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Cubic Form Theorem for Affine Immersions

by Katsumi P\Iomizul and Ulrich Pinkal}

An important theorem, due to Pick and Berwald, in ¢classical affine
differential geometry states that if a nondegenerate hypersurface M7 in the
affine space gt has vanishing cubic form, then it is a quadric. The main
purpose of this paper is to prove a number of generalizations of this result to
the case of more genelral affine immersions in the sense of our previous
paper [7] including degenerate hypersurfaces.

In Section 1 we extend the notion of affine immersion in [7] to higher
codimension and discuss basic formulas and examples. In Section 2 we prove
some results on umbilical immersions and reduction of codimension. In
Section 3 we discuss the condition that the cubic form is divisible by the
second fundamental form and state 2 number of generalizations of the
classical theorem of Pick and Berwald. The proofs of these results are given

in Sections 4 and S.

' Supported in part by an NSF grant. This work was done while he was
visiting Max-Planck-Institut fOr Mathematik, Bonn.



1. Affine immersions for higher codimension

1In this section we extend the notion of affine immersion in [7] to the case
of higher codimension. Let (M,v) and (f,%¥) be differentiable manifolds
with torsion-free affine connections of dimensionn and fi=n+p,
respectively.

Animmersionf: M = M is called an affine immersion if around each

point of M there is & field of transversal subspaces x— Nx:

(1) Tf(x) = f*'(Tx(N)) + Nx

such triat for vector fields X andY on M we have a decomposition
(2) T yfy(Y) = £ (VyY) + alX,Y)

where o(X,Y) € N, at each point x.

In the following we shall call N, the normal space (rather than the

transversal space) with the understanding that the choice in general is not

unique. We have the normal bundle N with x— Nx' We cell a the second
fundamental form. Corresponding to P‘roposition 1in {7) we have the following

Proposition 1. Let f: (M,v) = (M, V) be an affine immersion and x € M.
Then a normal space N, with the property that it is spapned by a1l a(X,Y),
where X,Y € T, (M), is uniquely determined.

Proof. Let le be another such normal space at x and al the

corresponding second fundamental form defined by the equation (2) using N!,

Write a(X,Y) = *(X,Y) + B(X,Y), where *(X,Y) € T,(M) and p(X,Y) eN' .
Then it follows that =(X,Y) =0 and a(X,Y) = p(X,Y) = a’(X,Y). Since N,

(resp. N1x) is spanned by all a(X,Y) (resp. ol(X,Y)), we conclude that



| .
Ne= N\ o
In genersl, for each point x€ M the subspace of Tx(ﬁ) spanned by

s (T,(M)) and all alX,Y), X,Y € T,(M), is called the second osculating
Space at x. It is determined uniquely, because it is also the span of all
vectors (¥yf,(Y) ), , where X andY are all vector figlds on M. Its
dimension is called the second ogculating dimensien,

If & x= € N, is a normal vector field, then we write
(3) Fyb=-(AX) + Wy,
where A;X € T.(M) and vy t €N, at each point. Just as in submanifold

theory in Riemannian geometry, we have a bilinear mapping A, callgd the
shape tensor:
(B,X) €Ny X T (M) = ApX € T (M)

at each point x. We call Ag the ghape operator for £. The mapping of the

space of normal vector fields ¢ = v*x tis covariant differentiation relative

to the normal connection.

Just as in submanifold theory we get several basic equations relating the
curvature tensors R for (F,¥) and R for (M, ), the second fundamental
form form o, the shape tensor A, etc. inthe usual way. Especially, the
tangential component of R(X,Y)Z is given by

tan R(X,Y)Z = R(X,Y)Z + Aa(x,2)Y ~ AalY,z)X

and the normal component by

nor R(X,Y)Z = (vya)(Y,2) - (vya)(X,Z),

where Vya is defined by



(vya)(Y,Z) = vy aY,2) - a(vyY,2) - alY,vy2).

For a normal vector field £ the tangential component of R(X,Y)t is given
by .

tan R(X,Y)§ = (9yA)(X) - (9yA)(Y),
where va is defined by

(O A)p(Y) = 9 ( ArY) - Ap(9yY) - (Agep )(Y).

X2 b S 4 ¢ X Wé

The normal component is given by

nor R(X,Y)E = u(Atx.Y) - a(x,AE_Y) + R*(X,Y)E,

4L

where R~ is the curvature tensor of the normal connection.

