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Abstract

We prove that there exist exactly eight Siegel modular forms with
respect to the congruence subgroups of Hecke type of the paramodular
groups of genus two vanishing precisely along the diagonal of the Siegel
upper half-plane. This is a solution of a problem formulated during the
conference “Black holes, Black Rings and Modular Forms” (ENS, Paris,
August 2007). These modular forms generalize the classical Igusa form
and the forms constructed by Gritsenko and Nikulin in 1998.

Introduction: dd-modular forms

The first cusp form for the Siegel modular group Sp2(Z) is the Igusa
form Ψ10. In fact Ψ10 = ∆2

5 where ∆5 is the product of the ten even theta-
constants (see [F]). This modular form has a lot of remarkable properties.
One of the main features of ∆5 is that it vanishes (with order one) precisely
along the diagonal

H1 =
{( τ 0

0 ω

)
, τ, ω ∈ H1

}
⊂ H2

of the Siegel upper half-plane H2 = {Z = ( τ z
z ω ) ∈ M2(C), Im(Z) > 0}. It

is known that ∆5 determines a Lorentzian Kac–Moody super Lie algebra
of Borcherds type. See [GN1]–[GN2] where two lifting constructions of ∆5

were proposed

∆5(Z) = Lift(η9(τ)ϑ(τ, z)) = B(φ0,1)(Z)

where η is the Dedekind eta-function and ϑ is the Jacobi theta-series (see
(7)). This relation gives the two parts of the denominator identity for the
Borcherds algebra determined by ∆5. There exists a geometric interpreta-
tion of this identity in terms of the arithmetic mirror symmetry (see [GN4]).
Moreover 2φ0,1 is the elliptic genus of a K3 surface and Ψ−2

10 is related to
the so-called second quantized elliptic genus of K3 surfaces (see [DMVV],
[G4]). These facts explain the importance of ∆5 in the theory of strings
(see [DVV], [Ka]). During the conference “Black holes, Black Rings and

1



Modular Forms” (ENS, Paris, August 2007) there was formulated a prob-
lem on the existence of Siegel modular forms similar to ∆5 with respect to
the congruence subgroup of Hecke type

Γ(2)
0 (N) = {

(
A B
C D

)
∈ Sp2(Z) | C ≡ 0 mod N}.

Such Siegel modular forms can characterize the black holes entropy and the
degeneracy of dyons for some class of CHL string compactification (see [DG],
[DN]). Mathematically we can reformulate this question as follows: finding
all Siegel modular forms F with respect to Γ(2)

0 (N) (with a character or a
multiplier system) such that F vanishes exactly along the Γ(2)

0 (N)-translates
of the diagonal H1 ⊂ H2 and with vanishing order one.

We call such functions dd-modular forms: modular forms with the
diagonal divisor. A dd-modular form is a natural generalization of ∆5. In
this paper we give the complete answer to this problem.

Theorem 0.1 For the congruence subgroups Γ(2)
0 (N) with N > 1 there are

exactly three dd-modular forms: ∇3 of weight 3 for Γ(2)
0 (2) with a character

of order 2, ∇2 of weight 2 for Γ(2)
0 (3) with a character of order 2 and ∇3/2

of weight 3/2 for Γ(2)
0 (4) with a multiplier system of order 4.

In fact we get a result which is stronger than the theorem above. We give the
full classification of the dd-modular forms for the Hecke subgroups Γt(N)
(see (1)) of the symplectic paramodular groups Γt. Theorem 1.4 claims that
there are exactly eight such dd-modular forms. Four of them, ∆5 and the
modular forms ∆2, ∆1 and ∆1/2 of weights 2, 1 and 1/2 with respect to
the paramodular groups Γ2, Γ3 and Γ4 were constructed in [GN2]. The
other four modular forms are the three functions of Theorem 0.1 and the
dd-modular form Q1 of weight 1 and character of order 4 with respect to
the congruence subgroup Γ2(2) of the paramodular group Γ2.

These eight remarkable modular forms can be considered as the best
possible three dimensional analogues of the Dedekind η-function. We expect
a number of interesting applications of these new functions in the string
theory, in the theory of Lorentzian Kac–Moody algebras and in algebraic
geometry.

The paper contains three sections. In §1 we prove that there might exist
only nine dd-modular forms with respect to Γt(N). In §2 using the lifting of
Theorem 2.2 we construct seven dd-forms and the square of ∇3/2. Moreover
using the particular form of Q1 we prove that the ninth dd-form does not
exist. In §3 using Theorem 3.1 about the Borcherds automorphic products
for congruence subgroup Γt(N) we construct the last dd-modular form ∇3/2

of weight 3/2.
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1 Classification of the dd-modular forms

One of the main idea of our approach (see [G1]–[G3]) is that in order to
understand better the properties of Siegel modular forms of genus two one
has to consider not only the modular group Γ1 = Sp2(Z) and its congru-
ence subgroups, but the integral symplectic groups Γt, the paramodular
groups, for all t ≥ 1. In this section we give the complete classification
of the dd-modular forms for the most natural congruence subgroups of the
paramodular groups. Let t and N be positive integers. We put

Γt(N) =
{

∗ ∗t ∗ ∗
∗ ∗ ∗ ∗t−1

∗N ∗Nt ∗ ∗
∗Nt ∗Nt ∗t ∗

 ∈ Sp2(Q), all ∗ ∈ Z
}
. (1)

The group Γt = Γt(1) is conjugated to the integral symplectic group of
the integral skew-symmetric form with elementary divisors (1, t) (see [G2],
[GH2]). The quotient Γt \ H2 is the moduli space of the (1, t)-polarized
Abelian surfaces. If t = 1 then Γ1 = Sp2(Z) and Γ1(N) = Γ(2)

0 (N) is the
Hecke subgroup from the introduction.

Let Γt(N)+ = Γt(N) ∪ Γt(N)Vt be a normal double extension of Γt(N)
in Sp2(R) where

Vt =
1√
t


0 t 0 0
1 0 0 0
0 0 0 1
0 0 t 0

 ∈ Sp2(R). (2)

Repeating the proof of Lemma 2.2 of [G2] we obtain

Lemma 1.1 The group Γt(N)+ is generated by Vt and by its parabolic
subgroup

Γ∞t (N) =
{
±


∗ 0 ∗ ∗
∗ 1 ∗ ∗/t
N∗ 0 ∗ ∗
0 0 0 1

 ∈ Γt(N), all ∗ ∈ Z
}
. (3)

Let Γ < Sp2(R) be an arithmetic subgroup. In this paper Γ will be one
of the groups Γt(N) or Γt(N)+. A modular form of weight k (k is integral or
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half-integral) for the subgroup Γ with a character (or a multiplier system)
χ : Γ → C× is a holomorphic function on H2 which satisfies the functional
equation

(F |kγ)(Z) = χ(γ)F (Z) for any γ ∈ Γ.

We denote by |k the standard slash operator on the space of functions on
H2:

(F |kγ)(Z) := det(CZ +D)−kF (M〈Z〉)
where γ =

(
A B
C D

)
∈ Sp2(R) and M〈Z〉 = (AZ + B)(CZ + D)−1. For a

half-integral k we choose one of the holomorphic square roots by the con-
dition

√
det(Z/i) > 0 for Z = iY ∈ H2. We denote by Mk(Γ, χ) the finite

dimensional space of all modular forms of this type.
A dd-modular form is a particular case of reflective modular forms whose

divisor is defined by reflections in the corresponding integral orthogonal
group. In [GN2]–[GN3] we classified the reflective modular forms for the
paramodular groups Γt. In particular we found all Siegel modular forms for
the paramodular groups Γt with the diagonal divisor. To classify all possible
dd-modular forms for the congruence subgroups Γt(N) we use the method
of multiplicative symmetrization (see [GN2, §3.1]). The next proposition is
a generalization of Proposition 1.1 of [GH1] in which we studied the case
N = 1.

Proposition 1.2 If Fk is a dd-modular form of integral (or half-integral)
weight k with a character (or a multiplier system) with respect to Γt(N)
then the triplet (t,N ; k) can take one of the nine values

(1, 1; 5), (2, 1; 2), (3, 1; 1), (4, 1;
1
2

), (1, 2; 3), (1, 3; 2), (1, 4;
3
2

),

(2, 2; 1), (2, 4;
1
2

).

The corresponding dd-modular forms are, if they exist, unique up to a scalar.

Proof. Uniqueness of a dd-modular form for a fixed group follows from the
Koecher principle (see [F]). Let F be a non-zero modular form of weight
k with respect to Γt(N). We use the following operator of multiplicative
symmetrization

[F ]1 =
∏

γ∈Γ
(int)
t (N)\Sp2(Z)

F |kγ where Γ(int)
t (N) = Γt(N) ∩ Sp2(Z).

It is clear that [F ]1 is a non-zero modular form with respect to Γ1 = Sp2(Z).

Lemma 1.3 For any integral t ≥ 1 and N ≥ 1 we have

[Γ1 : Γ(int)
t (N)] =

(
(Nt)3

∏
p |(tN)

(1 + p−1)(1 + p−2)
)
·
∏

p |(t,N)

(1 + p−1).
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Proof. The diagram of the subgroups shows that

[Γ1 : Γ(int)
t (N)] =

[Γ1 : Γ(int)
tN ] · [Γ(int)

tN : Γ(int)
tN ∩ Γt(N)]

[Γ(int)
t (N) : Γ(int)

tN ∩ Γt(N)]

where Γ(int)
d = Γd ∩Γ1 is a subgroup of the paramodular group. It is known

(see [GH1, §1]) that

[Γ1 : Γ(int)
tN ] = (tN)3

∏
p |(tN)

(1 +
1
p

)(1 +
1
p2

).

Analyzing the form of the elements in the subgroups we obtain

[Γ(int)
tN : Γ(int)

tN ∩ Γt(N)] = [SL2(Z) : Γ0(N)] = N
∏
p |N

(
1 +

1
p

)
,

and
[Γ(int)
t (N) : Γ(int)

t ∩ ΓtN ] = [Γ0(t) : Γ0(tN)].

This gives us the formula of the lemma. 2

Let πt,N : H2 → At(N) = Γt(N)\H2 be the quotient map. Note that
At = At(1) is the moduli space of (1, t)-polarized Abelian surfaces. For N =
1 the image πt,1(H1) in At parameterizes split polarized Abelian surfaces.
For t = N = 1 this is the Humbert surface H1 of discriminant 1 in A1 and
one can consider the divisor π1,1(H1) as the discriminant of the moduli space
of curves of genus 2.

