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Cubic Form Theorem for Affine Immersions

by Katsum1 Nom1zu1 and Ulr1ch P1nk.all

An importsnt theorem, due to Pick and Berwald, In classlcal affine

differential oeometry states that 1f a nondeoenerate hypersurface Mn In the

efflne space rtt+ 1 hes vanlshlng cubie form, then tt i8 e quadrle. The maln

purpose of thls paper Is to prove 8 number. of generalizations of this result to

the ease of more general affine Immersions In the sense of our prevlous

paper [7] tne ludlno deoenerate hypersurfaees.

In Section 1 we extend the notion of affine immersion in (7] to hlgher

codimension end diseuss basic formules and examples. In Section 2 we prove

some results on umbllica I immersions and reduction of codimens1on. In

Sectlon 3 we dlscuss the condltlon that the euble form 18 divisible by the

second fundamental form and state 8 number of oeneralizations of the

classical theorem of Pick. and Berwald. The proofs of these results are given

tn Settions 4 and S.

1 Supported In part by an NSF orant. This work was done while he was

vlsnlng Max·PI anct· Inst1tut fOr Mathematlt, Bonn.
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1. Affine jmmersions for higher codimension

Jo this section we extend the notion of affine immersion in [7] to the ease

of htoher codtmenston. Let (M, v) and (PI, '9) be d1fferent1able man1folds

wtth tors10n-free affioe connections of dimension n and n=0 + p,

respective1y •

An immersion f: M ~ R is called an affine immersion If around each

point of M there is 8 Held of transversal subspaces x-t Ni

(1) Tfex) c: ,.'CTx(M» + Nx

such that for vector flelds X and Y on M we have 8 decompositlon

(2) VXf*(Y) - '*(9 XV) + a(X, Y)

where a(X t Y) e Nx 8t each point x.

In the followino we shall call Nx the normal space (rather than the

transversal space) with the understanding that the choice In general is not

unique. We h8ve the normel bundle N with x;-t Nx' We cell a the second

fundamental form. Correspond1no to Propos1t1on 1 In [7] we have the follow1no

Proposition 1. .b.!1 f : (M, V) ~ (f1, v) be an affine im mersion 8nd x E M.

Then anormal space Nx W1th the property that 1t 18 sDaooed by 8]] a(X, Y) t

where X, Y E Tx(M), i5 unigUely determined.

Proof. Let N1x be another such norma 1 space 8t x and a 1 the

correspondlng second fundamental form def1ned by the equation (Z) us1ng NI.

Wrlte a(X, Y) = T(X,~) + j)(X, V), where T(X, Y) e Tx(M) and ~(X, Y) e NI •

Thenitfollowsthat T(X,Y)ClO and a(X,Y)=P(x'tY)=a1(X,Y). S1nce Nx

(resp. N'x) i8 spanned by all a(X,Y) (resp. a'(X,Y», we conclude that
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In general, for 8ach point x e M the Sub~p8ce of Tx( P1) spanned by
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D

f* (Tx(M» and a11 a(X, Y), X, Y e Tx(M), 18 called the second osculating

space at x. lt 1s determ1ned un1quely, because 1t 18 also the span of 811

vectors (VXf*(Y) )x' where X and Y are a11 vector f1elds on M. Its

dimension is ca11ed the second osculating dimensjon.

1f ~: x .... ~xe Nx 1s anormal vector f1eld, then we write

( 3) VX t =- f*(A tX) + v.L X ~,

where A~X e Tx(M) end v.L x ~ e Nx st 8ach pOl.nt. Just 88 1n subman1fold

theory in Riemannian geometry, we have a bilinear mapping A, called the

shaDe tensor:

C~ •x) e Nx x TxC M) .... A~X e TxC M)

8t e8ch point x. We t811 A~ the sh80e operator for~. The mapplng of the

space of normal vector fjelds ~ .... v.L X ~ j5 covarlant differentiation relative

to the normal connection.

Just 85 in submanlfold theory we get several basic equaUons relaUng the

curvature t ensors ~ for (rt I v) end R for CM, 9), ths 8scond funda menta I

form form a, the shape tensor A. ete. in the usus] way. Especial1y, the

tanoentta1component of ft'(X. Y)Z ts olven by

tan ~(X. Y)Z I: ReX. Y)Z + Aa(X,Z)Y - Aa(y,Z)X

end the norma 1 component by

nor ~(X,Y)Z = (vXa)(Y,Z) - (vya)(X,Z),

where VXQ 18 def1ned by
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(vxa)(Y,Z) = v·xa(Y,Z) • a(vxY'Z) • a(Y,VXZ).
, .

For anormal vector ffeld ~ the tangential component ,of f(X, Y) ~ fs given

by ,

tan ~(X, Y) ~ = (VyA ) ~ (X ) • ( VXA ) ~ (y) ,

where Vx A Is deflned by

(VXA)~(Y) a 9X( A~Y)" A~(VXY) - (A~rL~ )(Y).
. X

The normal component fs given by

nor ~(X,y)~ = a(A~X, y) .. a(X,A~Y) + R.L (X, Y)~,

where RJ. is the curvature tensor of the norma I conneet ion.

In the ease where (R, v) Is projectively fI st (with symmetrie Ricct

tensor. see [6]). we have

~(X,y)Z = r(Y,Z)X -l(X,Z)Y,

where i ts the norme lized Ricct tensor for (Ff, 9'):

i(X, Y) = Rie(X, Y)/( n-1).

In thts ease. 811 the formulas above become si mpl er. Thus we have ~
. .

