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ON THE COHEN-MACAULAY AND GORENSTEIN PROPERTIES
OF MULTIGRADED REES ALGEBRAS

M. Herrmann, E. Hyry, J. Ribbe

0. Introduction

Let A be a ring and I,...,I, C A ideals. The multigraded Rees algebra
(or multi-Rees algebra for short) corresponding to I = (I,...,1,) is by definition
R4(I) = AlI t,...,I.t.]. The geometric object associated to R4(I) is the mul-
tiprojective scheme Proj R4(I). Given a N"-graded ring § = ®nEN' Sn finitely
generated over A = Sg by elements of degree (1,0,...,0),...,(0,...,0,1) the
corresponding multiprojective scheme Proj S is defined as follows. Put St+ =
@m ..m.>0 On - Let Proj S denote the set of those homogenous primes in S which

do not contain S**. As in the ordinary graded case one can give Proj S a scheme
structure and a given set of generators of S determines a closed embedding into
some space Pﬁ‘ XA ... X4 Pﬁ'. Let S® be the subring EBneN Sn,...ny of S.
One then easily sees that the inclusion $® —— S induces an isomorphism of
schemes Proj§ —— ProjS2. If § = R4(I), we have S® = R,4(I; ---I;) The
scheme Proj R4(I) is thus isomorphic to Proj R4 (I --- I;), which is the blow-up
of Spec A along the subscheme V(I ---I,).

In this paper we mainly concentrate to the case where all ideals I,,...,I,
are powers of the same ideal I. Let I, = I*1,... I, = I* . In this case we see
that Proj R4 (I) is isomorphic to Proj R4 (I*1*+¥r), The multi-Rees algebras are
thus closely connected to the Rees algebras of powers of ideals. The main purpose
of this paper is to study this connection with respect to the Cohen-Macaulay
and Gorenstein properties and extend the results of [HRZ] and [R] concerning the
Gorenstein properties of Rees algebras of powers of ideals to the case of multi-Rees
algebras.

We first have to generalize the result of Trung and Ikeda about the Cohen-
Macaulay property of Rees algebras ([TI]) to our situation (Theorem 2.2). If A is
a local ring and I C A an equimultiple ideal of ht I > 0, it can be shown that the
Cohen-Macaulayness of R4(I) implies that of R4(I* + %), By an example we
show that the converse does not hold in general (Example 2.5).

To calculate the local cohomology and canonical modules we use the concept of
the Segre product. In studying the Gorenstein properties of multi-Rees algebras
our main tool is a structure theorem for the canonical module {Theorem 3.1)
similar to that given by Herzog, Simis and Vasconcelos for ordinary Rees algebras
in [HSV]. Ikeda characterized the Gorenstein property of a Rees algebra in terms
of the canonical modules of the base ring and the associated graded ring ([I]). As
a corollary of the structure theorem we are able to extend this characterization to
the multigraded case at least when the ideal in question is primary (Theorem 5.3).
Our main result (Theorem 5.11) says that if A is a local Cohen-Macaulay ring



and I C A is an equimultiple ideal of ht > 1 such that R4(I) is Cohen-Macaulay,
then R4(I) is Gorenstein if and only if R4 (I*¥1++%r) is Gorenstein . The results
concerning the Gorensteiness of a Rees algebra of a power of an ideal then say that
this is equivalent to k; +...+k, = —a(gra(J))—1. As an application we consider
the case where I = m is the maximal ideal of A. It is known that A is regular if
and only if Ry(m%™ A~1) is Gorenstein. By the result above we are now able to
say that A is regular if and only if R4(m) is Gorenstein for some k;,...,k, such
that k; + ...+ k. = dim A — 1 (Theorem 5.12). In the case dim A = 2 this was
shown us by Shimoda without using cohomological methods.
The main results of this paper were worked out by E. Hyry.

After finishing this manuscript we received a preprint of Goto and Nishida
(IGN]). In the theorem (6.15) of this paper they prove a result similar to our
Theorem 5.5 for any ideal I of ht I > 0 in a local ring A such that R4(I) is
Cohen-Macaulay, but under the assumptions that »r = 2 and k) = ky = 1.

1. Preliminaries

The local cohomology theory of multi-graded rings and modules is analogous
to that of graded rings and modules. We first fix some notation and recall certain
basic facts (for details see [GW1], [GW2] and [HIO]).

We use the following multi-index notation. The norm of a multi-index n € Z"

is m| = ny +...4+n,. f mn € Z" are multi-indexes, their product mn =
(miny,...,m.n,) and dot-product m -n =mn; +... + m,n,. If m; < n; for
every ¢, we set m < n. Let 1; =(0,...,1,...,0) (¢ =1,...,r) be the canonical
base vectors of Z". Also denote 1 = (1,...,1).

In the following we call Z"-graded rings and modules r-graded or simply
multi-graded. Rings are always assumed to be Noetherian and N"-graded. Let
S = @, en- Snbe a r-graded ring. We set St = ®n¢o Sn. Foreach i=1,...,r
put also S{7 = D, ..o Sn and S; = 5/SF . Let denote M"(S) be the category of
r-graded S-modules.

Sometimes it is also useful to consider the ring S endowed with a different
grading. Given a homomorphism ¢:Z" — Z9 satisfying ¢(N") C N7 put

so=@ ( D s.).
meN*  p(n)=m
For any r-graded S-module M denote

M? = P ( G? Mn).

me€Z? o

We then get a functor ( - )¥:M7(S) — MI(S¥). Especially, by choosing ¢ to

be a homomorphism Z" — Z, we can consider S as an ordinary graded ring. In



the case ¢ is the map n +— |n|,Z" — Z, we denote S9" = S¥. When s € S,, we
call |n| the total degree of s. If ¢ is the map n— n;,Z" - Z (i=1,...,r), we
denote S; = S¥. If s € S,, we call n; the ::th partial degree of s.

If M = @,cz- M is an r-graded S-module and k € Z7, set M(k) =
@D.cz- Motk If M ,N are r-graded modules, we denote by [Hom g(M,N)]o the
Abelian group of all degree 0 homomorphisms from M into N. We set

Hom (M, N) = €P [Hom 4(M, N(n))]o.
nclr

The derived functors of Hom ¢(-,-) are Exti(-,-) (¢ € N). If M is finitely gener-
ated, it is easy to see that for all r-graded S-modules N and every homomorphism
@: 2" — 19 satisfying o(N") C N7 (Exti(M,N))¥ = Ext'c(M¥,N¥).

From now on we assume that § = ®n€N" Sn, where Sy = A is a local ring.
If m is the maximal ideal of A, the ring § now has a unique homogenous maximal
ideal M = m @ St . It can be shown that § is Cohen-Macaulay or Gorenstein if
and only Sap is. The local cohomology groups E{U](M) are defined in the usual
way and their standard properties generalize to the multi-graded case. It is useful
to observe that they are compatible with a change of grading:

1.1. Lemma. Let S be an r-graded ring defined over a local ring and let
M be the homogenous maximal ideal of S. Let M be an r-graded S-module. If
@:2L" — 19 is a homomorphism satisfying @(N") C N9, we have

(Hp(M))? = He, (M?).

1.2. Remark. If ¢ is an isomorphism Z" — Z" such that S¥ = § and
M¢? = M, it especially follows that (Hi,(M))¥ = H,(M).

We shall also often make use of the following fact

1.3. Lemma. Let S be an r-graded ring defined over a local ring and let M
be the homogenous maximal ideal of S. Let M be an r-graded S-module such
that for some 1 € {1,...,r} M, =0 if n; £ 0. Then H!'m(M)]n =0 if n; #0.

