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ON THE COHEN-MACAULAY AND GORENSTEIN PROPERTIES
OF MULTIGRADED REES ALGEBRAS

M. Herrmann, E. Hyry, J. Ribbe

o. Introduction

Let A be a ring and I], ... , Ir C Aideals. The Inultigraded Rees algebra
(or multi-Rees algebra for short) corresponding to I = (I], . .. ,Ir) is by definition
RA (I) = A[II t], ... ,Ir t r ]. The geometrie object associated to RA (I) is the mul­
tiprojective seheme Proj RA (I). Given a N r -graded ring S = EB nENr Sn finitely
generated over A = So by elements of degree (1,0, ... ,0), ... , (0, ... ,0,1) the
corresponding ffiultiprojective scheme Proj S is defined as follows. Put S++ =
E9 711, ••• ,71r >0 Sn' Let Proj S denote the set of those honlogenous prinles in S which

do not contain S++ . As in the ordinary graded case one can give Proj 8 ascheIne
structure and a given set of generators of S determines a c10sed elnbedding into
SOlne space P~l xA ... XA p~r. Let 86. be the subring ffi nEN 8(n, ... ,n) of 8.
One then easily sees that the inclusion St::J. ~ S induces an isomorphism of
schemes Proj 8 --+ Proj St::J.. If S = RA (I) ,. we have S6. = RA (lI ... Ir) The
scheme Proj RA (I) is thus isolllorphie to Proj RA (I] ... Ir), which is the blow-up
of Spec A &long the subschelue V(II ... Ir)'

In this paper we nlainly concentrate to the ease where all ideals 11 , •.• , Ir

are powers of the same ideal I. Let 11 = I k
l, ••• , Ir = Ikr. In this case we see

that Proj RA (I) is isomorphie to Proj RA (I k
l +... +k r ). The Inulti-Rees algebras are

thus closely eonnected to the Rees algebras of powers of ideals. The Inain purpose
of this paper is to study this conneetion with respect to the Cohen-Maeaulay
and Gorenstein properties and extend the results of [HRZ] and [R] eoneerning the
Gorenstein properties of Rees algebras of powers of ideals to the ease of lnulti-Rees
algebras.

We first have to generalize the result of Trung and Ikeda about the Cohen­
Maeaulay property of Rees algebras ([TI]) to our situation (Theorenl 2.2). If A is
a loeal ring and I C A an equiInultiple ideal of ht I > 0, it ean be shown that the
Cohen-Maeaulayness of RA (I) implies that of RA (r k1 +... +k r ). By an exaluple we

show that the eonverse does not hold in general (Exanlpie 2.5).
To ealculate the Iocal cohomology and eanonical modules we use the coneept of

the Segre product. In studying the Gorenstein properties of nlulti-Rees algebras
Dur main tool is a strueture theoreln for the canonical module (Theoreln 3.1)

shnilar to that given by Herzog, Shnis and Vaseoncelos for ordinary Rees algebras

in [HSV]. Ikeda characterized the Gorenstein property of a Rees algebra in terms
of the eanonieal modules of the base ring and the associated graded ring ([I]). As
a f:orollary of the structure theorenl we are able to extend this characterization to
the Inultigraded ease at least when the ideal in question is primary (Theoreln 5.3).
Dur main result (Theoreln 5.11) says that if A is a loeal Cohen-Macaulay ring
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and I C A is an equimultiple ideal of ht > 1 such that RA (I) is Cohen-Maeaulay,
then RA (I) is Gorenstein if and only if RA (Ikl +...+kr) is Gorenstein . The results

coneerning the Gorensteiness of a Rees algebra of apower of an ideal then say that
this is equivalent to k1 +... +kr = -a(grA (I)) - 1. As an applieation we consider
the ease where I = m is the maximal ideal of A. It is known that A is regular if
and only if RA (m dim A-l) is Gorenstein. By the result above we are now able to
say that A is regular if and only if RA (m) is Gorenstein for some k1 , ••• , k r such
that k1 + ... + kr = dirn A - 1 (Theorem 5.12). In the ease dinl A = 2 this was
shown us by Shirnoda without using eohomologieal methods.

The main results of this paper were worked out by E. Hyry.

After finishing this manuscript we reeeived a preprint of Goto and Nishida
([GN]). In the theorem (6.15) of this paper they prove a result similar to our
Theorem 5.5 for auy ideal I of ht I > 0 in a loeal ring A such that RA (I) 18
Cohen-Maeaulay, but under the assunlptions that r = 2 and k] = k2 = 1.

1. Preliminaries

The local coholl1ology theory of multi-graded rings and modules is analogous
to that of graded rings and modules. We first fix SOlne notation and reeall certain
basic facts (for details see [GW1], [GW2] anel [HIO]).

We use the following multi-index notation. The nornl of a Inulti-index n E zr
is Inl = n] + ... + n r . H m, n E zr are multi-indexes, their produet mn =
(rn 1 n], . .. ,mrnr ) and dot~product m· n = ml n] + ... + mrnr . If 1ni < lli for
every i, we set m < n. Let 1 i = (0, ... ,1, ... ,0) (i = 1, ... ,r) be the canonical
base veetors of zr. Also denote 1 = (1, ... ,1).

In the following we eall zr -graded rings and modules r'-graded or simply
111tIlti-graded. Rings are always assumed to be Noetherian and N r -graded. Let

S = EB nENr Sn be a r-graded ring. We set S+ = EB n:;tO Sn' For eaeh i = 1, ... ,r

put also st = EBni>oSn and Sj = sist. Let denote Mr(S) be the eategory of
r-graded S -modules.

Sometimes it is also useful to consider the ring S endowed with a different
grading. Given a hOl110morphisl11 cp: zr --t zq satisfying cp(N r

) C Nq put

Slp = E9 ( E9 Sn ) .
mEN' lf'(n)=m

For any r -graded S -ll1odule M denote

Mlf' = E9 ( E9 Mn).

mEZ' lf'(n)=m

We then get a funetor ( . )lf':Mr(S) --t Mq(Slf'). Espeeially, by choosing cp to
be a hOnl0mOrphism zr --t Z, we ean consider S as an ordinary graded ring. In
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the case ep is the map n t-+ Inl, zr -t Z, we denote sor = Scp. When s E Sn , we
call Inl the total degree of s. If ep is the map n t-+ ni ,zr -t Z (i = 1, ... ,r), we
denote Si = Scp. If s E Sn , we call ni the i :th partial degree of s.

If M = EBnEZT Mn is an r-graded S-module and k E zr, set M(k) =
EBnEZT M n + k . If M ,N are r-graded modules, we denote by [HOffis(M, N)]o the
Abelian group of all degree 0 hOffi0l1l0rphisms from M into N. We set

HOIDs(M,N) = EB [HOffis(M,N(n))]o.
nEZT

The derived functors of Hom s ("') are Exts(·,·) (i E N). If M is finitely gener­
ated, it is easy to see that for all r-graded 5 -modules N and every homomorphism
ep: zr -t zq satisfying ep(N r

) C Nq (Ext~(M, N))cp = Ext~(Mcp, Ncp).
Fronl now on we assurne that S = EB nENT Sn , where 50 = A is a local ring.