Let us assume that F has a diagonal divisor of multiplicity m ≥ 1, i.e.,
divAt(N) F = m · πt,N (H1). We note that H1 is irreducible in A1 (for the
theory of Humbert surfaces see [vdG] and [GH2]). It follows that divA1([F ]1)
is the Humbert surface H1 with some multiplicity d. Therefore according to
the Koecher principle

[F ]1(Z) = C ·∆5(Z)d

where C is a non-zero constant. In order to calculate the multiplicity d we
note that the stabilizer of H1 in Sp2(R) is the group generated by the direct
product of two copies of SL2(R) in Sp2(R) and the involution J :

SL2(R)× SL2(R) ∼=
{( a 0 b 0

0 a1 0 b1
c 0 d 0
0 c1 0 d1

)
∈ Sp(R)

}
, J =

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
. (4)

The order of zero of [F ]1 along H1 is equal to the number of left cosets
Γ(int)
t (N)M in Sp2(Z) containing an element from the stabilizer of H1.

Therefore we have to find the number of the distinct cosets Γ(int)
t (N)M

with M ∈ StSp2(Z)(H1). The involution J permuting the diagonal elements
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τ and ω of Z ∈ H2 belongs to Γ(int)
t (N) if and only if t = 1. If t > 1 then

Γ(int)
t (N)M1 6= Γ(int)

t (N)JM2 for any M1, M2 in SL2(Z)× SL2(Z). It gives
us the factor 2 if t > 1. Therefore [F ]1 vanishes along H1 with order

d = 2δ(t)m[SL2(Z) : Γ0(N)] · [SL2(Z) : Γ0(tN)].

where δ(t) = 0 if t = 1 and δ(t) = 1 if t > 1.
The weight of the symmetrization[F ]1 equals the weight of F multiplied

by the index of the subgroup calculated in the above lemma. The relation
between [F ]1 and ∆5 gives us the following identity between the weights of
these modular forms(

kN
∏
p |N
p -t

p2 + 1
p(p+ 1)

)
· t2
∏
p |t

p2 + 1
p2

= 2δ(t) 5m

where k ∈ Z/2 is the weight of F . For any fixed m simple arguments of
divisibility show that there exist only a few possibilities for (t,N ; k). If F
is a dd-modular form of weight k (i.e., if m = 1), then there are only four
triplets (t,N ; k) with t = 1 and five more (t,N ; k) for t > 1. This proves
the proposition. 2

In what follows we construct eight dd-modular forms and we prove that
a dd-modular form of type (2, 4; 1

2) does not exist.

Theorem 1.4 For the Hecke congruence subgroups Γt(N) < Γt there are
exactly eight dd-modular forms. They belong to the spaces

M5(Γ1, χ2); M2(Γ2, χ4), M3(Γ(2)
0 (2), χ2); M1(Γ3, χ6), M2(Γ(2)

0 (3), χ2);

M 1
2
(Γ4, χ8), M 3

2
(Γ(2)

0 (4), χ4); M1(Γ2(2), χ4)

where χd is a character (or a multiplier system) of order d of the correspond-
ing modular group.

To prove this theorem we describe two lifting constructions for the congru-
ence subgroups of Hecke type of the paramodular groups of genus 2.

2 Additive construction of dd-modular forms

The four dd-modular forms for N = 1 are the modular forms ∆5 for Sp2(Z)
with a character of order 2, ∆2 for Γ2 with a character of order 4, ∆1 for
Γ3 with a character of order 6 and ∆1/2 for Γ4 with a multiplier system of
order 8 (see [GN2]). In this section we construct the dd-modular forms for
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N > 1. For this aim we use special Jacobi modular forms of index 1/2 with
respect to the Jacobi group of level N

ΓJ(N) = (Γ∞t (N) ∩ Sp2(Z))/{±14} ∼= Γ0(N) nH(Z)

(see (3)). The Jacobi group is the semi-direct product of the Heisenberg
group

H(Z) =
{

[λ, µ;κ] =


1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1

 , λ, µ, κ ∈ Z
}

and

Γ0(N) =
{(a b

c d

)
∈ SL2(Z), c ≡ 0 mod N

}
.

We embed γ ∈ Γ0(N) in Γt(N) using the first copy of SL2 in (4) (the second
term is the unit matrix). We denote this matrix by γ̃ and we identify Γ0(N)
with this subgroup of Γt(N).

Let t and k be integral or half-integral positive numbers. A holomorphic
function φ on H1×C is called holomorphic Jacobi form for Γ0(N) of weight
k and index t with a character (or a multiplier system) v : ΓJ(N) → C∗ if
the function φ̃(Z) := φ(τ, z)e2iπtω of Z ∈ H2 is a ΓJ(N)-modular form with
character (or multiplier system) v, i.e., if it satisfies

(φ̃
∣∣
k
γ)(Z) = v(γ)φ̃(Z) for any γ ∈ ΓJ(N) (5)

and for each M ∈ SL(2,Z) it has a Fourier expansion of the following type(
φ̃
∣∣
k
M̃
)
(Z) =

∑
n, l

4nt−l2>0

cM (n, l) qnrlst (6)

where n, l are in Q, q = e2iπτ , r = e2iπz and s = e2iπω. The last condition
means that φ is holomorphic at the cusp determined by M (see [EZ]). The
form φ is called cusp form if cM (n, l) 6= 0 only for 4nt − l2 > 0 for all
M . We call the form φ a weak Jacobi form if in its Fourier expansions
cM (n, l) 6= 0 only for n > 0. The Jacobi form φ is called nearly holomorphic
if there exists n ∈ N such that ∆nφ is a weak Jacobi form where ∆ is the
Ramanujan ∆–function.

We denote by Jk,t(Γ0(N), v) the space of all Jacobi forms with a character
(or a multiplier system) for ΓJ(N) = Γ0(N)nH(Z). We denote the space of
corresponding weak (resp. nearly holomorphic) Jacobi forms by Jwk,t(Γ0(N))
(resp. Jnhk,t (Γ0(N))). In §4, we use nearly holomorphic Jacobi forms of weight
0 for Γ0(N) in order to construct Borcherds products. In this section we
work with holomorphic Jacobi forms.
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The main example of Jacobi forms of half-integral index is the Jacobi
theta-function of level 2 (see (28)):

ϑ(τ, z) = −iϑ(2)
1,1(τ, z) =

∑
m∈Z

(
−4
m

)
qm

2/8 rm/2

= −q1/8r−1/2
∏
n≥1

(1− qn−1r)(1− qnr−1)(1− qn) (7)

is an element of J 1
2
, 1
2
(SL(2,Z), v3

η × vH) where v3
η is the multiplier system

of the cube of the Dedekind η-function and

vH([λ, µ;κ]) = (−1)λ+µ+λµ+κ.

is a character of the Heisenberg group. (See [GN2] for more details on the
Jacobi forms of half-integral index.)

We denote by χ × vεH the character of ΓJ(N) induced by the character
(or multiplier system of finite order) χ : Γ0(N) → C∗ and by a power
vεH : H(Z)→ {±1}. It is easy to see from the definition that the non trivial
binary character vH can appear only if the index t is half-integral.

Let
φ ∈ Jk,t(Γ0(N), χ× v2t

H) (8)

where k ∈ N, t ∈ N/2, χ : Γ0(N) → C∗ is a character of finite order. We
suppose that

Ker(χ) ⊃ Γ1(Nq, q) (9)

for some q where the last group is defined as follows Γ1(Nq, q) =

{(a b
c d

)
∈ SL2(Z), c ≡ 0 modNq, b ≡ 0 mod q, a ≡ d ≡ 1 modNq

}
.

For this group we introduce the Hecke operator (see [Sh, Ch.3])

T (N)(m) =
∑
ad=m

(a,Nq)=1

bmod d

Γ1(Nq, q)σa ·
(
a qb
0 d

)

where a > 0 and σa ∈ SL2(Z) such that σa ≡
(
a−1 0

0 a

)
modNq. This element

induces the Hecke operator on Jacobi form φ̃(Z) = φ(τ, z) exp(2πiω):

φ̃|kT
(N)
− (m)(Z) = mk−1

∑
ad=m

(a,Nq)=1

bmod d

d−kχ(σa)φ(
aτ + bq

d
, az) e2πimtω (10)

(compare with [EZ] and [GN2, (1.11)–(1.12)]).
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Lemma 2.1 Let φ be as in (8) and (9). We suppose that m is coprime to
q and that m is odd if t is half-integral. Then

φ|k T
(N)
− (m) ∈ Jk,mt(Γ0(N), χm × v2t

H)

where χm is a character of SL2(Z) defined by

χm(α) := χ(αm).

For any α =
(
a b
c d

)
∈ Γ0(N) the matrix αm ∈ Γ0(N) is defined by the

condition

αm ≡
(
a mod Nq m−1b mod q
mc mod Nq d mod Nq

)
.

The proof of the lemma is similar to the proof of [GN2, Lemma 1.7]. One
has to use that Γ1(Nq, q) is a normal subgroup of Γ0(N). We note that we
do not assume that m is coprime to N .

In this paper we consider Jacobi forms with special characters such that
Ker(χ) ⊃ Γ1(Nq, q). If q = 1, then χ is induced by a Dirichlet character χN
modulo N :

χ
( (

a b
c d

) )
= χN (d). (11)

To construct all dd-modular forms we have to use characters which appear
in the theory of η-products. For example, we shall use the following Jacobi
forms

η(τ)η(2τ)4ϑ(τ, z) or
η(2τ)2η(4τ)4

η(τ)2
ϑ(τ, z)2

(see the proof of Theorem 1.4 below). The corresponding characters can
be calculated using the conjugation of the multiplier system vη of order 24
of the Dedekind eta-function. This explains the role of the number 24 in
the lifting construction of Theorem 2.2. This theorem generalizes to the
congruence subgroups the lifting constructions of [G1] and [GN2].

Theorem 2.2 Let φ ∈ Jk,t(Γ0(N), χ × v2t
H) be a holomorphic Jacobi form

where k ∈ N, t ∈ N/2 and χ : Γ0(N)→ C∗ is a character of finite order such
that Ker(χ) ⊃ Γ1(Nq, q). We assume that q is a divisor of 24, qt ∈ N and

χ
(

( 1 1
0 1 )

)
= e

2πi
q .