The injective envelope E (M) of an r-graded S-module M is defined as
usual. The injective envelope E (k) of k = S/9 is Hom 4(S, Ea(k)), where
E4 (k) is the ordinary injective envelope of k in the category of A-modules. Here
A is interpretated as an r-graded ring concentrated in degree 0 and both S and
E4 (k) are considered as r-graded A-modules. Every injective module in MT"(S)
can be expressed as a direct sum of the modules E (S/P)(n), where P is an
r-homogenous prime of S and n € Z". Recall also the r-graded version of the
theorem of Matlis duality, which says that if M is a Noetherian or Artinian r-
graded S-module, we have

Hom s(Hom4(M,E ), E¢) & M ®4 A.



1.4. Definition. Let S be an r-graded ring defined over a local ring A
and let MM be the homogenous maximal ideal of S. An r-graded S-module wg
is called a canonical module of S if

Hom (H,(S), Eg(k)) = ws ®4 A.

If a canonical module exists, it is finitely generated and unique up to an
isomorphism.

We shall also need the fact that the canonical module behaves well under a
change of grading:

1.5. Lemma. Let S be an r-graded ring defined over a local ring. Suppose
w:Z" — 77 is a homomorphism satisfying @(N7) C N? and = '(0)NN"=0. If
S has a canonical module wg, so does S¥ and the canonical module of S¥ is

wge = (ws)v.

Proof. Denote A = Sy. Because ¢~ !(0) N N" = 0, we have [S¥]o = A. Set
d = dim S and let M be the homogenous maximal ideal of S. By Lemma 1.1

wse = Homg, (H i, (5%), Eg, ()
= Hom , (H§,,(5%), Ea(k))
= ER“AA((E:.{D:(S))W:EAU“))
= P Homa ((H5(5))?)-m, Ba(k))

meZs
= @ HornA( @ [Edm(s)]—-niEA(k))
megZ9 e(n)=m

=@ ( D Homa (HL(S)-n,Ea(k)))

meEZY ¢(n)=m

=@ ( D [Hom,(HL(S), Ea(k)]n)

meZY p(n)=m
= (Hom 4 (H (5), Ea(k)))”
= (.H..Q_I.I}.S(idmt(s):ﬂs(k)))w
= (ws)”.
Recall next the theorem of local duality ((GW?2], Theorem 2.2.2):

1.6. Theorem. Let S be an r-graded ring of dimension d defined over a
complete local ring and let 9 be the homogenous maximal ideal of §. Then § is
Cohen-Macaulay if and only if for any finitely generated r-graded S-module M

Hom g(H (M), E 4(k)) = Ext§ (M, ws).

The local duality theorem implies the following corollaries:



1.7. Corollary. If S is an r-graded Cohen-Macaulay ring having a canonical
module wg, ws is a Cohen-Macaulay S-module with depthwgs = dim §.

1.8. Corollary. Let S and T be r-graded rings defined over local rings such
that there exists a finite ring homomorphism § — T . If S is Cohen-Macaulay
and has a canonical module wg, also T has a canonical module and

wr = Exts(T,ws),

where e =dim S —dim T.

1.9. Corollary. Let S be an r-graded ring defined over a local ring. Then S
is Gorenstein if and only if it is Cohen-Macaulay and wg = S(n) for some n € Z".

Recall that for a non-negatively graded d-dimensional ring R which is defined
over a local ring and has the homogenous maximal ideal M, the a-invariant a(R)
is defined as

a(R) = max{m € N|[H4(R)}m # 0}.

Then also
a(R) = ~min{m € N|[wgr]m # 0}.

1.10. Definition. Let S be an r-graded ring defined over a local ring.
The element (a(Sy),...,a(S,)) € 2", where S; (j = 1,...,r) denotes the ring S
graded by the j:th partial degree, is called the a-invariant of S and is denoted
by a(S§).

If S is of dimension d, it is meant in this definition that
a($;) = max{m € N|[Hg (S;)lm #0} (i =1,...,7).

Note that by Lemma 1.1

LH_dm,. (Sj)]m = @ [i?m(s)](rn,...,n,—_l,m,n,-.;.;,...,n..)'

Ny R 1,00,y

Thus we can say that a(S) = (a1,...,a,), where
aj = max{n;|n € Z" and ESR(S)]“ # 0} = —min{n;|n € 7" and [ws], # 0}.

If S is Gorenstein, it follows that wg = S(a(S)).

1.11. Definition. If S is an r-graded ring, the diagonal subring S® of S

is defined as
SA = @ S(n,...,n)-
neEN
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If M is an r-graded S-module, the diagonal submodule M® of M is the r-graded
S8 -module

M?& = @ M(n,...,n)-
nel

The correspondence M — M?% defines a functor M7(S) - M!(S2).

1.12. Definition. If S is an r-graded ring and k € (N*)", the Veronesian
subring S¥) of § is defined as

$% = P Skn.

neENT

If M is an r-graded S-module, the Veronesian submodule M of M is the
r-graded S™ -module
M® = B My,

nel"
Also now we obtain a functor M7(S) —» MT(S®)),

Let S be an r-graded ring defined over a local ring A with the homogenous
maximal ideal M. If M is an r-graded S-module, we say that M has the property
(A) if either of the following conditions hold:

(A1) Every z € M is annihilated by some power of 9 (which is of course
equivalent to requiring that Supp M = {M}).

(A2) For some n € N” there exists an element s € 9, such that the induced
multiplication map M(—n) — M is an isomorphism.

If M is an r-graded S-module satisfying the property (A), it easily follows
that Hy, (M) =0 for i > 0.

1.13. Lemma. Let S be an r-graded ring generated by elements of total
degree one over a local ring So and let I be an injective S-module. Let k € (N*)".
Then I%) has the property (A).

Proof. Let M be the homogenous maximal ideal of S. Let m be the maximal
ideal of Sp. It is enough to consider the case I = E,(S/P), where P is an r-
homogenous prime of §. If P = M, I and thus also I®) clearly satisfy the
condition (A1). Suppose then that P # 9. We shall show that I®) satisfies the
condition (A2). If Py # m, multiplication by an element a € m, a ¢ P gives
an isomorphisn I — I, which induces an isomorphism I®) — (k) Thus assume
Py = m. Since P # 9M, there is ¢ € {1,...,r} such that S;; ¢ P. Choose
a € S, a & P. Multiplication by a*’ then gives an isomorphism I(—k;1;) — I
and hence also an isomorphism I (—1;) - 1(¥)



1.14. Lemma. Let S be an r-graded ring generated by elements of total
degree one over a local ring Sy and let MM be the homogenous maximal ideal of
S. Let k € (N*)". Then (Hi,(M)® = gi ., (M),

Proof. Let 0 — M — I be an injective resolution of M. By Lemma 1.13
0 — M® _— 1K) is a resolution of M) which satisfies the condition (A).
Then Hio((I7)®) = 0 when i > 0 for every j € N, so that we can use this
resolution to compute the local cohomology of M(K) . Because iom(,)((l-' Y)Y =
(H3%,(I7))™ | the claim follows.

