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0. Introduction

The purpose of this paper is to generalize the Atiyah-Patodi-Singer index theorem (or
APS theorem for briefness) [APS] to compact manifolds with corners of codimension two.
To explain this in more detail, we first recall the results of [APS].

Let X be an even—dimensional compact oriented manifold with smooth boundary M
and assume that X .is endowed with a metric which is a product near the boundary. Let
E — X be a Clifford bundle over X. We also assume that the metric and the connection of
E are products near the boundary. Let Dt : C%°(X, Et) — C*®(X, E~) be the associated
chiral Dirac operator. Then near the boundary, DT takes the form

(0.1) D* =7(% +A),

where v denotes Clifford multiplication by the inward unit normal vector field, u is the
mmward unit normal coordinate and A is a Dirac operator on M. Let P be the nonnegative
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spectral projection of A and denote by C*®(X, E*; P) the space of smooth sections of ET
satisfying the boundary conditions

(0.2) Pelp) = 0.

Then Dt : C°(X,E*"; P) - C°°(X, E~) is a Fredholm operator and its index is given by

(0.3) Ind Dt = / wp — %(1)(/1) + dimker A},
X

where wp is the Atiyah—Singer index density of D%, and 5(A) is the eta invariant of the
self-adjoint operator A. Recall that the eta invariant is defined by the eta function

(0.4) na(s) = Z S—;;g\lll—;\, Re(s) > dim M,
A0

where A runs over the nonzero eigenvalues of A. The series is absolutely convergent in
the half-plane Re(s) > dim M and has a meromorphic continuation to C with no pole at
s = 0. Then the eta invariant n(A4) is defined as 14(0).

In the sequel, the APS theorem has been rederived by many different approaches.
First, Cheeger [C1], [C2] gave a new proof of the APS theorem for the signature operator
using analysis on spaces with conical singularities. If one attaches a cone C(M) to the
boundary M of X, then X U C(M) becomes a space with a conical singularity. The
boundary conditions (0.2) are now replaced by the L?-conditions in the complement of
the cone tip and the-computation of the L?~index of the signature operator reproduces
(0.3) in this case. In fact, as emphasized by Cheeger [C1], this should not be considered
as a rederivation of the APS theorem, but rather as the natural signature formula for a
class of singular spaces. This approach was extended in [BC] to twisted Dirac operators.

In place of a cone one can also attach a half-cylinder to the boundary of X, endow
R* x M with certain warped product metrics, and rederive the APS theorem as L?-
index theorem for the corresponding Dirac operator on the enlarged manifold [Mu3], [M],
[St1). In particular, we may consider the manifold X = X Uy (R* x M) where the
cylinder is equipped with the product metric. Then Xisa complete manifold, and it
was already observed in [APS] that the index of the APS boundary value problem and
the L?-index of the canonically extendg\d Dirac operator on X are closely related. After
changing coordinates, we may think of X as being the interior of a compact manifold with
boundary, endowed with a complete metric which sends the boundary to infinity. This is
the point of view adopted by Melrose in [M].

In the present paper we study similar index problems on manifolds with corners of
codimension two. Here, we follow [M] and define a manifold with corners to be a topological
manifold X with boundary together with an embedding ¢ : X — X into a closed C*°
manifold for which there exists a finite collection of functions p; € C*°(X), ¢ € I, such
that «(X) = {z € X | pi(z) > 0,7 € I} and for each subset J C I, the dp;, i € J, are

linearly independent at each point @ € X where all p;, ¢ € J, vanish. It follows from this
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definition that the boundary of X is the union of embedded hypersurfaces Y;, 2 € I. Let
Yiiio =Y, N---0Y,,, 2; € I. Then we say that Y; .., is a corner of codimension k.
We assume that X is endowed with a metric which is a product near all hypersurfaces
and also near all corners. This means that for any corner Y;,..;, of codimension k, the
metric is a product on a neighborhood of the form (—¢,0]¥ x ¥;,....;,. Let Dt be a Dirac
operator on X which is adopted to the product structure near the boundary. Then the
goal is to generalize the APS theorem to this case. There are several reasons to expect
that such an extension will be of interest. For example, by investigating index problems
on manifolds with smooth boundary one is led very naturally to new spectral invariants on
odd-dimensional manifolds, namely the eta invariants. Therefore, the presence of corners
may lead to other new invariants attached to the corners. Furthermore, an index formula
is also closely related with a gluing formula for eta invariants (see §8).

We don’t know if there exists any genaralization of the APS boundary conditions to
the case of manifolds with corners. However, as explained above, the APS boundary condi-
tions can be replaced by the L?—conditions on the corresponding manifold with cylindrical
ends. This is the approach we are going to use for a manifold with corners Xy. To get a
complete manifold, we may either enlarge Xy by gluing successively cylinders to boundary
components or, we may endow Xy with a complete metric of the type used by Melrose [M].
One may even think of more general geometric structures at infinity so that, for example,
locally symmetric manifolds of finite volume are included naturally into the setting.

To work in the L?-setting introduces new difficulties which are connected with the
presence of the continuous spectrum. But this should not be considered as being necessarily
a disadvantage, because the L?-approach also opens up new perspectives of the whole
subject. We have to study the spectral theory of Dirac operators on such manifolds.
In particular, we have to investigate the structure of the continuous spectrum of these
operators and to establish the link with scattering theory. There is a close relation of these
problems with both the analysis of the N-body problem in quantum mechanics and the
study of the spectral resolution of the Casimir operator on locally symmetric manifolds
of finite volume [L]. This may be a lot more interesting than simply the derivation of an
index formula.

In the present paper we consider only manifolds with corners of codimension < 2. The
reason for this assumption is obvious because, in order to treat the continuous spectrum
of Dirac operators on the corresponding complete manifolds, we need to know as much
as possible about the spectral resolution of the induced Dirac operators on the boundary
hypersurfaces. In the codimension two case, the boundary hypersurfaces are manifolds
with cylindrical ends for which the spectral theory is well understood.

For simplicity, we assume that the boundary of our manifold with corners Xy is the
union of exactly two hypersurfaces M; and Ms, intersecting in a closed manifold ¥ which
is the corner in this case (see Fig.1l). The extension of our results to several corners
of codimension two is straightforward. We enlarge Xy by gluing first half-cylinders to
the boundary components M; and then filling in (RT)? x YV (see Fig.2). In this way,
we construct a complete manifold X which is canonically associated with X,. Let Z; =
M; Uy (Rt x Y), ¢ = 1,2, be the manifolds obtained from M; by attaching half-cylinders
to their boundary Y. Then Z; are manifolds with cylindrical ends which may be regarded
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as the components of the ideal boundary of X. Note that X is the union of R* x Z;,
RT x Zy and X,.

In §2 we study Dirac operators D : C(X,E) —» C*(X, E) on X. We assume that D
is adopted to the product structure of X near infinity, that is, we assume that on R* x Z;,
D takes the form

5}
(0.5) D=7i(au. +A|’),
and on (R*)? x Y, it can be written as
d 0
=y 4+ Ay + D
D 71 aul + 72611,2 + Dy,

where conditions (2.1) - (2.4) are satisfies. One of our main results in this section is that
the space of L? solutions of D is finite-dimensional. Hence, if X is even-dimensional, the
chiral Dirac operator D : C®(X, E*) = C*°(X, E7) has a well-defined L% index

L2 Ind D* = dim(ker(D*) N L?) — dim(ker(D~) N L?).

In §3 we study the space ZZ)(X } of L? harmonic forms on X. The main result

is Proposition 3.13 which states that the canonical map 'H’("z)(X) — H*(X) induces an
isomorphism

(0.6) 7 Higy(X) S Im(H](X) - HY (X)),

where HY(X) denotes the de Rham cohomology with compact supports. Suppose that
dim Xy = 4k and let Sign(X,) be the signature of the compact manifold with boundary
Xo. As a consequence of (0.6) we get that the L? index of the signature operator on
X equals Sign(Xy), which should be expected to hold for the right choice of boundary
conditions.