1. Let q > 1 or q = 1 and c(0, 0) = 0 where c(0, 0) is the constant
coefficient in the Fourier expansion of φ at ∞. We fix µ ∈ (Z/qZ)×. Then
the function

Fφ(Z) = Liftµ(φ)(Z) =
∑

m≡µmod q
m>0

φ̃ |k T
(N)
− (m)(Z)

is a modular form for Γqt(N)+ with a character χt,µ. The lifting is a cusp
form if φ is a cusp form. If µ = 1, then Lift(φ) = Lift1(φ) 6≡ 0 for φ 6≡ 0. If
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Liftµ(φ) 6≡ 0, then the character χt,µ is induced by the character χµ× v2t
H of

the Jacobi group, where χµ is a character of SL2(Z) µ-conjugated to χ (see
Lemma 2.1), and by the relations

χt,µ(Vqt) = (−1)k, χt,µ([0, 0;
κ

qt
]) = exp (2πi

µκ

q
) (κ ∈ Z).

2. Let q = 1 and c(0, 0) 6= 0. We assume that the character χ of Γ0(N) is
induced by a primitive Dirichlet character χN modulo N (see (11)). Then

Fφ(Z) = Lift(φ)(Z) = c(0, 0)Ek(τ, χN ) +
∑
m≥1

φ̃ |k T
(N)
− (m)(Z)

where

Ek(τ, χN ) = 2−1L(1− k, χN ) +
∑
n≥1

∑
a|n

χN (a) ak−1 exp (2πinτ)

is the Eisenstein series of weight k for Γ0(N) with character χN .

Remark. There is a variant of this theorem if qt is half-integral. One has
to add a conjugation with respect to an element of the symplectic group
over Q in order to obtain a modular form for a congruence subgroup of the
paramodular group Γ4qt. (See [GN2, Theorem 1.12]).

Proof. First we prove the convergence of the series defining Liftµ(φ). We
put

Z = X + iY =
(
τ z
z ω

)
=
(
u x
x u1

)
+ i

(
v y
y v1

)
∈ H2.

Then detY = vv1 − y2 = v(v1 − y2

v ) = v · ṽ where ṽ is invariant under
the action of the Jacobi group. If φ is a holomorphic function with Fourier
expansion of type (6), then

|φ(τ, z)e2πitω|e2πtṽ = |φ(τ, z)|e−2πty2/v

does not depend on u1 and ṽ and it is bounded in the domain v > ε (see
[Kl]). We introduce

ψ̃(Z) =
∑

Mi∈Γ0(N)\SL2(Z)

|φ̃|kM̃i(Z)|.

Then the function ψ̃ is |k-invariant with respect to the full Jacobi group
ΓJ = SL2(Z)nH(Z) and ψ̃(Z)e2πtṽ (depending only on τ and z) is bounded
for v > ε. If 0 < v < ε then there exists M =

(
a b
c d

)
∈ SL2(Z) such that

Im(M〈τ〉) > ε and
ψ̃(Z) = |cτ + d|−kψ̃(M̃〈Z〉).
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Therefore ψ̃(Z)e2πtṽ = O(v−k) if v → 0. Using, if necessary, this estima-
tion for all terms ψ(aτ+b

d , az) we see that the series which defines Fφ has a
majorant of type

C
∑
m≥1

mk+1e−2πtmv1

in any compact subset of H2. If c(0, 0) 6= 0 then we add an Eisenstein series
Ek(τ, χN ) with respect to Γ0(N) in the lifting construction. This series is
well defined for any weight k ≥ 1 according to Hecke (see [Hi, Proposition
5.1.2]).

Now we prove that the lifting is a modular form. According to the con-
ditions of the theorem φ has the Fourier expansion of the following type

φ(τ, z) =
∑

l≡2tmod 2
n≥0, n≡1 mod q

4nt
q
≥ l

2

4

c(n, l) exp
(
2πi(

n

q
τ +

l

2
z)
)
.

By the definition (10) of the Hecke operators we have(
φ̃|k T

(N)
− (m)

)
(Z) = (12)

mk−1
∑
ad=m

(a,Nq)=1

bmod d

d−kχ(σa)
∑

l≡2tmod 2
n≥0, n≡1 mod q

c(n, l) exp
(
2πi(

n(aτ + bq)
dq

+
al

2
z +mtω)

)
=

∑
ad=m

(a,Nq)=1

ak−1χ(σa)
∑

l≡2tmod 2, n1≥0
dn1≡1 mod q

c(dn1, l) exp
(
2πi(

an1

q
τ +

al

2
z + adtω)

)
.

The Jacobi form φ has a nontrivial character vH of the Heisenberg subgroup
of the Jacobi group if and only if 2t ≡ 1 mod 2. If t is half-integral, then
q is pair because tq ∈ N. Therefore in this case for any m coprime to q the
character of the Heisenberg group of the Jacobi form φ̃|kT

(N)
− (m) is equal

to vH . The Γ0(N)-part of the character of φ̃|kT
(N)
− (m) depends only on m

modulo q according to Lemma 2.1 because φ satisfies (9). In the definition
of Fφ we have m ≡ µ mod q. Therefore, if m ≡ µ mod q, then φ̃|kT

(N)
− (m)

is a Jacobi form with character χµ × v2t
H .

The number q is a divisor of 24 and µ is coprime to q. For any x ∈
(Z/24Z)× we have x2 ≡ 1 mod 24. (24 is the maximal number with this
property. The same is true for any divisor of 24.) Therefore in the formula
for the Fourier expansion of φ̃|kT

(N)
− (m) we have that the coefficient at τ

under the exponent satisfies the relations an1 = an
d ≡ mn ≡ µ mod q.

Now we assume that c(0, 0) = 0. Taking the summation over all positive
m ≡ µ mod q we get

Fφ(Z) =

11



∑
a>0, d>0
ad≡µmod q

(a,N)=1

ak−1χ(σa)
∑

l≡2tmod 2
n1>0, dn1≡1 mod q

c(dn1, l) exp
(
2πi(

an1

q
τ +

al

2
z + adtω)

)
=

∑
n,m>0

n,m≡µmod q
l≡2tmod 2

4nmt
q
≥ l

2

4

∑
a|(n,l,m)

(a,N)=1
a>0

ak−1 χ(σa) c(
nm

a2
,
l

a
) exp

(
2πi(

n

q
τ +

l

2
z +mtω)

)
.

The Jacobi forms φ̃|k T
(N)
− (m) are modular forms with respect the Jacobi

group ΓJ(N). The parabolic subgroup Γ∞qt (N) (see (3)) differs from the
Jacobi group ΓJ(N) by its center. For m ≡ µ mod q the action of the
center is given by(

φ̃|k T
(N)
− (m)

)∣∣
k

[0, 0;
κ

qt
] = exp (2πi

κµ

q
)
(
φ̃|k T

(N)
− (m)

)
.

Therefore the lifting Fφ(Z) is a Γ∞qt (N)-modular form of weight k with char-
acter χµ × v2t

H × exp (2πi∗µq ). The Fourier expansion of Fφ is also invariant
under the transformation {τ → qtω, ω → (qt)−1τ}. It is induced by Vqt (see
(2)). Therefore

(Fφ|k Vqt)(Z) = (−1)kFφ(Z).

The subgroup Γ∞qt (N) and Vqt generate the group Γ+
qt(N) (see Lemma 1.1)

and the lifting is a Γ+
qt(N)-modular form if c(0, 0) 6= 0.

If φ is a cusp form then φ|kT
(N)
− (m) is also a Jacobi cusp form. In order

to prove this we note that T (N)(m) is a part of the full Hecke operator for
the congruence subgroup Γ0(N) (see (23)). Therefore for any M ∈ SL2(Z)
we have (φ̃|kT

(N)
− (m))|kM̃ =

∑
i(φ̃|kM̃i)|kPi for some Mi ∈ SL2(Z) and

integral upper triangular matrices Pi with detPi = m. All indices of the
Fourier coefficients of φ̃|kM̃i have positive hyperbolic norm 4nt− l2 > 0 like
in (6). The action by upper triangular Pi does not change this property.
It follows that φ̃|kT

(N)
− (m) is a cusp form. We have proved that the index

(n, l) of arbitrary non-zero Fourier coefficient of the lifting is non degenerate
(i.e., 4nt − l2 > 0) for all 0-dimensional cusps of the 1-dimensional cusp
determined by ΓJ(N). Γt(N) and the full Jacobi group SL2(Z) n H(Z)
generate the paramodular group Γt. In order to obtain all cusps of Γt(N)
we can use the parabolic subgroup Γ∞ = {P =

(
A B
0 D

)
∈ Sp2(Z)} because

〈Γt,Γ∞〉 = Sp2(Z) (see [G2]). We have considered above the action of SL2(Z)
on the lifting. After the action by any upper triangular matrix P Fourier
coefficients with degenerate index do not appear. Therefore the lifting of a
Jacobi cusp form is a cusp form.

Let us consider the case c(0, 0) 6= 0. Since χ
(

( 1 1
0 1 )

)
= e

2πi
q we have that

q = 1, t ∈ N, the character χ is induced by a Dirichlet character χN modulo

12



N (see (11)) and (−1)k = χN (−1). In the sum
∑

m≥1 φ̃ |k T
(N)
− (m)(Z) we

have an additional term

c(0, 0)
∑
m≥1

∑
a|m

χN (a) ak−1 exp (2πimtω).

To make the lifting invariant with respect to Vt (ω 7→ τ/t, τ 7→ tω) we have
to add a similar term with respect to τ . For that we use the Eisenstein series

Ek(τ, χN ) = 2−1L(1− k, χN ) +
∑
n≥1

∑
a|n

χN (a) ak−1e2πinτ ∈Mk(Γ0(N), χN )

(see [Hi, Proposition 5.1.2]). The Eisenstein series is a Jacobi form of weight
k and index 0. The theorem is proved. 2

Proof of Theorem 1.4. We consider the nine possibilities for dd-modular
forms given in Proposition 1.2.