1.15. Corollary. Let S be an r-graded ring generated by elements of total
degree one over a local ring So. Let k € (N*)". I dim § = dim §® and S has
a canonical module wg, so does S and the canonical module of S is

Wg(x) = (ws)(k)-

Proof. Set d = dim S. Denote A = Sp and let 91 be the homogenous
maximal ideal of S. According to Lemma 1.14 we have

wgxy = Hom guo (Edm(k)(s(k)):ﬁs(k)(k))
= Hom 4 (Edgm(k) (S(k) ), Ea (k))
= Hom 4 (H5($)™, B (k)

= @ Hom 4 ([(idmt(s))(k)]—maEA(k))
megiZr

= @D Homa ([HE(S))-km, Ealk))

melr
= EB HomA(__Iifm(S),EA(k))]km

melr

= (Hom , (H%,(S), Ba(k)))™
= (Homs (H2,(S), E4(k))™

= (ws)™.

1.16. Definition. Let A be a ring and let I;,...,I, C A be ideals. Set
I={(L,...,I;). If n € N", denote the product I;'* --- I** by I®. The multi-Rees
ring RA(I) is the r-graded ring

R4I)= € 1.
neENT
Furthermore, for every i = 1,...,r the i:th associated r-graded ring is defined as
graL) = @ 1/t
neNT

Clearly gra(I;I;) = Ra(I)/I;R4(I). We shall often identify R,4(I) with the
subring A{I1t,,...,I .t} of Alty,...,t,].



1.17. Proposition. Let A be a ring and let I;,...,I, C A be ideals such
that ht I; > 0 forevery t = 1,...,r. Set I =(Iy,...,I,). Then dim Ro(I) = d+r.
Moreover, if A is local, we have dim gra(I; ;) =d+r -1 (i=1,...,r).

Proof. Set J ={(I,...,I,—1) and B = R4(J). Since
A[Iltl,. .. ,I,—t,-] = A[Iltl,.. . )Ir—ltr—]][Irtr],

we clearly have R4(I) = Rp(I,B). Because the case r = 1 is well known (See
[M], Theorem 15.7 and its proof), the claim follows easily by using induction on
T.

In this paper we concentrate to the case where all the ideals I;,...,I, are
powers of the same ideal I C A. We use the notation I, for the r-tuple (I,...,I).
In this case all the associated r-graded rings coincide and we denote grA(I) =
gra(l; I;) for i=1,...,r.

2. On the Cohen-Macaulay property of multi-Rees algebras

In this section we shall show that the theorem of Trung and Ikeda concerning
the Cohen-Macaulay property of Rees algebras ([TI]) can be generalized to the
case of multi-Rees algebras. We need the following variant of the original version
of this theorem. For the convenience of the reader we repeat the details of the
proof.

2.1. Lemma. Let A be a multi-graded ring of dimension d defined over
a local ring and let I C A be a homogenous ideal of htI > 0. If m is the
homogenous maximal ideal of A, denote M =m @ (R4(I))*.

a) The following conditions are equivalent for every ¢ € N:
(1) [Hip(Ra(I)))n =0 wheni<d+1 and n ¢ {—gq,...,—1}.
(2) [Hip(97a(I))]n =0 when i <d and n ¢ {—¢—1,...,-1},
a(gra({l)) < 0.
b) We have a(Rs(I)) = —
Proof. Put § = R4(I) and G = gra{l). We first show that A can be
replaced by a local ring. By flatness H;,(S) @4 Am = _Ii&,@AAm(S ®a Am). Let

A be r-graded. We may then consider S also as a (r + 1)-graded ring with the
homogenous maximal ideal 9. According to Lemma 1.1 we have for every n € N

Hin()n = D HL () ns o0y

nelr

so that each [Hj,(S)], is an r-graded A-module. We observe that [I_I_;m(S)]n =0
if and only if [i‘itR@AAm(S ®4 Am)ln = 0. Similarly we get [H,(G)]. =0 if and



only if [i;T®AA.(G ®4 Am)ln = 0. Since S®a A = Ra, (In) and G @4 Ap =
gra. (Im), this means that A can be assumed local.

(1) = (2) Consider the exact sequences
0— St — 85§ — A—0,

0— St(1) — §— G — 0.
We get for all : < d and n € Z the exact sequences
(H i (S)n — [Hgn(A))a — Hg (S)]w — [Hyt' (S,
(H (5] ~— [Hip(G)n — [Hy (5T utr — [Hyg (5)]n-

Since [Hy(S)]n = 0 for n < —q or n > 0, these sequences imply for n < —¢ — 1
or n 2 0 the isomorphisms

(Hin(G)ln = Lt+1(5+ o1 = [ﬂ;n(A)]nH-
Because [Hy(A)lng1 = 0 if n # -1, it thus follows that {H},(G)]. = 0 if

n<—¢—1o0r >0.
We must then show that [HE (G)], = 0 if n > 0. We use the exact sequences

0 — [HE (D] — [HE (S ot — [HE'($)]a — 0,

0 — [Hy(@lw — Hy (51 — [Hy ' (5)a — 0.
From these we obtain the isomorphisms

[He ' (5T 2 [HG (S)]a (0 #0)

and the epimorphisms
Hy ' (5)ar — [Hy ' (S)]a — 0.

Since [Hat'(S)ls = 0 for n > 0, diagram chasing gives d+1(S+ )]n = 0 for
n > 0. The second exact sequence then implies that [Egn(G)]n =0 for n 2 0.

(2) = (1) Consider then again the exact sequences

0— St — 8§ — A-—0,

0-‘“—>S+(1) y S y G » (),
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For 1< d+ 1 and n € Z, we get the exact sequences
Hi' () — Hip(STn — Eip($)ln — [EHip(4)l,
Ho  (G)ln — Hap(SH)nt1 — [Hi(S)n — [Hp(G)].

It follows that there are isomorphisms

(Hm(ST)n 2 [Hyp(S)] (0 #0),

epimorphisms . .
[H g (ST Nns1 — [Hy (S (n20)

and monomorphisms

@;;(5+)]n+1 — LIiE'm(S)]n (n < —g-1)

From these sequences it comes out by diagram chasing that u:[_;m(S)]n = 0 im-
plies [H,(S)]n-1 = 0 for n > 0. It also follows that [H.(S)]n = 0 implies
[H(S)]a+1 = 0 for n < —g — 1. We have H;JI(S)]" =0 if n > 0. By [TI],
Lemma 2.2 and Theorem 3.3 one knows that [H,(G)]n = 0 for n < 0 implies
also [Hi:(S)]la =0 for n « 0. It is then easy to see that we have [H{,(S)]n =0
for n < —q or n > 0 as wanted.

The last claim follows similarly by considering the isomorphisms

(Ha (S = [Hy ' (S)a (n #0),

and the epimorphisms

[—d+1 (S+)]n+1 N Hd-i-l(s)]n (n € Z).

We must have [H5'(S)]-1 # 0, since from [HaT'(S))-1 = 0 it would follow that
HE'(S)]a = 0 for n < —1 and thus [Hgt'(S)]s = 0 for all n € Z which is
impossible.

2.2. Theorem. Let A be a local ring of dimension d and I C A an ideal of
ht I > 0. Let 9 be the homogenous maximal ideal of R4(1,).
a) The following conditions are equivalent.
(1) Ra(1,) is Cohen-Macaulay.
(2) [Hiz(97a(I:)n =0 when i <d+r—1and n# -1,
a(gra(I,)) < 0.
(3) [Hiy(Ra(D)]ln =0 when i<d+1land n¢g{-r+1,...,—1}.
(4) [Hip(9ra(I)]n =0 when i<d and n ¢ {-r,...,—1},
algra(I)) < 0.
b) We have a(R4(I,)) = —1.
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Proof.