If m is the maximal ideal of A, the ring Snow has a unique homogenous maximal
ideal DJl = m ffi S+. It can be shown that S is Cohen-Macaulay or Gorenstein if
and only Sm iso The local cohomology groups H:m (M) are defined in the usual
way and their standard properties generalize to the multi-graded case. It is useful
to observe that they are compatible with a change of grading:

1.1. Lemma. Let 5 be an r-graded ring defined over a local ring and let

9J1 be the hOlDogenous maxiInal ideal of S. Let M be an r -graded S -module. H
ep: zr --t zq is a homomorphislll satisfying ep(N r

) C Nq , we have

1.2. Relnark. If ep is an isoillorphism zr --t zr such that Scp - S and

MlfI = M, it especially follows that (H~(M))rp = H~(M).

We shall also often lllake use of the following fact

1.3. Lemma. Let S be an r -graded ring defined over a iDeal ring and let 9Jt
be tbe homogenous maximal ideal of S. Let M be an r -graded S -module such

tbat for some i E {I, ... ,r} Mn = 0 if ni =1= O. Tben [I[~(M)]n = 0 if ni =1= O.

The injective envelope ~(M) of an r-graded S -module M is defined as

usual. The injective envelope ~(k) of k = S/9J1 is HOIllA(S,EA(k)), where
E A (k) is the ordinary injective envelope of k in the category of A -modules. Here
A is interpretated as an 7'-graded ring concentrated in degree 0 and both Sand
EA (k) are considered as r-graded A-Illodules. Every injective lllodule in M r (8)

can be expressed as a direct SUffi of the lllodules E s(S/P)(n), where P is an
r-homogenous prime of Sand n E zr. Recall also the 7'-graded version of the
theorelu of Matlis cluality, which says that if M is a Noetherian or Artinian r­
gracled S -luodule, we have
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1.4. Definition. Let S be an r-graded ring denned over a local ring A
and let 9J1 be the bomogenous Inaximal ideal oE S. An r-graded S ·module Ws
is called a canonical module oE S jf

If a canonical module exists, it is finitely generated and unlque up to an
isomorphism.

We sha11 also need the fact that the canonical module behaves weIl under a

change of grading:

1.5. Lemma. Let S be an r -graded ring denned over a iDeal ring. Suppose
cp: zr ---+ zq is a bomomorphism satisfying cp(N r ) C Nq and cp-l (0) n Nr = O. H
S has a canonieal module ws, so does S"I' and the canonieal module of S"I' lS

Ws'P = (ws)"I'.

Proof. Denote A = So. Because c.p-1(0) n Nr = 0, we have (S"I']o = A. Set

d = dirn S and let 9J1 be the homogenous maximal ideal of S. By Leulma 1.1

Ws'P = Hom S'P (H ~l'P (S "I' ), E S<P (k ))

= HOln A(H~'P (S"I'), E A (k))

= Hom A ((H;t(S))"I', EA(k))

= EB HonlA ([(H~(S))"I']-m,EA(k))
mEZ'

= EB HOmA ( EB [If~(S)]-n,EA(k))
mEZq lp(n):::;::m

= EB ( EB HOffiA ([K~(S)]-n,EA(k)))
mEZ' lp(n)=m

= EB ( EB [HDm A (H ~ (S) , E A (k )) ]n )

mEZ9 lp(n)=m

= (HOlllA (H~(S), EA(k)))"I'

= (HolTI S (H;t(S), E S(k))) lp

= (WS)lp.

Reca11 next the theorenl of local duality ([GW2], Theorem 2.2.2):

1.6. Theorem. Let S be an r -graded ring of dimension d denned over a
complete local ring and let 9J1 be tbe homogenous maxinlal ideal of S. Tben S is
Cohen-Maeaulay if and only if for any nnitely generated r -graded S -module M

Homs(H~(M),Es(k)) = Ext~-i(M,ws).

The local duality theorem hnplies the following corollaries:
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1.7. Corollary. H S is an r -graded Coben-Macaulay ring having a canonical
module Ws, Ws is a Coben-Macaulay S -module with depth Ws = dirn S.

1.8. Corollary. Let S and T be r-graded rings defined over IDeal rings such
that there exists a finite ring homomorphism S ---+ T. Jf S is Coben-Macaulay
and has a canonical module ws, also T 1]a8 a canonical module and

wllere e = dirn S - dirn T .

1.9. Corollary. Let S be an r -graded ring defined over a local ring. Then S
is Gorenstein if and only if it is Co11en-Macaulay and Ws f"V S(n) for some n E zr .

Reeall that for a non-negatively graded d-dirnensional ring R whieh is defined
over a local ring and has the hOlnogenous InaxiInal ideal 91, the a-invariant a( R)
is defined as

a(R) = rnax{rn E NI[H~(R)]m =I O}.

Then also

a(R) = -min{m E NI[WRlm =I O}.

1.10. Definition. Let S be an r-graded ring defined over a IDeal ring.
The element (a(Sl)"'" a(Sr)) E zr , wbere Sj (j = 1, ... ,7') denotes the ring S
graded by the j :th partial degree, is called the a -invariant of S and is denoted
by a(S).

If S is of dimension d, it is meant in this definition that

a(Sj) = max{m E NI[H~. (Sj)]m =I O} (j = 1, ... ,r).
J

Note that by Lernnla 1.1

Thus we ean say that a(S) = (al,' .. ,ar), where

aj = max{nj In E zr alld lH.~(S)ln =I O} = -min{nj In E zr and [wsln i- O}.

If S is Gorenstein, it follows that Ws i"V S(a(S)),

1.11. Definition. H S is an 7'-graded ring, the diagonal subring S.!:::J. of S
is denned as

S.!:::J. = E9 S(n, ... ,n)·
nEN
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H M is an r -graded S -module, the diagonal submodule M6. oE M is tlle r -graded
S6. -module

The correspondence M ~ M 6. defines a functor MT (S) ~ MI (S6. ).

1.12. Definition. H S is an r-graded ring and k E (N*)T , the Veronesian
su bring S( k) oE S is denn ed as

nEN"

H M is an r -graded S -module, tbe Veronesian submodule M(k) oE M JS tbe
r -graded S(k) -module

nEZ"

Also now we obtain a functor MT(S) ~ MT(S(k»).

Let S be an 7'-graded ring defined over a local ring A with the hOlllogenous
maximal ideal 9Jl. If M is an r-graded S -module, we say that M has the property
(A) if either of the following conditions hold:

(A 1) Every x E M is annihilated by some power of 9Jl (which is üf course

equivalent to requiring that Supp M = {9Jl} ).

(A2) Für some n E NT there exists an element s E 9Jl n such that the induced

multiplication map M ( - n) ~ M is an isomorphism.

If M is an r -graded S -module satisfying the property (A), it easily follows

that Htm(M) = 0 for i > O.

1.13. Lemma. Let S be an r -graded ring generated by elements oE total
degree one over a loeal ring So and let I be an injeetive S -module. Let k E (N·)T .
Tllen lek) has tlle property (A).

Pro oE. Let 9Jl be the hOlllogenous lnaximal ideal of S. Let m be the maximal

ideal of So. It is enough to consider the case I = E seS/ P), where P is an r­

hOlnogenous prime of S. If P = 911, land thus also lek) clearly satisfy the
condition (A 1). Suppose then that P =I 911. We shall show that lek) satisfies the

cOllditioll (A2). Ir Po =f:. m, lnultiplication by an element a E m, a f/. P gives
an isolllorphisn I -+ I, which induces an isolllorphism lek) -+ l(k). Thus assume

Po = m. Since P =f:. 911, there is i E {I, ... , r} such that Sli rt P. Choose
a E 51 i a f/. P. Multiplication by aki then gives an isomorphism l( - k i 1d -+ l
and hence also an isolllorphism lek) (-1 i) ~ lek) .
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1.14. Lemma. Let 5 be an r -graded ring generated by elements oE total
degree one over a loeal ring 50 and let 001 be tbe homogenous maximal ideal oE
5. Let k E (N*)r. Tben (H~t(M))(k) = H~(k)(M(k»).

