) This and other examples (cf. 9.11. [27]) show that the subspace
HE(P) (T\X;€) of H*(I'\X;C) obtains his life from non-vanishing results for
H;usp(e' (P) ,€¢) which are closely related to non-vanishing results for the
cusp cohomology of T ¢ SLr(z) . Unfortunately, there is not too much known
about this except that there is a widely believed conjecture which says

(adopting the framework of § 1):
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(*) Given an arithmetic subgroup I' of G(Q) there exists
a subgroup I'' of T of finite index such that H;usp(r'\x,E)

doesn't vanish.

In éhe case G/@ = SLn/Q one knows that (*) is correct for n =2 as a
consequence of the Eichler-Shimura isomorphism and for n = 3 by [22].
For other n it is an open question |

(3) We have limited ourselves in this paper to the case SLn/Q and
P a maximal parabolic @-subgroup where one gets rather complete results.
For other paraholics the Eisenstein series E(¢,A) in question may very
well have poles at special points Ao (cf. 2.6.). In this case, we have
to take residues of Eisenstein series in order to describe the situation.
We refer to [12], [14], [26], [27] for some examples in an adelic setting.
However, the techniques of this paper work alsco, for example, in the case
G = Spn(lu and some special choices of maximal parabolic @-subgroups of
G . But, in general, an analogue of 4.3. will possibly not be true as also
the results in [34] indicate.

(4) We take this opportunity to correct an error in [27]: The com-
putation in the proof of 5.6. (also used in 6.7.) is incorrect, and the
counterexample is implicit already given by 8.4.(1). Therefore, 5.6. and
Cor. 6.7. in [27] have to be cancelled in this form. It is not necessary
in remark 8.5.(2) [27] to refer to 5.6. resp. 6.7. if one wants to work

out the case of non~trivial coefficients as indicated there.
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§ 5 On the cohomological contribution by the cusp cohomology

 of the faces in 3(MX) of minimal codimension

In this section we indicate briefly how unpublished results due to
R. P. Langlands and A. Borel imply that.the subspace HE(P)(P\X;C) of
Eisenstein cohomology classes in H*(I'\X;C) is as large as possible and
describes completely that part of the cohomology at infinity of BR*(I\X,c)
contributed by the cusp cohomology spaces © H;usp(e' (Q),T) , 0 « T\C(P) .

Indeed, it will follow that BE (®) {T\X,T) generated by regular values of

Eisenstein series (cf. 4.7.) maps isomorphically onto the image of the
restriction
té(p) ,cusp ° B*(I'\x;e) - Qa.?ic(m H;usp(e'(Q) ,T)
if P is not of type m in the case n = 2m .
I learned the result I need (5.3.(5)) from A. Borel and I thank him
very much for allowing me to sketch the main steps in the argument in 5.2.,
5.3., which is of a general nature.

We retain the general notation of § 1.

3.1. We have recalled in 1.3. that the cohomology of T can already
be computed by using the complex of differential forms whose coefficient

functions are of uniform moderate growth, i.e. we have that the inclusion
(1) ﬂh(r\xm) + *(I\X,E)

induces an isomorphism in cohomology. By an unpublished result of Langlands
[5]1, [4] one can Aecompose the left hand side into subspaces parametrized
by the classes of associated parabolic @-subgroups of G and cbtains in this

way an analoguous decomposition of H*(I'\X;E). We describe it in more detail.
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Let P = °MAN be a parabolic @-subgroup of G . If f ¢ C:ng(l'\G)
is a smooth function on TI'\G of uniform moderate grdwth (cf. 1.3.), then
o A
also £.( ,k) ¢ cumg(f'u\u) , uniformly in Xk , wvhere
(2) fomk) = [ fnmk) an
T \N
N
is the constant Fourier coefficient of f with respect to P . Ve say that
a function £ in C. (\G) is neglegible with respect to P (denoted

umg
by fi P ) if fP(ma,k) , B & M , is orthogonal to all cuspidal functions

on I‘M\OH for all a ¢« A and k ¢ K (cf. Lemma 31 in [15]).
For a given class C(Q) of associate parabolic @-subgroups of G

one defines
(3) V(r\G;c(Q)) := {fe c:mg(r\c) |£fAP forall P §cCi@} .