(1) & (2) Let S = R4(I,) and G = gra(I,). Let 5 € {1,...,r}. Let §;
(resp. G;) denote R4(I,) (resp. gra(I,)) graded by the j:th partial degree. If
B =Ra(lh,...,Ij-1,Ij41,...,1;) and J = I; B, we clearly have S; = Rp(J) and
G; = grg(J). By Lemma 2.1 S; is Cohen-Macaulay if and only if [Ei(Gj)],, =0
fori<d+r—1, n# ~1 and a(G;) < 0. According to Lemma 1.1

Ei(Gj)]n = @ @i(c)](nl,...,n,-_l,n,nj+l,...,n,)'
LSRN FREPRE TR,

Since j € {1,...,r} was arbitrary and a(G) = (a(G,),...,a(G,)), the claim
follows. Because always a(S;) = —1, we also obtain a(S) = (a(S1),...,a(S,)) =
-1.

(3) & (4) This is an immediate consequence of Lemma 2.1.

(1) & (3) Let g € {1,...,r}. We shall prove by induction on ¢ that (3) is
equivalent to the condition:

(%) LE;DI(RA(Iq))]n =0 when : < d+ ¢ and some n; € {-r +g¢,...,—1}.

If ¢ =1, this is the same as (4). Thus assume ¢ > 1. Set S = R4(I;) and

T = Ra(I;-1). The homogenous components S,, of § are symmetric with respect
to ny,...,n,. By Remark 1.2 the same holds for the homogenous components of

ifm(S). It follows that we can assume j € {1,...,¢ — 1} in condition (*). Let S
denote S endowed with the grading

§= @ (@S(ml,...,m,_l,k))'

mENT-1 k>0

According to Lemma 1.1 we have

Lsm S)]m @[_gm(s)](ml, GMg—1,k)

for all m € N9~!. This implies that we may now replace S by S in condition
(¥). Denote B = R4(I) and J = R*. Because

§= &b D= D (D 1),

mENI=1 k>0 meENI-1  k>|m|
we observe that S = Rg(J,_;). Moreover, since
e @ (® M
meENT-1 k> ml+1

we also have T = grg(J,). Now a(T) < 0. We then conclude by using Lemma
2.1 similarly as in proving (1) & (2).
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2.3. Corollary. Let A be a local ring and I C A an ideal of htI > 0. If
R4(I) is Cohen-Macaulay, then R4(I,) is Cohen-Macaulay for all » € N*.

2.4. Corollary. Let A be a local ring and I C A an ideal of ht I > 0. If
R4(1,) is Cohen-Macaulay for some r € N*, then R4(I?) is Cohen-Macaulay for
all g 2> r.

Proof. Let 9M be the homogenous maximal ideal of R4(I). The corollary is
an immediate consequence of Theorem 2.2 and the fact that R4 (I9) = (R4(I))@
and B (Ra(I)®) = (B (RAD)® for all g € N

The following example from [HRS] shows that the converse of Corollary 2.4
does not hold in general.

2.5. Example. Let k be a field. Consider the ring 4 = k[[z,,...,211]]/(2?),
where k[[zy,...,21]] is the formal power series ring over k. Let I denote the ideal
generated by all monomials of degree 4 in z3,...,z;; different from z3zZ. Let
m be the maximal ideal of A. Because A is a hypersurface ring of multiplicity 2
and dimension 10, we know that R,4(m) is Cohen-Macaulay (See [HIO], Corollary
(26.5)). One now easily sees that there exists an short exact sequence

0 — Ra(I) — Ra(m*) — kzlzi(-1) — 0.

Let M be the homogenous maximal ideal of R4(I). Since now also R4(m?*) is
Cohen-Macaulay, the corresponding cohomology sequence implies i;n(RA (I)) =
0 for 7 # 1,11, but Hp(Ra(l)) = k(-1). Let r > 1. Since R4(I") =
(Ra(IN and Hyp, (RaI)7) = (B (Ra(I)), we obtain Hy (Ra(I7)) =
0 for ¢ < 11 so that R4(I") must be Cohen-Macaulay. On the other hand,
since Hgn(RA (IN]y # 0, it follows from Theorem 2.2 that R4(I,) can not be
Cohen-Macaulay for any r € N*.

3. A structure theorem for the canonical module

We shall next show that the theorem of Herzog, Simis and Vasconcelos con-
cerning the structure of the canonical module of an ordinary Rees algebra ([HSV])
generalizes to the case of multi-Rees algebras. Let A be a local ring and I C A an
ideal. As usual interpret the Rees algebra R4(I) as a subring of the polynomial
ring A[t]. The above theorem deals with the situation when the canonical module
of R4(I) is up to shift by -1 isomorphic to the R4(I)-submodule of A[t] generated
by 1,...,t™, where m > 0. This submodule is denoted by (1,¢)™ and it is then
said that the canonical module of R4 () is of the expected form. Consider now the
multi-Rees algebra R4(I,) and interpret it as a subring of A[ty,...,¢;]. Analo-
gously denote by (1,%#;,...,t.)" the Rs(I,)-submodule of A[t;,...,t,.| generated
by the monomials t™ = ¢]'' --- ¢, where |n| £ m. One easily sees that

(l’tli"' atr)m(—l) = @ Ilnl-m—rt".

n>1
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The proof of the following theorem follows the proof presented by S. Zarzuela in
the ordinary graded case ([Z]).

3.1. Theorem. Let A be a local ring and I C A an ideal of ht I > 0 such
that R4(I) is Cohen-Macaulay. Let r € N*. Suppose that a((gra(I4))") < —¢
for all ¢ < r. Set S = Rs(1,), G = gra(I,) and a = —a(G?"). If S has a

canonical module, then the following conditions are equivalent:

(a) wsg = @ Ilnl-a+1wAtn
n>1

(b) we = @) IMl=sw, /1inl=et 1y,

n>1

Proof. We may assume that A is complete. Corollary 2.3 implies that R4(I,)

is Cohen-Macaulay for every ¢ € N*. For all i € {1,...,r} denote
w5’ = D lsln.
ny>2

We shall first show that there exists a homomorphism T;:wg) — wg of degree
—1; with the following properties

(i) For all @ € ws and s € IS 7i(st;a) = sa.
(ii) For all @ € ws and a € I'"!, where n; > 0, ri(at"a) = (at" 1 )a.

(ili} For |n| < a — 1 7; induces an isomorphism [wglnt+1; = [wWs]a-

(iv) For all i,j € {1,...,r} and B € wy Nwd (rir)B = (rj7:)B.

Consider the short exact sequences

0-——>Si+~——>S—>S;—>0,

0 y 1S y S » G y 0.

By dualizing with ws we get the exact sequences
0 — Hom ¢(S;,ws) — Hom¢(S§,ws) —— Hom (S} ,ws) —

- Ml(siawS) — MI(SJWS) = 07
0 — Hom ¢(G,wg) — Hom 4(S,ws) — Hom (IS, ws) —

— Ext'(G,ws) — Ext'(S,ws) = 0.
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Since dim S; = dim G = d + r — 1, the local duality gives

Hom 4(S;,ws) = Hom g(H g7 "(S:), E5(k)) = 0
and

B-in-S(G!"""S) = Ho—ms(l{_dw-z'-r(c)’ﬂs(k)) = 0.
Moreover, we know that
ws, = Ext&(S;,ws) and wg = Ext]g(G,wS).