1. N = 1. The dd-modular forms for the full paramodular group Γt with
t = 1, 2, 3, 4 were constructed in [GN1]–[GN2]:

∆5(Z) = Lift(η(τ)9ϑ(τ, z)) ∈M5(Γ1, v
12
η × vH),

∆2(Z) = Lift(η(τ)3ϑ(τ, z)) ∈M2(Γ2, v
6
η × vH), (13)

∆1(Z) = Lift(η(τ)ϑ(τ, z)) ∈M1(Γ3, v
4
η × vH).

They are cusp forms with character of order 2, 4 and 6 respectively. More-
over

∆1/2(Z) = Trivial−Lift(ϑ(τ, z)) ∈M1/2(Γ4, v
3
η × vH) (14)

is the most odd Siegel even theta-function θ1111(Z) of level 2 which is a
modular form of weight 1/2 and a multiplier system of degree 8 with respect
to Γ4. We construct below the four new Siegel dd-modular forms ∇3, ∇2,
∇3/2 and Q1 for the congruence subgroups. The index denotes the weight
of the corresponding modular form.

2. Let N = 2. Two groups of level N = 2 appear in Proposition 1.2. We
consider two Jacobi forms of index 1

2 with respect to the Hecke congruence
subgroup Γ0(2):

η(τ)η(2τ)4 ϑ(τ, z) ∈ Jcusp
3, 1

2

(Γ0(2), χ(2)
2 × vH),

η(2τ)2

η(τ)
ϑ(τ, z) ∈ J1, 1

2
(Γ0(2), χ(2)

4 × vH).

Every cusp p of Γ0(N) has a representative of the form p = a/c where c is
a positive divisor of N and a is taken mod (c, Nc ). For any divisor n of

N the order of η(nτ) at p is equal to (c,n)2

24n . Using this we check that the

13



Γ0(2)-modular form η(2τ)2

η(τ) has a zero of order 1
8 at p = ∞ and is equal to

1/2 at the second cusp.
The Jacobi theta-series ϑ(τ, z) has the multiplier system v3

η×vH of order
8. η(2τ)8η(τ)8 is a well known example of the modular forms with respect
to Γ0(2). The powers η(2τ)4η(τ)4 and η(2τ)2η(τ)2 are cusp forms for Γ0(2)
with characters χ(2)

2 and χ
(2)
4 of Γ0(2) of order 2 and 4 respectively. Using

the exact formula for v2
η (see, for example, [GN2, Lemma 1.2]) we obtain

that
χ

(2)
2

( (
a b
2c d

) )
= (−1)b−c, χ

(2)
4

( (
a b
2c d

) )
= e

2πi
4
d(b−c)

for any matrix in Γ0(2). In particular

kerχ(2)
2 ⊃ Γ1(4, 2), kerχ(2)

4 ⊃ Γ1(8, 4),

χ
(2)
2

(
( 1 1

0 1 )
)
= e

2πi
2 , χ

(2)
4

(
( 1 1

0 1 )
)
= e

2πi
4 .

The lifting construction gives us

∇3 := Lift(η(τ)η(2τ)4 ϑ(τ, z)) ∈ S3(Γ(2)
0 (2), χ(2)

2 × vH), (15)

Q1 := Lift(
η(2τ)2

η(τ)
ϑ(τ, z)) ∈M1(Γ2(2), χ(2)

4 × vH). (16)

3. Let N = 3. It is known that η(3τ)6η(τ)6 ∈ S6(Γ0(3)). We consider

η(3τ)3ϑ(τ, z) ∈ Jcusp
2, 1

2

(Γ0(3), χ(3)
2 × vH)

where χ(3)
2 is a character of order 2. Similar to the case N = 2 one can check

that

χ
(3)
2 (M) = (−1)a+d+1

(
d

3

)
M =

(
a b
3c d

)
∈ Γ0(3) if c ≡ 1 mod 2

and

χ
(3)
2 (M) = (−1)b

(
d

3

)
if c ≡ 0 mod 2.

Therefore
kerχ(3)

2 ⊃ Γ1(6, 2), χ
(3)
2

(
( 1 1

0 1 )
)
= eπi.

Applying Theorem 2.2 we obtain

∇2 := Lift(η(3τ)3ϑ(τ, z)) ∈ S2(Γ(2)
0 (3), χ(3)

2 × vH). (17)

4. Let N = 4. We define

h 3
2
(τ, z) =

η(2τ)η(4τ)2

η(τ)
ϑ(τ, z) ∈ J 3

2
, 1
2
(Γ0(4), χ(4)

4 × vH) (18)
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where χ
(4)
4 is a multiplier system of order 4. The Γ0(4)-modular form

η(2τ)η(4τ)2/η(τ) vanishes at two cusps ∞ and 1
2 and takes non-zero value

at 1. Let us consider

h 3
2
(τ, z)2 =

η(2τ)2η(4τ)4

η(τ)2
ϑ(τ, z)2 ∈ J3,1(Γ0(4), χ(4)

2 ).

The Γ0(4)-modular form η(4τ)4η(2τ)2η(τ)4 has the non-trivial quadratic
character modulo 4

χ
(4)
2 (
(
a b
4c d

)
) = (−1)

(d−1)
2 where

(
a b
4c d

)
∈ Γ0(4).

We have
F3 := Lift(h2

3/2) ∈M3(Γ(2)
0 (4), χ(4)

2 ). (19)

The Jacobi form h3/2(τ, z)2 has zero of order 2 for z = 0. The Hecke
operators of the lifting keep this divisor. Therefore F3 vanishes with order
2 along H1 = {z = 0}. The proof of Proposition 1.2 shows that

divH2(F3) = 2
( ⋃
γ∈Γ

(2)
0 (4)

γ〈H1〉
)
.

In the next section we construct a modular form ∇3/2 such that F3 = ∇2
3/2

using the Borcherds automorphic products.
5. The last case of Proposition 1.2 is a possible dd-modular form of type

(N, t; k) = (4, 2; 1
2). Using the exact construction of the dd-modular form

Q1 for Γ2(2) we prove that a dd-modular form of weight 1
2 with respect to

Γ2(4) does not exist.
Let assume that D ∈M 1

2
(Γ2(4), χ) is a dd-modular form. Q1 can be con-

sidered as a modular form with respect to Γ2(4) < Γ2(2). Q1 vanishes along
the diagonal H1 but its divisor modulo Γ2(4) contains several irreducible
components. Therefore F = Q1/D is a holomorphic function on H2 and
it is a Γ2(4)-modular form of weight 1

2 according to the Koecher principle.
Then it has the following Fourier-Jacobi expansion

F (Z) = f0(τ) +
∑
m≥ 1

2

f 1
2
,m(τ, z) exp(2πimω)

where the constant term f0 is a modular form of weight 1
2 with respect to

Γ0(4). The zeroth Fourier-Jacobi coefficient of D is identically equal to zero

d0(τ) = lim
v1→∞

D
((τ z

z iv1

))
≡ 0

because D is zero for z = 0. Considering the Fourier-Jacobi expansions of
the both part of the identity Q1 = D · F we obtain that

η(2τ)2

η(τ)
ϑ(τ, z) = f0(τ) · d 1

2
, 1
2
(τ, z).
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Therefore the first non-trivial Fourier-Jacobi coefficient d 1
2
, 1
2

of D is equal
to gϑ where g is an automorphic form of weight 0 with respect to Γ0(4).
The Jacobi theta-series is a modular form of singular weight 1/2. For every
Fourier coefficient c(n, l) of ϑ we have 2n2 − l2 = 0 (see (7)). The automor-
phic form g has a pole at some cusp. Therefore the Jacobi form gϑ cannot
be holomorphic at this cusp. It follows that D is not holomorphic. We finish
the proof of Theorem 1.4 modulo existence of the dd-modular form ∇3/2.

We note that two new dd-modular forms ∇2 and Q1 have elementary
formulae for the Fourier coefficients. You can compare them with cusp
forms ∆2 ∈ S2(Γ2, χ4) and ∆1 ∈ S1(Γ3, χ6) (see [GN1] and [GN2, Example
1.14]). According to Euler and Jacobi

η(τ)3 =
∑
n>0

(
−4
n

)
nqn

2/8.

Then we obtain

∇2(Z) =
∑
N>0

∑
m,n∈2N+1

3N2=4mn−l2

N

(
−4
Nl

) ∑
a|(l,m,n)
a>0

a
(a

3

)
q
n
2 r

l
2 s

m
2 (20)

because in the lifting formula χ(σa) =
(
a
3

)
. To calculate Q1 we note that

η(2τ)2/η(τ) = 1
2ϑ

(2)
1,0(τ, 0) where

ϑ
(2)
1,0(τ, 0) = q

1
8

∏
n≥1

(1− qn)(1 + qn−1)(1 + qn) = 2
∑
n∈N

q
(2n+1)2

8 .

Using the last formula we obtain that

Q1(Z) =
∑
N>0

∑
n,m∈4N+1
l∈2Z+1

(2N+1)2=2mn−l2

(
−4
l

)
σ0((n, l,m)) q

n
4 r

l
2 s

m
2 (21)

where σ0((n, l,m)) is the number of divisors of the greatest common divisor
of n, l, m.

From the proof of theorem given above we obtain also a description of
the squares of dd-forms as liftings.

Corollary 2.3 The following identities are true

∇3(Z)2 = Lift
(
η(τ)2η(2τ)8 ϑ(τ, z)2

)
∈ S6(Γ0(2)),

∇2(Z)2 = Lift
(
η(3τ)6ϑ(τ, z)2

)
∈ S4(Γ0(3)),

Q1(Z)2 = Lift
(η(2τ)4

η(τ)2
ϑ(τ, z)2

)
∈M2(Γ2(2), χ2),

Q1(Z)4 = Lift
(η(2τ)8

η(τ)4
ϑ(τ, z)4

)
∈M4(Γ2(2)).
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Proof. All identities are similar. We prove the last one. First f4
1 ∈

J4,2(Γ0(2)). According to Theorem 2.2 we get Lift(f4
1 ) ∈ M4(Γ2(2)). The

Jacobi form f4
1 has zero of order 4 along z = 0. The Hecke operators in the

lifting construction preserve this divisor. Therefore the quotient Lift(f4
1 )/Q4

1

is a constant according to the Koecher principle. This constant is one. To
see this we compare the first Fourier-Jacobi coefficients. 2

We make two remarks on Theorem 2.2.
The modular forms ∇2

3 and ∇2
2 coincide with generators of the graded

rings of Siegel modular forms for Γ(2)
0 (2) and Γ(2)

0 (3) (see [Ib]). The lifting
construction gives us an universal approach to the generators. Moreover we
obtain more fundamental functions like ∇2 or ∇3/2 which are roots from
generators of the corresponding graded rings. We give the relations between
dd-modular forms and the generators proposed in the papers of Ibukiyama.
First, we have

∇3(Z)2 = Lift
(
η(τ)2η(2τ)8 ϑ(τ, z)2

)
= K(Z) ∈ S6(Γ0(2))

where

K(Z) =
1

4096
(
θ0100(Z)θ0110(Z)θ1000(Z)θ1001(Z)θ1100(Z)θ1111(Z)

)2
and

∇2(Z)2 = Lift
(
η(3τ)6ϑ(τ, z)2

)
=

1
24

Θ4(Z) ∈ S4(Γ0(3)).