Let A = D?. In §4, we study the heat equation for A and we construct a parametrix
for the fundamental solution of 8/t + A.

For the derivation of the index formula we need to describe the continuous spectrum of
A near zero. In §5 we study the resolvent (A —A?)~1, Im(A) > 0. If the Dirac operator Dy
on the corner is invertible, then we prove that (A — A?)~!, regarded as operator in certain
weighted L? spaces, has an analytic continuation to a neighborhood of 0. We believe that
the condition ker Dy = 0 can be removed. Then, however, (Z — A%)7! does not extend
analytically to a small disc around A = 0, but rather to the logarithmic covering of such
a disc. The investigation of the analytic continuation of the resolvent in general requires
a more thorough study of the continuous spectrum, which we postpone to a forthcoming
paper.

Let A; : C°(Z;i, E|z,) — C*=(Zi, E|z,) be the Dirac operator defined by (0.5) and
let A; be its unique self-adjoint extension in L?. Using the analytic continuation of the
resolvent to a neighborhood of the origin, we construct in §6 generalized eigensections

Ei(¢,A), Im(A) > 0, of A which are attached to ¢ € ker A;, + = 1,2. If kerDy = 0,
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then the generalized eigensections E;(¢, A) can be extended to meromorphic functions of
A for |A| < ¢. We establish a number of properties, including the functional equations,
satisfied by the generalized eigensections. The continuous spectrum of A near zero can
be completely described in terms of the generalized eigensections Ei(é,A), ¢ € ker A;,
i=1,2.

Then in §7, we prove our index formula. Our approach is based on the local version
of the McKean-Singer formula. Let dimX = 2k and let 7 : E — E be the canonical
involution of the Clifford bundle. Then we have 7D = —Dr. Let e~ 2% (z,y) be the kernel

of the heat operator e~*2*. Then the local McKean-Singer formula states that

(0.7) %tr(r e_tDn(:z:, z)) = div Vp,

where Vp is the vector field on X which is given locally, with respect to an orthonormal
moving frame {e;}X,, by

12

Vp = Z % tre; - TDe_‘Dz(m,:r)) e;j.

=1

For a closed manifold, (0.7) implies the usual statement that the supertrace Tr('re_‘Dz)
is independent of ¢ and equals Ind D™*. Since our manifold is noncompact, we exhaust it
by compact submanifolds Xp, T > 0, with piecewise smooth boundary. For T > 0, let
ZiT = M;Uy ([0, T) x Y). Then the boundary of X is the union of Z; 7 and Z; 7, which
intersect in {T'} x Y ~ Y. Using (0.7) together with the local index theorem for Dirac
operators [Gi], we get

[s =]
(0.8) L% Ind DT :/ wp + lim 1 / / tr(e,, -rDe~tP (m,a:)) dz dt,
X T—o0 2 Jo Joxr

where wp is the Atiyah-Singer index density of Dt and e, is the outward unit normal
vector field to the boundary. To compute the limit on the right hand side of (0.8), we split

the t-integral as foﬁ + f;’% and study the corresponding double integrals separately. The

limit of the first double integral, where ¢ runs from 0 to v/T, can be described in terms of
eta invariants. Since 7D = —Dr, it follows from (0.5) that the involution 7 commutes with
A, 7 =1,2. Let A;-* be the restriction of A4; to Lz(Z,',E+|Zi). Then the eta invariant

1)(.,4:;') of A?' 1s defined by

(0.9) n(.A}') = % /0 g1/ L tr(A?e_t(Af)z(zj,zj)) dzj dt,

where e~ 4] )z(m,y) denotes the kernel of e™"4)*. The absolute convergence of (0.9) is

proved in [Miil]. Using the results of [Miil], it follows that as T — oo, the first double
integral converges to 1/2(n(A}) + n(A47)).



Let R(T) be the remaining double integral, where t runs from /T to co. The behaviour
as T — oo, of R(T) is determined by the continuous spectrum of A near zero. If the
continuous spectrum has a positive lower bound, then R(T') decays exponentially as T —
0o. Qur analysis of the continuous spectrum shows that this case occurs if and only if
ker Dy = 0 and ker A; = 0, j = 1,2. We assume only that ker Dy = 0, which may be
regarded as intermediate case. Then the generalized eigensections Ei(¢,A), ¢ € ker A;,
determine scattering matrices Ci(A) : ker 4; — ker A; which are meromorphic functions
on a disc [A| < ¢ and satisfy the functional equations C;(A)Ci(=A) =Id, |A| < ¢, ¢ =1,2.
In particular, C;()) is regular at A = 0 and C;(0)? =Id. The canonical involution 7 of E
induces an involution of ker A;, which we also denote by 7. The scattering matrix C;(A)
commutes with 7. Let CF(}) be the restriction of C;()) to the +1-eigenspace of 7. Then
it follows that as T — oo, R(T) converges to —1/2Tr(C;F(0)) — 1/2Tr(C;(0)), and our
final index formula can now be stated as follows:

Theorem 0.1. Let Xy be an even—-dimensional Riemannian manifold with a corner of
codimension two such that the boundary of Xy is the union of two components M, and
M,, intersecting in a closed manifold Y. Let X be the associated complete manifold
constructed above with ideal boundary components Z; = M; Uy (R* x Y), 1 = 1,2. Let
Dt : C®°(X,E*) - C=(X,E™) be a chiral Dirac operator on X and assume that on
R* x Z;, Dt takes the form

)
Ou,-

D+ =7i( + A:f), i=1,2,

where v; denotes Clifford multiplication by the inward unit normal vector field and A7 is
a Dirac operator on Z;. Suppose that the corresponding Dirac operator Dy on the corner
Y is invertible. Then we have

(0.10) I2-IndD* = /X wp — 3 {n(A) + TH(CFO)} - é{n(fq) + TH(CHO) ),

where n(AT) is the eta invariant, defined by (0.9), of the unique self-adjoint extension A}
of A in L?) and CF(X) : ker A} — ker A}, |A| < ¢, is the scattering matrix associated
with A?'.

This index formula can be rewritten such that the right hand side involves only terms
which are defined on Xj. First observe that near the boundary of Mj;, A;!' takes the form

13,
+ _ 4. .
Aj HJJ(%*‘BJ),

where Bj; is some Dirac operator on Y and ¢; denotes Clifford multiplication by the outward
unit normal vector field. Let P; be the negative spectral projection for B;. Using P;, we
impose APS boundary conditions for A;-" at OM; =Y. Since ker Dy = ker B; =0, we get

a self-adjoint extension (Aj') p;- In [Miil] we proved that (Aj) p; has pure point spectrum
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and the eta invariant n(A;-F,Pj) of (A}") p; can be defined by analytic continuation of a
series which is analogous to (0.4). Moreover, by Theorem 0.1 of [Miil}, we have

n(AD) =n(A],Pj), j=1,2

Let h;-t be the dimension of the subspace of ker A;-t consisting of all limiting values of
extended L? solutions of DF (see end of §7 for the definition). Then we have

Tr(CH(0)) =} — n}

; and dimker .Aj‘ = h;-* + hj_.

In general, the L% index is not stable under compactly supported perturbations. However,
as the index formula shows, L2-Ind Dt — h] — h; is stable under perturbations supported
on a compact subset of X. This suggests to define

(0.11) Ind Dt = L*Ind Dt — hy — h;.