(4) R(X, Y) = iey.z)x - iex,z)Y + Aa(y ,Z) X .. Aa(X, Z) Y

- equation of Gauss-

(5) (VXo)(Y,Z) CI (vyo)(X,Z)

-equatton of Codazzt tor a-

(6) ( VXA) ~y + 1 (y • ~ )X = (VyA) ~X + 1(X. ~ )y

-equation of Codazzi tor A-

- 8Quation of Riccl-

When the ambiant affine connection Q is flat, equations (4) an (6) get
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further simplified:

(4a) R(X,Y) - Aa(y,Z)X - Aa(X,Z) Y

(6a) (VXA)~Y." (VyA)~X •

If a cO at a point x, we say that fis total!y geodeslc at x. If a cO at

every point xE M, we say that f Is total Iy geodeslc.

An affine Immersion f: (M, V) ~ (fl, V) Is sald to be umbl11ca! at xE MIf

there is a \- form I' on Nx such that

(8) A~ = I'(~) I for every ~ ENx'

where I denotes the ldentity transformation. If f ls umbilical at every point,

we say that f is umbilieal. If fis umbilieal and the ambiant eonneetion V is

projeetively flat, then the normal connection Is flat (1. e. Ir = 0) as follows

from (7).

We now diseuss a few examples.

Example 1. Let (M,g) and (11,9) be Riemannian or pseudo-Riemannian

manlfolds with Levj-C1vlta connections v and v, respectively. An Isometrie

immersion f: (M,g) ~ (11,9) glves rise to an affine immersion (M, v) ~

(11, V). Here, of course, there Is a natural cholce of normal space Nx as

the orthogonal eomponent ofTx(M) relative to 9.

Example 2. Curves In affine space R3 are studled In [1], Chapter 3.

Also see [5] for surfaees In R4•

Example 3. Graph immersion. Let F: lfI ~ RP be a dlfferentiable function

and consider the graph Immersion f: M=lfI ~ 11 = ~p glven by

(9) f(x)=(x,F(x»ERnxRPc ~P, XEIfI.

For each xE M, let Nx be the subspace of Tx( ~p) that Is parallel to the

affine p-space RP of If+p. We get an affine Immersion f: (M,V) ~ (fl,v),
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both spaces M -Ifl and 11 D Ifl+P with the ususl flat affine connections. As

in ~xample 3 in [7], the second fundamental form a i8 (Jiven essentially as

the Hessian of the function F with values in RP identified with each Nx • We

have also A = O. Thus f i5 umbilic81 but not tot811y geodesic.

Example 4. Centro-affine immersion. Supppose M is an n"dimensional

submanlfold immersed in f{ = R"+p. Assume that there exists an affine

(pool) -subspace V= RPool 1n If+P such that tor each po1nt x of M the aff1ne

p"subspace spanned by x and V 1s transversal_tc M. ChoosinQ Nx to be the

tangent space at x of this transversal 8ffine p- space, we write equation (2)

and define an affine connection V on M. The resulting affine immersion f:

(M, V) ~ ~p 1s a general1zat1on of centra" affine hypersurface in [7). We

show that f is umbilical and that V is projectively flat. To see this, let Xo E

Mend let ~o = >-.0 Xc + Uo be 8 normal vector 8t:<o, where Xc 1S also

con8idered 88 a position vector for the point XC trom a tixed point of Rn+P.

To compute A~ we extend ~O to 8 normal vector field ~ CI lO x + Uo and

find ~x ~ = AQx. Thus A~ = - AOI. This shows that f Is umbi lica I.

Next we consider another submanifold transversal to the family of normal

affine p-spaces to M. It is given by 8 'mapping of the form

(10) XEM ...... '.(x) a:A.x+F(x),

where 1.: M~ R+ and F: M~ RP-, I. The connection induced by , on M is

V'xya VXY + jA,(X)y + jA,(Y)X, where p. = d (log A).

By taking an affine n- space 88 ,(M), we can get V· to be a flat affine

connection. This means that v 18 proJec'ttvely.flat.

2. UmbiJicaJ immersions end reduction of codjmension
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First we prove the tollowing result on umbilical immersions.

Theorem 2. 1..n t: (Mn, V) -+ (If+P, 'V) be an ymbilical affine immersion.

where n~ 2. Then 11 18 aff1nely egu1yalent to a graph immersion or a

centro-i!ffine submanifQld immersion.

Proo1. Let fJ be the l-form on the normal bUDdle such that A~1:l: p( ~ )1.

From Codazzi's equI'tion (6a) end trom (VXA) ~GI (VXp) (~)1, we get .

(v Xf) ( ~)Y = (vyp) (~)X tor any two vectors X and Y. Thus vXP = 0 for any

X. Thus Ker Px = {~,E Nx; p( ~) = 0) has constant dimension. Now we show

that the distribution x e Mn...., Ker fJx C Tx(R n+p) along the immersion 11s

perallel in ~p. This i5 obvious, however, bec8use if ~t 1s parallel 810ng 8

curve xt in Mn re lative to the normal connection, then p( ~t) i8 constant

since vp = O.

i) ease where ~ ~ O. Take anormal vector field ~ I! Ker~, and consider

the IDapping x e Mn ..... y = x + ~/~( ~) E Jtl+p. Then for any tangent vector X

we get

Vxy=X+ ("'X(p(~»~]/p(~)2 + ( ..p(~)X+ vJ.x~)/p(~)

and

so that Vx(y) e Ker p. This means that 811 potnts y 11e in the·

(p-l ) - dimensional affine subspace , say V, th rough one point YO and pa ra 11 el

to the paralJel distribution Ker p. It now folJows that for each x E Mn the
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normal space Nx c01nc1des w1th the tangent space 8t x to the p"d1mens1onal

affine subspace generated by x and V. We cone lude that MO 15 a tentro" affine

submantfold lmmersed in ~p.