Identify Hom ¢(S,ws) with wg and let A; : HomS(S?',wS) — Hom ¢(IS,ws) be
the degree 1; homomorphism induced by the homomorphism s — st;, 1S — S;".
We obtain the diagram

0 — wsg — Homg(S},ws) — ws, -——0

lA.‘ (*)

0 — wg — Homg(IS,wg) — wg —0

Theorem 2.2 implies that [wg], = 0 if n; < 0. Furthermore, [ws,]n = 0 for
n; # 0. It then follows that =; induces an isomorphism

wg — @ [MS(S?st)]n-
n;>1

Since A gives a degree 1; isomorphism

P [Hom 4(S7,ws)ln — €D [Hom (IS, ws ),

ni 21 n; 22

we obtain an isomorphism

Qiws — (D [Hom (IS, ws)]n
n;>2
of degree 1;. We now define T,':w_(s.") — wg by setting 7; = Qi-la.
The property (i) is now easy to check from the definition. The property (ii)
follows from (i). Since [wgln+1; = 0 for |n] < a — 1, it follows that o induces an
isomorphism [wg|n+1; — [Hom (IS ,ws)|n+1,; - This implies (iii). To prove (iv)
we first note that by (i) we have for all s € I*S and 8 € w’

(tit;s)((Tim;)B) = (t;8)(7;8) = 3P

and
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(titis)((1;m)B) = (tis)(TiB) = 8,
so that

(tith)((TiTj)ﬁ - (TjT.')ﬁ) = 0.

Denote a = (7;7;)8 — (7;7)B. Now stit;a = 0 for all s € I*S implies that
S? ﬁS;L C Ann a. Suppose that we would have a # 0. There would then exist an
associated prime P of wg such that Anna C P. This would imply .‘5',}+ f'].S';L C P,
so that dim S/P < dim S/S} n S;-*' < dim S. But this is impossible, since wg 1s
Cohen-Macaulay. So we must have @ = 0 and the property (iv) is thus proved.

Observe that property (iii) implies [wg], 2 wq if n > 1 and |n| < a. Indeed,
we immediately obtain [wg]n = [ws]1. Since @ > r, we have [wg], = 0. It follows
from the diagram (*) that [wg]y & [ws,]1r, where 1’ = (1,...,1) € N"™™!1. By
induction we then easily get [wg]; = wa, which proves the above claim.

We are now ready to prove that (b) implies (a). We thus assume that

R R

wg = @ Ilnl—awA/I1n|—a+]wA-

n>1

We shall first prove by induction on |n| that for n > 1 and |n| > a -1

[wsla+1, = Itilws]a-

By the inductive assumption we have [ws]n, = (IP=**+1tH[ws]m for some |l] =
In|—a+1 and |m| = a—1. By applying the map 7" --. r'* we get an isomorphism
[wsln = IPI=2+1[ws], . Since [wslm = wa, we finally get [wgla = IIMl=e+ly, .
Consider the diagram:

[wS]n
Q;
N
[Hom ¢ (IS, ws)]at+r — [welns1, — O
/
[0
[ws]n+1:
Now
Ti([wslat1;) = Q7 N (e([wslat1,)) = 97 (Ker g) = Ker ;.
Since

Wwelagr, = IM7o* gy frinl=at2y,

we get I[wg]a C Ker pQ;. As

[wsln/I[wsln & [welnt+1; = [ws]n/ Ker o,
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there exists an exact sequence
0 — Ker QQ,/I[Ws]n —_— [UJG]n_’.l‘. _ [WG]n+1.- — 0.

Since any epimorphism from a Noetherian module onto the module itself is an
isomorphism, it follows that Ker pQ; = Ilwg], . Hence

Ti(wsla+1) = I[“-’S]n = Ti(Iti[“"S]n)

Because 7; is injective, we finally get [wslh+1 = Iti[ws]n -
We shall next construct an isomorphism of r-graded S-modules

Eiwg — @ I|n|—a+lwAtn.
n>1

We first show by induction on |n| that there are A-module isomorphisms
n:lwsln — P72 1w t™ (0 > 1)
satisfying for n > 1; and « € [ws]a €n(a) = tien—1,(7:(a)).
If In|]=r (n=1), set ¢, =1,,. Let |n] > r and suppose that A-module
isomorphisms &, have been defined for |m| < |n|. To define ¢, by the above
formula, we must check that e, is really a map to I'"l=2+14 4 t™ and the definition

is independent of i. If |n| < a — 1, the first statement is immediately clear since
7i([wn]) = [wsln—1;- Let [n| > a — 1. Since [ws}, = It;[ws]n—1, , we have

Ti(lwsln) = mi(Iti[ws)n-1,) = Iws]a-1,
and so
En([‘-‘-’S]n) = tiEn—l.'(Ti[wS]n) = Itisn—l;([wS]n—li) = I1n|_a+]“"Atn-

To show that the definition does not depend on i suppose that n > 1; and n > 1;.
Then for all a € [wg], J

tien—1,(Ti(a)) = titjen—1, -1, (7j7i())

= tjEn_lj (Tj(a)).

By the above arguments the bijectivity of ¢, is clear.
The homomorphisms ¢, now define an A-linear map

Elwg — @ Ilni_a+1w,qtn.
n>1
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To show that ¢ is S-linear consider a € [ws], and @ € I'™!. Using induction on
m| and assuming m > 1; we get
Em+n ((at™)a) = tiemyn-1,(Ti((at™ )a))
= tiem+n-1, ((at™ "1 )a)

= (at™ e, (@).

We shall now prove that (b) implies (a). From the basic diagram (*) we get
the isomorphisms

L0

9 = @D [Homs(IS,ws)a/lo (@S )]n
n;>2
= P [Hom g (S ,ws)ln-r, /(AT o) a1,
2 P wslaor/[6(@§ a1,

e

(ws/mi(w§)(=14).

If now
wg = @ Iinl=at1,, g
n>1
we have .
Ti(wg)) - @ Ilnl_a+2(_UAtn,
n>1
so that .
w((-;) = @ I|n|—-awA/I|n|-—a+1wA_

n>1l,n;>2

Since [wg]y = 0, we have
o= 3 .
i=1

It 1s now easy to verify that the above isomorphisms are compatible, so that

wg @ I|n[—awA/I|n]——a+lwA
n>1
as desired.

3.2. Remark. Let A be alocalring and I C A an ideal of ht I > 0 such that
R4(I) is Cohen-Macaulay. Assume, moreover, that Hom(I, A} = A. As above
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set § = R4(I,) and G = gr4(I,). If S has a canonical module, then [wg]; = A
implies a((gra(I;))9") < —gq for all ¢ < r. Indeed, from Hom(I,A) = A it
follows that every element of [Hom ¢(IS,ws)}y arises from multiplication of some
element of wgs. The morphism ¢ in the basic diagram (*) of the preceding proof
is then an isomorphism in degree 1, so that [wg]; = 0. Then a(G?") < —r, since
[wgln = 0 for |n| < r by Theorem 2.2. In the the proof of Theorem 3.1 we saw
that if ¢ is an isomorphism we also have an isomorphism [ws]; = [ws,}1’, where
1" =(1,...,1) € N"~!. But this means that we may continue the above reasoning
to get the claim.