If the boundary of Xj is smooth, it is proved in Corollary 3.13 of [APS] that (0.10) equals
the index of the APS boundary value problem. This index can also be interpreted as
Fredholm index in weighted Sobolev spaces [M]. Therefore we think that Ind D, as defined
above, has a similar interpretation which justifies the notation. Now we can reformulate
Theorem 0.1 as follows:

Theorem 0.2. Let the assumptions be the same as in Theorem 0.1. Suppose that near
the boundary of M;, A;" has the form

d
+ _ . -
Ai —Ji(a—vi-f-B,), 2—1,2,
where B; is a Dirac operator on Y and o; denotes Clifford multiplication by the outward

unit normal vector field. Let P; be the negative spectral projection with respect to Bj.
Then we have

— 1
Ind D* =.f wp — Q{U(AT,Pl) + climker(AT)pl} — %{T}‘(A;-,Pz) + dimker(Ag')pn},
Xo

where Ind D% is defined by (0.11), wp is the Atiyah-Singer index density for Dt and
vg(Aj', P;) is the eta invariant of the self-adjoint extension (Aj') p; of Aj'] M, with respect
to the APS boundary conditions defined by P;.

The elimination of the condition ker Dy = 0 requires a better understanding of the
continuous spectrum of A. There will be no significant change of the index formula.
Again, the contribution of the continuous spectrum in the index formula will be given
as combination of traces of scattering matrices at energy zero. This will be discussed
elsewhere.



In §8 we use the index theorem to derive a splitting formula for eta invariants. A
number of authors {Bu|, [DF], [MM], [Wo] have proved splitting formulas mod Z. We
identify explicitly the integer part as combination of indices of certain Dirac operators.

Finally, in §9 we discuss as an example the case where X is the product of two even-—
dimensional manifolds with cylindrical ends, say X; and X;. We also assume that the
Clifford bundle is the exterior tensor product of Clifford bundles over X;. Then the L?
index of the corresponding Dirac operator D% is the product of the L? indices of the
Dirac operators D;F on X;. Using the index formula for Dirac operators on manifolds with
cylindrical ends, we get a formula for L?-Ind(D%). We compare this formula with the
answer given by Theorem 0.1. The boundary term in this index formula displays a natural
decomposition where each term is associated with a particular stratum of the boundary
at infinity. In the present case, the corner Y is the product of two odd-dimensional closed
Riemannian manifolds. The term which seems to be naturally attached to the corner is
the product of the eta—invariants of the induced Dirac operators on Y;. At the end we
briefly discuss a possible approach to obtain such a decomposition in general.
Acknowledgment Part of this work was done during the authors stay at the Max—Planck—
Institut fiir Mathematik in Bonn. The author thanks the MPI for financial support and
hospitality.



1. Manifolds with corners of codimension two

To simplify notation, we shall only consider the simplest case of a single corner of codimen-
sion two. The extension of our results to manifolds with several corners of codimension
two 1s straightforward.

Let M be a closed oriented (n — 1)-dimensional C°° Riemannian manifold and let
Y C M be a closed oriented submanifold of codimension 1 which separates M in two
submanifolds, say M, and M;. We also assume that, near Y, M is isometric to the product
(—e,e) x Y, e > 0. Let Xy be a compact oriented n-dimensional Riemannian manifold
with boundary M. We assume that the metric on Xy has the following properties:

(1) Inaneighborhood (—¢, 0] x M; of the boundary component M;, ¢ = 1,2, X is isometric
to the product metric on (—¢,0] x M.

(2) In a neighborhood of the corner Y, Xy is isometric to (—¢,0]* X Y, equipped with the
product metric. <
We shall call Xy a manifold with a corner at Y. More generally, we may consider a
compact oriented Riemannian manifold X which has & boundary components Y;, and near

each boundary component Y;, the metric has a product structure as described above.

Example 1. Let M;, : = 1,2, be two compact oriented Riemannian manifolds with C'*
boundary B;. Suppose that in a neighborhood (—¢,0] X B; of the boundary B, the metric
of M; is isometric to the product metric on this neighborhood. Then X = M; X M; is a
manifold with a corner at Y = B x B,.

FIG. 1. A 2—dimensional manifold with a corner at Y.

We associate with Xy a noncompact complete Riemannian manifold X as follows. Let
(1.1) Zi=M; Uy (R* xY), i=1,2,

where the bottom {0} x ¥ of the half-cylinder is identified with 8M; = Y. Then Z; is a
manifold with a cylindrical end. Furthermore, let

(1.2) Wi = Xo Up, (RT x M), Wo = XoUnm, (RT x M)).
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Observe that W; is a n—dimensional manifold with boundary Z;. Set
(1.3) X =W;Ug, (R+le)=W2 Uz, (IR+XZ2),

where {0} x Z; is identified with the boundary Z; of W;, : = 1,2. We equip R¥ x M; and
R* x Z;, 1 = 1,2, with the product metric and extend in this way the metric on X, to a
complete C°° Riemannian metric on X. We call X a complete manifold with a corner at
Y. If we unravel (1.1) and (1.2), we get a further decomposition of X as

(1.4) X=X UR'x M) URY x Mp)U (RY)? xY),

where boundaries are identified correspondingly. See Fig.2 for an illustration.

RtxR*xY

FIG.2. The complete manifold X

Example 2. Let Z, and Z; be two Riemannian manifolds with cylindrical ends, that is,
Z; = M; U (R x B;) where M; is a compact Riemannian manifold with boundary B;.
Then X = Z; x Z, is a complete manifold with a corner at By x Bs.

There exists a distinguished exhaustion of X by compact submanifolds X, T' > 0, which
we shall now describe. Let T' > 0 be given and set

(1.5) ZiT = M; Uy ([0, T) x Y), 1 =1,2.

Here it 1s understood that {0} x Y is identified with dM;. Then Z; 7, T > 0, is a family
of compact manifolds with boundary which exhaust Z;. Next we attach the finite cylinder
[0,T] x My to X by identifying M; C 80X, and {0} x M in the obvious way. The resulting
manifold W2 7 = XoUpm, ([0, T] x M) is a manifold with a corner. Note that the boundary
of Wy, is the union of M; and Z; r. Now we glue the finite cylinder [0,T] X Z; 7 to Wa
where {0} x Z; 1 gets identified with the corresponding piece Z; v of the boundary of
W, r. The resulting manifold is called X7, that is,

(1.6) Xr=Wyr Uz, r ([O,T] X Z2’T)’ T2>0.

The manifold X is again a manifold with a corner at Y. Moreover, the boundary is given
by

10



(1.7) 0Xp =217 VUy (=23 1)
We may also construct X7 by a different gluing process, namely
(1.8) Xr =XoU([0,T) x My)U([0,T] x Mz) U ([0,T)? x Y),

where boundaries are identified correspondingly (see Fig. 3).

[0,T] x M4 [0,T)2 xY

Xo

FIG. 3. The extended manifold X.