Fin~l1y, consider the case where f = 0, thus A = O. For ~ny normal

vettor field ~, we see that VX~ = vA. X~ belongs to Nx. Thts means that

the normal spaces Nx C Tx( If+p) are parallel in Ifl+p. Stnce Mn is

transversal to this famtly of paraBel p-dimenslonal affine subspaces N. It Is

8 graph. D

We now prove two results concerning reduction of codimension for affine

Immersions.

The fi rst is 8 va riatton of Erbacher's result in Riemannian geometry [3].

Proposition 3. Let f: (Mn. v) ~ (R"+P, v) be an affine immersion.

Suppose ·N1 is a subbundle of the normal byndle N such that

i) N1(x) contaies the range ofax for every x E MO;

iO N1 ts parallel relatiye to the normal coonectjon.

Then f( MD) ts contajned in a certafn (n+q) - di mensjona 1 affine subspace of

Rn+Pt whece q a d1m ~ 1(x).

Proof. We can easily check that the distribution x -+ ä Cx) e TxC M) +

N1(x} alon9 the mapplnQ f is·parallel in R'l+p. Thus we have a parallel

distribution tJ of dlmentson n + q on rfi"p. Jf Xt ts 8 geodesie in (Mn, v) t

we see that f( xt) .lies in the affine (n+q) "space Ifl+Q through Xo e Mn and

tangent to A. 1t follows that f(Mn) c R"+q. D

The next result Is known In the Rlemannlan ease (for example. [10],
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lemma 28, p.362; see [2] for its further generaHzation).

Proposnion 4 • .bß...f: ( Mn ,V) ~ (~P, 'V) be an affine immersion.

Suppose thera extsts a nonzero normal yector f1eld ~ and a bfl1near

symmetrie funetjon h..Jm.. Mn such thi't a(X, Y) =h(X. Y) ~ for aJ] tongent

vectors X end Y. Assume furthermore that rank h .1 2 81 every point. Then

f(M") 1S contained in an (n+ 1) -dimensional affine space R"+ 1of R"+p.

Proof. let (X 1' ••••Xr ,Xr +1' • •• ,Xn ) be a basis in TxC MO) such that

{Xr+1, ••• ,Xol isabasisof Kerhx and h(X1,Xj )=t&ij for l~i,j~ r,

where by. assumptton .r ! 2. For aoy X = Xi 1 ~ 110, there 15 Y "X among,

Xl' • • • ,Xr so that h(X, y) m 0 and hCY ,y) pi O. Now tram Codazzi's equation

(5) we (Jet
~ ~

(v Xh)(Y ,Z)~ + h(Y,Z) Q X~ = (Vyh)(X,Z)~ + h(X,Z) V y~.

Set Z 12 Y and eonsider this equation modulo span (~). We obtain
~ ~

hey, Y) 9 X~ CI 0 ,mod span {~} and henee V X~ e span{~}.

This being true tor every Xi' 1 "i "n, and thus for every XE Tx(M"), 1t

follows that N1 =span {~} is parallel relative to the normal connect1on. We

may now apply Proposition ~ to NI' D

Suppose an affine immersion f: ( Mn ,V) -+ (~P, v) has the second

osculatinQ dimension n+l. Then around each point we may choose a normal

vector fleld ~ such that a(X, Y) =heX, y)~. The rank of h Is Independent of

the choice of such ~, and we define 1t a8 the .rJ..nt. of a.

Corol1ary. Syopose that the second osculatino dimension of an affine

Immersion f: ( Mn ,v) -+ (Jfli"p. v) 1S. n+l and that the rank of a 1S..1 zn
eyery pofnt. IMl1.J(Mn) is contalned jn an (n+ 1) .. dimensions J affine

subspace Jtl"'" 1~ Jf+p.
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3. Cubic form

For an affine immersion f: (M. V) -+ (R. V), where '9 is projectively

flat, we define the cubic form to be

( 11 ) Va: T(M) x T(M) x T(M) ~ N

that Is,

( l1a) (va ) (X, Y, Z) = (Vxo) (Y ,Z).

By (5) I Va 15 symm~tric in X, Y, and Z.

We explaln brlefly'our motivation and goal. For an Isometrie Immersion of

8 Rlemannian manlfold M tnto a Rlemannlan manifold Aof constant curvature,

the condition that Va = 0 has a signlficant geometrie meaning [4]. For the

geometry of affine immersions. we mioht first consider the weaker condition

that Va Is dlvlslb Je by a. (Actua lly, thts Is a projectlve notion es we we

sha 11 further study In a subsequent' paper. ) In the present paper we deal wlth

the ease where the osculating dimension for f: (Mn, v) ~ (If''''P, v) Is n+l.

In this ease. It turns out that the condition al va depends only on the imaoe

f(Mn> and not on the connectlon v (Induced tram vby chooslng anormal

vector fleld ~ 810ng f( Mn». Furthermore this condition characterizes a

quadric when the rank. of a is .1. 2. Now the detail fo110ws.

We say that Va is divisibl e by a (denoted by a I va) If there is a

l-form Von M such that

(12) a(X,Y,Z) = fex) a(Y,Z) + f(Y) a(Z,X) + p(Z) a(X,Y)

for a11 tangent vectors X, Yand Z; or equtvalently

(I2a) a(X.X.X) =3 p(X) a(X.X)

for 811 tangent vectors X.