Pro oE. Let 0 --+ M ~ I be an injective resolution of M. By Lemma 1.13
o --+ M(k) --+ I(k) is aresolution of M(k) which satisfies the condition (A).
Then H~(k)((Ij)(k») = 0 when i > 0 for every JEN, so that we ean use this

resolution to eompute the local cohomology of M(k). Because H~(k)((li )(k») =
(H ~(Ii ))(k) , the claim follows.

1.15. Corollary. Let S be an r-graded ring generated by elelnents of total
degree one over a loeal ring 50. Let k E (N*)r. H dim S = dirn S(k) and 5 bas
a canonical module Ws , so does S(k) and the canonical module oE S(k) JS

WS(k) = (ws )(k).

Pro oE. Set d = dirn S . Denote A = So and let 001 be the homogenous
nlaxirnal ideal of S. Aeeording to Lemma 1.14 we have

W S(k) = HOln S(k) (H ~tCk) (S(k») l E S(k) (k))

= HaIn A (H;(k) (S(k»), E A (k))

= HOln A((H;(S))(k) ,EA(k))

= EB HonlA ([(H;(S))(k)]_m,EA(k))
mEZ'"

= EB HornA (lff.~(S)]-km,EA(k))
mEZ'"

= EB [Holn A (H;(S), E A (k)) ]km
mEZ"

= (HaIn A (H~(S), E A (k))) (k)

= (Homs(H~(S),Es(k)))(k)

= (ws )(k).

1.16. Defl. nition. Let A be a ring and let 11 , ••. , Ir C A be ideals. Set
I = (Ill ... , Ir)' H n E Nr , dellote tlle produet I~1t ... I~'" by In. The multi-Rees
ring RA (I) is the r -graded ring

nEN'"

Furthermore, for every i = 1, ... , r the i :th associated r -graded ring is denned aB

grA (I; I i ) = EB In /In+1
i .

nEN'"

Clearly gr A (I; I j ) = RA (I) / I j RA (I). We shall often identify RA (I) with the
subring A[IIt1l ... ,Irtrl of A[t1l ... ,t r ].
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1.17. Proposition. Let A be a ring and let 11 , ••• , Ir C A be ideals such
that ht I i > 0 forevery i = 1, ... ,r. Set I = (lI,'" ,Ir). Tben dilU RA(I) = d+r.
Moreover, if A is local, we bave dirn grA(lj [i) = d + r - 1 (i = 1, ... , r).

ProoE. Set J = (11," . , Ir-I) and B = RA (J). Since

we clearly have RA (I) = RB (IrB). Because the ease r = 1 is weB known (See
[M], Theorem 15.7 and its proof), the clailn follows easily by using induetion on
r.

In this paper we eoneentrate to the case where all the ideals 11"", Ir are
powers of the same ideal I CA. We use the notation Ir for the r -tupie (I, ... ,I).
In this ease all the assoeiated r -graded rings eoincide and we denote gr A (I) =
gr A (I; Id for i = 1, ... , r.

2. On the Cohen-Macaulay property of multi-Rees algebras

In this section we shall show that the theorem of Tnlng anel Ikeda coneerning
the Cohen-Macaulay property of Rees algebras ([TI]) ean be generalized to the
ease of multi-Rees algebras. We need the following variant of the original version
of this theoreln. For the eonvenience of the reader we repeat the details of the
proof.

2.1. Lemma. Let A be a multi-graded ring of dimension d deBned over
a local ring and let I C A be a homogenous ideal oE ht I > O. H m is tlle
homogenous maximal ideal oE A, denote 911 = m ffi (RA (1))+ .

a) The following conditions are equivalent for every q E N:

(1) [K~ (R A ( I) )]n = 0 wh eIl i < d + 1 an d n f/. {- q, , - 1}.

(2) [K~(grA(I))]n = 0 when i< d and n f/. {-q -1, ,-I},

a(gr A (I)) < O.

b) We have a(R A (I)) = -1.

ProoE. Put S = RA (I) and G = gr A (I). We first show that A ean be

replaced by a local ring. By ßatness H~(S) ®A Am = H~0.4Am(S ®A Am)' Let
A be f·-graded. We IURy then consider 5 also as a (r + l)-graded ring with the
homogenou5 maximal ideal 911. According to Lelnma 1.1 we have for every n E N

nEZ"

so that each lH.~(S)]n 15 an r-graded A-module. We observe that lH.~(S)]n = 0

if and only if lH.~0A Am (5 ®A Am)]n = O. Similarly we get lff.~(G)]n = 0 if and
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only if [f[~0AA. (G ®A Am)]n = O. Since S ®A Am = RAfft (Im) and G ®A Am =
grA. (Im), this means that A can be assumed loeal.

(1) => (2) Consider the exact sequences

o~ s+ --+ S ~ A --+ 0,

0--+ S+(1) ---t S ~ G~ O.

We get for all i < d and n E Z the exact sequences

[z[~ (8)]n ~ Lff.~ (A )] n ~ Lff.; 1 (8+ )] n ---t Lff.; 1 (S)] n ,

[K~(8)]n ~ llf.~(G)]n ~ [K~l (S+ )]n+l ---t Lff.~l (5)]n'

Sinee [H~ (8)]n = 0 for n < -q or n ~ 0, these sequences imply for n < -q - 1
or n ~ 0 the isoluorphisll1S

Because llf.~(A)]n+l = 0 if n f. -1, it thus follows that [I[~r(G)]n = 0 if
n < - q - 1 or 2:: O.

We IUUSt then show that [H; (G)]n = 0 if n 2:: O. We use the exaet sequenees

From these we obtain the isomorphisms

and the epimorphisms

Since Lff.;t"l (S)]n = 0 for n ~ 0, diagram chasing gives [J[;t"l (S+ )]n = 0 for
n > O. The seeond exact sequence then implies that [f[;(G)]n = 0 for n 2:: O.

(2) => (1) Consider then again the exact sequences

o~ s+ --+ S ~ A --+ 0,
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For i < d + 1 and n E Z, we get the exact sequences

[K;l(A)]n -.. [K~(S+)]n -.. [K~(S)]n -.. [K~(A)]n,

[K;l (G)]n -.. lff.~(S+ )]n+1 -.. [K~(S)]n -.. [K~(G)].

It follows that there are isolnorphisms

epilnorphisms

and mononlorphisms

. + .
lff.~(S )]n+1 ~ lff.~t(S)]n (n < -q - 1).

From these sequences it comes out by diagrain chasing that [J[~(S)]n = 0 im­
plies [J[~(S)]n-l = 0 for n > O. It also follows that [J[~(S)]n = 0 implies
lH.~(S)]n+l = 0 for n < -q - 1. We have llf.~(S)]n = 0 if n ~ O. By [TI],
Lemlna 2.2 and Theorem 3.3 one knows that [J[~(G)]n = 0 for n « 0 implies

also [J[~ (S)]n = 0 for n « O. It is then easy to see that we have lH.~ (S)]n = 0
for n < -q or n ;::: 0 as wanted.