2. Dirac operators on complete manifolds with corners

Let X be as above and let E — X be a Clifford bundle over X (cf. [GL]). Let D :
C=(X,E) — C>(X, E) be the (generalized) Dirac operator associated with E. We assume
that the Hermitian metric and the connection V¥ of the Clifford bundle E are compatible

with the product structure of X. Let RF be the curvature tensor of E. Then |(VE)kRE(a:)|
1s uniformly bounded on X for all £ € N. Furthermore, D has the following properties:

(i) There exist Clifford bundles E; over Z; such that Ejp+, - is the pull-back of E;

and on Rt x Z;, we have

(2.1) D=’Yi(a_i‘i'+Ai), 1= 1,2,

where A; is the Dirac operator of F; and «; denotes Clifford multiplication by the
outward unit normal vector field. The +; satisfy the following relation

(2.2) v =-Id, ¥f=—v and 7v;4;=—A;yi, i =1,2.
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(i1) There exists a Clifford bundle S over Y such that E| (RY2 x Y is the pull-back of S,

and on (RT)? x Y we have

0 0

2.3 =
(2.3) D ‘]’18u]+728u2+DY

where Dy is the Dirac operator of S and ~;,v, are Clifford multiplications by the
outward unit normal vector fields. In addition to (2.2), the following relations hold

(2.4) Ny2 + 7271 =0, 7Dy =—-Dyyi, 1=1,2

We shall now describe some of the basic properties of D. Since X is a complete
Riemannian manifold , it follows from Theorem 1.17 of [GL] that D : C®(E) — L*(E) is
essentially self-adjoint. For ¢ € C°(FE), set

k
(2.5) le lli= > I Ve il
. J=0

and denote by H*(E) the completion of C°(E) in this norm. The Sobolev space H*(E)
coincides with the space of all ¢ € L%(E) such that the distributional image V'p is also
in L*(E) for all I < k. The connection V gives rise to an elliptic second order differen-
tial operator V*V : C*°(E) — C°°(E). Recall that the following Bochner-Weitzenhock
formula holds:

(2.6) D*=vV*V + R®

where RE is defined by the curvature tensor of E. More precisely, if e, ...,en, is an
orthonormal basis of T; X, then

and RvE) w 18 the curvature transformation of £. By our assumption on E, the curvature
tensor is uniformly bounded on X. Therefore, by (2.6) there exist constants Cy,Cs > 0
such that

Crlle N1 + 1 D IS Cz || ¢ II3
for all ¢ € H'(E). This implies that an equivalent norm in H'(E) is given by

e llF=N ¢ 1" + 1| D || .
A similar result holds for all H*(E).

12



Proposition 2.7. For each k € N, there exist Cy(k),Co(k) > 0 such that

k
Gy ¢l < Y UD'$IP< Calk) Il 6 113
=0
for all ¢ € H*(E).

To prove Proposition 2.7 one uses that the injectivity radius of X has a positive lower
bound and all covariant derivatives of the curvature tensor of E are uniformly bounded in
absolute value. Then the claimed inequalities follow, as on a compact manifold, from the
elliptic estimate for D.

In other words, an equivalent norm in H¥(E) is given by

e lliE=>_ I D'eI*.
=0

By the same reason, it also follows that the Sobolev embedding theorem holds for X [Ei],
Corollary 1.14. Namely, we have

Proposition 2.8. For [ > n/2 + k, there exists a continuous embedding H(X,E) —
C*¥(X,E), i.e., there exists Cy x > 0 such that || ¢ ||c+< Cik || ¢ ||y for all p € H{(X,E).

Let D denote the unique self-adjoint extension of D in L?( E). We shall now investigate
the kernel of D. Let ¢ € L?(E) and assume that Dy = 0. By elliptic regularity, ¢ is a
C*>°-section of E. Furthermore, Proposition 2.7 implies that

(2.9) Vo € I(E® (T"X)®) and | o e SCR) ¢ lo, keEN,

for some constant C'(k)} > 0 and all ¢ € ker D.
Now consider the restriction of ¢ to RT x Z; C X. On this submanifold we have

d
(L 1+ 4 )
D=m (av + A4
where Ay : C®(Z,, Ey) — C*®(Z,, E,) is a generalized Dirac operator on the manifold Z;.
Thus on Rt x Z,, we have

g
(2.10) (% + Al)go(v, 2)=0.
Next recall that the manifold Z;, defined by (1.1}, is a manifold with a cylindrical end.
Moreover, the connection VP! and the Hermitian metric of the Clifford bundle E; are
compatible with the product structure of Z; on Rt x Y. Hence on RT x Y, A, takes the
form

(211) A =m(m+B)
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where u € RY, 7, is Clifford multiplication by the outward unit normal vector field to ¥
and B : C=(Y,S) - C(Y,S) is a Dirac operator on Y.

Since Z; is complete, A; is essentially self-adjoint in L?(Z, E;) [GL]. Let A, be
the unique self-adjoint extension of A;. In §4 of [Miil], we have described the spectral
resolution of such operators. It follows that 4; has only point specirum and absolutely
continuous spectrum. The point spectrum consists of a sequence of eigenvalues - -+ < A; <
Ajy1 < -+ of finite multiplicity and the continuous spectrum has an explicit description
in terms of generalized eigensections.

Since for almost all v > 0, ¢(v,-) belongs to L*(Zy, E;), we may expand ¢(v,-)
in terms of the L%-eigensections and the generalized eigensections of A;. Let Li(E))
and L2(E;) denote the discrete and continuous subspace of A;, respectively. Denote by
wa(v,-) (resp. @c(v,-)) the orthogonal projection of ¢(v,-) onto L3(E;) (resp. LZ(Ey)).
Let {p;};jez be an orthonormal basis of L4(E;) consisting of eigensections of .4; with
eigenvalues --- < A; < Aj41 < ---. Then we have

wa(v,z) = Z a;(v) @;(2)

and the a;’s satisfy

(a_av +3;)a; =0.

Thus aj(v) = c;e™". Since ¢4 is square integrable, it follows that ¢; = 0 for A; < 0 and
(2.12) pa(v,2) = Y cje™" pi(2).

A; >0

Suppose that the enumeration of the eigenvalues of A; is chosen such that Ay > 0 is the
smallest positive eigenvalue. Let 7' > 1. Then we get

/ |‘Pd(U | dz dv = z |CJ| e—2T;
T
(2.13) ;>0

< e-zT’\I/ lpa(v, 2)|* dz dv < e72TH |
m+le

In the same way, we can derive a pointwise estimate. By the Sobolev embedding theorem,
we have

sup lpi(z)] < C(1+ X))
€2,

for some constant C > 0, independent of j. Furthermore, we also have

=5 L

Ydzdv <@ |?.
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Hence |¢;| £ /2A; || ¢ || and, for v > 1, we get

(2.14) pa(v,2)l < C D (L+X)" e N ol < Cre™ 2 .
Aj >0

Now we shall investigate ¢.. Let P4 be the positive spectral projection of the self-
adjoint extension of the Dirac operator B : C®(Y,S) — C(Y,S), defined by (2.11).
Furthermore, let 11 denote the orthogonal projection of L*(Y, S) onto the +i-cigenspace
of v172 : ker By — ker By. Set [I; = Py + M. Let {¢;};en be an orthonormal basis of
Ran(Il4) consisting of eigensections of By with corresponding eigenvalues 0 < py < g <

Let 2¢ be the Riemann surface associated with the functions /A £ ¢, 7 € N, such

that \/A & p; has positive imaginary part for p; sufficiently large. The Riemann surface
¥? is a ramified double covering 7° : 3° — C of C with ramification locus {£u; | 7 € N}.
To each ¢; there corresponds a generalized eigensection E(¢;, A) € C®(Z,, Ey) of D which
is a meromorphic function of A € £* and which satisfies

DE(¢;,A) = (A)E(¢;,A), AeX’,

(cf. [Gu]). The half-plane Im(A) > 0 can be identified with an open subset F.P*® of £°,
the physical sheet, and each section E(¢;,A) is regular on OFP* = R. Then ¢, has an
expansion of the form

we(v,2) = Z{fw E(é;, A, 2)aj(v, A) dri(A)
(2.15) =120

+ [T B A8 N (),

M

WA — ,u?
dri(A) = F——=d)

27\ ’

and «j, 8; € L*(R™ x [itj,0); dv drj). Convergence of (2.15) has to be understood in the
L? sense. By (2.10), it follows that «; and §; are smooth functions of v which satisfy

where

d 3]
%aj(v,)x) + Aa;(v,A) =0 and aﬂj(v,A) = AB(v,A) = 0.