When the codimension p is 1, choose a norma1vector field ~ and wrtte

a (Y •Z) =h( Y, Z) ~. We have
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(Vxa)(Y,Z) c (VXh)(Y,Z) t.+ h(Y,Z) (V.&.X t )

=[(VXh)(Y,Z)'+ 'reX) h(Y,Z)] ~ - C(X,Y,Z)~,

where t" 18 the transversal (normal) connectlon form and C 18 the cublc

form as a1 ready deflned in [7]. Thus a I va If and only tf

( 13) C(X, Yt Z)· p( X) h(Y , Z) + p( Y)h( Z,X) + p( 2)h(X, y)

for a11 tangent vectors X, Yand Z. We may write (13) as h I C. In the special

e8se where ~ 1s equiaffine so that f is an affine immersion in the sense of

relative geometry (t. e. T l:I 0), (13) may be expressed by wr'fting h I Vh.

We prove

Lemma 1• .Li!. f: (Mn, V) ~ (~1,V) be an Irrtoe Immersion with 8

normal yectQr fleld ~. If we change t 1.Q.

( 14 ) t = (~ + U) IA

where U is a vettor "eid on Mn iM>..: Mn~R - {al, then writfnq

Vxf*(Y). '*(9 xV) + n(x,Y)~

we heve an aUlne Immersion t: (Mn J V) -+ (Jf+ I, V) AIlQ

(15) VXY = VXY - h(X,Y)U

( 16) n I:l ~h

( 17) T = T + 11 - d( 109 A)

( 18) e(X t Y•Z) I~ = C(X. Y..Z) + 'rl (X ) h(Y •Z) +11 (Y)h( Z•X) +II (Z)h( X. Y) t

where 1'1 15 the l-form such that II (X) = h(X,U) 12J:. 811 X.

Proof. The verification i8 straightforward if we note

(vXn)(y,Z) D X n(Y,Z) - n(VXY,2) h(Y, Vx'Z)

QX~ = - f.(§'x) + T(X)t

and

o
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Now observe that l' f: Mn -+ R"+ 1 1S an 1mmersion which admits a

transversal vector field ~ t then "we may induce an affine connect1on V in such

a way that f: (Mn. V) -+ ( Jf'+1. 'V) i8 an affine immersion. A8 a

consequence of Lemma 1 we have

Proposition S. Jf an immersion f: Mn -+ R"+1 has the property that h Ic
tor some choiee of normal vettor field ~, then 11 has the same property for

any chatte of normal yettar {feld. AlsO the rant cf h daes not depend on the

choice 01 ~.

In particular, the property that h ia nondegenerate does not depend on the

choice of .~; we say that f is nondegenerate If h "ts.

In the case where the second fundamental form h of an affine Immersion f:

(Mn, V) -+ ( ~ 1, v) Is indefinite, we can give the fo 11 owing geometrie

interpretation 01 the candition h I c.
Proposition 6 .. lf h is indefinite. the fol1owing statements are eguivalent:

1) hle;
2) a geodesie jn (Mn, V) whose initial tangent vettor js null i5 8 null

turve (relative to h);

3) al1 geodesjcs in (Mn, V) with nun initial tangent vectors are geodesics

in rrr+ 1•

Proof.

1) ~ 2) : Assume C(X,X,X) 1;1 3 p(X)h(X,X) for al1 XE TM, where p is a

certain )- form. Then

(t'xh) (X,X) lI: (3p-T) (X) heX ,X).

Suppose xt is 8 geodesic in (Mn, V) such that h~XO' xo) c O. The above

equationimplies (d/dt)h( x\, Xl) = (3p- 1')( Xt) h( Xt' x\). Thus the

function ,( t) = h( Xt , Xt ) sattsfies the dtfferentia1 equat Ion
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d ,/dt = pet) ,(t), ",here ,(tl = (3f' - T')( Xt ).

We k.now that a solution ,(t) of this equation with ,(0) = 0 must be

identically O. Thus "t i5 a null curve.

) . '" .... .... (........)2 -t 3): ThlS i5 obv1ous from Vt Xt = Vt Xt + h Xt' Xt •

3) -+ 1): Let X E Tx(M) be null, 1. e. heX, X) - O. If xt 15 a geodesie in

(Mn, V) w1th in1ttal tangent vector X, then by assumption 3) we have

'" .... .... ("""")t (.... "")to - vt Xt D Vt xt + h Xt' Xt 'r I;: h xt ' x1 'r

( 9 t h ) ( i\. xt ) =(d/dt) h(i\. i\ ) - 2 h( vt xt, xt) - O.

At t =0 we have

and hence C(X.X.X) = (VXh)(X.X) + T(X)h(X.X) co O. What we have shown ts

that h(X,X) = Ö for X e TM implies C(X,X,X) :: O. It follows that h I C. 0

We now state a number of oeneralizat1ons of the classical result. The

proofs will be given in subsequent sections.

Theorem 7. !&t. f: (Mo, V) -+ ( R"+ 1,'V) be an affine immersion wjth a

normal vettor field ~ tor which T' = O. J1 rank. h .1 2.1D..Q Vh = 0 8t every

point. then f(Mn) l1es 10 a guadr1c.

Rema rk 1. More precisely, f( MO) lies in 8 cylinder Qrx RO- r, where gr

ia a nondegenerate quadric in an affine subspace Rr+1end Ifl- r is an affine

subspace transversal to Rr+1•

Remark. 2. This theorem extends the classical Pick -Berwald theorem (see

[1] BS we11 88 the result in relative geometry (see [8]),which are for

nondegenerate hypersurfaces. See 81 so [9].
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The formulations of the following .Theorems 8 and 10 are based on the

obs_ervations in Proposition 5.

Theorem 8. U1. f: Mn ~ ~ 1 be a ooodeaenerate immersion. Then r(Mn)

lies in a guadrjc if end only if h I C.