4. Calculation of local cohomology and canonical modules

4.1. Definition. Let R be a graded ring. We call the r-graded ring

D R

neNT
the r-graded ring corresponding to R and denote it by R" 797

Let A be a ring, I C A an ideal, R4{I) the Rees algebra and gr4(I) the
associated graded ring. We now observe that the r-graded rings corresponding to
R4(I) and gras(I) are the multi-Rees algebra

Ra(l)= €D I = (Ra(D))"™*"

neNT

and the associated r-graded ring

gra(l)y= @@ Il = (gr (1)) 0.
neENr

Given a graded ring R with a canonical module it would therefore be nice
to express the canonical module of R"79" in terms of the canonical module of
R. To that purpose recall the notion of Segre product of two graded rings. We
generalize this concept slightly and define the Segre product of a graded ring and
an r-graded ring.

4.2. Definition. If R is a graded ring and T is an r-graded ring defined
over a ring A, their Segre product is the r-graded ring

RIT = P Rpn| ®4 Ta.
nENT
If M is a graded R-module and N a graded T -module, the Segre product Mf{N
is the r-graded RJT -module

MYN = @ M, ®4 Na.
nclrT
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4.3. Remark. Note that (R§T)?" = R§T?". Here R§TI" is the usual Segre
product of the graded rings R and T9". For the properties of Segre product see
[GW1].

Let R be a graded ring defined over aring A. If A[ty,...,t,] is the polynomial
ring over A, we clearly have

R™™9" = RiA[t:,... t.].

We are thus interested about Segre products of type R$A[t,...,t,]. Goto and
Watanabe have calculated the local cohomology of the Segre product of two graded
rings defined over a field ([GW1], Theorem (4.1.5)). We shall show that their
arguments can be generalized to the above situation in the case A is an Artinian
ring. First we need the following elementary lemma and some further notation.

4.4. Lemma. Let A be a local ring and let

F: F° , F? y PP L FP 50

be a finite free complex of A-modules. If the complex H(F) is also free, so are
the complexes Z(F) and B(F).

Proof. Set Z' = Z'(F),B' = B'(F) and H' = H'(F). We shall show by
descending induction on i that Z' and B' are free. The case i > n being clear,
we assume that Z' and B' are free. Because a module over a local ring is free if
and only 1if 1t is projective, we get from the exact sequence

0 - Zi—l —_ Fi—l _ Bi - 0’
that Z'~! is free. The exact sequence
0 —— Bi-——] _— Zi-—l N Hi-—l - 0

then implies that also B'~! is free.

Let S be an r-graded ring defined over a local ring A. Let E be a complex of
r-graded S-modules. Recall the property (A) and the properties (A1) and (A2)
mentioned in Chapter 1. Suppose that each E' is a direct sum of r-graded §-
modules satisfying the property (A) (for example, any injective resolution). The
following notation is then used. Let 'E* denote the direct sum of those summands
which satisfy the property (A1l). The 'E':s now form a subcomplex 'E = ('E").
Let "E be the quotient complex E/'E. Each "E" is then isomorphic to the direct
sum of those summands of E' which satisfy the property (A2).
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4.5. Lemma. Let R be a graded ring and T an r-graded ring defined over
a local ring A. Let M be a graded R-module and N an r-graded T -module.
Consider the r-graded RJT -module M{N .

a) If M or N satisfy the property (A1), so does MfN .
b) If M and N satisfy the property (A2), so does Mf§N .

Proof. The first claim follows immediately from the definitions. Let us prove
the second claim. Let 9 and 91 be the homogenous maximal ideals of R and
T respectively. By assumption there are for some ¥ € N and n € N elements
z € Mg and y € N, such that the induced multiplication maps M(—-k) - M
and N{(—n) — N are isomorphisms. If £ = 0 or n = 0, multiplication by z or y
respectively induces an isomorphism MEN — MY§N . Otherwise multiplication by
zlntfy* gives an isomorphism (M§N)(—kn) —» M{N .

4.6. Theorem. Let R be a graded ring and T an r-graded ring defined
over a local ring A. Let 9 and N be the homogenous maximal ideals of R and T
respectively. Let B be the homogenous maximal ideal of the Segre product RfT .
Let M be a graded R-module and N an r-graded T -module. Assume that N is
free as an A-module and E:n(N) =0 for t = 0,1. Also assume that there exists
a finite resolution 0 - N — F such that F is free as a complex of A-modules,
each F' is a direct sum of r-graded S-modules satisfying the property (A) and
that the complexes H(F) and H("F) are free as complexes of A-modules. We
then have for all 1 € N

Hi(MIN) = (M"{HL(N) o (HL,MUN) o (D HLOOEELIN) ),
P.¢>1,p+g=1+1

where M" is a certain r-graded S-module such that there is an exact sequence
0— HYy(M)— M — M" — HL (M) — 0.

Proof. We first remark that if C; and C, are complexes of r-graded S-
modules, one can define their Segre-product C,;§C, by setting

(C1iC2) = D cTicy
prg=i
and defining the differential d: C,§C, — C;§C, by the formula
d= @ (@ +(-1)"14dl)

ptg=i

where d;:C; — C, and d;:C; — C; are the differentials of C; and C, respec-
tively.
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Let I = (I') be an injective resolution of M. We then have E;UI(M) =
HY(Hg, (1)) = H'('I) and Hy(N) = H'(igm(F)) = H'('F) for all ¢ > 0. Let
E = I§F. The assumptions together with Lemma 4.4 now imply that we can
apply the Kiinneth formula ([B], §4, N°7, Corollaire 4) to H(I§F). It follows that
the complex E = (E') is a resolution of Mf{N . By Lemma 4.5 one sees that for
every : > 0

"B = @ ((prurFq) @ (quu:Fq) ® (:Ipﬂqu))
ptg=i

and
nEa‘ — @ "Ipﬂ"Fq.
pte=i

Moreover, it is easy to check that we in fact have "E =" I{”F. We now get
i (MiN) = B (H3(E)) = H'(E).
Consider the exact sequence
0 —'E—E—"E— 0.

Because H'(E) = 0 for i > 1, it follows that we have for ¢ > 2 the isomorphisms
HY('E) = H*-'("E) and that there exists an exact sequence

0 — H°(E) — H*(E) — H°("E) — H'('E) — 0.
By the Kunneth formula we get

H:’(NE)z @ Hp(nl)ﬂHq(nF)

pta=i

for all : > 0 so that

Hy(MiN)= & HP('DEH("F)

ptg=i—1
for : > 2 and we have an exact sequence
0 — Hy(Mi{N) — M{N — H("IWH°("F) — Hp(MIN) — 0.

The exact sequences

0 —'T—1I—"I—0,

0—'F—F—"F—0
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now give the isomorphisms
HP('T) = H¥V (D), HI("F) = HY(F) (p,q 2 1)
and the exact sequences
0— H°('I) — H°(Q1) — H°("I) — H'(I) — 0,
0— H°('F) — H°(F) — H°("F) — H'('F) — 0.
If M" = H°("I), we thus obtain an exact sequence
0—>E3JT(M) — M — M — ﬂ-;m(M) — 0.

0 for i = 0,1, we get H°("F) = H°(F) = N. This implies

> 2. To prove the claim in the case : < 2 we compare the exact

Since H&(N)
the claim if :
sequences

0— H%(MHN) — MEN — M"§{N — H%(MﬂN) — 0

and
0 — HR(MMN — MEN — M"§N — Ho (MMYN — 0
to get
Hy(MY§N) = HY (MN, Hy(M{N) = Hy (M}N
as wanted.