θabcd denotes the Siegel theta-series with characteristic (abcd) of level 2 and
Θ4 is a theta-series with a spherical function. Using the dd-function Q1 we
can construct the generators of the graded ring of the modular forms with
respect to the congruence subgroup Γ2(2). The details will be published in
a separate paper.

The second remark is related to differential equations. In [CYY] it was
proved that the monodromy group of Picard–Fuchs equations associated
with one parameter families of Calabi–Yau threefolds is a subgroup of cer-
tain congruence subgroup Γ(d1, d2) in Sp2(Z) where d2 is a divisor of d1.
Therefore one can put a question on Siegel modular forms with respect to
this group. In order to construct such modular forms we can use Theo-
rem 2.2 because this subgroup is the integral part of the intersection of two
modular groups considered in this theorem

Γ(d1, d2) = Γt1(q1) ∩ Γt2(q2) ∩ Sp2(Z)

where we have the following relations for the least common multiples d1 =
[t1, t2] and d2 = [q1, q2]. If t1 and t2 are coprime we do not need to make
the intersection with Sp2(Z). In particular, Γ(d1, d2) = Γ(2)

0 (d2) ∩ Γd1 . Ac-
cording to Theorem 2.2 for any fi ∈ Jki,ti(Γ0(qi)) (i = 1, 2) the product
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Lift(f1)·Lift(f2) is a modular form of weight k1+k2 with respect to Γ(d1, d2).
(Under some conditions on ti and qi one can consider Jacobi forms with some
characters.)

To finish the proof of Theorem 1.4 we have to construct a square root
from the Γ(2)

0 (4)-modular form F3 (see (19)). For this aim we consider the
Borcherds automorphic products.

3 Borcherds products for Γt(N)

In this section we consider Borcherds automorphic products related to the
Jacobi forms of weight 0 with respect to the congruence subgroup Γ0(N).
This construction gives us the dd-modular forms of §2 as automorphic prod-
ucts. In particular, we construct the last dd-modular form ∇3/2 with respect

to Γ(2)
0 (4). In [B1] the language of the orthogonal groups and the vector val-

ued automorphic forms was used. The Jacobi forms are very useful in the
framework of Siegel modular forms because we have many methods to con-
struct Jacobi forms of weight 0. The case of the symplectic paramodular
group Γt was considered in [GN1]–[GN2]. A similar result one can obtain
for the congruence subgroups. Some examples of Borcherds automorphic
products for Γ(2)

0 (N) < Sp2(Z) in terms of Jacobi forms were constructed
in [AI] but they could not prove that the construction works for arbitrary
Jacobi forms (see Lemma 3.2 below and the remark before it). In this sec-
tion we construct the automorphic products for the subgroups Γt(N) of the
paramodular groups Γt for any t and N .

First we recall some well known facts about the Hecke congruence sub-
group Γ0(N) (see [Sh], [Mi]). The number of non-equivalent cusps of Γ0(N)

is equal to
∑

e|N, e>0

ϕ((e,
N

e
)) where ϕ is the Euler’s function and (a, b) is the

greatest common divisor of a and b. We denote by P the set of cusps

P =
{
f

e
, e|N, e ≥ 1, f mod (e,

N

e
), (e, f) = 1

}
.

To each cusp f/e ∈ P of Γ0(N), we associate a matrix

f

e
7→Mf/e =

(
f ∗
e ∗

)
∈ SL(2,Z), Mf/e〈∞〉 = f/e.

Let he = N/(e2, N) be the width of the cusp f/e ∈ P. The sum of the
widths is N ·

∏
p |N (1 + p−1) (p is prime) which is the index of Γ0(N) in

SL(2,Z). We also put Ne = N
e . In order to construct the dd-modular forms

we need two particular cases when N = p or p2.
Example. Γ0(p) and Γ0(p2).
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i) If N = p, p prime, then there are two cusps: 1
p which is Γ0(p)-equivalent

to ∞ and 0 of width 1 and p respectively.
ii) If N = p2, p prime , there are (p+1) cusps: 1

p2 which is Γ0(p2)-equivalent

to ∞, 0 and
{
f
p , 1 ≤ f ≤ p− 1

}
of width 1, p2 and 1 respectively.

As we mentioned above our datum for the automorphic Borcherds prod-
uct for the congruence subgroup Γt(N) < Γt is a nearly holomorphic Jacobi
form of weight 0 and index t with respect to Γ0(N) (see §2). The character
of this form is trivial. In the Borcherds automorphic products [B1] vector
valued modular forms were used. In the case of a Jacobi modular form
with respect to the congruence subgroup Γ0(N) one has to use its Fourier
coefficients at all cusps of Γ0(N) (see [B1, Examples 2.2 and 2.3]). In order
to realize this one can use the complete Hecke operator TN (m) for Γ0(N)
which contains more classes than the operator T (N)

− (m) defined in (10) if
(m,N) 6= 1. The operator TN (m) was introduced in [He] and it was used in
[AI]. For m ∈ N∗, we set

MN (m) =
{
M =

(
a b
cN d

)
∈M2(Z) |det(M) = m

}
.

Similar to (10) we can consider the Hecke operator with respect to the
parabolic subgroup of Γt(N) acting on the modular forms φ̃(Z) = φ(τ, z)e2πitω.
This gives us for any φ ∈ Jnh0,t (Γ0(N)) the Hecke operator

φ
∣∣
0,t
TN (m)(τ, z) = m−1

∑
(
a b
c d

)
∈Γ0(N)\MN (m)

e
−2iπmt

cz2

cτ+d φ (
aτ + b

cτ + d
,
mz

cτ + d
). (22)

Then φ
∣∣
0,t
TN (m) ∈ Jnh0,mt(Γ0(N)). This operator transfers the weak (holo-

morphic) Jacobi forms into weak (holomorphic) Jacobi forms.
We can write the Fourier expansion of φ ∈ Jnh0,t (Γ0(N)) (see (6)) at the

corresponding cusp f/e using Mf/e(
φ
∣∣
0,t
Mf/e

)
(τ, z) =

∑
n∈Z/he

∑
l∈Z

cf/e(n, l)q
nrl.

We note that c1/N (n, l) is the Fourier coefficient of φ at infinity. For a weak
Jacobi form we have n ≥ 0 if cf/e(n, l) 6= 0.

Theorem 3.1 Let φ ∈ Jnh0,t (Γ0(N)). Assume that for all cusps of Γ0(N) we

have that he
Ne
cf/e(n, l) ∈ Z if 4nmt− l2 ≤ 0. Then the product

Bφ(Z) = qArBsC
∏

f/e∈P

∏
n,l,m∈Z

(n,l,m)>0

(
1− (qnrlstm)Ne

) he
Ne
cf/e(nm,l),
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where (n, l,m) > 0 means that if m > 0, then n ∈ Z and l ∈ Z, if m = 0
and n > 0, then l ∈ Z, if m = n = 0, then l < 0, and

A =
1
24

∑
f/e∈P
l∈Z

hecf/e(0, l), B =
1
2

∑
f/e∈P
l∈Z, l>0

lhecf/e(0, l), C =
1
4

∑
f/e∈P
l∈Z

l2hecf/e(0, l),

defines a meromorphic modular form of weight

k =
1
2

∑
f/e∈P

he
Ne

cf/e(0, 0)

with respect to Γt(N)+ with a character (or a multiplier system) χ. In
particular

Bφ(Vt〈Z〉)
Bφ(Z)

= (−1)D0 with D0 =
∑
f/e∈P

∑
l∈Z, n<0

he
Ne

σ0(−n)cf/e(n, 0)

where Vt〈Z〉 = Vt〈( τ z
z ω )〉 =

( tω z
z τ/t

)
and σj(m) =

∑
d|m d

j . The poles and
zeros of Bφ lie on the rational quadratic divisors defined by the Fourier
coefficients cf/e(n, l) with 4nmt− l2 < 0. In particular Bφ is holomorphic if
all such coefficients are positive. The character χ is induces by the following
relations

χ(M̃) =
∏

f/e∈P

(
v(Ne)
η (M)

) he
Ne

∑
l∈Z cf/e(0,l)

for M ∈ Γ0(Ne) where v
(Ne)
η (M) = vη(αeMα−1

e ) with αe =
(
Ne 0
0 1

)
and

χ([λ, µ; 0]) =
∏

f/e∈P, l>0

v
he
Ne

lcf/e(0,l)

H,Ne
([λ, µ; 0])

where vH,Ne([λ, µ; 0]) = (−1)λ+Neµ+Neλµ for λ, µ ∈ Z and for all κ ∈ Z
χ([0, 0; κt ]) = e2iπCκ/t.

Proof. The paramodular group Γt can be realized as the stable orthogonal
group of the lattice 2U ⊕ 〈−2t〉 of signature (2, 3) where U = ( 0 1

1 0 ) is the
hyperbolic plane (see [G1], [GH2]). Using the similar arguments we can
realize Γt(N) as a subgroup of the orthogonal group of the lattice U⊕U(N)⊕
〈−2t〉 where U(N) =

(
0 N
N 0

)
. The product of the theorem is a specialization

of the Borcherds automorphic product considered in [B1, Theorem 13.3]. It
converges if Y = ImZ lies in a Weyl chamber determined by the action of
Γ0(N) on Y > 0 with det(Y ) > C for a sufficiently large C. The product
can be extended to a meromorphic function on H2 whose poles and zeros
lie on rational quadratic divisor of H2. We define below the invariants (the
modular group, the weight, the character, the first and the second Fourier-
Jacobi coefficients) of this modular form in terms of the Fourier coefficients
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of the lifted Jacobi form of weight 0 using a representation similar to [GN1]–
[GN2].