We examine the following question: given (Mn, V) i under what

conditions can we find an affine immersion f: (Mn, Q) ~ ( R"+1, V) such that

f(Mn) J1e8 1n a nondeoenerate Quadr1C in (f1+1?

We proceed 85 follows. lf there is an affine immersion f: (Mn,V) -t

( 1fl+1, v) such that f(M n) lies in a nondegenerate quadric Qn 'in JfI+1,
f

then we can choose anormal vector field ~0 and obtain the 8econd

fundamental form hO and the induced affine conneetion vO on Mn from

VXy =vOXY + hO(X, Y) ~°
such that hO is a pseudo-Riemannian metric end V°18 the Levi-Civita

conneetion of hO. We may write, as in Lemma " ~ = (~O + U)/A., where U i8

a eertain veetor field on Mn and )" a nODzero function. We find

(19) VxY = VOxY - hO(X, Y)U.

In the ease where 'Qn is not locally convex, hO 18 indefinite. A

geometrie interpretation of ( 1Q) 1s the following. A nuJJ geodesie of 'V0 .i1..A. .

geodes1c Qf V. Conversely, an affine connection V with this property

relative to (hO, V 0) must be of the form (19) for a certain vector field U.

In order to prove this, let K be the d1fference tensor: K(X, Y) = VXY •

VOxY. Tak.e any XE Tx(M) with hO(X,X) - O. If Xt, is a geodesie for vO with

1nit1al tanoent vector X, then it 1s a null oeodes1c and, by aS8umption, 1t i8 a

geodesie for V. Thus Vt Xt = 0, which implies K( Xt' i\ ) c: 0, in particular,

K(X,X) = O. We have shown that K(X,X) = °whenever hO(X,X) = O.By ta~ing a

basis {X

"

••• ,Xn} in Tx(Mn),write K(X,Y) = Ini=lKi(X,X)Xi· Since
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hO(X,X) QI 0 implies K1(X,X). 0, we have K1(X,Y) ga 81hO(X,Y), 1.t i .tn.

Then K(X, Y) .. (~Oi=t 81Xi) hO(X,'V). Thus we h8ve ( 1Q)with Z Cl • 1:0 i=1 81Xi.

We cao OOW st8te

Proposition 9. A djfferentiable manifold wfth an affine connection

(MD, Q n) admits an affine im mersion into 8 (not local1v convex)

nondegenerate gusdrte Cn in Jtl+ 1 if eod ooly If Mn adrons a

Dseudo"RjemaooiaD (not posltlye- definite) metrlc pf cpostant secttonal

curvature whpse null geodesjcs are geodesics of V.

Theorem 10. b..2L (: Mn -+ Ifl+ 1 be an immersion with rank h .l 2

everywhere t Then f( Mn) lies in 8 guadric 1f snd Only tt h I C.

Remart 3. If h I C and 11 the affine connecUon V'Induced by f relative to

some chaice of ZI tr8nsversal vector f1eld 1s complete, then f(Mo) is a

cylinder es in Remark 1 above. Even for the standard 52 c R3, V 1s

incomplete for most choices of ~.

Theorem 11 • ...il1 f: (Mn, V) ~ ( R"+P, V) be an affine Immersion, ni2.

Then f(Mn) i5 contained in a guadrie Qn of an affine subspace If+ 1.Qf ttt+P

if end ooly if the osculatioo dimension ja n+l, rank a .l2,.mQ. a I va.

4. prools 01 Theorems 7 .aM 8

We start wtth a few lemmas.

Lemma 2• ...1.n f: (Mn, v) -+ ( JfJ+ 1, Q) Pe an affine immersion and

assume that T =0, Vh =°and rank h .1 2 everywhere. Then

I) Ker h is a parallel distribution on (Mn J V);

2) X E Mn....., f.(Ker hx ) i5 a distribution slona f whlch IS parallel in

Rn+l;

3) There Js 8 constaot p such that SX =pX mod Ker h for every X E TM.

Proof. t) Let Yt and Zt be parallel vector fields a10n9 a curve xt in Mn.
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Then vh - 0 implies that

dh(Y ,Z)/dt = h(~tY ,Z) + h(Y, VtZ) CI o.

Thus h(Yt' Zt) 1s constant. If YOE ker h at Xc' then it follows that YtE Ker h

a10no the curve xt. This shows that dirn Ker h is constant and the

distribution x -t Ker hx 15 parallel on Mn.

2) Let Yt be 8 parallel vector Held belonging to Ker h 810ng 8 curve xt­

Then

Vtf.(Yt ) - f*(V tYt) + h(X\, Yt ) m 0,

which shows that f .(Yt) i8 para11el in~ 1. This proves that - x ~f*(Ker hx >

c: Tf ( x) (R n+ 1) ts para11 e1 tn Rn+ 1_

3) From Vh = 0 we get h{R{X, Y)Y I Y) cO for all X, Y e Tx(M n) _ Using

the equation of Gauss: R(X, Y)Y =h(Y, Y)SX - heX, Y)SY, we get

(20) h(Y, Y)h(SX, Y) =heX, Y)h(SY, V).

In Tx(M) choose a basis {Xl' ••• ,Xr , Xr+1,. ~., Xn} such that (X r +l , ••• ,

Xn) 1s a basis of Ker hx and h(Xi ,Xj ) =± E>ij for 1 i 1,j i r. By assurnpt10n,

r ..k 2.