4.7. Lemma. Let A be a local Artinian ring. Consider the corresponding
polynomial ring T = A[ty,...,t.]. There exists a finite r-graded resolution

0—T —5F" — .. . —F S F* , L F -0

such that F and H(F) are free as complexes of A-modules. Moreover, F" satisfies
the property (A1) and for each 1 < r F; is a direct sum of r-graded T - modules
satisfying the property (A2).

Proof. Take, for example, the Cech-complex

c. T—Pn, —...—PT _~, — Tyt — 0.

Let 9N be the maximal homogenous ideal of T. Now H(C) = H{ (T) for i > 0.
Furthermore, it is well known that for 7+ < r i:n(T) = 0 and that

D) = @ Aty

n<0
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We then observe that
0—T—C —>...—C,— H(C)— 0

is a resolution of T with the desired properties.

4.8. Corollary. Let R be a graded ring of dimension d defined over a local
Artinian ring. Let 9 be the homogenous maximal ideal R. Then

d r— r—gr
HE 0 (RT) = D HGR)ja-
n<0

Proof. U T = A[tl,...,tr] is the polynomial ring over A = Ry, we have
R™™9" = RfT . Since l{_:n(T) =0 for : < r and

)= @ A,

n<0

the claim is an immediate consequence of Theorem 4.6 and Lemma 4.7.

4.9. Corollary. Let R be a graded ring defined over an Artinian ring.
Suppose that dim R"™9" = dim R+ r — 1. If R has a canonical module, then so
does R"79" and we have

wrr—or = ED [WRjn|-

n>0

Proof. Set d = dim R, so that dim R"79" = d + r — 1. Denote A = 5S¢ and
let 9N be the homogenous maximal ideal R. According to Corollary 4.8 we have
dm-t’-'-w (R™79)]a = [HE,(R)]|a; if n < 0 and 0 otherwise. Then

Wrpr-gr = H_OlnR"—B" (HMF-JE(R" 9'") ER" “'(k))
— Hom , (BEET5H (R, Ba(k)

= G? Homgj (E oo (R779)]on, Ea(k))
- éﬂm (H& ()= jn), Ba(k))

- QR [Hom 4 (H 5;(R), Ea (k) ]jn)

- Q}}o[ﬁomR(Hm(R) 2 ()|

= D wrjal-

n>0
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5. The Gorenstein property of multi-Rees algebras
We begin with the following lemma ([I], proof of Theorem (3.1)):

5.1. Lemma. Let A be a local ring with an infinite residue field and I C A
an ideal of ht I > 0 such that R4(I) is Cohen-Macaulay. There exists then an
element a € I — I? such that the corresponding degree one element a* € gr,(I)
is a non zero-divisor.

5.2. Lemma. Let A be a local ring with an infinite residue field and I C A
an ideal of grade I > 1 such that Rs(I) is Cohen-Macaulay. Let k € (N*)". If
S = R4 (I¥) has the canonical module

wg = @ Ik~n—qtn’

n>1
where ¢ € N, then the canonical module of §' = Ra(I*+,... I*-1) is
wer = @ Ikl’ll+~n+kr—lnr—1—q.t?1 t::-il

n1,...,0r—1 21

Proof. Since S is Cohen-Macaulay by Corollary 2.3, wg = Exts(S/St,ws).
According to Lemma 5.1 there exists an element a € I — I? such that the corre-
sponding degree one element a* € gra(I) is a non zero-divisor. Set s = a*rt,.
Multiplication by s gives an exact sequence

0 - ws(-1,) 2 wg — ws[swg — 0.
From this we get the long exact sequence

0 — Homg(S/S7,ws(~1,)) — Hom¢(5/5F,ws)
— Hom¢(S/St,ws/sws) — Exts(S/S},ws(—1,))
~— Ext£(S/5F,ws) — ...

Because Hom¢(S/S},ws(-1,)) — Hom(5/SF,ws) is a zero map, we obtain
an isomorphism

Hom (S/S} ,ws/sws) = Ext5(S/SF ,ws(~1,))

or
Ext5(S/S},ws) = Hom o(S/S7F ,ws/sws)(1,).

Now
Hom ((S/SY,ws/sws) = (sws : §F )u, [sws-
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Since gradeI > 1, there exists b € I such that (a,b) is a regular sequence. If
z € [(sws : SF)usln, we have b*rt.z € sws. Suppose that z = ut™, where
uw € I¥"~9, Then for some v € I*"~9 we have b**u = a*rv, which implies that
u € (a**)NI¥"9, Since a* € gra(I) is a non zero-divisor, we have

(a*7yn [en-e = plen-a—ke

Thus
[(sws : 8§ ugla = a ¥~ 97 54" (n > 1)

and so
wgr = ((Sws : Sr—"-)“"s /st)(]-r) o~ @ Ik'n—qtn,

n21l,n,.=0
which proves the lemma.

Recall the characterization given by lkeda for the Gorenstein property of
a Rees algebra: If I is an ideal in a local ring A such that gradel > 1 and
R4(I) is Cohen-Macaulay, then R4(I) is Gorenstein if and only if wy = A and
Wor, 1y = g7 (I)(—2). The following theorem generalizes this to the case of multi-
Rees algebras.

5.3. Theorem. Let A be a local ring and I C A a primary ideal. Suppose
that gradel > 1 and R,(I) is Cohen-Macaulay. Then the following conditions
are equivalent

(1) Ra(1,) is Gorenstein.
(2) wa = A and Wora () = gra(D(—=(r + 1)).
Proof. Set S, = R4(I;) and G4 = gra(I,) for each ¢ < r.

(1)=(2) We may assume that A has an infinite residue field. Since S, is
Gorenstein and a(S,) = —1 by Theorem 2.2, the canonical module of S, is

ws, = S.(-1) = P "7,

n>1

It follows from Lemma 5.2 that

ws,= 1"

n2>1,neNT'

for every ¢ < r. Especially we obtain

ws, = @ In--r

n>1
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and wyq = A. According to Theorem 3.1 and Remark 3.2 we then have

we, = P "IN = G (—(r + 1)),

n>1
(2)=(1) Since G, = G{7?" for every g < r, we have by Corollary 4.9

vay = g = @ I
n>1,neN¥?

By Lemma 1.5 one sees that a(G3") = —(r + 1). Theorem 3.1 then implies that

ws, = @ -7 Z 5,(-1).

n>1

Because S, is Cohen-Macaulay by Corollary 2.3, it follows that S, must be Goren-
stein.

5.4. Remark. Suppose that S = R4(I,) is Gorenstein. Then G = gra(I,)
is not Gorenstein if » > 1. In fact, one sees from the preceeding proof that wg
is generated by r elements of total degree r 4+ 1 and one easily sees that r is the
minimal number of generators of wg . Hence G has CM-type r, which implies the
above claim.

We now want to find out for which k € (N*)" the multi-Rees algebra R4 (IX)
is Gorenstein. We shall first show that there can only be one value of |k| such
that R4(IX) is Gorenstein. This is based on the following lemma from [R)]:

5.5. Lemma. Let A be a local ring and I C A an ideal of htI > 1. If
I" = I’ for some r,s € N*, we have r = 3.

Proof. If m is the maximal ideal of A, the isomorphism I™ = I* induces an
isomorphism I™ /mI™ = IV /mJ* . Set | = I(I). Since ht I > 1, I > 1. There
exists a polynomial P € Q[t] of degree I —1 such that P(j) = lenght(I//mI?) for
7> 0. Now P(rj) = P(sj) for 7> 0. If

-1
P(t) = Y ait',

-1 -1

we must have aqj_r = qi—18' ", so that r = s.