We have the following decomposition (see [He])

Γ0(N)\MN (m) = (23)

⊔
f/e∈P

{
Mf/e

(
a b
0 d

)
| ad = m, ae ≡ 0 mod N, b mod hed

}
.

For φ ∈ Jnh0,t (Γ0(N)) and Z = ( τ z
z ω ) ∈ H2 we set

Lφ(Z) =
∞∑
m=1

φ|0,tTN (m)(τ, z)e2iπtmω. (24)

Using the decomposition of Γ0(N)\MN (m) and the formula for the action
of TN (m) (see the proof of Theorem 2.2) we have (whenever the product
converges):

Exp(−Lφ(Z)) =
∏

f/e∈P

∏
m>1
n, l∈Z

(
1− (qnrlstm)Ne

) he
Ne
cf/e(nm,l).

This product is invariant with respect to the action of the Jacobi group.
We introduce one more factor(the “zeroth” Hecke operator or the Hodge
correction in the geometric terms of [G4])

T
(0)
φ (Z) =

∏
f/e∈P

η(Neτ)
he
Ne
cf/e(0,0)

∏
l>0

(
ϑ(Neτ,Nelz)
η(Neτ)

eiπNel
2ω

) he
Ne
cf/e(0,l)

.

(25)
So as in [GN2, (2.7)] we obtain that

Bφ(Z) = T
(0)
φ (Z) · Exp(−Lφ(Z)). (26)

The additional term T
(0)
φ (Z) is a nearly holomorphic Jacobi form of weight

k indicated in the theorem and of index C ∈ N/2 with respect to Γ0(N).
This is the first Fourier-Jacobi coefficient of the automorphic product Bφ.
(It might be that this is a Jacobi form of index zero, i.e., an automorphic
form in τ .) The Jacobi form is a modular form with respect to the parabolic
subgroup Γ∞t (N). Like in the proof of Theorem 2.2 we use that Γt(N)+ =
〈Γ∞t (N), Vt〉. We have to analyze the behavior of Bφ under Vt-action. Like
in [GN2] a straightforward calculation shows that

Bφ(Vt〈Z〉)
Bφ(Z)

= (−1)D0(q1/ts−1)tD1+C−tA
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where D0 is given in the theorem and

D1 =
∑
f/e∈P

∑
l∈Z, n<0

heσ1(−n)cf/e(n, l).

We note that in [AI] the approach of [GN1]–[GN2] was also used. But in [AI]
it was not proved that tD1 + C − tA = 0. To show that the automorphic
product is Vt-invariant we prove Lemma 3.2 (see below) similar to [GN2,
Lemma 2.2]. We note also that the automorphic product of the theorem is
defined at the “standard” 0-dimensional cusp ∞ of Γt(N). If N = 1 then
the Γt-orbit of any rational quadratic divisor (a Humbert modular surface)
has a representative containing ∞ (see [GH2] and [GN2]). If N > 1 then
there are more orbits. Not all of them have a non-trivial intersection with
infinity. Therefore the arguments in the construction of some examples of
the automorphic products in [AI] are not complete. One has to use [B1,
Theorem 13.3] in the proof. We add that as we mentioned in the beginning
of this proof we do not agree with [AI, page 262] that “Γ(2)

0 (N) is not an
automorphism group of a lattice.”

Lemma 3.2 For any φ ∈ Jnh0,t (Γ0(N)) we have tD1 + C − tA = 0.

Proof. We give a proof based on the method of the automorphic correction
proposed in [G4] which is more simple than the proof of [GN2, Lemma 2.2].
For any φ ∈ Jnhk,t (SL2(Z)), we consider the following automorphic correction
of φ:

Ψ(τ, z) = e−8π2tG2(τ)φ(τ, z) where G2(τ) = − 1
24

+
∑
n>1

σ1(n)qn

is the quasi-modular Eisenstein series of weight 2. The corrected form sat-
isfies the functional equation

Ψ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)kΨ(τ, z), ∀

(
a b
c d

)
∈ SL2(Z).

We consider the Taylor expansion of Ψ around z = 0

Ψ(τ, z) =
∑
ν>0

fν(τ)zν .

The Taylor coefficient fν ∈ M (mer)
k+ν (SL2(Z)) are modular forms with a pos-

sible pole of finite order at the cusp. If φ(τ, z) =
∑

n∈Z
∑

l∈Z c(n, l)q
nrl is

in Jnh0,t (SL2(Z)), then

f2(τ) =
∂2φ

∂z2
(τ, 0)− 16π2tG2(τ)φ(τ, 0) ∈M (mer)

2 (SL2(Z)).
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But the constant term of any nearly holomorphic modular form of weight
two is zero (see [B2, Lemma 9.2]). Therefore

t
∑
l∈Z

c(0, l)− 24t
∑
n<0
l∈Z

σ1(−n)c(n, l)− 6
∑
l∈Z

l2c(0, l) = 0. (27)

For a Jacobi form with respect to a congruence subgroup we use the trace
operator. Let φ ∈ Jnh0,t (Γ0(N)). We set

ψ = TrSL2(Z)(φ) =
∑

γ∈Γ0(N)\ SL2(Z)

φ
∣∣
0,t
γ ∈ Jnh0,t (SL2(Z)).

This Jacobi form has the following Fourier expansion

ψ(τ, z) =
∑
n∈Z

∑
l∈Z

c(n, l)qnrl where c(n, l) =
∑
f/e∈P

hecf/e(n, l).

The last expression is obtained by noticing that

SL2(Z) =
⊔

f/e∈P, 06a6he−1

Γ0(N)Mf/e

(
1 a
0 1

)
.

The claim of the lemma follows from (27). 2

The formula for the character of Γt(N)+ = 〈Γt(N), Vt〉 follows directly form
the calculation with η- and ϑ-factors in T

(0)
φ (see (25)) which is the first

Fourier-Jacobi coefficient of Bφ. More exactly the SL2-part of the character
(or the multiplier system) of this Jacobi form is equal to the character of
the η-product ∏

f/e∈P

η(Neτ)
he
Ne

∑
l cf/e(0,l)

which is a Γ0(N)-modular form because Ne is a divisor of N . Its character
is the character χ(M̃) of the theorem. The Heisenberg part of the character
of the Jacobi form ϑ(Mτ,Mz) of index M/2 is equal to

vH,M ([λ, µ; 0]) = vH([λ,Mµ; 0]) = (−1)λ+Mµ+Mλµ.

It gives us the Heisenberg part of the character. We note that the second
Fourier-Jacobi coefficient is equal to T (0)

φ ·φ̃. We note that if a Siegel modular
form F is a Borcherds automorphic product Bφ we can find φ taking the
quotient of the first two non-zero Fourier–Jacobi coefficients of F . 2

In order to obtain the Borcherds products for the dd-modular forms we
propose a method of construction of weak Jacobi forms of weight 0 for Γ0(N)
using the Jacobi theta-series with characteristics (see [Mu]). Let N ∈ N and
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(a, b) ∈ Z2. We call the theta-series of level N with characteristic (a, b), the
series

ϑ
(N)
a,b (τ, z) =

∑
n∈Z

eiπ(n+ a
N

)2τ+2iπ(n+ a
N

)(z+ b
N

). (28)

This is a holomorphic function on H1 × C. Among these series, there is a
special one for (a, b) = (0, 0)

ϑ00(τ, z) =
∑
n∈Z

eiπn
2τ+2iπnz =

∏
n>1

(1− qn)(1 + q
2n−1

2 r)(1 + q
2n−1

2 r−1).

All the theta-series with characteristics can be expressed by the mean of ϑ00

ϑ
(N)
a,b (τ, z) = e2iπ ab

N2 q
a2

2N2 r
a
N ϑ00(τ, z +

a

N
τ +

b

N
).

We also have for any (a′, b′) ∈ Z2

ϑ
(N)
a+a′N,b+b′N (τ, z) = e2iπ ab

′
N ϑ

(N)
a,b (τ, z).

The last formula allows us to take the characteristics (a, b) modulo N .
To construct Jacobi forms of weight 0 we consider quotients of theta-

series. We put

ξ
(N)
a,b (τ, z) =

ϑ
(N)
a,b (τ, z)

ϑ
(N)
a,b (τ, 0)

.

This function is holomorphic on H1 × C for any (a, b) if N is odd. For N
even, as ϑ00(τ, τ2 + 1

2) = 0, we cannot make the quotient ξ(N)
N
2
,N

2

. When we

write ξ(N)
a,b for even N then we assume that (a, b) 6= (N2 ,

N
2 ). In fact ξ(N)

a,b is
a weak Jacobi forms of weight 0 and index 1/2 with respect to the principal
congruence subgroup of level N (see (5)):

ξ
(N)
a,b |0, 12M = ξ

(N)
a,b , M ∈ Γ(N). (29)

More exactly we have the following functional equations with respect to the
generators of the full Jacobi group (see §2)

ξ
(N)
a,b |0, 12 [λ, µ; 0] = e2iπ a

N
µe−2iπ b

N
λξ

(N)
a,b , (λ, µ) ∈ Z2,

ξ
(N)
a,b |0, 12S = ξ

(N)

b,−a , S =
(

0 −1
1 0

)
where −a is the unique representant of −a modulo N such that −a ∈
{0, ..., N − 1},

ξ
(2N)
a,b |0, 12T = ξ

(2N)

a,a+b+N
, T = ( 1 1

0 1 )
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where a+ b+N is the unique representant of a + b + N modulo 2N such
that a+ b+N ∈ {0, ..., 2N − 1} and

ξ
(2N ′+1)
a,b

∣∣∣∣
0, 1

2

T = ξ
(4N ′+2)

2a,2(a+b+N ′)+1

where 2(a+ b+N ′) + 1 is the unique representant of 2(a+b+N ′)+1 modulo
4N ′+ 2 such that 2(a+ b+N ′) + 1 ∈ {0, ..., 4N ′ + 1}. These formulae lead
us to construct weak Jacobi forms for Γ0(N) in the following way:
(i) we consider the quotient group G = Γ(N)\Γ0(N) if N is even or G =
Γ(2N)\Γ0(N) if N is odd since according to the T -transformation formula
we have to double the level;
(ii) we compute the orbits of ξ(N)

a,b under G;

(iii) in a fixed orbit of ξ(N)
a,b , we take some powers of elements or products of

them in order to obtain the trivial character of the Jacobi group.
In this paper we only construct the Jacobi forms of weight 0 which generate
dd-modular forms. We are planing to obtain results similar to [G4] about
the structure of the graded rings of weak Jacobi forms with respect to Γ0(N)
for small N in a separate publication.
Examples 3.3 N = 2. We have G = {I2, T} (the group of order two)
and the orbit OG(ξ(2)

1,0) contains the only element ξ(2)
1,0 . The formula for the

[µ, ν; 0]-action implies that ξ(2)
1,0 has a character of order two. Therefore

(ξ(2)
1,0)2 ∈ Jw0,1(Γ0(2)).