The last clailn follows similarly by considering the isomorphisms

and the epimorphislns

We roust have lH.;tl(S)]-l f. 0, since from [K;t1(S)]-1 = 0 it would follow that

[J[;;t"l (S)]n = 0 for n ~ -1 and thus lH.;tl (S)]n = 0 for all n E Z which is
iInpossible.

2.2. Theorem. Let A be a loeal ring oI dimension d and I c A an ideal oI
ht I > O. Let 9J1 be the homogenous maximal ideal oI RA (Ir).

a) The Iollowing conditions are equivalent.

(1) RA(I r ) is Cohen-Macaulay.

(2) [J[~(gr A(Ir)]n = 0 wben i < d + r - 1 and n f. -1,

a(grA(I r )) < O.

(3) [J[~(R A ( I) ]n = 0 wb en i < d +1 an d n ft {- r + 1, ... , - 1} .

(4) lH.~(grA (I)]n = 0 when i < d and n ft {-1', ... ,-1},

a(grA(I)) < O.

b) We l1ave a(RA(I r )) = -1.
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Proof.

(1) <=> (2) Let S = RA(I r ) and G = grA(I r ). Let j E {l, ... ,r}. Let Sj
(resp. Gj) denote RA (Ir) (resp. gr A(Ir)) graded by the j :th partial degree. If
B = RA(I1, ... ,Ij-1,Ij+1, ... ,Ir) and J = IjB, we clearly have Sj = RB(J) and
Gj = grB(J). By Lemma 2.1 Sj is Cohen-Maeaulay if and only if (Ki(Gj)]n = 0
for i < d + r - 1, n :j:. -1 and a( G j) < O. Aecording to Lemma 1.1

Since j E {1, ... ,r} was arbitrary and a(G) = (a(G 1 ), ••• ,a(G r )), the claim
follows. Because always a(Sj) = -1, we also obtain a(S) = (a(Sl)" .. ,a(Sr)) =
-1.

(3) <=> (4) This is an immediate eonsequenee of Lenlma 2.1.
(1) <=> (3) Let q E {1, ... , r}. We shall prove by induetion on q that (3) is

equivalent to the eondition:

(*) UL~(RA(Iq))]n = 0 when i < d+ q and some nj f/. {-r + q, ... ,-l}.

If q = 1, this is the same as (4). Thus assume q > 1. Set S = RA (Iq) and
T = RA (I q - 1 ). The homogenous eomponents Sn of S are synllnetric with respeet
to nl, ... , n q . By Remark 1.2 the same h01ds for the hOlnogenous eomponents of

H~t(S). It follows that we ean aSSUIne j E {1, ... , q - I} in condition (*). Let S
denote S endowed with the grading

s= ffi (ffiS(ml,... ,mll_l,k»)'
mENf- 1 k2:0

Aeeording to Lemma 1.1 we have

(K~(S)]m = ffi [J[~(S)](mll... ,mq_llk)
k

for aU m E Nq-l. This implies that we Illay now rep1ace S by S In condition

(*). Denote B = RA (I) aod J = R+ . Because

we observe that S = RB (Jq-l)' Moreover, since

we also have T = gr B (J r)' Now a(T) < O. We then eonclude by uSIng Lemma
2.1 similarly as in proving (1) <=> (2).
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2.3. Corollary. Let A be a local ring and I c A an ideal of ht I > O. H
RA (I) is Cohen-Macaulay, thell RA (Ir) is Cohen-Macaulay for aJl r E N* .

2.4. Corollary. Let A be a local ring and I c A an ideal of ht I > O. H
RA (Ir) is Coben-Macaulay for some r E N* , tllen RA (lq) is Coben-Macaulay for
aJl q ~ r.

ProoE. Let 9Jl be the hornogenous lnaximal ideal of RA (I). The corollary is
an immediate eonsequenee of Theorem 2.2 and the fact that RA (Iq) = (RA (1))(q)
and H~(q)({RA(I))(q))= (H~{RA{I)))(q) for all q E N*

The following example froln [HRS] shows that the eonverse of Corollary 2.4
does not hold in general.

2.5. Example. Let k be a field. Consider the ring A = k[[Xl , ... ,Xll ]]/(xi),
where k[[x 1, ... ,x 11]] is the formal power series ring over k. Let I denote the ideal
generated by aH monolnials of degree 4 in X2,"" Xl) different from x~ x~. Let
m be the Inaximal ideal of A. Beeause A is a hypersurfaee ring of multiplicity 2
and dimension 10, we know that RA (m) is Cohen-Maeaulay (See [RIO], Corollary
(26.5)). One now easily sees that there exists an short exaet sequence

o -+ RA(1) -+ RA {m 4
) -+ kx~xi{-l) -+ O.

Let 9J1 be the homogenous lnaxilnal ideal of RA (I). Sinee now also RA (m 4) is
Cohen-Maeaulay, the eorresponding eohomology sequenee implies H~l{RA(1)) =
o for i =I- 1,11, but H~{RA(1)) ~ k{-l). Let r > 1. Sinee RA{Ir ) =

(RA{I))(r) and H~(r)«RA{I))(r))= (H:m{RA(I)))(r) , we obtain H~l(RA(Ir))=
o for i < 11 so that RA (Ir) must be Cohen-Maeaulay. On the other hand,
sinee lff.~(RA(1))h =I- 0, it follows froln Theorem 2.2 that RA(Ir ) ean not be
Cohen-M aeaulay for any r E N* .

3. A structure theoreln for the canonical module

We shall next show that the theorem of Herzog, Simis and Vaseoneelos eon­
eerning the strueture of the eanonical module of an ordinary Rees algebra ([HSV])
generalizes to the ease of multi-Rees algebras. Let A be a local ring and I C A an
ideal. As usual interpret the Rees algebra RA (I) as a subring of the polynolnial
ring A[t]. The above theorem deals with the situation when the canonical module
of RA (I) is up to shift by -1 isomorphie to the RA (I) -submodule of A[t] generated
by 1, ... , tm , where m ~ O. This submodule is denoted by (1, t)m and it is then
said that the eanonieal module of RA (I) is of the expected fonn. Consider now the
Inulti-Rees algebra RA (Ir) and interpret it as a subring of A[t 1 , ••• ,tr ]. Analo­
gously denote by (1,t 1 , ••• ,tr)'ll the RA(Ir)-submodule of A[t1 , ••• ,tr] generated
by the monomials t n = t~l ... t~r , where Inl ~ m. One easily sees that

(1, t 1 , . .. ,tr)m (-1) = EB 1ln[-m-rtn .

n~l
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The proof of the following theorenl follows the proof presented by S. Zarzuela in
the ordinary graded case ([Zn.

3.1. Theorem. Let A be a local ring and 1 C A an ideal of ht I > 0 sucb
that RA (1) is Cohen-Macaulay. Let r E N*. Suppose that a( (gr A (I q ))9 r

) < -q

for all q :::; r. Set S = RA(Ir ), G = grA(I r ) and a = -a(G9 r
). H S has a

canonical module, then tlle following conditions are equivalent:

(a)

(b)

ws = EB Iln l-a+l wA t n

n2:1

_ ffi [Inl-a /[In l-a+l
Wo - W WA WA·

n2: 1

Proof. We may assunle that A is complete. Corollary 2.3 itnplies that RA (Iq )

is Cohen-Macaulay for every q E N*. For all i E {I, ... ,r} denote

We shall first show that there exists a homomorphism Ti: W~) --+ Ws of degree
-1 i with the following properties

(i)

(ii)

(iii)

(iv)

For all a E Ws and s E [S Ti(stia) = SO'.