Hence oj(v, A) = aj(A)e™” and f;(v, A) = bj(A)e*?. Since each B; is square integrable, it
follows that b; = 0 for all 7 € N, and (2.15) leads to

(2.16) o2 = Y [ G0 B30 ) dry(h),
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Let T'> 1. Then (2.16) implies

/ ,, pelo ) dz do = Z/ f laj(v, VI* drj(A) dv

oo (= o] 1 o0 i /\ 2
6—27'/\ dTJ(/\) < Z 56—271#5 / 'a](A )| dTJ(/\)
Jj=1 s

£)

(2.17)

[=0]

| =

=1 i

First, assume that ker By = 0. Then yg; > 0 is the smallest positive eigenvalue of By and
by (2.17), we get

(2.18) /_/ (0, 2) dz dv < Ce=TH [l < O™ || |12,

where C > 0 is independent of ¢. Similar estimates hold for the restriction of ¢ to Rt x Z,.

Let Dy be the Dirac operator defined by (2.3). Then we have By = —y2Dy. In
particular, ker Dy = ker B;. If we combine (2.13), (2.18) and the corresponding estimates
with respect to Z3, we obtain

Proposition 2.19. Assume that ker Dy = 0. Let T > 1 and let X7 be the manifold
defined by (1.6). There exist constants C,c > 0 such that for ¢ € ker D, we have

| @ < ot
X-Xr

Proposition 2.19 combined with (2.9) implies that ker D is finite-dimensional.

We shall now remove the assumption ker Dy = 0. For this purpose we introduce an
auxiliary differential operator L : C®(E) —» C*®(E @ T*X) as follows. Let w € A}(X)
be a 1-form with compact support such that jw(z)| = 1 for all z € X,. Since X, has a
nonempty boundary, such a 1-form always exists. Let 1y € C§°(X1) and suppose that
Yo(z) =1 for z € X,. Furthermore, let 1; € C®°(R),: = 1,2, be such that ;(u) =1 for
u > 1 and ¥;(u) = 0 for v < 0. We regard ; as a smooth function on R* x Z; in the
obvious way. Given ¢ € C(FE), let ¢; denote the restriction of ¢ to R* x Z;. Then we
set

(2.20) Lo = ¢oso®w+¢1——-®d +1!)2 ®dz

By (2.9), L induces a bounded linear operator L : ker D — L%(E @ T*X).
Lemma 2.21. We have ker L = {0}.

Proof. Let ¢ € ker D and suppose that Ly = 0. Then it follows from (2.20) that

0 i)
‘PIXO =0, %(,01 =0 and 5&%02 = 0.

16



By (2.12) and (2.16), the second equality implies that ¢; = 0. In the same way we get
w2 = 0. Hence ¢ = 0. q. e. d.

Let T > 1 and let ¢ € ker D. By (2.20), we obtain

/ Lp(@)tde < |
X~-X7r

dZ] dv

—(pl v, 21
Zl

2
atpz(u, Zz)‘ dzedu.

Z2

The integrals on the right hand side can be estimated in the same way as above. Using
(2.12) and (2.16), it follows that the first integral is bounded by

1 [ M)|?
Ce™°T | ¢ ||2 + 5/’ A2—|a0& ) e 2TAg)
0

— 1 * lag{N)|?
< Ce T||‘P||2+2T2j |0(,\) dX

<Ce_CT||cp||2+ f/ ap(N)*e A dAdv

1
<2 el

where C, ¢ > 0 are constants, independent of ¢. A similar estimate holds for the second
integral. Thus we have proved.

Lemma 2.22. There exists a constant C' > 0 such that for T > 1 and ¢ € ker D, we have

j Le()Pdz < o [l I
X-Xr

Corollary 2.23. kerD is finite-dimensional.
Proof. By Lemma 2.21, it is sufficient to show that L(ker D) is finite-dimensional. Let

I: L(ker D) —» L*(E @ T*X)

be the inclusion. For T > 0 we denote by It : L(ker D) — L*(E ® T*X) the composition
of the restriction of sections to X7 and the canonical inclusion. By Lemma 2.22, we have

C
(2.24) | 71-Irj< %, T2t

Let H'(X7,E ® T*X) denote the Sobolev Space of the restriction of E ® T X to X7
Since Xp i1s compact, the canonical map

HY X7, EQT*X) - L} X7, EQT*X)
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is a compact operator. Furthermore, by (2.9) it follows that L(ker D) is contained in
HY (E®T*X) and
| Le 1< C || Le [lo, ¢ € ker D,

for some constant C > 0, independent of ¢. By Rellich’s compactness theorem, Ir is
a compact operator and hence, by (2.24), I is compact too. Therefore, ker D is finite-
dimensional. g.e.d.

Next we shall estimate the supremum norm of any ¢ € ker D. As above, we consider
the restriction of a given ¢ € ker D to R™ x Z;. By Proposition 2.8, we have

sup lpc(v, 2)] S C | (T + 41)"pc(v) I,

where A; is the Dirac operator considered above. Let v > 1. Employing (2.17), we get
I (T4 40)"pe(v) |2 Z [ a0

< C] Z —H foo Ia]()\)l (/\)

P‘-;>O
p#j=0
< cs—Z / ] a5(V[7e drj(A)dv
_ = 2
= C4v e II° -

Combined with (2.14) we obtain

Lemma 2.25. There exists C > 0 such that for all v > 1 and ¢ € ker D, the following
inequality holds

SUP lp(v,2)] < —= \/— lel, i=12
If ker Dy = 0, then we have exponential decay.
Now suppose that n = 2k, k € N. Let 7 = i*4;...~2, be the canonical involution of

the Clifford bundle E and let
E=E,0E._

be the parallel orthogonal splitting of E into the +1-eigenbundles of 7. Since n is even, 7
anticommutes with D and we get a pair of elliptic first order operators

+ = C%(Ey) = C=(Ez),
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called chiral Dirac operators. Let D4+ denote the closure of D4 in L?. Then we have
D=Dy@®D- and DL =7DI.

By Corollary 2.24, ker D, and ker D_ are finite-dimensional. Therefore, we can define the
L%-index of D, by

(2.26) L*.Ind D4 = dim(ker D) — dim(ker D_).

Remark. In general, Dy is not a Fredholm operator. We observe that Dy is Fredholm
if and only if 0 i1s not in the continuous spectrum of D_D, or, what is the same, if the
continuous spectrum of D_D, has a positive lower bound. In this case, the L2-index of
Dy equals the index of the Fredholm operator D,.. This implies that the L%-index of D,
1s stable under compactly supported pertubations of D. If D4 is not Fredholm, then the
L?-index will be unstable in general. This makes it difficult to compute the index for these
cases.

3. L*-harmonic forms and cohomology

Let A*(X) be the space of C*=—differential forms on X. In this section we consider the
GauB-Bonnet operator d + d* : A*(X) — A*(X). This is a generalized Dirac operator on
X which obviously satisfies (2.1) - (2.4). Therefore, the results of the previous section can
be applied to this operator. Let A = (d+ d*)? be the Laplace-Beltrami operator on forms
and let A, be the restriction of A to the space AP(X) of C*° p-forms. We shall denote

the self-adjoint extensions of d + d* and A in L?A*(X) by d + d and A, respectively.
Let HE‘Z)(X } denote the space of square integrable harmonic forms on X, that is,

(3.1) Hip(X) = {p € A" (X) | Ap =0, |||l < co}.

Correspondingly, ’Hfz)(X ) will denote the space of square integrable harmonic p~forms on

X. Since X is complete, Hp,)(X) equals the kernel of d+d (cf. [GL)). In other words,

H(*Z)(X) = {(p € A*(X) ' d(p = d‘(p = 0, ”(p” < oo} = ker (E +E*)’

and Corollary 2.23 implies
Proposition 3.2. The space H{,(X) is finite-dimensional.