One has then due to Langlands that the space c:mg(r\s) has a decomposition

as a direct sum
4 = = s
(4) cumg(r\c) @ V(IG;c(Q))

where C(Q) runs through the finitely many classes of associate parabolic
Q—subgroupé of G . If one combines (4) with (1) one cbtains a decomposition

in cohomology

(5) H*(T'\X;E) = BH*(g,K; (N\G) ® E) (cf. 1.3.)

c“
umg

= @ B*(g,K;VIMG,C(Q) 8B .
c(Q

A summand H*(g,K;V(I'\G;C(Q)) @ E} will also be denoted by B*(I‘\X,z)c(m .

For Q = G we have

(6) B (I\GE) (o) = BY O (T\K/E)
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i.e. the corresponding summand coincides with the cusp 6ohonoloqy.
5.2. As vecalled in 1.3., 1.4. the natural inclusions

*
Qr (Nx;0) + Q*(I\X;0)
resp.

Qz(r\x;ﬂ > di (T\x;e)

(for notation we refer to 1.3., 1.4.) induce isomorphisms in cohomology

(1) B (0, (NX;0) + B*(T\X;€)
resp.
(2) HAT\XE) 3 BY (B, (N\X;0))

where H; refers to cohomology with compact supports. With N = dim I'\X

there is the usual pairing
(3) Sedno x a drwo > dlowe .

Since the product a A B of a fast decreasing form a with a form B of

moderate growth is again fast decreasing we have also a pairing
a N-q N
(4) flgq(TNK;E) X ng (I\X;@)  + RBg,(M\X;0)

Since s:(r\x;c) & € given by integration the isomorphism (2) gives also
an isomorphisa x“(nm(r\x;c)) % ¢ which is again defined by integration.

Thus (3), (4) yield a commutative diagram of sesquilinear pairings

q
B3 @, (\xsen x i () g TNIEN + €

o T

Mo x 3(ra; o) > T
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they will be denoted by < , > ,

On the other hand, we let §;usp(r\x;¢) denote the space of harmonic

cuspidal @-valued differential forms on T'\X . Since a cuspidal form is
fast decreasing these harmonic forms belong to n;d(r\x;c) . We recall
that the cusp cohomology B;“SP(P\X;m) of T can be identified with

B usp(TVXi®)  in a natural way ([2], 5.5). Then the product

(a,8) > r{x ansd , o e A3 (NXGD , B €0l (NX;0)

induces a pairing, denoted by ( , ) ,

- q . q .
(6) gcusp(‘r\x,m) x H (nmg(r\x.m)) + C
which is positive non-degenerate on §gusp(r\x;¢) . One obtains an orthogonal
decomposition
a . = g9 . q
(N B (r\x; @) B ugp (TVKiT) @ (E_Icusp(l‘\x;t))'l‘

with respect to ( , ) and a natural complement to the cusp cohomology in
BEY(I\X;@) in this way. Observe that (B3 gp (TVEIE) ”* 1is also the ortho-
N_

gonal complement to gcugp(r\x;m) with respect to the pairing < , > de~

fined above.
These considerations apply also to the cusp cohomology H;usp(e'(P),E)
of a face e'(P) in I\X .

5.3. Let P be a maximal parabolic {-subgroup of G ; then the asso-
ciated face e'(P) is open in the boundary 3(I'\X) of the Borel-Serre
compactification. By extending a fast decreasing form on e'(P) by zero to

one on 3(MNX) one obtains a map

(1) i* : Hf(e'(P),€) ~+ B*(I(N\X);E) .
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Using the pairing defined above (and its analogue on H*(3(T'\X) ,E) one
seeg then that the map
(2) ) H*  (e'(Q),8) -+ H*(3(N\X),;T)

QeTr\c(p) ~SUEP
induced by i* is injective. Of course, this is also true if we sum over
all T-conjugacy classes of maximal parabolic @-subgroups of G .