For all Q' E Ws and a E [lnl , where ni > 0,

For Inl < a- 1 Ti induces an isolllorphislll

For all i,j E {I, ... ,r} and ß E w~} n w~}

Consider the short exact sequences

Ti(atna) = (atn-1i)0'.

[WSln+li --4 [wsln.

(Ti Tj)ß = (T j Ti)ß .

o --+ [5 --+ 5 --+ G --+ O.

By dualizing with Ws we get the exact sequences
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Since dirn Si = dirn G = d + r - 1, the local duality gives

and

Horns(G,ws) = Horns(H~r(G),Es(k)) = O.

Moreover, we know that

Identify HOffiS(S,WS) with Ws and let Ai : HOffis(S; ,ws)~ Horns(IS,w8) be
the degree li hOIllomorphism induced by the homomorphism s ........ sti, I S ~ S; .
We obtain the diagrarn

o ~ Ws ~ Homs(S; ,ws) ~ ws, ----+0

lAi
o ~ Ws ~ Homs(IS,ws) ~ WG ~O

er

Theorem 2.2 itnplies that [w 8]n = 0 if ni :::; O. Furtherrnore, [w sr Jn - 0 for
ni =j:. O. It then follows that tri induces an isomorphism

Since A gives a degree li isomorphisIll

we obtain an isoIllorphisln

of degree li. We now define Ti: w ~i) --+ Ws by setting Ti = Sli 1 (J.

The property (i) is now easy to check from the definition. The property (ii)
follows from (i). Since [wG ]n+li = 0 for Inl < a - 1, it follows that Cf induces an
isolnorphism [ws ]n+li --+ [Holn 8(1S, Ws )]n+li' This itnplies (iii). To prove (iv)

we first note that by (i) we have for all s E 12 S and ß E w1i
)

and



15

so that

Denote G' = (TiTj)ß - (TjTi)ß. Now stitjG' = 0 for all s E 12 S irnplies that
st n Si c Ann G'. Suppose that we would have G' =I- O. There would then exist an

associated prirne P of Ws such that Ann a C P. This would irnply st n Si c P ,

so that dirn SI P :::; dirn SI st n Si < dirn S. But this is hnpossible, since Ws is
Cohen-Macaulay. So we rnust have G' = 0 and the property (iv) is thus proved.

Observe that property (iii) irnplies [w S]n rv WA if n 2:: 1 and In I < a. Indeed,
we immediately obtain [WS]n rv [ws h. Since a > r, we have [wG h = O. It follows
from the diagram (*) that [wsh rv [wsrh' , where l' = (1, ... ,1) E N r

-
l

. By
induction we then easily get [ws h rv WA , which proves the above claim.

We are now ready to prove that (b) hnplies (a). We thus assulne that

_ ffi Ilnl- a IIlnl- a+1WG - '\l7 WA WA·
n~1

We shall first prove by induction on Inl that for n 2:: 1 and Inl 2:: a - 1

By the inductive assunlption we have [WS]n = (Il nl- a+1 t l )[wS]m for SOUle 111 =
Inl- a+ 1 and Iml = a-l. By applying the lnap T lt ... r 'r we get an isomorphism
[ ] rv Il nl- a+1[] S' [] rv fi 11 t [ ] rv Ilnl-a+lWs n = Ws m' lllce Ws m = WA, we na Y ge Ws n = WA .
COllsider the diagram :

[WS]n

[HOlllS(IS, Ws )]n+1

Now

~ O.

Since
[WG]n+1i = Ilnl-a+lwAlIlnl-a+2wA,

we get I[ws]n C !(er eni' As
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there exists an exact sequence

Since any epimorphism from a Noetherian module onto the module itself is an

isomorphism, it follows that Ker eni = I[ws]n. Hence

Because Ti is injective, we finally get [WS]n+l = Itdwsl n .
We shall next construct an isolnorphism of r-graded S -modules

C:WS ~ EB Jlnl-a+lwAtn.

n~l

We first show by induction on Inl that there are A-module isomorphisms

satisfying for n > li and Q E [WS]n cn(o:) = ticn-lj(Ti(a)).
If Inl = r (n = 1), set Cn = 1wA • Let Inl > r and suppose that A-module

isomorphisms Cm have been defined for lml < Inl. To define Cn by the above
formula, we mnst check that Cn is really a luap to Jl n l-a+l WA t n and the definition
is independent of i. If Inl ~ a- 1, the first statement is immediately clear since

Ti([W n]) = [WS]n-li' Let [ni> a - 1. Since [wsl n = Itdws]n-li' we have

and so

To show that the definition does not depend on i suppose that n > 1i and n > 1j.

Then for al1 a E [WS]n J

tiCn-lj(Ti(a)) = titjEn-li-lj (TjTi(O:))

= titiEn-li -lj(TiTj(O:))

= tjEn-lj(Tj(a)).

By the above arguments the bijectivity of En is clear.

The homomorphisms cn now define an A -linear map

E:WS ~ EB Jlnl-a+lwAtn.

n~l
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To show that e is S -linear consider Q' E [WS]n and a E 11m I. Using illduction on

Iml and assuming m 2: li we get

Cm+n (( atm)a) = ticm+n -li (Ti (( atm)Q'))

= ti c m+n-1i (( at
m

- 1i )a)

= (at m )cn(a).

We shall now prove that (b) implies (a). FrOln the basic diagram (*) we get
the isomorphisms

ni 2:2

If now
ffi 1Inl-a+l t n

Ws = Q7 WA,

n;:::1

we have
Ti(W~i») = EB Iln l -a+2 wA t n ,

n;:::l

so that

Since [wo h = 0, we have
r

" (i)WG = L.J wG •

i=l

It is now easy to verify that the above isomorphisms are compatible, so that

Wo rv EB Ilnl-awA/llnl-a+lwA

n2:1

as desired.

3.2. Remark. Let A be a local ring and I c A an ideal of ht I > 0 such that
RA(I) is Cohen-Macaulay. Assulne, moreover, that HOln(I,A) = A. As above
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set S = RA (Ir) and G = gr A (Ir). If S has a canonical module, then [w S]1 "" A
itnplies a«grA(Iq»gr) < -q for aB q ~ r. Indeed, froln Hom(I,A) = A it

foBows that every element of [HOlll seIS, ws)h arises from multiplication of some
element of ws. The morphism Cf in the basic diagram (*) of the preceding proof
is then an isomorphism in degree 1, so that [wG h = O. Then a( Ggr) < -r, since

[wG]n = 0 for Inl < r by Theorem 2.2. In the the proof of Theorem 3.1 we saw
that if Cf is an isomorphism we also have an isomorphism [ws h "" [ws r h' , where
l' = (1, ... ,1) E N r - 1 • But this means that we may continue the above reasoning
to get the claim.

4. Caleulation of loeal eohomology and canonieal mod ules

4.1. Definition. Let R be a graded ring. We call the r-graded ring

the r -graded ring corresponding to R and denote it by Rr-gr .