N = 3. In this case G is non abelian group of order 36. It contains the
set Σ = {±T k,±ST 3ST k, 0 6 k 6 5}. Therefore OG(ξ(6)

3,1) ⊇ OΣ(ξ(6)
3,1) =

{ξ(6)
3,1 , ξ

(6)
3,5} and using the standard generators of Γ0(3) we have equality.

Therefore
ξ

(6)
3,1 · ξ

(6)
3,5 ∈ J

w
0,1(Γ0(3)).

N = 4. We have that G = {I2, T, T
2, T 3,−I2, TST

4S, TST 4ST, TST 4ST 2}
is the group of order 8 isomorphic to Z/2Z×Z/4Z. We see that OG(ξ(4)

0,1) =

{ξ(4)
0,1 , ξ

(4)
0,3} and OG(ξ(4)

2,1) = {ξ(4)
2,1 , ξ

(4)
2,3}. Therefore

ξ
(4)
0,1 · ξ

(4)
0,3 , and ξ

(4)
2,1 · ξ

(4)
2,3 ∈ J

w
0,1(Γ0(4)).

The dd-modular forms as Borcherds products. Now we can finish
the proof of Theorem 1.4 and to construct the last dd-modular form ∇3/2

of weight 3/2 with respect to Γ(2)
0 (4). Moreover we give the Borcherds

automorphic product for all new Siegel dd-modular forms with respect to
the congruence subgroups. (The Borcherds products of the dd-modular
forms for the full paramodular group were found in [GN1]–[GN2].)
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We start with N = 2. Let

φ2(τ, z) = 4(ξ(2)
1,0)2(τ, z) ∈ Jw0,1(Γ0(2)).

There are two cusps and φ2 has the two Fourier expansions with integral
Fourier coefficients

φ2(τ, z) = (r−1 + 2 + r) + 2(r−2 − 2 + r2)q + · · · =
∑

n∈N, l∈Z
c(n, l)qnrl,

(φ2|0,1S)(τ, z) = 4− 8(r−1 − 2 + r)q
1
2 + · · · =

∑
n∈ 1

2
N, l∈Z

cS(n, l)qnrl.

The only orbit of the Fourier coefficients with negative hyperbolic norm
4nt − l2 of its index is c(0, 1) = 1. Then applying Theorem 3.1 to φ2, we
obtain

Bφ2(Z) = q
1
2 r

1
2 s

1
2

∏
(n,l,m)>0

(1− qnrlsm)c(nm,l)(1− q2nr2ls2m)cS(nm,l)

= η(τ)η(2τ)4ϑ(τ, z)eiπω · Exp(−Lφ2)(Z).

This is a holomorphic Siegel modular form of weight 3 with respect to Γ0(2).
According to the Koecher principle a Siegel dd-modular form is defined up
to a constant. Comparing the first Fourier coefficients we obtain

∇3(Z) = Lift(η(τ)η(2τ)4ϑ(τ, z)) = Bφ2(Z).

For N = 3 we take

φ3(τ, z) = 3(ξ(6)
3,1ξ

(6)
3,5)(τ, z) ∈ Jw0,1(Γ0(3)).

We again have two Fourier expansions containing only integral Fourier co-
efficients

φ3(τ, z) = (r−1 + 1 + r) + (r−2 − r−1 − r + r2)q + · · · =
∑

n∈N, l∈Z
c(n, l)qnrl,

(φ3|0,1S)(τ, z) = 3− 3(r−1 − 2 + r)q
1
3 + · · · =

∑
n∈ 1

3
N, l∈Z

cS(n, l)qnrl.

The both Fourier expansions contain only one type of coefficients with neg-
ative norm of its index. This is c(0, 1) = 1. According to Theorem 3.1 we
obtain

Bφ3(Z) = q
1
2 r

1
2 s

1
2

∏
(n,l,m)>0

(1− qnrlsm)c(nm,l)(1− q3nr3ls3m)cS(nm,l)
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and
∇2(Z) = Lift(η(3τ)3ϑ(τ, z)) = Bφ3(Z).

The dd-modular form ∇3/2. The case of N = 4 is a little bit more
difficult because there are three different cusps. Let

φ4(τ, z) = 2(ξ(4)
2,1ξ

(4)
2,3)(τ, z) ∈ Jw0,1(Γ0(4)).

We have the following Fourier expansions

φ4(τ, z) = (r−1 + r) + (r−3 − r−1 − r1 + r3)q2 + · · · =
∑

n∈N, l∈Z
c(n, l)qnrl,

(φ4|0,1S)(τ, z) = 2− 2(r−1 − 2 + r)q
1
4 + · · · =

∑
n∈ 1

4
N, l∈Z

cS(n, l)qnrl,

(φ4|0,1M)(τ, z) = 2 + 2(r−2 − 2 + r2)q + · · · =
∑

n∈N, l∈Z
cM (n, l)qnrl

where M =
(

1 −1
2 −1

)
. All Fourier coefficients are integral and there exists the

only type of coefficients with negative index norm c(0, 1) = 1. We obtain
the Siegel modular form ∇3/2 = Bφ4 of weight 3/2 for Γ(2)

0 (4) given by

∇3/2(Z) = Bφ4(Z) =
η(2τ)η(4τ)2

η(τ)
ϑ(τ, z)eiπω Exp(−Lφ4)(Z) =

q
1
2 r

1
2 s

1
2

∏
(n,l,m)>0

(1−qnrlsm)c(nm,l)(1−q2nr2ls2m)
1
2
cM (nm,l)(1−q4nr4ls4m)cS(nm,l).

The modular form ∇3/2 is the last Siegel dd-modular form which we need
in order to finish the proof of Theorem 1.4. Using the Koecher principle we
obtain that

∇3/2(Z)2 = B2
φ4

(Z) = Lift
(η(2τ)2η(4τ)4

η(τ)2
ϑ(τ, z)2

)
.

The last example is the automorphic product of the dd-modular form Q1

with N = 2, t = 2 and k = 1. Let

ψ(τ, z) = 2ξ(2)
1,0(τ, 2z) ∈ Jw0,2(Γ0(2)).

We have the following Fourier expansions

ψ(τ, z) = (r−1 + r) + (r−3 − r−1 − r + r3)q + · · · =
∑

n∈N, l∈Z
c(n, l)qnrl,

(ψ
∣∣
0,2
S)(τ, z) = 2−2(r−2−2+r2)q

1
2−4(r−2−2+r2)q1−8(r−2−2+r2)q

3
2 +. . .
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=
∑

n∈ 1
2

N, l∈Z

cS(n, l)qnrl.

Then applying Theorem 3.1, we obtain

Bψ(Z) = q
1
4 r

1
2 s

1
2

∏
(n,l,m)>0

(1− qnrls2m)c(nm,l)(1− q2nr2ls4m)cS(nm,l)

= Q1(Z) = Lift
(η(2τ)2

η(τ)
ϑ(τ, z)

)
.

A traced form of Borcherds product and reflective modular
forms. For each dd-modular form we have the identity between the known
(due to the Jacobi lifting) Fourier expansion and the Borcherds products.
We note that such examples are rather rare. Below we give more examples
of this type analyzing new reflective modular forms, i.e., the modular forms
with divisor determined by some reflections in the corresponding modular
group (see [GN2]–[GN3]). Every dd-modular form is reflective. We con-
struct new examples as the quotient of dd-modular forms. To represent
the quotient of two dd-modular functions in a better form we give a new
representation for the automorphic product in Theorem 3.1. For that we
rewrite the full Hecke operator TN (m) using the summation with respect to
the classes from the same subgroup Γ0(Na) where Na = N/(a,N):

TN (m) =
∑
a|m

∑
M∈Γ0(N)\Γ0(Na)

∑
b mod m/a

Γ0(N)M
(
a b
0 m/a

)
.

Let us reorganize the formal Hecke sum LT =
∑∞

m=1m
−1TN (m) using the

last representation. Formally we have

LT =
∑
e|N

∑
a′≥1

(a′,Ne)=1

(a=ea′)

∑
M∈Γ0(N)\Γ0(Ne)

∑
n≥1

(m=an)

(an)−1
∑

b mod n

Γ0(N)M


a 0 b 0
0 an 0 0
0 0 n 0
0 0 0 1

 .

We can rewrite the last class as

Γ0(N)M


a
e 0 b 0
0 an

e 0 0
0 0 n 0
0 0 0 1

 ·

e 0 0 0
0 e 0 0
0 0 1 0
0 0 0 1

 .

Therefore we have a new representation for (24)

Lφ(Z) =
∑
e|N

∑
m≥1

e−1
(
ψ̃Ne | 0 T

(Ne)
− (m)

)
(eZ) =

∑
e|N

e−1LψNe (eZ) (30)
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where

ψ̃Ne(Z) = ψNe(τ, z)e
2πitω = TrΓ0(Ne)φ̃(Z) =

∑
M∈Γ0(N)\Γ0(Ne)

(
φ̃ |0 M̃

)
(Z)

is a Jacobi form of weight 0 and index t with respect to Γ0(Ne) and T (Ne)
− (m)

is the Hecke operator which we used in the additive lifting in §2.

T (Ne)(m) =
∑

ad=m, (a,Ne)=1

bmod d

Γ0(Ne)
(
a b
0 d

)
.

We consider the Fourier expansion of the traced Jacobi form TrΓ0(Ne)φ̃ at
infinity

ψNe(τ, z) =
∑
n, l∈Z

fNe(n, l)q
nrl.