In the case where (M, V) is projectively flat (with symmetric Ricci
tensor, see [6]), we have
Rix,v)z = ¥(v,2)x -¥(x,2)¥,
where ¥ is the normalized Ricci tensor for (Ff, ¥):
F(X,Y) = Ric(X,Y)/(7-1). ‘

In this_ case, all the formulas above be_acome simpler. Thus we have-
(4) ROX,Y)=F20X - FX,2)Y +Agcy 79X - Agx,2)Y
- equation of Gauss-

(5) (9yga)(Y,2) = (vyx)(X,2)

-equsation of Codazzi for o-
(6) (UyA)pY + F(Y,EIX = (TyA) X + F(X, £)Y

-equation of Codazzi for A-
(7) RE(X,Y)t = a(X,AE’Y) - of ALX,Y)

- equation of Ricci-

When the ambiant affine connection ¥ is flat, equations (4) an (6) get



further simplified:
(4a) R(X,Y) = Aa(Y,Z)x . Aa(X,Z)Y
(6a) (va)gY_ = (vYA)EX .
If a=0 atapoint x, we say that f is totally geodesic at x. If a=0 at

every point x € M, we say that f Is {otally geodesic.
An affine immersion £: (M,9) = (M, V) is said to be umbilical at x € M if

there is a I-form p on N, such that

(8) Ag = p(E) 1 for every L €N,
where I denotes the identity transformation. If f is umbilical at every point,
we say that f is umbilical. If f is umbilical and the ambiant ¢connection vV is
projectively flat, then the normal connection is flat {(i.e. R* = 0) as follows
from (7).

We now discuss a8 few examples.

Example 1. Let (M,g) and (M, Q) be Riemannian or pseudo-Riemannian
manifolds with Levi-Civita connections V and ¥, respectively. An isometric

immersion f: (M,g) — (f{,§) gives rise to an affine immersion (M,v) =

(f,¥). Here, of course, there is a natural choice of normal space N, as

the orthogonal component of T, (M) relative to g .

f_xa;np_l_e_z. Curves in affine space R3 are studied in [1], Chapter 3.

Also see [5] for surfaces in RY.

Example 3. Graph immersion. Let F:R"— RP be a differentiable function
and consider the graph immersionf: M=8"—= M= K*P given by
(8) f(x) = (x,F(x)) € R"x = RMP, xer

For each x€ M, let Nx be the subspace of Tx( RTP) that is parallel to the

affine p-space RP of R™P. We get an affine immersion f: (M,9) - (H,¥),



both spaces M=R" and M = R™P with the usual flat affine connections. As

in Example 3 in {7}, the second fundamental form « is given essentially as
the Hessian of the function F with values in RP identified with each Ny We

have also A=0. Thus f is umbilical but not totally geodesic.

Example 4. Centro-affine immersion. Supppose M is an n-dimensional

submanifold immersed in M = R"™P_. Assume that there exists an affine
(p-1)-subspace V =RP" ! in R™P such that for each point x of M the affine

p-sdbspace spanned by x and Y is transversal to M. Choosing Nx to be the

tangent space at x of this transversal affine p-space, we write equation (2)
and define an affine connection ¥ on M. The resulting affine immersion f:

(M,9) = R™P is a generalization of centro-affine hypersurface in [7]. We

show that f is umbilical and that v is projectively flat. To see this, let Xg €
Mandlet {45 =Xy + Uy be @ normal vector at Xg, where X is also

considered as a position vector for the point x5 from a fixed point of RP,
To compute Af; we extend &0 to a normal vector field ¢ = hgX+Uy and

find ¥y ¢ = ox. Thus Ag =- xgl. This shows that  is umbilical.

Next we consider another submanifold transversal to the family of normal

affine p-spaces to M. It is given by 8 mapping of the form
(10) X €M= ¢(x) =x x+F(x),

where 3t M— BN andF: M —’Rp'-'. The connection induced by ¢ on M is
VY = OyY + u{X)Y + u(Y)X, where g =d (logxr).

By taking an affine n-space as ¢(M), we canget ¥ to be a flat affine

connection. This means that v is projec’tivelyflai.

2. Umbjlical immersions and reduction of codimension



First we prove the following result on umbilical immersions,

Theorem 2. Let : (M™,v) = (R"*P.¥) be an umbilical affine immersion,
where n2 2. Thenit is affinely equivalent to a graph immersionora
centrg-affine submanifold immersion, '

Proof, Let ¢ be thg t-form on the normal bundle such that A£== e(E)I1.
From Codazzi's equation (6a) and from (va);rn (vyp)(£)1, we get .
(Vye)(E)Y = (9yp)(£)X for any two vectors X and Y. Thus Vyp=0 for any
X. Thus Kero, = {£ €N,; p(£) =0} has constant dimension. Now we show
that the distribution x € M" — Ker Py C T (R P along the immersion { is
parallel in R™P, This is obvious, however, because if *rt is parallel along &

curve x, in MP relative to the normal connection, then p( F,.t) is constant
since V¢ = 0.
i) Case where pw» 0. Take a normal vector field ¢t £Ker ¢, and consider

the mapping x€ MM — y=x+ £/p(t) €R™P. Then for any tangent vector X
we get

Fyy=X+[-X(p(E)IEVP(EIZ + (-p(EIX + ¥ E)/p(E)

-~ tx(g(e))/g(s,)-’-ﬁ, + (9 gk )/p(E)
and
p(Vyy)=0
so that 'ffx(y) € Ker p. This means that all points y lie in the.
(p-1 ).-dimensional affine subspace, sayV, throughr one point y, and paraliel

to the paraliel distribution Ker p. It now follows that for each x € MD the



normal space NX coincides with the tangent space at x to the p-dimensional

affine subspace generated by x and V. We conclude that M" is a centro-affine
submanifold immersed in R"'P,

Finally, consider the case where p=0, thus A= 0. For any normal
vector field ¢, we see that 7)(5, = 7'y belongs to N,. This means that
the normal spaces N, T, ( ®R"P) are parailel in R™P, Since M" is

transversal to this family of parallel p-dimensional affine subspaces N, it is

a graph. ) ' D

We now prove two results concerning reduction of codimension for affine
immersions.