For each Xi' 1 .L i .L r, choose XJ, 1 .Lj .Lr , j ~ i ; we get h(SXp Xj ) = 0

from (20). Thus S Xi::' Pi Xi mod Ker hx • We want to show that PI= ... =Pr­

Ir I~ J among 1J •• _ J r, then Z = Xi + Xj or Xi + Z Xj has the property that

h( Z J Z) ~ 0 and may be chosen as pa rt of an orthonorma I basis (after

normallzation) of a supplementary subspace to Ker h. Thus by what we have

seen above we get
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1 J r 1 J sex· ... zX·) c P (X· ... Z X

J
.) ,

1 J 1
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with 8 certain constant p. Then we get

It follows that Pi = Pj =p. We have thus shown that a11 Pi·8 are eQual. Ca11

this number p. We have shown S X - f X mod Ker h for every X a

Now let 1 .i j .i rand r+l .i i So. n. (20) implies h(SXt,Xj ) =O. This shows

that SXi e Ker h. So S(Ker h) c Ker h. We can write S X ::z f X mod Kar h

for every Xc Xr+1",. ,Xn, Hence S X =PX mod Ker h for a11 ~ e Tx(M).

It now remains to show that ~ 1s a constant. S1nce T" =0, we have

Codazzfs equation (vXS) (y) ~ (QyS) (X) (see (7). We extend a basis

{x l' • • • ,Xr • Xr+ 1" • • • Xn} as before to vector fields in a neighborhood with

the property that they stfll form a basts and {Xr+ 1' ••• , Xn} ,form 8 basts of

Ker h at aach point. Then

( V X S) (XJ) = VX (SXJ) - 5( vX XJ) == Vx (f XJ + Z) - s( V~ XJ)

=(XiP)Xj t'p (Vx Xj) + Vx Z - S(vx Xj)

c; (XiP)Xj mod Kerh,

where Z E Ker h aod Vx Z e Ker h, since Ker h is parallel. Thus by

Codazzrs equation, we have

(21) (Xi p)Xj =(Xj p)X i mod Kar h.

This holds fo,.. aJl t and j. If 1 .1 t .1 ,.., then, using ,..~ 2, take j .. i, 1 .1 j .1"'.

Then (21) impHes that Xi f ~ O. If r+ 1 .1 i .1 n, then take j, 1 .1 j .1,... Then
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(2' ) implies Xi r = o. We have thus shown that Xr c 0 for every X e Tx(M).

Remart • In ease rank. h CI 1 end {Xl' ••• ' Xn} is 8~b8Sis in Tx(M),

where {XZ' ••• ' Xn} is a basis of Ker h, we cannot conclude X,r cO (there

1s an example showing thr.t r is not a canstsnt).

Lemma 3. Under the assumptjons of Lemma 2 deHne for each x E Mn A

blinear symmetrie functjon 9 in Tf( x) (R n+ 1) 88 foJ]ows:

g(f*X, f.Y)=h(X,Y) for X,YETx(M")

(Z2) O(f*X,~) =0 !2r.XeTx(Mn)

9(~,~) -f·

1lwl 9 18 parallel relative to the connectjon V 1n If+'.
Proof. We want to show that

x O(U, V) = g( ~xU,V) + g(U, Vx V)

for all vector f1elds U and V along fand for 811 X E Tx(Mn).

1') If Uaf.(Y), VClf.(Z) forvectorfields YandZ onMn, thenth8,

above identity foll OWS from VXh = 0 and g( ~ ,U) = 9(~, V) =o.

2) lf U=f. ey), and V= ~, then

X g(U, t) = 0, g( 9XU, t) = 9(1.( v XV) + heX, y)~, t) zc heX, y)~

and

g(U, QX~) CI g(U, .. f*(SX» z:: g(U, "pf.(X) + f.(2» (where 2 E Kar h)

=~ Ph(Y,X) + h(Y,Z) = .. f h(Y,X).

So the above identity holds.

3) If UaV-~, thenwehave Xg(~,~') -Xf-O as weil e~ g(9X~'~)-
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Remark.. At each x e Mn,

Ker 9 = f*(Ker h) if P~ 0 and Ker 9 =f*(Ker h) + span (~) if P=o.

Lemma 4. We identffy f( x), x E Mn, with the position vector end stmply

wefte ft a8 x. Penne 8 function , on Mn.RY ,(x) a g(x,x)/Z end 8 )-f2!:.m

). M Tfex) (R n+ 1) fSu:. x E Mn Jrl

(23) ~(f*X)=g(X,x) tor XETx(Mn)

>.(~) = g(x,x) + 1.

Then ~ ;8 parallel relative to V in R"+ 1•

Praof. We have

(QXA)( f* Y)

= X(~( f* V»~ - ),,(Vx f. Y) =XO(f*(Y),x) - ~.cf*(t7XY) + h(X.Y)~)

a g(vX f. Y,x) + g(f. Y, f. X) - g( f.V XY,x) - heX, Y)(g( ~,x) + 1) = 0

end

(VX~)(~) = X(~(~» - ~(vx~) = X(9(~,x) + 1) - l(VX~)

=.o(VX~.x) + o(~.x) - ~CVx~)=o.

Thus A ia parallel in Ifl+l.•

We are now in position to prove Theorem 7.

prQof 01 Theorem 7.. F1rst we note that the parallel l-form ~ 1n Lemma 4

15 nothino but a covector 1n the dua1vector space ~ 1. Thu5 there 15 an

affine function., on Ifl+ 1 such that d)l' ~ A. Moreover we may assurne that

,.( x 0) • t( xC) tor some point xC. Now obvious ly d t - d,. on Mn. Hcnce

.,= , on Mn. Th1s means that f( Mn) l1es In 8 quadrlc.

Remark.. For any affine coordinate system 1n If+ 1 we may write
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,(x) = ~,j =1 8i i xi xi, ,(x) c 2 ~=1 8i xi + b.