We note that for e = N we have ψ1 = φ and f1(n, l) is the Fourier coefficient
of φ at infinity denoted by c1/N (n, l) in Theorem 3.1. As in the proof of
Theorem 3.1 we have

e−1LψNe (eZ) =
∑
m≥1
n,l∈Z

∑
a≥1

(a,Ne)=1

1
ae
fNe(mn, l)

(
qnrlstm

)ea

and ∑
m≥1

(m,N)=1

xm

m
= −

∑
b|N

µ(b)
b

Log(1− xb)

where µ stands for the Moebius function. Therefore

Lφ(Z) = −
∑
e|N

∑
b|Ne

∑
m≥1
n, l∈Z

Log
(

1−
(
qnrlstm

)be)µ(b)
fNe

(mn,l)

be
.

The advantage of this new representation of the Borcherds product is evi-
dent. We use in it only the Fourier expansion of the traced Jacobi forms φNe
at infinity. For the group Γ(2)

0 (p) this expression contains only two functions
and one of them is well known.

TrSL2(Z) : Jw0,1(Γ0(p))→ Jw0,1(SL2(Z)) = Cφ0,1

where

φ0,1(τ, z) = − 3
π2

℘(τ, z)ϑ(τ, z)2

η(τ)6
=

∑
n≥0, l∈Z

a(n, l)qnrl = (r + 10 + r−1) + . . .
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is one of the main generators of the graded ring of weak Jacobi forms (see
[EZ], [G4]). We note that φ0,1 is the elliptic genus of Enriques surfaces and
2φ0,1 is the elliptic genus of K3 surfaces. For any φp ∈ Jnh0,t (Γ0(p)) we have

Exp(−Lφp(Z)) =
∏
m≥1
n, l∈Z

(
1−qnrlstm

)cφp (nm,l)(1−qpnrplspmt) 1
p

(f(nm,l)−cφp (nm,l))

where cφp(n, l) and f(n, l) are the Fourier coefficients of φp and TrSL2(Z)(φp)
at infinity.

Let us consider ∇3 (N = 2) and ∇2 (N = 3). By comparing the Fourier
expansions we conclude that

φ0,1 = TrSL2(Z)φ2 = 4(ξ(2)
1,0)2 + 4(ξ(2)

0,1)2 + 4(ξ(2)
0,0)2,

φ0,1 = TrSL2(Z)φ3 = 3(ξ(6)
3,1ξ

(6)
3,5) + 3(ξ(6)

1,3ξ
(6)
5,3) + 3(ξ(6)

1,1ξ
(6)
5,5) + 3(ξ(6)

1,5ξ
(6)
5,1).

Moreover

Jw0,1(Γ0(2)) = 〈φ0,1, φ2〉C and Jw0,1(Γ0(3)) = 〈φ0,1, φ3〉C.

Therefore for p = 2 or 3

Exp(−Lφp(Z)) =
∏
m≥1
n, l∈Z

(
1−qnrlspm

)cφp (nm,l)(1−qpnrplspm) 1
p

(a(nm,l)−cφp (nm,l))

where a(n, l) is the Fourier coefficient of φ0,1.
Using this approach we can easy calculate the product formulae for new

reflective modular forms of weight 2 for Γ0(2), weight 3 for Γ0(3), weight
3/2 and 7/2 for Γ0(4) and weight 1 for Γ2(2):

∆5(2Z)
∇3(Z)

,
∆2(2Z)
Q1(Z)

,
∇3(2Z)
∇3/2(Z)

,
∆5(2Z)
∇3/2(Z)

and
∆5(Z)
∇3(Z)

,
∆5(Z)
∇2(Z)

,
∆2(Z)
Q1(Z)

,
∇3(Z)
∇3/2(Z)

,
∆5(Z)
∇3/2(Z)

.

The dd-modular forms and all these reflective modular forms are related to
Lorentzian Kac–Moody super Lie algebras of Borcherds type. This object
will be similar to the algebras constructed in [GN1]–[GN4]. We are planning
to consider them in a separate publication.

Using the formula ∆5 = Bφ0,1 (see [GN2, (2.16)]) and the trace formula
for φ2, we deduce an infinite product expansion

∆5(Z)
∇3(Z)

=
η(τ)8

η(2τ)4

∏
m≥1
n, l∈Z

(
1− qnrlsm

1 + qnrlsm

) 1
2

((a(nm,l)−cφ2
(nm,l))
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where a(n, l) and cφ2(n, l) are respectively the Fourier coefficients of ϕ0,1

and φ2 at ∞. For N = 3 we obtain

∆5(Z)
∇2(Z)

=
η(τ)9

η(3τ)3

∏
m≥1
n, l∈Z

(1− qnrlsm)b(nm,l)(1− q3nr3ls3m)−
1
3
b(nm,l)

where b(n, l) = a(nm, l) − cφ3(nm, l). The both modular forms are holo-
morphic because the divisor of ∆5(Z) is larger than the divisor of ∇3(Z) or
∇2(Z). They are non-cusp forms because the zeroth Fourier-Jacobi coeffi-
cient is non zero.

Analyzing the examples of the reflective modular forms constructed above
and in [GN2]–[GN3] we see that the first non-zero coefficient of the Taylor
expansion of a reflective form F at z = 0 is an η-product or an η-quotient
of the type considered by J. McKay and Y. Martin (see [Ma]). We can
assume that every η-quotients of this type is the first coefficient of a Taylor
expansion of some power of a reflective modular form.

The reflective modular forms in the first line above are more regular.
Then we have

∆5(2Z)
∇3(Z)

= φ̃2, 1
2
(Z)

∏
m≥1
n, l∈Z

(1−q2nr2ls2m)
1
2

(a(nm,l)+cφ2
(nm,l))(1−qnrlsm)−cφ2

(nm,l)

where

φ2, 1
2
(τ, z) =

η(2τ)5

η(τ)
ϑ(2τ, 2z)
ϑ(τ, z)

∈ J2, 1
2
(Γ0(2), χ2)

is a Jacobi cusp form of weight 2 with a character of order 2. More exactly,
χ2(
(
a b
2c d

)
) = (−1)b and χ2([λ, µ; 0]) = (−1)λ. This reflective form and its

square are the lifting of the first Fourier–Jacobi coefficient

∆5(2Z)
∇3(Z)

= Lift(φ2, 1
2
) ∈M2(Γ(2)

0 (2), χ2),

∆5(2Z)2

∇3(Z)2
= Lift(φ2

2, 1
2

) ∈M4(Γ(2)
0 (2)). (31)

We have a similar formula for N = 3

∆5(3Z)
∇2(Z)

= Lift(φ3,1) ∈M3(Γ(2)
0 (3),

(
detD

3

)
) (32)

where

φ3,1(τ, z) = η(3τ)6 ϑ(3τ, 3z)
ϑ(τ, z)

∈ J3,1(Γ0(3),
(
d

3

)
),

∆5(3Z)
∇2(Z)

= φ̃3,1(Z)
∏
m≥1
n, l∈Z

(1−q3nr3ls3m)
1
3

(2a(nm,l)+cφ3
(nm,l))(1−qnrlsm)−cφ3

(nm,l).
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For N = 4 we get two new traced functions defined by φ4 = 2ξ(4)
2,1ξ

(4)
2,3 . They

are

φ0,1 = TrSL2(Z)φ4 and φ2 = TrΓ0(2)φ4 =
∑

M∈Γ0(4)\Γ0(2)

φ4|0M.

To get the second identity we take into account that dim Jw0,1(Γ0(2)) = 2.
So we are able to write the infinite product expansions for the four reflective
modular forms of type ∆5/∇3/2 and ∇3/∇3/2 from our list using the Fourier
coefficients of φ0,1, φ2 and φ4 at infinity.

We finish with the case N = 2 and t = 2. In order to construct Q1 we
used ψ = 2ξ(2)

1,0(τ, 2z). As before, we get only one new traced function

φ0,2 = TrSL2(Z)ψ = ψ + 2ξ(2)
0,1(τ, 2z) + 2ξ(2)

0,0(τ, 2z)

where φ0,2 ∈ Jw0,2(SL2(Z)) is the second generator of the graded ring of the
weak Jacobi forms of weight 0 with integral Fourier coefficients (see [GN2,
(2.18)] and [G4]). Then we get a reflective holomorphic modular form of
weight 1 with respect to Γ2(2) < Γ2

∆2(Z)
Q1(Z)

=
η(τ)4

η(2τ)2

∏
m≥1
n, l∈Z

(
1− qnrls2m

1 + qnrls2m

) 1
2

(a2(nm,l)−cψ(nm,l))

where a2(n, l) is the Fourier coefficient of φ0,2. In the same way we obtain
that

∆2(2Z)
Q1(Z)

= φ̃1, 1
2
(Z)

∏
m≥1
n, l∈Z

(1−q2nr2ls4m)
1
2

(a2(nm,l)+cψ(nm,l))(1−qnrls2m)−cψ(nm,l)

where
φ1, 1

2
(τ, z) = η(2τ)η(τ)

ϑ(2τ, 2z)
ϑ(τ, z)

∈ J1, 1
2
(Γ0(2), χ4).

This reflective modular form of weight one has elementary Fourier coeffi-
cients like Q1. The character of φ1, 1

2
is given by the following formula

χ4(M) = e
2iπ
4

(bd+d−1)

for M =
(
a b
2c d

)
∈ Γ0(2). Then we have Γ1(8, 4) ⊂ Ker(χ4) so q = 4. We

also have (
φ1, 1

2
| 1

2
[λ, µ; 0]

)
(τ, z) = (−1)µφ1, 1

2
(τ, z).

Then we obtain that ∆2(2Z)
Q1(Z) = Lift(φ1, 1

2
). This is not a cusp form because

φ1, 1
2
(τ, z) = 1

2ϑ
(2)
1,0(τ, z)ϑ(2)

1,0(τ, 0). For (a, 8) = 1, we have χ4(σa) =
(−4
a

)
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then we deduce as for Q1 that

∆2(2Z)
Q1(Z)

= Lift(φ1, 1
2
)(Z) =

1
2

∑
N≥1

∑
n,m∈4N+1
l∈2Z+1

2nm−l2=N2

∑
a|(n,l,m)
a>0

(
−4
a

)
q
n
4 r

l
2 s

m
2 .
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University Lille 1
Laboratoire Paul Painlevé
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