Let H(,)(X;C) be the L?—cohomology of X. Recall that H (2)(X; C) is the cohomology of

the L?~de Rham complex consisting of all C*®—forms which together with their exterior

derivative are square integrable [Zu]. Then 'Hfz)(X ) equals H (X;C} if and only if the

essential spectrum of A, has a positive lower bound. As we shall see in §6, this depends
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on the cohomology of Y, M; and M,. If the essential spectrum of —A—p contains zero, then
H (*2)(X ; C) 1s infinite-dimensional.
Now we shall study the relation of H’("z)(X ) with the de Rham cohomology of X. Let

H*(X) be the de Rham cohomology of X with complex coefficients and let H}(X) be the
de Rham cohomology of X with compact supports and complex coefficients. Set

HY(X) = Im(H(X) - H(X)),

where ¢ is the canonical map. As mentioned above, a harmonic L%-form ¢ satisfies d¢ = 0
and d*¢ = 0. In particular, ¢ defines a cohomology class [¢] in H*(X). In this way we
obtain a canonical map

i My (X) = HY(X).

For a general complete manifold, this map will neither be injective, nor surjective. In the
present case, however, we can describe this map completely.

Lemma 3.3. The image of j is contained in H}(X).

Proof. First observe that by the construction of X, there is a canonical retraction X —
Xo. Hence, H*(X) can be identified with the image of H*(Xo,0X,) in H*(X,) = H*(X).
Let p € HE2)(X). In order to see that the cohomology class [¢] is contained in H*(X), it
is sufficient to show that

=

for all cycles o in 0Xy = My Uy M,. Using this decomposition of the boundary, it follows
that H.(0Xp) has a basis which can be represented by cycles « of the following form:
There exist a cycle ag in ¥ and relative cycles «; in (M;,Y) such that

Ja; = ag, 1=1,2, and « = a1 Uy, (—a2).
Note that ap may be zero. In this case, «; is a cycle in M; and « is the disjoint union of
aq and ay.
Let T > 0 and let Z; 7+ be the manifold defined by (1.5). Then we define relative
cycles o in (Z; 7,0Z; z) by
a7 = @ Ugg ([0,T] X avg), 1=1,2,
where we identify da; with {0} x aq. Set

ap = a1, U{(—agT).

Then ar is a cycle in X1 = Z, 7 U Zy,r. If we regard o and ar as cycles in X, then
the construction of ar implies that o and ap are homologous. Since ¢ is closed, it follows

that
/so=fso=/ so—/ v, T20.
o T y.T (250
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We shall now estimate the integrals on the right hand side. For this purpose we use the
expansion of ¢ on RT X Z; in terms of the eigensections of A4;, ¢ = 1,2. It is sufficient to
consider the integral over o . We have to specialize the eigensection expansion (2.12)
and (2.15) to the present case. Let Az be the Laplacian on A*(Z;) and let Ay be the
Laplacian on A*(Y). Note that

A*(RY x V) = (CX(RDGA(Y)) & (A (RHBA(Y)).

Therefore, to each eigenform ¢ of Ay there correspond two generalized eigenforms of Az ;
namely E(#, A, z) and E(du A ¢, )\, z). Let iy : {v} x Z; C RT x Z; be the inclusion and
let

p1(v) = i:(‘P|R+ % Zl)'
Let ¢1,..., ¢m be an orthonormal basis of H*(Y'). Then it follows from the above remarks

combined with (2.12) and (2.16) (specialized to the present case), that

m

p1{v,2) = Z{/waj()\)e_)‘”E(qBj, Ay z)dA
(3.4) j=1 -0

/ bi(Ne M E(du A ¢j, A, 2) d/\} + (v, 2),
where 1 satisfies

(3.5) sup | ¥1(T, z) |< Ce T,
ZEZ;

with constants C,c¢ > 0, independent of 7. The integrals converge in the L? sense. More-
over, the functions aj{(A) and b;(\) are square integrable with respect to the measure

A7'dA. From (3.5) follows that
[
oy, r

[t remains to investigate the differential forms defined by the infinite integrals on the
right hand side of (3.4). We consider the first type of integrals. Let ¢ € H*(Y) and let
a € L*(R*; A7 1d)). Put

(3.6) <CTe™ T,

/v
wl(qb,'u)zf a(N)e M E($, A)dA
(3.7) ’ o
w2(¢,v)=/ a(A)e " E(¢, \)dA.

1/

It is clear that w;(¢,v) is a smooth differential form. The convergence of the infinite
integral is understood in the L? sense. Therefore, it is not obvious that wz(4,v) is a
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smooth differential form. To verify smoothness, let v > 1 and m € N. By definition, we
have

|+ A (60 I = [ L)L+ APmedn <
1/Vo
~vi [T 24\ o -
< Ce |CL(/\)] -~ < C‘m € :
Ve A

By the Sobolev embedding theorem, this implies that w,(¢,v) is a smooth form which
satisfies

(3.8) sup |wy(4,v,2) |< Ce™", w>1,
2€Z,

for some constant C' > 0. Put

w(¢1 'U) = (4)1((}3,?)) +w2(¢5,v).

Our goal is to estimate [, w(¢,T) as T — co. By (3.8), [, ~w2(4,T) decays expo-

nentially as T — co. To deal with w;(¢,T), we observe that on R* x Y, E(¢, ) has an
expansion of the form

E($, A, (u,)) =e~ M g(y) + e (C1(A)¢ + du A C2(N)8)
39 + 3 VIR (06 + dunTia(V)9),

pjF#0

where Ci(A)¢ € H*(Y') and T; ;(A)¢ is contained in the pj-eigenspace of Ay. The existence
of the expansion (3.9) follows from (4.20) in [Miil], specialized to the Laplace operator.
Let x be the characteristic function of R* x Y C Z; and set

E(¢,\) = E($,)) — x[e™*¢ + e (C1(N)¢ + du A Cy(N)¢)].
It follows from (3.9) that there exists € > 0 such that for A < e, we have
[E(, X, (u,9))| £ Ce™, (u,y) eRY x Z1.
Put
1/VT _
(¢, T) = / a(Ne T E(¢, \d).
0

Let 1/V/T < e. Since a € LAH(R*, A"1d)), we get

1/VT
/ o(e, T <C / la(A)|e=*TdX
ay,T 0

/T , 1/2
<0 ( / Ne 2AT d/\) < T3,
0

22



It remains to study the integral of the differential form

1/VT ) :
/ a(/\) e-ATX [e—lAu¢ + REY (Cl (/\)(}S + du A Cz(/\)(,‘b)] dA.
0

If we integrate this form over oy p, we get

/Ol/ﬁ{ (/ﬂ CQ(A)¢) a(AN)e T /OT At du} dA

1/VT 1 _ AT
=i/ 1+ (/ Cg()\)qﬁ) a(M)e T dX.

0

By Schwarz’s inequality, this integral can be estimated by

VT 11 iAT)2 1/2 VT 1/2 1/VT
C f = e P —axr gy f P2} <o / a2

Since a()) is square integrable with respect to the measure A~'d\, the right hand side
converges to zero as T — oo. If we replace in (3.7) ¢ by du A ¢, we get the second type of
forms which we have to consider. The investigation of these forms integrated over ay 7 is

completely analogous to the previous case. The corresponding integrals tend also to 0 as
T — oo. Together with (3.4) and (3.6), we get

lim / w=0.
T—oo a1

The same holds for [ . Hence, f ¢ =0 for all cycles o in 8Xp. q.e.d.

By Lemma 3.3., 7 induces a map
(3.10) 7 HZ‘Z)(X) — H(X).

Now suppose that [¢] € H(X) is represented by a closed C* form ¢ with compact support.
In particular, ¢ is square integrable. Therefore, by a theorem of de Rham-Kadaira [Rh, p.
169], we have

$ =1+ db

where ¢ € L?,dip = d*y = 0 and 8 is a current. Since H*(X) can be computed from the
complex of currents, it follows that the map (3.10) is surjective.