The first is a variation of Erbacher’s result in Riemannian geometry {3]).

Proposition 3. tet f: (M" ,9) = (R"P,¥) be an affine immersion,
Suppose ‘N, is a subbundle of the normal bundle N such that

i) N,(x) contains the range of «, for every x €M™

ii) Ny lsparallel relative to the normal connection,

Then f(M") is contained in a certain_(n+q)-dimensjonal affine subspage of
R™P, where q=dimN,(x).

Proof. We can easily check that the distribution x— a(x) =T, (M) +
N,(x) along the mapping f is parallel in R™'P. Thus we have a paraliel
distribution & of dimenisonn+q onR™P. If x is a geodesic in (M",9),

we see that f(x;) lies in the affine (n+q)-space R™Q through xg € MM and

tangent to 4. It follows that T(M") c R™9, D

The next result fs known in the Riemannian case (for example, [101,



Lemma 28, p.362; see [2) for its further generalization).

Proposition 4. Let f: ( M ,9) = ( R™P,¥) be an atfine immersion.
Suppose there exists a nonzero normal vector field £ _and a bilinear
symmetric function h_on M" suchthat a(X,Y)=h(X,Y)t for all tangent
vectors X and Y. Assume fyrthermore that rank h > 2 at every point. Then
f(M") ig contained in an (n+1)-dimensional affine space K™ lof RM*P,

Proof. Let {X),...,XpXpyqseeesX, ) be @ basis in T (M") such that

{xrﬂ' S } is a basis of Ker h, and h(X,.Xj) =2 sij for 1<i,jsr,
where by assumption r 2> 2. Forany X= Xi, 1<1gn, thereisY =X among

X{s:eesXp sothat h(X,Y) =0 and h(Y,Y) = 0. Now from Codazzi's equation

(5) we get
4 4
(Vgh)(Y,2)% + h(Y,2) © & = (Vyh (X, 2)¢ + h(X,2) ¥ yi.
Set Z=Y and consider this equation modulo span {{}. We obtain

4 4
h(Y,Y) 9 y& =0 modspan{{} and hence v & €span{i].
This being true for every X;, 1 <i <n, and thus for every X € TX(H"), it
follows that N, =span {£} is parailel relative to the normal connection. We

may now apply Proposition 3 to N,. o

Suppose an affine immersion f: { M? ,v) = ( R™P, %) has the second
osculating dimension nt1. Then around each point we may choose 8 norma)
vector field £ such that a(X,Y) =h(X,Y){. The rank of h is independent of

the choice of such &, and we define it as the rank of o.
Corollary. Suppose that the secopd osculating dimension of 'ag affine

immersion f: ( M" ,9) = (R’"‘;.v) is n+1 and that the rapk of o is22 gt
every point. Ihen f(M") is contained in an (n+1)-dimensiona} affine

subspace R/ of RMP,
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3. _Cubic form
For an affine immersion f: (M,v) = (M, V), where ¥ is projectively
flat, we define the cubic form to be
(11) 9a: T(M) xT(M)xT(M) = N
that is,

(11a) (va)(X,Y,2) = (chr)(Y,Z).

By (5). va is symmetric inX,Y, and Z.
| We explain briefly our motivation and goal. For an isometric immersion of
a Riemannian manifoid M into @ Riemannian manifold i of constant curvature;
the condition that 9a =0 has a significant geometric meaning [4]). For the
geometry of affine immersions, we might first consider the.weaker condition
that va is divisible by . (Actually, this is a projective notion as we we
shall further study in a subsequent paper.) In the present paper we deal with
the case where the osculating dimension for f: (M?,9) = (RP,¥) is n+1.
In this case, it turns out that the condition «f v depends only on the image
£(M™) and not on the connection v (induced from ¥ by choosing a normal
vector field £ along f(M")). Furthermore this condition characterizes a
quadric when the rank of ais 2 2. Now the detail follows.

We say that Vo is divisible by o (denoted by o | va) if there is a
1-form ¢ on M such that
(12)  a(X,Y,2) = p(X) a(Y,Z) + o(Y) a(Z,X) + p(2) a(X,Y)
for all tangent vectors X,Y and Z; or equivalently
(12a) alX,X,X) =3e(X) a{X,X)
for gll tangent vectors X.