We consider now the total restriction
(3) r* : B*(I'\X,@) -+ H*(3(T\X),T)

of the cohomology of T to the cohomology of the boundary resp. the various

restrictions

B* (T\X,E) -+ D - mrer(,n .
Q ¢ T\C(P)

4) ré(p) 3

With respect to < , > the space Im i~ BY3(MT) ,0) is orthogonal to

In r’-qn B"q(a(l‘\-i) ,&) where s = dim(3(I'\X)) , and we claim that we also

have
q s (p q
(5) Qc;.icu’) Bouspt®’ (P)) N In () is orthogonal with respect
8-q ' s-q
o <, > to (42] Heusp © @.,0N Imz, ., -

Qer\c(pP)
This is proved if we can find for a given ¢ in

3 q T
Qc?\cm B gp(e' @0 A Inxd ) anelement [0] in EUN\K@) suwch

that r¥([w]) = 19(¢) 1n BI(3(r\T) ;@) . But the existence of such an

element [d] follows immediately from the direct sum decomposition 5.1.(5)

(6) B(r\Ke = 83(r\Xx,o)

ReP Cc(R) '

the defining properties of the elements in each summand Hq(l‘\iyc)c(m and
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the interpretation of IE(P) = D ra in terms of taking the con-
Qe T\c(p)
stant Fourier coefficient along Q (cf. 1.9. in [27] resp. 2.2.(4) and
2.7.)
From assertion (5) one obtains now the followiné upper bound for the

dimension of the image of the restriction

Y ]
(7 T8p) ,cusp | EFO\KE) Q‘?Cm Biusp (e’ (2),€)
given by ré (®) composed with the projection to B;usp (e’ (Q),&) in each

summand H*(e'(Q),C) in the right hand side of (4),

(8) dim Im r* < (1/2)aim( D B _(e’(Q),@)) .
C(P) ,cusp 0 & F\C(P) cusp

5.4. We come back to the setting of § 4. Let P be a maximal parabolic
@-subgroup of G = SLn(R) which is of type i with i#*m if n = 2m .

We compare the results on the subspace HE(P) ('\x,¢) of H*(I"\X;Ir) obtained

*
in § 4 with the general estimate on dim Im r&(p) ,cusp given by 5.3.(8).

By the proof of 4.7. (cf. remark following 4.7.) there is a subspace in
Hg (P) (T\X,T) generated by the regular Eisenstein cohomology classes

[E(¢,A°)] corresponding to [¢] ¢ ngsp(e'(Q) ) , Q & T\C(P) , of type

(r,w) , m €™, we W with 2(w) > (1/2)dim N_ which is mapped isomorphic

Q
ally under the natural restriction onto
(1) 2] ® 8 (I, \Z,H (n,C) .
Qe T\C(P) p+r=q cusp "Q Q -Q

2
r>(1/2)dim NQ

Therefore the dimension of Hg(P) (T\X;C) is greater than the one of the
space in (1).

In the discussion of classes [¢] in K;usp(e‘(g) ,&) of type (¥,w)

with dim N, even and 4(w) = (1/2)dim N

Q o v assume for simplicity that
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I'= I'(k) is a full congruence subgroup of level Xk > 3 . The associate
clagss C(P) of P contains the maximal parabolic @-subgroups of sx.n(n)

of type i and n~-i (cf. 3.1.). The number Prax (k} of I'(k)-conjugacy

i
’
classes of maximal parabolic @§~-subgroups of SLn(R) is then given by

(cf. 4.10.)
(2) Poax, 1 & = |gsu/e® |
and we have
(3) Poax,1 ) = Ppay nog ) -

If we start now with linearly independent classes [¢] = 0 in

B;u‘p(e'(Q) @) , QeT\C(P) and Q is of type i , of type (wx,w) with

Lt(w) = (1/2)4im NQ the corresponding Eisenstein cohomology classes E(¢,0)

are all linearly independent because we have for the restriction of such a

class

[¢] R is r-conjugate to Q
r;([E(0.0)]) = 0 R of type 1 , but not PF-conjugate to Q
[s("")o(’o)]h'm) R of type n-i and

8 & W(AQOAR)

vhere R runs through a set of representatives of T\C(P) .
But if we start now with a non-trivial class [y] * 0 in

H;u‘p(c'(Q) ) , Qe T\C(P) and Q is of type n-i , of type (w,w) with

2(w) = (1/2)dim N. the corresponding class [E(y,0)] is linear dependent

Q
on the classes [E(9,0)] constructed just before. This follows from the fact
that otherwise in view of 4.7.(5), (7) and the discussion above
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contradicts the estimate 5.3.(8).

Indeed, the relation between the classes [E(¢,0)] (corxespoﬁding to
type 1 parabolics) and [E(¢,0)] (corresponding to type (n-i)-parabolics)
can be derived from the functional equation for the intertwining operator
c(s,Ao) defined in 2.7.(5), which is proved, for example, in [15], v, § 2
or [20], 6.1.. Details are not of interest here and left to the reader.