5.6. Proposition. Let A be a local ring and I C A an ideal of ht I > 1.
Let k,1 € (N*). If R4(I¥) and R4(I') are both Gorenstein, then |k| = |l|.
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Proof. Since R4(I¥) and R4(I!) are Gorenstein, we know by Theorem 2.2
that their canonical modules are R4 (I¥)(—1) and R, (I')(—1) respectively. Ac-

cording to Corollary 1.15 the canonical modules of the Veronesians (R4 (Il,.‘))(l)
and (Ra(TL)™ are then (Ra(T¥)(=1))” and (RA(1%)(-1))" . Now

(R (Ik( 1) (l) @I(m) n-—|k|

n>1

and

(RA(Il’_)(._..l))(k) — @ I“‘l)'n-lll_

n>1

Thus JkDn=lkl > p(&Dn=ll for a]] n € (N*)", so that by the previous lemma we
must have |k| = |1].

Recall that an ideal I C A is called equimultiple, if the analytic spread
I(I) = ht I. The proof of the following lemma can be found from [HIO], p 407.

5.7. Lemma. Let A be a local ring with an infinite residue field and I C A
an equimultiple ideal of d > ht I > 0 such that R4(I) is Cohen-Macaulay. There
exists then an element b € A such that the corresponding degree zero element
b€ gra(l) is a non zero-divisor.

5.8. Theorem. Let A be a local ring and I C A an equimultiple ideal such
that ht I > 1. Assume that gra(I) is Gorenstein. Let k € (N*)". Then R, (I¥)
is Gorenstein if and only |k| = —a(gra(I)) — 1.

Proof. By Proposition 5.6 there can be only one value of |k| such that R4 (IX)
is Gorenstein. It is thus enough to show that R,4(I¥) is Gorenstein if |k| =
—a(gra(I)) — 1. We can assume that the residue field of A is infinite. Set § =
Ra(I.). Then S = R,(IX). Also set G, = gra(I,) for each ¢ < r. Denote
a = —a(G,). We use induction on dim A/T.

If dim A/I =0, I is a primary ideal. Since G, = G] 7" for every ¢ < r and
G is Gorenstein, Corollary 4.9 implies that Gy has the canonical module

o, = @ Ii-e et
n>1,nENT"

By Lemma 1.5 ¢(G§") = a. The Gorensteiness of G, implies that of A. It then
follows from Theorem 3.1 that S has the canonical module

ws = EB I[n|—a+1’

n>1
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so that by Corollary 1.15 the canonical module of S is

k-n— 1
ws(k)=@I n-at .

n>1

Because |k| = a—1, we thus see that wguy = S (~1). According to Theorem 2.2
S is Cohen-Macaulay. Lemma 1.13 then says that also S is Cohen-Macaulay.
So the claim follows.

Suppose then that dim A/I > 0. According to Lemma 5.7 there exists an
element b € A such that the corresponding degree zero element b € G, is a non

zero-divisor. Then I" N (b) = bI™ for all n € N. Set A = A/(b) and T = TA. If
S = Rf(i) and 61 = QTI(T), it follows that g(k) = §(k) /bS(k) and G; = G, JbG .

Because b is a regular element of degree zero in G;, G; must be Gorenstein with

a(G) = a(Gy). By the induction hypothesis we get that §™ is Gorenstein. It
then follows that S is Gorenstein.

We shall next study the relationship between the Gorensteiness of R4 (IX)
and R4 (I'™)). Analogously to Lemma 5.2 one can prove the following:

5.9. Lemma. Let A be a local ring with an infinite residue field and I C A
an ideal of grade I > 1 such that R4(I) is Cohen-Macaulay. Let k € (N*)". If
S = Rs(I¥) has the canonical module

ws = @ 1naen,

n>1

where ¢ € N, then the canonical module of Q = S/I'*1S is

we = @ k- lklpken-g,
n2>1l

5.10. Theorem. Let A be a local ring and I C A an equimultiple ideal of
grade I > 1 such that R4(I) is Cohen-Macaulay. Let k € (N*)". If RA(IE_‘) is
Gorenstein, then so is R4 (I'%]).

Proof. We use induction on dim A. Suppose first that dim A/I = 0, so that
I is an primary ideal. We may assume that A is complete with an infinite residue
field. Set S = R4(TX). Consider the ring

Q = @ Ik-n/Ik-(n+1) (= S/I[kls)
neNr

Denote

P = @ In/In+|k|.

neEN
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Then Q = (P™97)% . It follows from Corollaries 1.11 and 4.9 that

wQ = (@ [wpla)™ = @[WP]k-n-

n>0 n>0

Since S is Gorenstein, we know by Theorem 2.2 that the canonical module of §
is

ws = §(-1) = P =,

n>1l

According to Lemma 5.10 we thus have

wo = @ Ik-(n—z-l)/Ik-(n—l).

n>1

An application of the diagonal functor A gives

w@)® = Dlwrlyn = @ M=) pll(n=1)

n>o0 n>1

Now PUKD = gr (Il%l). Since R4(I'*) is Cohen-Macaulay by Corollary 2.3,
Theorem 2.2 implies that a(gr4(I'%!) < 0. It follows that

Wor, (IIk1y = (wP)(lkl) = (gTA(IlkI))(_2)'

An application of Lemma 5.2 shows that wg = A, so that we can use Theorem
5.3 to get the claim.

Assume then that dim A/ > 0. By Lemma 5.7 we find an element b € A
such that the corresponding degree zero element b € gr4(I) is a non zero-divisor.

Then I" N (b) = bI"™ for all n € N. If A = A/(b), T = IA, we have Rx(f:) =
Ra(T¥)/bRA(T¥) and R(T") = Ra(I'M)/bRA(I'!), so that the claim follows
from the induction hypothesis by the regularity of b.

5.11. Theorem. Let A be a local Cohen-Macaulay-ring and I C A an
equimultiple ideal of ht I > 1 such that Rs(I) is Cohen-Macaulay. Let ¢ € N.
Then the following conditions are equivalent:

(1) Rs(I¥) is Gorenstein for any r € N* and k € (N*)" such that |k| = q.
(2) R4(IX) is Gorenstein for some r € N* and k € (N*)" such that k| = gq.
(3) Ra(I?) is Gorenstein.

(4) gra(I) is Gorenstein with a(gra(I})) = —(q¢+ 1).
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Proof.

(1) = (2) Trivial

(2) = (3) This was proved in Theorem 5.10.

(3) = (4) Because R4(I?) is Gorenstein, it follows from [HRS], Theorem
(2.3) that gra(I) is Gorenstein with a(gra(I)) = —(¢ + 1).

(4) = (1) This is a consequence of Theorem 5.8.

As an application we consider the case where I = m is the maximal ideal of
A and ¢ =dim A — 1.

5.12. Theorem. Let A be a Cohen-Macaulay local ring of dimension d >
1 with the maximal ideal m such that Ra(m) is Cohen-Macaulay. Then the
following conditions are equivalent:

is regular

(1) A is regul

(2) Rs(m? ') is Gorenstein.

(3) Rs(m!¥l) is Gorenstein for some r € N* and k € (N*)" such that

k| =d - 1.
(4) Ra(m!*) is Gorenstein for all r € N* and k € (N*)" such that |k| =
d—-1.

Proof. The claim follows from Theorem 5.11, since the equivalence of (1) is
(2) is known by [R], Folgerung (8.3.2).
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