When the codimension p is 1, choose a normal vector field ¢ and write

a(Y,Z) =h(Y,Z) . We have
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(94a)(Y,Z) = (Vyh)(Y,Z) & + h(Y,Z) (v &)

“[(vxh)(‘GZ)"" (X) h(Y,Z)] # = C(X,Y,Z)ﬁ,

where T is the transversal (normal) connection form and C is the cubic
form as already defined in {7). Thus o | va if and only if
(13) C(X,Y,Z) = p(XIh(Y,Z) + p(YIN(Z,X) + p(Z)h(X,Y)
for all tangent vectors X,Y and Z. We may write (13) as h|C. Inthe special
case where £ is equiaffine so that f is an affine immersion in the sense of
relative geometry (i.e. * =0), (13) may be expressed by writing h | vh.

We prove ' '

Lemma 1. Let f: (M" v) » (R™!,¥) pe an affine immersionwithe
normal vector field &. Ifwe change ¢ to
(1) ET=(t+un
where U js a vector field op M™ apd»: M" =R - {0}, then writing

Uyfe(Y) = 1,(T y7) + R(X,V)E

we have an affine immersion f: (M",¥) - (®"*!,¥) and

(15) 9 = v, - h(X,Y)U

(16) R =xh

(17) T =7+ -dllogy)

(18)  T(X,Y,Z2)/x = €(X,Y,2) + n(X)n(Y,Z) +n(Y)n(Z,X) +n(Z)h(X,Y),
where 7 is the i-form such that n(X) = h(X,U) for all X.

Proof. The verification is straightforward if we note

(Vy)(Y,2) = X R(Y,2) - B(TyY,2) - B(Y,Ty,2)

Ext == f‘(&) + ?(X)E
and

C(x,v,2) = (Vyh) + T(X)R(Y,2). 0
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Now observe that if f: M" = R™! is an immersion which admits a
transversal vector field £, then we may induce an affine connection ¥ in such

a way that £: (M",v) = ( B!, %) is an affine immersion. As a

consequence of Lemma 1 we have

Proposition 5. If animmersion f: M" > R™! has the property that h|C

rs choice of normal vector field £, then it has e pro for

In particular, the property that h is nondegenerate does not depend on the
choice of .£; we say that f is nondegenerate if h'is.

Inthe case where the second fundamental form h of an affine immersion f:
(M, 9) = ( Rm','&') fs indefinite, we can give the following geometric
interpretation of the condition h | C.

Proposition 6. If h is indefinite, the following statements are equivalent:
1) h]C; ‘

2) aqeodesic in (M",v) _whose initia] tangent vector js null is a nul)
curve (relative to h);

3) _a)l geodesics in (M7, ) with null initial tangent vectors are geodesics
in R™1,

Proof.

1)—2): Assume C(X,X,X) =3 p(X)h(X,X) for all X € TM, where ¢ is a

certain I-form. Then

(Th)(X,X) = (3p-2)(X) h(X,X).
Suppose x, is a geodesic in (M",v) such that h(Xg, Xp ) =0. The above
equation implies (d/dt)n( X, , X ) = (3p- ©)( X, ) h( X,, X; ). Thus the

function #(t) = h( X, Xy ) satisfies the differential equation
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dg/dt = ¥(t) ¢(t), where w(t)=(3p- 7)(X,).
We know that a solution 9(t) of this equation with ¢(0) =0 must be

identically 0. Thus X4 is a null curve.

2) = 3): This is obvious from ¥, X, = v, X, + h(X}, X, ).
3)=1): Let X €T, (M) benull,i.e. h(X,X)=0. If x is a geodesic in
(MM, v) with initial tangent vector X, then by assumption 3) we have
so that h( X, X, ) =0. ‘Hence
(V) Xy, Xy ) =(d/dt) h(Xy, ¥ ) - 2 h(9, %y, %) = 0.
At t =0 we have
and hence C(X,X,X) = (9yh){X,X) + ©(X)h(X,X) =0. What we have shown is

that h(X,X) =0 for X € TM implies C(X,X,X) =0. It follows that h|C. o

We no.w state a number of qeneralizationé of the classical result. The
proofs will be given in subsequent sections.

Theorem 7. Let f: (M",9) = ( K"™1,¥) be an affine immersion with 2
normal vector field ¢ for which v=0. lfrank h:2and vh=0 atevery
point, then f(M") les in a quadric.

Remark I. More precisety, f(M™) lies in a cylinder @"x R"° T, where Q"

is a nondegenerate quadric in an affine subspace R tand ROT is an affine
subspace transversal to RTH1.

BRemark 2. This theorem extends the classical Pick-Berwald theorem (see
[1] as well as the result in relative geometry (see [8]),which are for

nondegenerate hyperaurfaces. See also [8].
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The formulations of the following Theorems 8 and 10 are based on the
observations in Proposition 5.

Ineorem8. Let f:M"~ K™ pe g nondegenerate immersion, Then f(M")
lies in a quadric if and only if h{C.