Let A be a ring, I C A an ideal, RA (I) the Rees algebra and grA (I) the
associated graded ring. We now observe that the r-graded rings corresponding to
RA (I) and grA (I) are the multi-Rees algebra

and the associated r -graded ring

Given a graded ring R with a canonical module it would therefore be nice
to express the canonical Inodule of Rr-g r in terms of the canonical module of
R. To that purpose recal! the notion of Segre product of two graded rings. We
generalize this concept slightly and deBne the Segre product of a graded ring and
an r-graded ring.

4.2. Definition. H R is a graded ring and T is an r -graded ring defined
over a ring A, their Segre product is the r -graded ring

JE M is a graded R -module and N a graded T -mo dule, the Segre product M ~N

is the r -graded R~T -module

nEZT
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4.3. Remark. Note that (R~T)9r = R~T9r. Here R~T9r is the usual Segre
produet of the graded rings R and T9 r . For the properties of Segre produet see
[GWl].

Let R be a graded ring defined over a ring A. If A[t1 , .•• ,t r ] is the polynomial
flng over A, we clearly have

We are thus interested about Segre produets of type R~A [h, ... ,tr ]. Goto and
Watanabe have ealeulated the loeal eohomology of the Segre product of two graded
rings defined over a field ([GWl], Theorem (4.1.5)). We shall show that their
arguments ean be generalized to the above situation in the ease A is an Artinian
ring. First we need the following elementary lemnla and some further notation.

4.4. Lemma. Let A be a loeal ring and let

F: o i i+lF --.. ... --.. F ---+- F ~ ... ~ F n
~ 0

be a finite Eree complex of A -modules. H the complex H(F) is also free, so are

the complexes Z(F) and B(F).

Proof. Set Zi = Zi(F),B i - Bi(F) and H i - Hi(F). We shall show by
descending incluetion on i that Zi anel Bi are free. The ease i > n being clear,
we assurne that Zi and Bi are free. Beeause a module over a local ring is free if
and only if it is projective, we get from the exaet sequenee

o --+ Zi-l ---+ F i - 1 ---+ Bi ---+ 0,

that Zi-l is free. The exaet sequenee

then implies that also B i - 1 is free.

Let S be an l' -graded ring defined over a loeal ring A. Let E be a eomplex of
r-graded S -modules. Reeall the property (A) and the properties (A 1) and (A2)
mentioned in Chapter 1. Suppose that each Ei is a direct surn of r-graded S­
lnodules satisfying the property (A) (for example, any injeetive resolution). The
following notation is then used. Let I Ei denote the direet surn of those sUlllrnands
which satisfy the property (A 1). The I Ei :s now form a subeomplex 'E = (' Ei).
Let "E be the quotient cornplex EI'E. Each "Ei is then isomorphie to the direct
surn of those summands of Ei which satisfy the property (A2).
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4.5. Lemma. Let R be a graded ring and T an r -graded ring defined over
a loeal ring A. Let M be a graded R -module and N an r -graded T -module.
Consider tbe r -graded RüT -module M~N .

a) H M or N satisfy tbe property (Al), so does MüN .

b) H M and N satisfy the property (A2), so does MüN .

Pro oE. The first claim follows imnlediately from the definitions. Let us prove
the second claim. Let 9Jl and 91 be the homogenous maxilual ideals of Rand
T respectively. By assumption there are for some k E N and n E NT elements
x E 9J1,l; and y E 91 n such that the induced multiplication maps M (- k) --+ M
aod N ( - n) --+ N are isomorphisluS. If k = 0 or n = 0 l multiplication by x or y

respectively induces an isomorphism M~N --+ M~N . Otherwise multiplication by
xlnlÜyk gives an isomorphism (MÜN)(-kn) --+ MüN.

4.6. Theorem. Let R be a graded ring and T an r -graded ring defined
over a loeal ring A. Let 9J1 and 91 be tbe bomogenous maximal ideals oE R and T
respeetively. Let ~ be tbe homogenous maximal ideal of tbe Segre produet R~T.

Let M be a graded R-module and N an r -graded T -module. Assume that N is
free as an A-module and H~(N) = 0 for i = 0,1. Also assume tllat there exists
a finite resolu tion 0 --+ N --+ F such that F is free as a eOlnplex of A -modules,
eaeb F i is a direct surn of r-graded S -lnodules satisfying the property (A) and
that the eomplexes H(F) and H("F) are [ree as eomplexes of A -lnodules. We
then 11ave for a11 i E N

p,q>l,p+q=i+l

wbere M" is a certain r -graded S -module SUC}l that there is an exact sequence

o --+ H~(M) ---+ M ~ M" ~ H:m(M) --+ O.

ProoE. We first remark that if Cl and C 2 are cOlnplexes of r-graded S­
modules, one ean define their Segre-produet Cl ÜC2 by setting

(C 1 ÜC 2)i = EB Ci~C~
p+q=i

and defining the differential d: Cl ÜC2 --+ Cl ÜC2 by the form ula

d = EB (diü1 + (-l)Plüd~)
p+q=i

where dl : Cl --+ Cl and d2 : C 2 --+ C 2 are the differentials of Cl and C 2 respec­
tively.
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Let 1 = (li) be an injective resolution of M. We then have Hk(M) =
Hi(H~(I» = Hi('I) and H~(N) = Hi(H~(F» = Hi('F) for aU i ;::: O. Let
E = I~F. The assumptions together with Lemma 4.4 now imply that we can
apply the K ünneth formula ([B], §4, N° 7, CoroUaire 4) to H(I~F). It foUows that
the complex E = (Ei) is aresolution of M~N. By Lemma 4.5 one sees that for
every i ;::: 0

,Ei = EB ((' IP~' Fq) ffi (" IP~'Fq) ffi (' IP~"Fq»)
p+q=i

and
" Ei = EB "lP ~" F q •

p+q=i

Moreover, it is easy to check that we in fact have "E =" I~"F. We now get

Consider the exact sequence

o~ 'E ~ E ~ "E ~ O.

Because Bi (E) = 0 for i ;::: 1, it foUows that we have for i ;::: 2 the isomorphisms
Hi('E) = H i- 1 ("E) and that there exists an exact sequence

By the !(ünneth form ula we get

Hi("E) = EB HP("IHHq("F)
p+q=i

for aU i ;::: 0 so that

H~(M~N) = EB HP("IHHq("F)
p+q=i-l

for i ;::: 2 and we have an exact sequence

The exact sequences
o~ 'I~ 1~ "1~ 0,

o~ 'F ~ F ~ "F~ 0
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now give the isomorphisms

and the exact sequences

(p, q 2:: 1)

/

o ---+ HO ('I) ---+ HO (I) ---+ HO ("1) ---+ H l CI) ---+ 0, ,

o ---+ HO CF) ---+ HO (F) ---+ HO ("F) ---+ H l ('F) ---+ O.

If M" = HO (" I), we thus obtain an exact sequence

o ---+ H~(M) ---+ M ---+ MI! ---+ H~(M) ---+ O.

Since H~(N) = 0 for i = 0,1, we get HO("F) = HO(F) = N. This implies
the clailn if z 2:: 2. Ta prove the claim in the case i < 2 we compare the exact

sequences

and

to get

H~(M~N) = H~l(M)"N,H~(M"N) = H~(M)"N

as wanted.

4.7. Lemma. Let A be a local Artinian ring. Consider the corresponding
polynomial ring T = A [tl, ... , t r ]. There exists a finite r -graded resolu tion

o ---+ T ---+ FO ---+ ... ---+ F i ---+ F i + 1 ---+ ... ---+ Fr ---+ 0

such that F and H(F) are [ree as complexes of A-modules. Moreover, Fr satisfies
the property (A 1) and for eac11 i < r F i is a direct SUIll oE r -graded T - modules
satisfying the property (A2).