Suppose rank 0 1:1 r+ 1. Then we may retake an affine coord1nate system so

that ,(x) = ;,j =1 8i i xi xi , where the matrix [ai j] 15 nondegenerate.

We can further simpl1ty the quadraUc equation ,( x) = ,(x) tor f(Mn) into

I i • i ~ (xi )2 = ± 1 or xr+2 = I t 1:1 1 t; (xi )2, where ~ =:1: 1

by 8 change of 8f1io-e coordinate system.

Betore we prove Theorem 9, we nead two lemmas.

Lemm" S• .1&1 f: (Mn. v) ...., ( Jfl+l, v) be a nondegenerate affine
. .~I

jmmersion with anormal vector field ~ aod second fundamental form h.

Then we can change ~ 1Q t = ~/k for some >-.: Mn...., R+ so that the volume

element wtor the second fyndamental form n w:. t cQ1nc1des with the

volume elmen! w induced by f; from the standard yolume element w1n Jtl+l.

Proof. Assume that the volume element wh for h 1s equal to JL w, where

Jl,: Mn -+ R+. Choose A m JL .. n/Z. Then n.. A. h implies that WI:: k n/2whl:

Po "lWh = w.

Lemma 6. .L.m. f: (Mn v) ...., ( r(li" I , v) be 3 nondegenerpte affine,
Im mersloo sych that tu = wh. Ir the cub1c form C vantshes, then T = 0,

Proof .. We recall trom [7]

C(X, Y,Z) = (VXh)(Y,Z) + 'reX) h(Y,2) and VXW = ,..(X)w.

If V denotes the Levi -Civita connection for hand 1t KX = Vx - VX' then

(Vxh) (Y , Z) = - h(KXY, Z) .. h(Y ,KXZ) ,

(24 ) T ( X)h(Y , Z) = h(KXY,Z) + h(Y ,KXZ) •
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Tat.e an orthonormal bas1s {Xl' ••• ,Xn} for h, where h(Xi' Xi) =: ei::::I: 1

and- h( Xi' Xj ) CII 0 for i pt j. Teling Y CI Xi' Z CI ~ Xi in (21) end summing over

i, we 9et n 'r" ( X) =2 t race Kx.

On the other hand, applyino Vx = Vx+ KX on W = wh we abtain

that is, 'reX) 111 ... trece KX• Comparing this with the previous relation, we

conclude that trace ~X = 0 and 'r" =o.

Now we can prove Theorem 8.

Proof of Theorem 8. Choose anormal vector field ~ and consider the

given immersion f as an affine immersion (Mn, V) -+ eR"+ 1, 'V). By

assumpt1on, h IC, that 1s, we have (13). By Lemma 4 we may change eto

2Inother normal vector fiel d t and the corresponding cubic form as in ( 16) in

Lemma 1. Since h is nondegenerate, we can choose U so that 'tl CI ... rand

achieve t = O. Moreover, by choostng )., suitably as in Lemma 5, we can also

mate w, volume element tor n. colnclde wlth w. Now we cao apply lemma

6 and conclude T = O. By Theorem 7 we conclude that f(M n) 15 8 qudrlc.

The conve,rse 18 o~vlous trom the following weil known tact. If f(Mn) Is a

nondegenerate quadric in~ 1, then with a suitable chalce of affine

coordlnate system r(Mn) 18 expre8sed elther by

xn+ 1 = It,j= 1 al j xi xj , where [ai j] ts a ilonsinoular matrix

or by

Li = i t l Xi2 m I, where t l - ± I.

)n the first case, t m (0,.••• ,0, I) 18 anormal vector fleld (called the affine

normaI In the classica I theory, see [7]. Proposlt ion 6) for which t" I:: 0.
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h( lJllJx 1, lJ/aXj ) a a i j' and the 1nduced aff1ne connectton v on Mn == R" (w1th

affine coordinates x l , ••• , x" ) is flat. Thus C=vh = O. In the second

ease, by consider1no an appropr1ate 118t pseudo" euc lidean met r1c on R"+ 1,

the affine normal ~ co1ncides with the metric normal. We have T = 0; h

coincides with the usual second fundamental form 1n the metric sense and

Vh = O. Thus C=0 again. D

s. proofs of Theorems 10!.D5l 11

We now (Jive a proof of Theorem 10. Let 0 be the set of points x in Mn

such that Ker h ha5 constant dimension in a neighborhood ot x. Then {1 15 an

open subset. It 15 den5e tor the fo11owinQ reason. Let Xo be an arb1trary

point in Mn end let U be eoy neighborhood of Xo. Let xE U be a point where

dirn Kar h attains the minimum on U. Then rank. hx 15 equal to the maximum

of rank. h on U end rank. hy = rank. hx and thus dirn Ker hy =dirn Ker hx for

811 points y in 8 neighborhood V of x. Thus xe (1, showing that Cl i5 dense.

For Theorem 10 it is suffieient to show that f(M n) 1s contained in a quadrie

around each point x of Cl.

Let Xc e O. In 8 certain neighborhood of xo' x ~ Ker hx defines 8

dist rfbutton of di mension, say, n - r. We show that it is tota lly geodesie and

integrable. Let X and Y be vector fjelds belonging to Ker h. For aoy tangent

vector Xwe have by assumption (13)

xh(Y,Z) - h( VXY ,Z) .. h(Y, VXZ) IS ~(X)h(Y,Z) + r(Y)h(Z,~) + r(Z)h(X, Y).

Since X, YE Ker h, this equation 1s reduced to h(Vxy ,Z) =o. Since Z is

erbitrllry, it follows thllt VxY E Ker h. Thus [X,Y] = VxY -vyX E Ker h.
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Now 1et H an (r+ 1) - dtmenstonal afftne subspace tn Ifl+ 1 through f( Xc) and

trensversal to f( L), where l i5 the leaf of the distribution Ker h through "0.