We oxamine the foll-owinq question : given (M",v).' under what
conditions can we find an affine immersfon f: (M1, 9) = ( ! , V) such that
1(M") Ues in a nondegenerate quadric in K™ 17

We proceed as follows. If there is an affine immersion f: (MMv9) -

( B™1, %) such that f(M") lies in a nondegenerate quadric Q" in g1
then we can choose a normatl vector field &0 and obtain the second
fundamental form h0 and the induced affine connection v® on M" from

¥y =v0y + n0(x,v) 0
such that hC is a pseudo-Riemannian metric and v 0 is the Levi-Civita
connection of h0. We may write, as inLemma i, ¢ = (&0 + U)/x, where U is

a certain vector field on M™ and X a nonzero function. We find
= g0 v .pno
(19) Wy Y = 955 - h¥(X,Y)U.
In the case where Q" is not locally convex, hC is indefinite. A |
geometric interpretation of (19) is the following. A null geodesic of wWisa
geodesic of v. Conversely, an affine connection v with this property

relative to (ho,vo) must be of the form (19) for a certain vector field U.

In order to prove this, 1et K be the difference tensor: K(X,Y) = UyY -
v0,¥. Take any X € T, (M) with hO(X,X) = 0. If %, is a geodesic for 0 with
initia) tangent vector X, then it is a null geodesic and, by assumption, it is a
geodesic fof V. Thus v i’t= 0, which implies k( -’?t' ;"t ) = 0,in particular,
K(X,X) =0. We have shown that K(X,X) = 0 whenever ho(X,X) = O.By taking a

basis {X;,...,X.} in T_(MM), write K(X,Y)=2",_ Ki(X,X)x-. Since
> ™ n X =1 i
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hO(X,X) = 0 implies KI(X,X) = 0, we have K!(X,Y) =a' hO(X,Y), 1< i «n.
Then K(X,Y) = (-.";'"i=|ai X;) hO(X,Y). Thus we have (19)with Z = - " i=1 8! X+

We can now state

Proposition 9. A differ bl anifold with ap affi nnection
(M?,9 ") admits an affine immersion into 8 (not locally convex)
nondegenerate quadric O"in R™! if and only if M" admits a

curvature whose null geodesics are geodesics of ¥,

[heorem 10, Let f: Mo g be an_immersion with rank h 2> 2
everywhere. Then f(M™) lies in a quadric if and only if h|C.

Remark 3. If h|C and if the affine connection Vv induced by f relative to
some choice of a transversal vector field is complete, then f(MM) is a
cylinder as in Remark 1 above. Even for the standard s c R3, vis
incomplete for most choices of £.

Theorem 11. Let f: (M7, 9) = ( R™P,¥) be an affine immersion, na2.
Then f(M7) is contained in a quadric Q" of an affine subspace gt of P
if and only if the osculating dimension ig n+1, rank o 22, and o | va&.

4. Broofs of Theorems 7 and 8

We start with a few lemmas.

Lemma 2. Ltet f: (M, 9) = ( R"™1,¥) be an affine immersion and
gssume that * =0, Yh=0 and rank h22 everywhere, Thep
1) Ker h is g paraliel distribution on {M",v);

2) x€ MM f (Kerh,) is a distribution along f which is paratlel in
R, |
3) Ihereis 8 constant p such that SX =pX modKer h for every X € TM,

Proof. 1) Let Yt and Zt be parallel vector fields along a curve X4 inM",
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Then Vh = 0 implies that

Thus h(Yt'zt) is constant. 1f Y,€ ker h at x,, then it follows that Yi€ Ker h
along the curve X4« This shows that dim Ker h is constant and the
distribution x = Ker hx is parallel on M7,

2) Let Yt be a parallel vector field belonging te Ker h along a curve Xys

Then

T (Y = £,(9,7,) + h(X,Y,) =0,
which shows that ft(Yt) is parallel in R™ 1. This proves that x —f,(Ker hx)
c Tf(x)(R“”) is parallel inR™!,

3) From vh=0we get h(R(X,Y)Y,Y) =0 for all X,Y €T, (M"). Using

the equation of Gauss: R(X,Y)Y = h(Y,Y)SX - h(X,Y)SY, we get
(20) h(Y,Y)h({SX,Y) = h(X,Y)n(SY,Y).

In T, (M) choose a basis {X;,...,Xq, Xppqs--0y X} Suchthat {X.;yy...,

xn] is a basis of Ker h, and n(xi.xj) =4 sij for 1 <i,j < r. By assumption,

rax2.

For each X;, i £isr, choose X, 1 <jsr, j=i3 we get h(SXI, Xj) =0

from (20). Thus SX;=p;X; modKer h,. We want to show thatp,=--- =p_.

Ifi=jfamong!,...,r, then Z=X; + Xj orX; +2 Xj has the property that

h(Z,Z)= 0 and may be chosen as part of an orthonormal basis '(after
normalization) of a supplementary subspace to Ker h. Thus by what we have

seen above we get
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S( Xi *Xj)ﬂf(xi +Xj) Ol". S(X] +2Xj)=?(xi *Zx]‘).