To deal with injectivity, we observe that the manifold X has a natural compactification
X obtained by adjoining copies of Z1, Z; and Y at infinity. Putting r = 1/u and w = 1/v,
we get natural coordinates near the boundary.
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Lemma 3.11. Each ¢ € ker D extends to a C! form on X.

Proof. Let ¢ € kerD. Denote by ¢; the restriction of ¢ to Rt x Z;,7+ = 1,2. Then g;
can be written in the form (3.4) with forms ; satisfying (3.5). Using Proposition 2.8, it
is easy to generalize (3.5) as follows: For all k € N, there exist C > 0 and ¢ > 0 such that

sup | VEi(v,2) |< Cre™®, keN,i=1,2
2€7;

Hence 1, and ), extend to C* forms on R x Zy and R x Zy, respectively. To finish the
argument, we have to consider the forms w; (¢, v) and wq(@,v) defined by (3.7). Again, by
referring to the Sobolev embedding theorem, it is easy to show that

‘ kag(qﬂ,v,z) |< Cre™", k€N,

for constants Cy,c > 0. Thus, w; extends also to a £ form on R x Z. Since E(¢, A, z)
is analytic in A and smooth in z, we get

1/
|(d + d* w1 (g, v, 2) SC] Ma(X)| e7 dA
0

/v 1/ 1/\/v dA 12
<c / NemAg) / a2
0 0 A
s 1/2
] (] z? c‘“d/\) <&
w2\ J, 02

This implies that w; extends to a C! form on E'- x Z; and hence, ¢, does so. By the
same argument @, extends to a C'-form on R' x Z2, q.e.d.

Now recall that H*(X) = H* (X) can be computed from the de Rham complex of C!
forms on X. Let ¢ € H{,)(X) and suppose that j(¢) = 0. Then there exists a C! form

on X such that ¢ = df. In particular, we may assume that 8 is bounded. Now we apply
Green’s formula to the compact manifold X, T' > 0. Since d*p = 0 and ¢ = df, we get

/(p/\*(,o=/ df A+ = 8 A xp
Xr Xr X

=/ 91/\*9014-/ 02 A *po
ZI,T Z?,T

where 6; and ¢; are the restrictions of 8 and ¢, respectively, to R* x Z;. To estimate
the boundary integrals we use again (3.4) and its analogue for ;. Since %i(7T") decays
expounentially while 8 is bounded as T' — oo, we get

(3.12)

f O; Axp; -0 as T — oo.
Zir
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The same argument applies to the forms wy(¢,T) and we(du A ¢,T). To determine
the contribution of the forms wy (¢, T), we observe that |[E(¢, A, 2)| < C,for 0 < A £ ¢ and
z € Zy. Hence

1T
SCT] la(A)|e™*T dA
0

l/ﬁ 1/2 l/\/T 1/2
<CT (f /\e‘”Td,\) (] |a(/\)|2@)
0 0 A
ﬁ 1/2 1/\/’7 d/\ 1/2
—c / e d) / a2
0 0 A

Since a(A) is square integrable with respect to the measure A~'d)\, the right hand side
converges to zero as T — co. The same holds for wi(du A ¢,T). By (3.12), we deduce that

/ wA*p — 0
X

as T' — oo. This implies that ¢ = 0. Thus j is injective. We can now summarize our
results about the L? harmonic forms by

fzm 01 A xwq ()

Proposition 3.13. The canonical map 'HE‘2)(X) — H*(X) induces an isomorphism
7 Higy(X)SHY (X).

Next we shall investigate the L2-index of the signature operator. Suppose that n = 21
and let T be the involution of A*(X) which is defined by

r¢ =P V4 for e AP(X).

Let AL(X) denote the *1-eigenspaces of 7. Since d + d* anticommutes with 7,d + d*
interchanges A% (X') and A” (X) and hence, defines by restriction operators

Dy : AL(X) - AL(X).

The operator Dy is usually called signature operator. The involution 7 acts on 7‘(2‘2)(}( )
and we denote by H,, (X)) the +1-eigenspaces of 7. Then it is easy to see that

L*-Ind Dy = dim Hfyy 4 (X) — dimH(,y _(X).

By definition, 7 maps H{,(X) onto ?{?;)-p (X). Let ’H{?),i(X) denote the *1-eigenspaces
of 7 acting in HE2)(X) and for p < I, set

Hiyy +(X) = {e £ 10| ¢ € M7, (X))}
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Then it is clear that

Higy (X)) = D HE, L(X

p<i

Since dim H(Z) +()L) = dim 'H(g) _(X) for p < I, it follows that

(3.14) L*-Ind Dy = dim H{y, ,(X) ~ dim H{,) _(X).

There are two cases that we have to distinguish depending on wether ! is odd or even.
First, suppose that { = 2k + 1. In this case, the mapping 7 : 7‘{(2)(X) — 'H(Z)(X) coincides
with 2. Since * is a real operator, it follows that the map ¢ — @ induces an isomorphism

of 7{(2),4, onto H(2),- Thus

L*IndD, =0, if Il=2k+1.

So we can assume that n = 4k. Then on H?é")(X) 7 coincides with * which is a real
operator. Furthermore under the isomorphism ’Hff)(X ) — HE*¥(X), the quadratic form
¢+ {p,*p) on H(z)(X ) corresponds to the intersection form on H*(X). This quadratic

form is induced by the degenerate quadratic form on H2*(X) = H2¥(X,,8X,) given by the
cup product. Poincaré duality for (X,,0X) shows that the radical is precisely the kernel
of H**(X,,8X0) — H**(X,). The signature Sign(X,) of the 4k—dimensional manifold X
is defined to be the signature of the intersection form on H*¥(X;R). Then the argument
above shows that

Sign(Xo) = dim Mg, (X)) — dimHE, _(X).
Together with (3.14) we get
Proposition 3.15. Let Dy : A% (X) — A*(X) be the signature operator. Then we have

L*-Ind D, = Sign{Xo).

4. The heat kernel

Let D : C(X, E) —» C*(X, E) be a Dirac operator satisfying (2.1) — (2.4) and consider
the spinor Laplacian

A = D%

The purpose of this section is to construct the fundamental solution for the heat equation
(0/0t + A)p = 0.

Let X; be the manifold defined by (1.6) where T = 1. Then X, is also a manifold
with a corner at ¥ and the boundary of X, is the union of Z;; and Z;,, where Z; ; =
M; U ([0, 1] x Y) (see Fig. 3). Let V = Xy Ugz,, (—X;) be the C* manifold obtained by
gluing two copies of X, along the submanifold Z;; € 90X, of the boundary. Note that
V is an oriented C'* manifold with smooth boundary and the Riemannian metric on X;
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induces a smooth Riemannian metric on V' which is a product near the boundary. Let
V be the double of this manifold. Then V is a closed oriented € Riemannian manifold
and we may identify X; with a submanifold of V. The bundle E, = E| X, also extends

to a Clifford bundle E over V. Let D be the corresponding generalized Dirac operator
and set A = D?. Let K(z,y,t) be the fundamental solution for /8t + A on V and let
Ko(z,y,t) be the restriction of the kernel K to X;. The kernel Kj is the interior part of
the parametrix.

Next we have to construct the exterior part of the parametrix. By (2.1) and (2.2), it
follows that on Rt x Z;, we have

62
ou?

1

(4.1) D?* = —

+ A% i=1,2.