However, by 4.4., 4.7. and this discussion we obtain as a final re-

sult:

3.5. THEOREM. - Let T = TI(k) be the congruence subgroup of level k,

k>3, of SLn(Z) M >2 and let P be a maximal parabolic @-subgroup

of SL (R). We assume that P is not of type m if n = 2m . Then the sub-

space HE (P) (T\x;@) in H*(I'\X;C) generated by the regular Eisenstein

cohomology classes [E(¢,Ao)] for all Q¢ T\C(P) , all non-trivial classes

(¢] in Higsp(®'(Q),@) Of type (m,w) with = & % , wew® and
L(w) > (1/2)dim N, is mapped under the restriction
& ¢ EMMXD o B* (e’ (Q) ,T)
QeT\c(p)
1somorphic:a].ly onto the image Im ré (P) ,cusp of ré (P) ,cusp (@defined in

5.3.(7)), and we have

dim B*,_ (I'\X;¢) = (1/2)dim( & H*  (e'(Q),@®)) .
Cc(P) 0 «T\C(P) cusp

For a parabolic @~subgroup R of SL (R) , which is not maximal we have

r(*i(R) (Hé(p) ("'\x,@)) =0 .

An easy consequence of this result is that we have now a complete
description of that part of the cohomology at infinity of an arithmetic sub-

group of SL (Z) , n o0dd , which corresponds to the cuspidal cohomology of
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the faces in the boundary of the Borel-Serre compactification of minimal
codimension. The main point is here, that we are not forced to use residues
of Eisenstein series as, for example, in other cases described in [27],
Thm. 9.11. oxr [14]. We have here that each class in H*(I\X;E) which xe-
striéts non-trivially to @ B;usp(e' (Q),€) , Q¢ T\P a maximal parabolic

@-subgroup, can be written as a linear combination of Eisenstein cohomology

clagses represented by regular values of Eisenstein series.

2.6. COROLLARY. - Let I = I'(k) be a congruence subgroup of level k,

k>3, of SI.n(Z) , n odd. Then the gsubspace
® B gy (@),

wvhere P runs through a set of representatives for the set of associate

classes of maximal parabolic @-subgroups of SI.n(]R) is mapped isomorphic-

*
ally under the natural restriction onto @ Im rz (P) ,cusp °




[1]

(2]

[3]

[4]

[5]

(6]

(7]

(8]

{9]

[10]

[11)

REFERENCES

Borel, A.: Introduction aux groupes arithmétiques. Paris: Herman
1%9.

Borel, A.: Stable real cohomology of arithmetic groups II. In:
Bano, J., et al (eds.) Manifolds and Lie groups. Progress in
Maths., vol. 14, pp. 21 - 55. Boston-Basel-Stuttgart: Birk-
h3user 1981.

Borel, A.: Cohomology and spectrum of an arithmetic group. In:
Operator Algebras and Group representations, vol. I. Mono-
graphs and Studies in Maths., vol. 17, pp. 28 -~ 45. London:
Pitman 1984.

Borel, A.: Regularization theorems in Lie algebra cohomology.
Applications. Duke Math. J. 30, 605 - 623 (1983).

Borel, A.: A decomposition theorem for functions of uniform mod-
erate growth on TI\G , manuscript 1983.

Borel, A., Casselman, W.: Lz—cohomlogy of locally symmetric mani-
folds of finite volume. Duke Math. J. 50, 625 - 647 (1983).

Borel, A., Garland, H.: Laplacian and discrete spectrum of an
arithmetic group. Amer. J. Math. 105, 309 - 335 (1983).

Borel, A., Jacquet, H.: Automorphic forms and automorphic repre-
sentations. In: Automorphic forms, representations and
L~functiong, Proc. Symp. Pure Maths., vol. XXXIII, part 1,
pp. 189 - 202. Providence: AMS 1979,

Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment.
Math. Belvetici 48, 436 ~ 491 (1973).

Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups
and representations of reductive groups. Annals of Math.
Studies 94, Princeton: University Press 1980.

Gelfand, I. M., Graev, M., Piatetski-Shapiro, I.: Representation
theory and automorphic functions. Philadelphia-London-Toronto:
Saunders 1969. (russ. edition, Moskau 1966)



[12]

[13]

[14]

(15]

[16]

[17]

[18]

[19]

[20]

(21}

[22]

Harder, G.: On the cohomology of SI.2 {(0) . In: Gelfand, I. M.
(ed.) Lie groups and their representations, pp. 139 - 150,
London: Hilger 1975.