Witl_l a certain constant p. Then we get
P Xt pjx] =p X| e Xj or pjX;t+2 ejxj =p X; +2¢ )(j
It foliows that ¢, = P =¢ We have thus shown that 211 ¢, 's are equal. Call
this number ¢. We have sh.own SX=p¢X modKer h for every X=
XyseoosXpe
Nowiet 1 < j<rand r+1 <isn. (20) implies h(SX[,Xj) = 0. This shows

that SX; € Ker h. So S(Ker h) CKer h. We canwrite SX=pX modKer h |

for every x=xr+,,...,x Hence SX=¢X modKer h for all)_(eTx(r"l).

nl
It now remains to show that ¢ is a constant. Since 7 =0, we have
Codazzi's equation (vxS)(Y) = (VYS)(X) (see [7]). We extend a basis

[ ST Xpg1s-+-2 X} 85 before to vector fields in a neighborhood with

the property that they still form a basis and {X.j,..., X,} form & basis of
Ker h at each point. Then
(94 S)(X]) = Uy (SX]) - S(vy Xj) = Oy (ex]+ Z) - s( vx Xj)
=(X; 00X +p (9y X} + 9y T - 5(vy X))
s (X ?)Xj mod Ker h,
where Z € Ker h and Vy Z€Ker h, since Ker his parallel. Thus by
Codazzi's equation, we have
(21) (X ey = (X;p)X; modKer h.
This holds for all fand j. If 1 << r, then,using rr 2, teke jwmi, 1 <jzr.

Then (21) implies that X;p=0. Ifr+1 <isn, thentake , 1 <jsr. Then
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(21) implies X; p=0. We have thus shown that Xp=0 for every X € T,(M).
Remark. Incase rankh=1 and {X;,..., Xn} is a basis in T,(M),

where {X,,..., X } is a basis of Ker h, we cannot conclude X,p=0 (there

is an example showing that ¢ is not a constant).

Lemma 3. Under the assumptions of Le 2 define for each x € Mn_a_

blinear symmetric functiop ¢ in Tf(x)(km') as follows:
9(fyX, f,Y) =h(X,Y) for X,Y €T (M")

.(22) 0(f,X, £) =0 for X €T (MM
g(E,8) =o.

Then ¢ is parallel relative to the connection ¥ in R™!.

Proof. We want to show that

X g(U, V) = o(¥yu,V) + g(U, ¥y V)

for all vector fields UandV¥ along f and for all X € TX(M“).

1) If U=1f,(Y), V=1,(2) for vector fields Y andZ on M", then the
above identity follows from vyh=0 and g(t,uU) =g(t,v)=0.

2) It U=f,,(Y). and Y= ¢, then

Xg(U,t) =0, g(%’xU.E;) =9(1,(VyY) + h(X,Y)E,E) =h(X,Y)p
and

9(U, ¥ yb) =g(U, - 1,(SX)) = g(U, -pf, (X) +{,(Z)) (where Z € Ker h)

=-p h(Y,X) +h(Y,2) =-¢h(Y,X).
So the above identity holds.

3) If U=Vw=i, thenwe have X g(E,t) =Xp=0 as well as g(%’x&,g)-
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9(-1,(5X)), £)=0.
Remark. At each xeM",

Ker g =f,(Kerh) if p=0 and Ker g=1f,(Kerh)+span(t) ifp=0.

Lemma 4. We jdentify f(x), x€M", with the position vector and simply
write it as x. Define a function ¢ on MM by ¢(x) = g(x,x)/2 and a }-form
% o0 Treyy®R™T) for xemM” py
(23) Mt X)=g(X,x) for XeT(M")

x(f,') =g{x,x) + 1.
Then ) is paraliel relative to ¥ in Rt .

Proof. We have

(T 1Y)
= XO T Y)) - My 1, ¥) = Xg(f, (Y),x) - X(f,(9yY) +h(X,¥)E)
a g(Vy fe Y, x) + 91, Y, 1, X) - g( 1,9 ,Y,x) - h(X,Y)(g(t,x) +1)=0
and
(TR )(B) = XOMED) - M(Uyk) = X(g(E,x) + 1) - x(TVyk)
='o('ﬁ'x£.x) + c(E,..x) - Mty =0,

Thus X is parallel in R,

We are now in position to prove Theorem 7.

Proof of Theorem 7. First we note that the parallel 1-form X in Lemma 4
is nothing but a covector in the dual vector space I_I,.M . Thus there is an
affine function ¥ on K™ such that dy = ). Moreover we may assume that
p(xg) = ¢(xg) for soﬁe point x,. Now obviously d¢ =dy on M". Hence
"¢=1y on M". This means that f( M™) ltes in & quadric.

Remark. For any affine coordinate system in R"” we may write
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$(x)=F; jo1 3 XAxl, p(x)=2 5y ax + b,
Suppose rank g=r+1, Then we rhay retake an affine coordinate system so
that ¢(x)= zi,j =1 Bj Xl %) , where the matrix [ai j] is nondegenerate.
We can further simplify the quadratic equation ¢(x) = »(x) for f(M") into
T2 =et or X223 e (X2, where =11
by a change of affine coordinate system.