Then near Xc the foUation f! of JfI+l by (r+ 1) - dimensional affine subspaces

parallel to H gives rise to a fo1iation F of Mn by r-dimensional submanifolds.

Choose a convex netghborhood V of f(Xo) such that the fo118t10ns Fand

Ker h are defined on the component U of f- l (V) that contains Xc. Set N llII

f- 1(H) n U. Then fN: N-+ H 18 a nondegenerate hypersurface in H.

We choose a new normal vector fjeld ~. for fN that Hes in Hand translate

it parallelly along 8ach leet in 1fl+1, thus getting anormal vector field ~

for f: U~ rfl+ 1. For vector fields X and Y tangent to N the equction VXY -

Q XY + h(X, Y)~ shows that VxY is tangent to N, because VXY and ~ 11e on

H. This means that N is totally geodesie in U (relative to the affine connection

induced by f with the new normal vector field ~). The same equatiol1 also

shows that the second fundamental form hN for fN is simply the restrietion

of h for fand i8 nondegenerate. The affine immersion fN also has the

property that ft8 cubic form CN i8 divisible by hN•

Now just 8S we have done to reduce the proof of Theorem 8 to Theorem 7,

we tak.e once more a new normal vector fie1d to fN such that CCl 0, '[' == O'and

vh N= 0 and extend 1t to anormal vector field ~ tor ~ by parallel translation

in R"+1. Relative to this ~, f st111 has the propertythat.C 18 d1v1sble by h,

that is, C(X, Y, Z) =p(X )h(Y, Z) + p(Y )h(Z, X) + p(~)h(X, Y) tor some 1.-torm

p. We have p(X) = 0 tor X E TN.

The rest ot the proot proc~eds as follows. We shall show that
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(i) N la umbillcal in R""" I;

(U) (vXI'HZ) - 0 tor every XE TN, Z E Ker h.

(111) If r;l! 0, the Imaoes f( L) of all Ieaves L meet In a eertaln afflne

(n-r-l )-dlmenslonal subspaee, say K, so that f(Mn) lies on the eone wlth

vertex K and base f(N) eH;

(lv) If I' = 0, then all f(L)'s are parallel In~1 and f(Mn) ls a eylinder.

We now prove these statements.

(I) Slnee N satlsfles T = 0 and VhN= 0, we know from Lemma Z of

Seetlon 4 that S = A~ Is a eonstant multiple of I. We show that AX =I'(X) 1

tor every XE Ker: h (note that Ker hx and ~x span the transversalspace

for N In~ I). If Y E TN, then extendlno X to a veetor fleld In Ker h, we see

that the equatlon (13) reduees to h(I'(X)Y,Z) = - h(VyX,Z). Sinee this

holds tor every Z E TN at every point ot N, we see that Ax " rex) I.

(Il) From AX a I'(X)! on TN tor every XE Ker h, and trom Codazzi's

equatlon tor the submanltold N In Jl"+1 we get

(Vxl')(Z) y = (Vyl')(Z) X tor .X,Y E TN and Z E Ker h.

Since dim N- rank h ~ Z, we may take X, Y to be linearly Independent. Thus

(v XfHZ) - 0 tor every xe TN lind Z e Ker h.

(iii) We tlrst show that XE N-+ t.(Ker fx n Ker hx ) la parallel In 11"+1

alono N. Let Z E Ker I'x n Ker hx be a vector fleld and let XE TN. Then

(\lxrHZ) =0 implies that X r(Z) • r(\lXZ) C • r(\lXZ) =O. Then QXZ c

v XZ E Ker f x ' On the other hand, (13) Implies

- h(Y, VXZ) =r(Z)h(X, Y) =0 for every Y E TN
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so that VxZ e Ker h. Thus VxZ = vXZ e Ker h. It follows that VxZ e Ker p

n Ker h. We have shown that x -tf.(Ker p n Ker h) is parallel In R"+1 so

that these subspaces are all parallel, say. to a subspace W.

(Hi) Assume pP' 0 on N. Let X be a vector field;o! 0 on N belonging to Ker h

at every point and consider

xEN -t y=x+X1p(X).

For every Y E TN, we have by a slmllar computatIon to that In Theorem 2 that

p( V XY) a O. Also we show that

Vy y = - [ (V~yX)/p(X)2)X 1- (V~yX)/p(X)

ls In Ker h. Here, ot course,' v~ yX ls the Ker h-component ot vyX tor the

submanltold N. But VyX =VyX because h(y,X) =O. We know trom Lemma

2 appllcable to Nthat VyX e Ker h. So VyX E Ker h. Thus Vyy E Ker p n

Ker h.

Let Xo be the point we started wlth and let yo m Xo 1- X/p(X) tor any

nonzero vector fleld X on N In Ker h. Then all points y = x + X/p(X) lIe In the

affine subspace through yO and parallel to W. If Xis replaced by any vector

tleld Y in Ker h, this afflne.subspace does not change because

X/p(X) - Y/p(y) e Ker p n Ker h.

(Iv) Suppose p = 0 on N. Then xE N-t f.(Ker hx) is parallel in R"+ I,

because if X is a vector field belonging to Ker h on N and Y e TN, then VyX =

VyX Ker h as in Lemma 2 agaln. Thus there Is an (n-r)-dlmenslonal affine

subspace to which all f(L)'s are parallel. Thus f(Mn) Is contalned in the .

cyllnder f(N) x W c R"+I. We have completed the proof of Theorem 10.

Finally, Theorem 11 follows Proposition 'I, its corollary and Theorem 10.
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