ProoE. Take, for example, the Cech-complex

C:

Let m be the maximal homogenous ideal of T. Now Hi(C) = H~(T) for i 2:: o.
Furthermore, it is wen known that for i < r H ~ (T) = 0 and that

H~(T) = EB At~l ... t~r .

0<0
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We then observe that

is aresolution of T with the desired properties.

4.8. Corollary. Let R be a graded ring o[ dimension d denned over a IDeal
Artinian ring. Let 9J1 be the homogenous maximal ideal R. Then

H;;r~~~(Rr-g r ) = EB [K~(R)]lnl'
n<O

Proo!. H T = A[t1 , ••• l t r ] is the polynomial nng over A - Ro , we have
Rr-gr = R~T. Since H~(T) = 0 for i < rand

H~(T) = EB At~l ... t~r ,
n<O

the claim is an immediate consequence of Theorem 4.6 and Lelnma 4.7.

4.9. Corollary. Let R be a graded ring denned over an Artinian ring.
Suppose that dinl Rr-gr = dirn R + r - 1. If R has a canonical module, tben so
does Rr-gr and we have

WRr-,r = EB [wR]lnl'
n>O

ProoE. Set d = dirn R, so that dirn Rr-gr = d + 7' - 1. Denote A = So and
let 9J1 be the hornogenous nlaxirnal ideal R. According to Corollary 4.8 we have

[K;:r~~~ (Rr-gr)]n = [K~(R)]lnl if n < 0 and 0 otherwise. Then

- H ( d+r-l(Rr-g r ) (k))WRr-,r - oln Rr-gr H !JJtr-,r ,E Rr-gr

= Horn A (H;:r~~~ (Rr-g r ), E A (k))

= EB HOffiA ([K;:r~~~(Rr-gr)]_n,EA(k))
nEZ r

n>O

= EB (Horn A (H~(R), E A (k))]lnl
n>O

= EB [Horn R (H~(R), E R(k)) ]Inl
n>O

n>O
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5. The Gorenstein property of multi-Rees algebras

We begin with the following lemlua ([I], praof af Theorem (3.1)):

5.1. Lemma. Let A be a local ring with an infinite residue field and I c A
an ideal oE ht I > 0 SUCll that RA (I) is Cohen-Macaulay. Tllere exists then an
element a E I - 12 such that the corresponding degree one element a* E gr A (I)
is a non zero-divisor.

5.2. Lemma. Let A be a local ring with an infinite residue neId and I C A
an ideal oE grade I > 1 such that RA (I) is Coben-Macaulay. Let k E (N*)r. H
S = RA (I~) has the canonical module

_ ffi Ik.n-qtn
Ws - '\I7 '

n~l

where q E N, then the canonical module oE Si = RA (I k l , ... ,Ik r-l) JS

Ws' -
nl, ... ,nr-l~l

I kl fll +... +kr-l n r -l -qtn1 ... t flr - 1

1 r-l .

Pro oE. Since S is Cohen-Macaulay by Corollary 2.3, Ws = Ext1(S / S: ,ws).
According to LeIUlna 5.1 there exis ts an elelnellt a E I - 12 such that the corre­
spollding degree one eleluent a* E gr A (I) is a non zero-divisor. Set s = a kr t r .

Multiplication by s gives an exact sequence

From this we get the long exact sequence

o-+ HOlns(S/S: ,ws(-lr)) --t HOffiS(S/S: ,ws)

-+ HOffis(S/S:,ws/sws) --t Ext1(s/s:,wS(-lr))

----4 Extk(s/ S~,ws) --t ...

Because HOIUS(S/S: ,ws(-lr)) --t HOffis(S/ S: ,ws) is a zero map, we obtain
an isoluorphism

or

Now
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Since grade I > 1, there exists bEI such that (a, b) is a regular sequence. H
x E [(sws : S:- )ws]n, we have bkr trx E SWs. Suppose that x = utn , where
u E Ik.n-q. Then for some v E Ik.n-q we have bkr U = akr v, whieh implies that
u E (a kr ) n Ik.n-q. Since a* E gr A (I) is a non zero-divisor, we have

Thus

and so

which proves the leluma.

Reeall the charaeterization gIven by Ikeda for the Gorenstein property of
a Rees algebra: If I is an ideal in a local ring A such that grade I > 1 and
RA (I) is Cohen-Maeaulay, then RA (I) is Gorenstein if and only if WA ~ A and
wgrA (1) '" gr A (1)( -2). The following theorem generalizes this to the ease of multi­
Rees algebras.

5.3. Theorem. Let A be a iocal ring and I C A a priInary ideal. 8uppose

that grade I > 1 and RA (I) is Coben-Macauiay. Tllen th e following conditiollS
are equivalent

(1) RA (Ir) is Gorenstein.

(2) WA '" A and wgrA (1) '" gr A (1)( -er + 1».
Pro oE. Set Sq = RA (I q ) and Gq = gr A (Iq ) for each q ::; r.

(I)::} (2) We may assume that A has an infinite residue field. Since Sr 18

Gorenstein and a(Sr) = -1 by Theorem 2.2, the canonical module of Sr is

WS r = Sr( -1) = EB Ilnl-r.

n2:1

It follows from Lemma 5.2 that

n2: 1 ,nENf

for every q ::; r. Especially we obtain
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and wA I".J A. According to Theorem 3.1 and Remark 3.2 we then have

WG 1 = EB I n
-

r
-

1 /I n
-

r = GI (-(r + 1)).
n:2: l

(2)=>(1) Since Gg = G~-gr for every q ~ r, we have by Coro11ary 4.9

Iln!-r-l / Ilnl- r .

By Lemma 1.5 one sees that a(G:r) = -er + 1). Theorem 3.1 then implies that

WS
r

= EB Ilnl-r = Sr( -1).
n~l

Because Sr is Cohen-Macaulay by Coro11ary 2.3, it fo11ows that Sr must be Goren­
stein.

5.4. Remark. Suppose that S = RA (Ir) is Gorenstein. Then G = grA (Ir)
is not Gorenstein if r > 1. In fact, one sees from the preceeding proof that WG

is generated by r elements of total degree r + 1 and one easily sees that r is the
minilnal number of generators of wo. Hence G has CM-type r, which implies the
ab ove claim.

We now want to find out for which k E (N*)r the multi-Rees algebra RA (I~)

is Gorenstein. We sha11 first show that there can only be one value of Ikl such
that RA (I~) is Gorenstein. This is based on the fo11owing lemma froIn [Rl:

5.5. Lemma. Let A be a local ring and I c A an ideal of ht I > 1. H
Ir I".J I~ for some r,s E N*, we have r = s.

Proof. If m is the maximal ideal of A, the isomorphisIll Ir '" I~ induces an

isomorphism Irj /mIrj ~ I~j /mI~j. Set I = I(I). Since ht I > 1, I > 1. There

exists a polynomial P E Q[t] of degree I-I such that P(j) = lenght(Ij /7nli) for
j ~ o. Now P (r j) = P (s j) for j ~ O. Ir

1-1

pet) = L ai ti ,
i=O

we must have a'-l r'-l = a'-l s'-l , so that r = s.