Before we prove Theorem 9, we need two lemmas.

LemmaS. Let f: (M",9) = ( R™', %) pe a nondegenerate affine
immersion with 8 normal vector field ¢ and second fundamental form h.
Then we can change £ to ¥ =t/n for some x: M" = R so that the volume
element & for the second fundamental form i for T coincides with the
volume elment w induced by ¢ _from the standard volume element & in R !,

Proof. Assume that the volume element wp, for h is equal to x w, where

w: MM > R*. Choose x=u ™Z. Then Ra=xh implies that & =120 =
"'-""h = W,

Lemma 6. Let f: (Mn) ) = ( R"H,'ﬁ") be a nondegenerate affine
immersion such that w =w,. 1fthe cubic form C vanighes, then * =0.

Proof. We recall from [7]

C(X,Y,2) = (Fgh)(Y,2) + T(X) h(Y,2) and Fyw = T(X)c.

If ¥ denotes the Levi-Civita conne;:tion for h and if Ky = vy - ¥y, then
(vyh)(Y,2) = - h(KyY,2) - h(Y,Ky2),

because Fyh=0. Usin§ C=0, we get
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Take an orthonormal basis  {X;,...,X,} for h, where h(X;, X,) =¢=1% 1
and h( X;, Xj) =0 forimj.Teking Y=X,, Z=¢,X;in (24) and summing over
i, weget nt(X)=2 traceKy.

On the other hand, applying Uy = 6)( + Kx on w=w, we obtain

T(X)w = Vyw = Kyw, = - (trace Ky)wp = - (trace Ky)w,
that is, 7(X) = - trace Kx. Comparing this with the previous relation, we

conclude that traceKy =0 and 7 =0,

Now we can prove Theorem 8.

Proof of Theorem 8. Choose a normal vector field £ and consider the

given immersion f as an affine immersion (M",v) = (R™!, ¥). By
assumption, h | C, that ts, we have (13). By Lemma 4 we may change ¢ to
another normal vector field £ and the corresponding cubic form as in (18) in
Lemma 1. Since his nondegenerate, we can choose U so that % = - ¢ and
achieve U= 0. Moreover, by choosing X suitably as in Lemma 5, we can also
make w, volume element for h, coincide with w. Now we can apply Lemma
6 and conclude T =0. By Theorem 7 we conclude that f(M") is a qudric.

The converse is obvious from the following well known fact. If f(MM) is a
nondegenerate quadric in Caal , then with a suitable choice of affine
coordinate system 1(M") is expressed either by

Moo 2m= 1 8y x! xj. where [a; j} is a nonsingular matrix
or by

Ei=i€i"i2° I, where ¢ =311, |

In the first case, ¢ = (0,...,0,1) is a normal vector field (called the affine

normal in the classical theory, see [7], Propesition 6) for which * =0,



22

n(a/ax‘, a/axj) =85 and the induced affine connection ¥ on M" = R" (with

affine coordinates xI goon ,x“ ) is flat. Thus C=vh=0. Inthe second
case, by considering an appropriate fiat pseudo-euclidean metric on R""",
the affine normal £ coincides with the metric normal. We have T =0; h
coincides with the usual second fundamental form in the metric sense and

Yh=0. Thus C=0 again. D

5. Proofs of Theorems 10 and 11
We now give a proqf of Theorem 10. Let Q be the set of points xin M

such that Ker h has constant dimension in a8 neighborhood of x. Then  is an

open subset. It i3 dense for the following reason. Let x5 be an arbitrary
point in MM and let U be any neighborhood of Xp- Let x€ U be a point where
dim Ker h attains the minimum on U. Then rank hx is equal to the maximum

of rank hon U and rank hy = rank hx and thus dim Ker hy

all points y in a neighborhood V of x. Thus x€ 2, showing that  is dense.

= dim Ker hx for

For Theorem 10 it is sufficient to show that f(M™) is contained in a quadric

around each point x of .,

Let Xq € Q. In a certsin neighborhood of Xg» X Ker hx defines a

distribution of dimension, say, n - r. We show that it is totally geodesic and
integrable. Let X and Y be vector fields belonging to Ker h. For any tangent

vector X we have by assumption (13)

X h(Y,2Z) - h(va,Z) - h(Y,VXZ) = p(X)h(Y,Z) + e(Y)h(Z,X) + p(2)h(X,Y).
Since X,Y € Ker h, this equation is reduced to h(va,Z) =0. Since Zis

arbitrary, it follows that vyY € Ker h. Thus [X,Y]= vyY -9yX € Ker h.
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Now let H an (r+1)-dimensional affine subspace in g through 1(x4) and
transversal to f(L), where L is the leaf of the distribution Ker h through X(-

Then near xothe foliation ¥ of RM™! by {r+1)-dimensional affine subspaces
parallel to H gives rise to a foliation F of M0 by r-dimensional submanifolds.
Choose a convex neighborhood V of f(xo) such that the foliations F and

Ker h are defined on the component U of £71(¥) that contains Xg. Set N=

{1 (H) nU. Then fN ¢ N—H is a nondegenerate hypersurface in H.