Harder, G.: On the cohomology of discrete arithmetically defined
groups. In: Proc. of the Int. Collog. on Discrete Subgroups
of Lie groups and Appl. to Moduli (Bombay 1973), pp. 129~-160.
Oxford: University Press 1975,

Harder, G.: Eisenstein cohomology of arithmetic groups: The
case GL2 . manuscript 1984,

Harish-Chandra: Automorphic forms on semisimple Lie groups. Lect.
Notes in Maths. vol. 62. Berlin-Heidelberg-New York:
Springer 1968.

Jacquet, H., Shalika, J.: Sur le spectre résiduel du groupe linéaire.
C. R. Acad. Sc. Paris, 2;_?_;_, 541 -~ 543 (1981).

Knapp, A. W., Zuckerman, G.: Clasgssification theorems for representa-
tions of semisimple Lie groups. In: Non-commutative harmonic
analysis, Lect. Notes in Maths. vol. 587, pp. 138 - 159, Berlin-
Heidelberg-New York: Springer 1977.

Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil
theorem. Ann. of Math. 74, 329 - 387 (1961).

Kostant, B.: On Whittaker vectors and representation theory. Inven-
tiones math. 48, 101 - 184 (1978).

Langlands, R. P.: On the functional equations satisfied by Eisen-
stein series. Lect. Notes in Maths., vol. 544. Berlin-
Heidelberg-New York: Springer 1976.

Lee, R., Schwermer, J.: Cohomology of arithmetic subgroups of sx.3
at infinity. Journal £. d. reine u. angewandte Math. 330,
100 - 131 (1982).

Lee, R., Schwermer, J.: The Lefschetz Number of an involution on
the space of harmonic cusp forms of SL3 . Inventiones math.
23, 189 - 239 (1983).



[23]

[24]

(25]

{26]

[27)

[28]

[29]

[30])

(31}

[32]

[33)

[34]

- R.3

Osboxne, M., Warner, G.: The theory of Eisenstein systems.
New York: Academic Press 1981.

‘Schwermer, J.: Sur la cohomologie des sous-groupes de congruence

ds SL,(Z). C. R. Acad. Sc. Paris 283, 817 - 820 (1976).

Schwermer, J.: Eisensteinreihen und die Kohomologie von Xongruenz-

untergruppen von SLn(Z) . Bonner Math. Schriften, n® 99,
Bonn 1977,

Schwermer, J.: Sur la cohomologie des SLn(z) 4 1'infini et les
series d'Eisenstein. C. R. Acad. Sc. Paris 289, 413-416 (1979).

Schwermer, J.: Kohomologie arithmetisch definierter Gruppen und
Eisensteinreihen. Lect. Notes in Maths., vol. 988. Berlin-
Heidelberg-New York-Tokyo: Springer 1983.

Shalika, J.: The multiplicity one theorem for GL(n) . Ann. of Math.
100, 171 - 193 (1974).

Speh, B.: Unitary representations of GL(n,R) with non-trivial
(g,X)-cohomology. Inventiones math. 71, 443 - 465 (1983).

Vogan, D. A., Jr.: Gelfand-Kirillov dimension for Harish-Chandra
modules. Inventiones math. 48, 75 - 98 (1978).

Vogan, D. A., Jr.: Representations of real reductive Lie groups.
Progress in Maths., vol. 15. Boston-Basel-Stuttgart: Birk-
h8user 1981.

Vogan, D. A., Jr.: Unitarizability of certain series of represen-~
tations, preprint 1983.

Vogan, D. A., Jr., Zuckerman, G.: Unitary repteuntationq with non-
zero cohomology. Inventiones math.

Wallach, N.: 8quare integrable automorphic forms and cohomology of
arithmetic quotients of SU(p,q), to appear in Math. Annalen.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 
	Seite 34 
	Seite 35 
	Seite 36 
	Seite 37 
	Seite 38 
	Seite 39 
	Seite 40 
	Seite 41 
	Seite 42 
	Seite 43 
	Seite 44 
	Seite 45 
	Seite 46 
	Seite 47 
	Seite 48 
	Seite 49 
	Seite 50 
	Seite 51 
	Seite 52 
	Seite 53 
	Seite 54 
	Seite 55 
	Seite 56 
	Seite 57 
	Seite 58 
	Seite 59 