5.6. Proposition. Let A be a local ring and I C A an ideal oE ht I > 1.
Let k,l E (N*)r . JE RA (I~) and RA (I~) are both Gorenstein, tllen IkI = 111.
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Proof. Sinee RA (I~) and RA (I~) are Gorenstein, we know by Theorem 2.2
that their eanonical modules are RA (I~)(-1) and RA (I~)(-1) resp eetively. Ae-

cording to Corollary 1.15 the canonical modules of the Veronesians (RA (I~)) (I)

and (RA (I~)) (k) are then (RA (I~)(-1)) (I) and (RA (I~)(-1)) (I) . Now

(RA(I~)(-l))(I)= EB I(kl).n-lkl

n2::1

and
(RA (I~)(-1)) (k) = EB I(kl).n-lil.

n2::1

Thus I(kl).n-Ikl "" I(kl).n-Pl for all n E (N*)r, so that by the previous lemma we

must have Ikl = 111.

Reeall that an ideal I c A is ealled equimultiple, if the analytie spread
1(1) = ht I. The proof of the following lemma ean be found from [RIO], p 407.

5.7. Lemma. Let A be a loeal ring with an infinite residue field and I c A
an equimultiple ideal of d > ht I > 0 such tbat RA (I) is Cohen-Macaulay. There
exists then an element b E A such that the corresponding degree zero element
b E gr A (I) is a non zero-divisor.

5.8. Theorem. Let A be a loeal ring and I C A an equimultiple ideal suc1]
that htI > 1. Assume that grA(I) is Gorenstein. Let k E (N",)r. Then RA(I~)

is Gorenstein if and only Ikl = -a(gr A (I)) - 1.

Prool. By Proposition 5.6 there ean be only one value of Ikl such that RA (I~)

is Gorenstein. It is thus enough to show that RA (I~) is Gorenstein if Ikl =
-a(grA (I)) - 1. We ean assulne that the residue field of A is infinite. Set S =
RA (Ir). Then S(k) = RA (I~ ). Also set Gq = gr A (I q ) for each q ~ r. Denote
a = -aCGI)' We use induction on diln AI I .

If dirn AI I = 0, I is a prinlary ideal. Sinee Gq = G~-gr for every q ::; rand
GI is Gorenstein, Corollary 4.9 implies that Gq has the canonical Inodule

Ilnl-a IIln l-a+1 .

By Lelnlna 1.5 a(G:r) = a. The Gorensteiness of GI implies that of A. It then
follows from Theorem 3.1 that S has the canonieal module

Ws = EB Ilnl-a+l,

n2::1
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so that by Corollary 1.15 the canonical mo dule of S(k) 18

= ffi Ik.n- a+ I .
WS(k) 'l7

n~I

Because Ik I = a - 1, we thus see that W S(k) = S(k) ( - 1). According to Theorem 2.2
S is Cohen-Macaulay. Lemma 1.13 then says that also S(k) i8 Cohen-Macaulay.
So the claim follows.

Suppose then that dirn AI I > O. According to Lemma 5.7 there exists an
element b E A such that the corresponding degree zero element b E GI is a non
zero-divisor. Then In n (b) = bIn for all n E N. Set A = AI(b) and I = IA. If
- - - - -;:;{k) () () -
S = RA (1) and GI = gr A (1), it follows that S = S k IbS k and GI = GI IbG I .

Because b is a regular element of degree zero in GI , GI must be Gorenstein with

a(GI) = a(GI)' By the induction hypothesis we get that S<k) is Gorenstein. It
then follows that S(k) is Gorenstein.

We shall next study the relationship between the Gorensteiness of RA (1:)
and RA (1 Ikl ). Analogously to Lemma 5.2 oue can prove the following:

5.9. Lemma. Let A be a local ring witb an infinite residue field and I c A
an ideal ol grade I > 1 such tllat RA (1) is Cohen-Macaulay. Let k E (N*)r. H
S = RA (I~) has the canonical module

_ ffi 1k .n - q t n
Ws - 'l7 1

n~l

wbere q E N, then tlle canonical module ol Q = SI11kl S lS

WQ = EB 1k.n-q-lkl I1k.n- q.

n~l

5.10. Theorem. Let A be a IDeal ring and 1 C A an equimultiple ideal ol
grade I > 1 such that RA (I) is Collen-Macaulay. Let k E (N*)r. H RA (I~) is
Gorenstein, then so is RA (1 Ikl ).

Praal. We use induction on diln A. Suppose first that dirn AI I = 0 1 so that
I is an primary ideal. We may assunle that A is complete with an infinite residue

field. Set S = RA (I~). Consider the ring

Denote

7lEN
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Then Q = (pr- gr )(k). It follows from Corollaries 1.11 and 4.9 that

n>O n>O

Since S is Gorensteiu, we know by Theorem 2.2 that the canonical module of S
1S

Ws = S (-1) = EB [k -( n -1) .

n:2:1

According to Lemma 5.10 we thus have

WQ = EB Ik-(n -2-1) / I k .(n-1) .

n:2: 1

An application of the diagonal functor ~ gives

Now p(lkl) = gr A (Ilkl). Since RA (Ilkl) 1S Cohen-Macaulay by Corollary 2.3,
Theorem 2.2 implies that a(gr A (Ilk I) < O. It follows that

An application of Leillilla 5.2 shows that WA ~ A, so that we can use Theorem
5.3 to get the claim.

Assurne then that dirn AI I > O. By Lemma 5.7 we find an element b E A
such that the corresponding degree zero element b E gr A (I) is a non zero-divisor.

- - - -k
Then In n (b) = bIn for all n E N. If A = A/(b), 1= IA, we have RA(I r ) =

RA (I~)I bRA(I~) anel RA (f1k l ) = RA (Ilkl)/ bR A (Ilk l ), so that the claim follows
from the induction hypothesis by the regulari ty of b.

5.11. Theore m. Let A be a ioeal Cohen-Macaulay-ring and I C A an
equim ultiple ideal of ht I > 1 sucJ) that RA (I) is Coben-Macaulay. Let q E N.
Tllen tbe following conditions are equivalent:

(1) RA (I~) is Gorenstein for any r E N* and k E (N *)r such that IkI = q.

(2) RA(I~) is Gorenstein for some r E N* and k E (N*)r such that ]kl = q.

(3) RA (Iq) is Gorenstein.

(4) gr A (I) is Gorenstein with a(gr A (I)) = -( q + 1).
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Proof.
(1) => (2) Trivial
(2) => (3) This was proved in Theorem 5.10.
(3) => (4) Because RA (Iq) is Gorenstein, it follows from [H RS], Theorem

(2.3) that grA(I) is Gorenstein with a(grA(I)) = -(q + 1).
(4) =} (1) This is a consequence of Theorem 5.8.

As an application we consider the case where I = m IS the maximal ideal of
A and q = dim A - 1.

5.12. Theorem. Let A be a Cohen·Macaulay IDeal ring of dimension d >
1 with tbe maximal ideal m such that RA (m) is Cohen-Macaulay. Tben the
following conditions are equivalent:

(1) A is regular

(2) RA (m d
- 1 ) is Gorenstein.

(3) RA (m 1kl ) is Gorenstein for some r E N* and k E (N*)r such that

Ikl=d-l.

(4) RA(m 1kl ) lS Gorenstein for all r E N* and k E (N*)r such that Ikj =
d - 1.

Proof. The clailu follows from Theorem 5.11, Slnce the equivalence of (1) IS
(2) is known by [R], Folgerung (8.3.2).
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