We choose a new normal vector field { -for fy that lies in H and translate

it parallelly along each leaf in ! , thus getting a normal vector field £

for f: U=R™!, For vector fields X and Y tangent to N the equation 'GXY -

VY +h(X,Y)E showsthat vyY istangent to N, because VXY and ¢ lie on

H. This means that N is totally geodesic in U (relative to the affine connection

induced by f with the new normal vector field £). The same equation also

shows that the second fundamental form hy for fN is simply the restriction
of h for f andis nondegenerate. The affine immersion fy also has the

property that its cubic form Cy is divisible by hy.
Now just as we have done to reduce the proof of Theorem 8 to Theorem 7,

we take once more a new normal vector field to fy suchthat C=0, v =0-and

Vhy =0 and extend it to a normal vector field £ for f by parallel transiation

in R™1. Relative to this t, f still has the property that C is divisble by h,
that is, C(X,Y,Z) =p(X)h(Y,Z) + p(Y)h(Z,X) + p(Z)n(X,Y) for some 1-form
p. We have p(X)=0 for X€&TN.

The rest of the proof proceeds as follows. We shall show that
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(i) N is umbilicat in R™};
(i) (9yp)(2) =0 for every X € TN, Z €Ker h,

(if1) If ¢= 0, the images f(L) of all leaves L meet in a certain affine
(n-r-1)-dimensional subspace, say K, so that f(M™) lfes on the cone with

vertex K and base f(N) C H;
(iv) Ife=0, thenali f(L)'s are parallei ink™! and f(M") isa cylinder.

We now prove these statements.

{i) Since N satisfies * =0 and VhN =0, we know from Lemma 2 of
Section 4 that S = Aﬁ is & constant multiple of I. We show that Ay =p(X) I

for every X €Ker h (note that Ker hx and 'E'x span the transversal space

for N in R”*' ). If Y& TN, then extending X to a vector field in Ker h, we see
that the equation {13} reduces to h(p(X)Y,Z) = - h(vyX,Z). Since this

holds for every Z € TN at every point of N, we see that Ay =p(X) 1.

(if) From Ay = p(X)1 on TN for every X € Ker h, and from Codazzi's

equation for the submanifold N in H“” we get

(Oye){Z2) Y = {Vyp)(Z) X for . X,YETN and Z €Ker h.

Since dim N=rank h : 2, we may take X, Y to be linearly independent. Thus

(7yp)(2) =0 for every X €TN and Z €Ker h.

(iii) We first show that X € N f (Ker ¢, N Ker b, ) is parallel in R
along N. Let Z € Ker p, N Ker h, be a vector field and let X € TN. Then
(Vyp)(Z) =0 implies that X p(Z) - p(9y2) = - p(Vy2) = 0. Then ¥yZ=
7 yZ € Ker ¢, On the other hand, (13) implies |

- h(Y, 9y2) = p(2)h(X,Y) = O for every Y € TN
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so that vyZ € Ker h. Thus ¥,Z = vyZ €Ker h. It follows that ¥yZ € Ker ¢

ft Ker h. We have shown that x = f,(Ker p M Ker h) is paralletl in ™1 50

that these subspaces are all parallel, say, to @ subspace w'.
(iii) Assume ¢= 0 onN. Let X be 2 vector field = 0 on N belonging to Ker h
at every point and consider
XEN = y=x+X/p(X).

For every Y € TN, we have by a simiiar computation to that in Theorem 2 that

p(¥ y¥) = 0. Also we show that

Vyy=- LV )R X + (94 X)/p(X)
is in Ker h. Here, of course, v*YX is the Ker h-component of ft\fo for the
submanifold N. But ¥yX = v\ X because h(Y,X)=0. We know from Lemma

2 applicable to Nthat 9yX € Ker h. So VX €Kerh. Thus VyyeKerp n
Ker h.
Let xq bethe point we started with and let yq = xq + X/p(X) for any

nonzero vector field X on NinKer h, Then all points y = x + X/p(X) lie in the

affine subspace through Yo and parallel to W. If X is replaced by any vectqr

fieldY inKer h, this affine.subspace does not change because
X/p(X) - Y/p(Y) € Ker ¢ N Ker h.

(iv) Suppose p=0onN. Then x€N— f,(Ker hx) is paraliel in R"H,
because if X is a vector field belonging to Ker h on N and Y € TN, then VYX =

VyX Kerh asinlemma-2 again. Thus there is an (n-r)-dimensional affine

subspace to which all f(L)'s are parallel. Thus f(M") is contained in the
cylinder f(N) xwW c gt We have completed the proof of Theorem 10.

Finally, Theorem 11 follows Proposition 4, its corollary and Theorem 10.
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