We extend the right hand side in the obvious way to a differential operator A; on R x Z;.
Let Ki(z,y,t) be the fundamental solution for 8/9t + A;. By (4.1), we have

(v —v)*

exp(— )
4t - .
Ki(w,z,t), 1=1,2,
7= ( ) )

where K; is the heat kernel for A? acting on C*(Z;, E;). Finally, by (2.3) and (2.4) it
follows that on (R*)? x Y, we have

(4.2) K,-((u,w),(v,z),t) =

o* o2

2 _— e —_—_—_——_——_—
(4.3) D7 = dut  Oul

+ D%

As above, we extend the right hand side in the obvious way to a differential operator Ag
on R? x ¥ and we denote the fundamental solution for 8/0t + A3 by K3(z,y,t). Then we
have

(4.4)  Ki((ur,ug,w),(v1,v2,2),t) = 4t 4 Ki(w, z,t)

where K3 is the heat kernel for D?.

The heat kernels K; satisfy the standard short time asymptotic. Let d(z,y) denote
the geodesic distance of z,y € X.

Proposition 4.5. For all p,l € N, there exist constants C, ¢y, ¢ > 0 such that
o l 2 ot d¥( t
o Ve iz, 1)) < C = (vt 2 gert p=ead’(z,0)/
fort>0,:=0,1,2,3.

Proof. It is well-known that the heat kernel on a compact manifold satisfies the estimate
claimed by Proposition 4.5. Therefore, our statement is obvious for Ky. Since Y is
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compact, we can use (4.4) to derive the required estimate for K3. We are left with K,
and I. By (4.2), it is sufficient to prove the corresponding estimate for Ky and Ko,

respectively. Since K, and K, are the heat kernels for spinor Laplacians on manifolds
with cylindrical ends, the required estimate follows from (3.5) and (3.3) of [Miil]. q.e.d.

We shall now use the kernels K; to construct a parametrix for the fundamental solution
of 3/0t+ A. Let p(a,b) denote an increasing C'*°-function of the real variable u, such that
p=0foru <aand p=1for u> b Define C>*—functions as follows

Lp:l—p(3/4,7/8), sz(0?1/4)a E={)(3/8,5/8), I»b:l—“;:

Let u; be the normal direction to {0} x Z; C X. We consider ¢(uy), ¥(u1) as functions
on the cylinder [0,1] X Z; C X and extend them in the obvious way to functions ¢, ¥,
on X. Similarly, we regard ¢(u2), ¥(u2) as functions on the cylinder [0,1] x Z;. Again we
extend these functions in the obvious way to functions g, ¥, on X. Then we set

Q= w12, Yo =11 .

Observe that the support of ®o and \116 is contained in Xj.

Next we consider x(u1), £(w1) as functions on [0,1] x Z; and extend them-by 1 to
C>=—functions ®,, ¥, on R* x Z,. In the same way we define &3, ¥5 on RT x Z;. Note
that we may extend ®;, ¥, ®; and ¥, by zero to C°—functions on X. Since (R*)? x ¥
is contained both in R x Z; and R x Z;, we may restrict ®;, ¥, &3, ¥5 to Cfunctions
&,, ¥y, &, T; on (R*)? x Y. Set

@3=é]"$2, \1’3:@]'\1’2.
Again we extend ®3, ¥5 by zero to C'®—functions on X. Note that

Uy =1—1, Toa=1—1py, T3=T3¥,=(1—11)(1—1)

This implies that

(4.6) U+ Ty + Py — Py =1.
Set
2
(4.7) Qz,y,t) = Z Qi(z) Ki(z,y,t) ¥i(y) — ®3(z) Ks(z,y,t) ¥a(y).

Lemma 4.8. For every f € C§°(X, E) we have

lim /X Qz,3,t) f(y) dy = £(x).

t—0t
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The proof follows immediately from the construction of @ and (4.6). Set

(49) (et = (o4 A2) Q. )

where A is applied to the first variable. For every y € X, the support of @q(-,y,t) is
contained in

([0, 1] X Zl) U ([0, ].] X Zz)
Lemma 4.10. Let zo € Xo. There exist C, ¢y, ¢y > 0 such that

(4.11) Q1 (z,y,)| < C et/ o —ca(d*(z0,2)+d*(z0,v)) /¢

forall z,y € X and 0 < t.

Proof. We shall estimate Q,(z,y,t) for z € [0,1] X Z;. The case z € [0,1] X Z; is similar.
Fix T > 0. First observe that by Proposition 4.5, we have

(4.12) 1Q1(z,y,)| < Ct= (N2 gart gmea =)/t
Moreover, the definition of @;, ¥; implies that there exists § > 0 such that
d(supp (V®;),supp(¥;)) =6, i=0,..,3.
Hence
(4.13) d(z,y) > & whenever Qq(z,y,t) #0.
Let z € X,. We also fix zp € Xo. Since X is compact, (4.11) follows from (4.12) and

(4.13). Next assume that z € [0,1] X (Z1 — Z,,1), where Z ; is defined by (1.5). For such

z we have

(4.14)  Gh(z,y,t) = (% + A) {@1(2) Ki(2,y,8) U1(y) — @3(z) Ka(z,y,t) Us(y)}.

Therefore, we can assume that y € R* x Z,. We distinguish two cases.
a) Y ER+ X Zl,]-

Let z = (u,w) and y = (v,2) where v € [0,1], v € RY, w € Z;, and z € Z; . By
(4.2), (4.4), (4.12) and (4.13), it follows that

4.15 w. W v.z t < C eclt—02/t e—c:(uz_‘l_d?(u))z))/t
|Q1 + s\ < )y =~ i

for certain constants Ci,c¢y,c2 > 0. Using again the compactness of X, it is easy to see
that there exists c3 > 0 such that

ea(d*(zg,x) + (20, y) + 1) < 1+ v + d*(w, 2)

which implies (4.11) in this case.

29



b) y € [1,00) X Z;.
By definition, we have ®;3(z) = ®,(z) and ¥3(z) = ¥y(z) for z € [1,00) X Z;. Thus
(4.14) implies

Aiewt) = (g +A) (B0 [Ki(@0,8) — Kslo,v,0] 8:0)).

Moreover, we may assume that z = (u1,us,w), y = (v1,ve,2) where uy,ua,v1,v2 € RT

and w,z € Y. By (4.2) and (4.4) we have

I(]((ul’UQ, ’U)), (Ul , V2, Z),t) — 1(3((111,’&2, UJ), ('01,‘1)2, Z),t)

= \/% exp(—g%zj) {Kl((ulaw)}(vlzz)?t)

1 (u1 — vy )2 ~
— exp| ———— K3(w,z,t)}.
it ( 4t )

Furthermore, by the definition of ®,, we have ®;((u1,us,w)) = ®;(uz). Combining these
observations we get

(4.16)

Q1((ur, g, w), (v1,v2,2),t) = {—‘I";(ug) + @;(uz) (uzz—tvz)} 1 exp(—(w;—tvzﬁ)

x {ﬁ'.((u.,w),(vhz),t) _ \/% exp(—(ﬂ—itﬂf—) fi'g,(w,z,t)}.

By (3.5) of [Miil], we have

. 1
K ((wy,w), (v, 2),t) —
(4.17) Vi

<y exp(qt -

(u1 — ‘01)2 T
exp(—T) I\g(w,z,t){

&3(1 + d(ma, (w1, w)) + (o, (.20
t

for some mgy € My and constants Co, ¢z > 0. Since z9 € Xo, (4.16) and (4.17) imply that
(4.11) holds in this case too. g.e.d.

We can now proceed in the standard way and construct the fundamental solution I
from ). We define inductively

t
Qm+1(z,y,t) = / / Qi (z,w,t — 7)Qum(w,y, 7)dwdr, m>1.
0 JX

Usually, a kernel obtained in this way is denoted by @y * Q,,. By Lemma 4.10, the w-
integral is absolutely convergent and the following estimate holds

m 2 ) 9
(418) |Qm+l($1 y,t)l g c™ % exXp (Clt — 62(1 + d (330,-;:) +d (30,?})))
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Set,

oo
P=> (-1)"Qn.
m=1
By (4.18), this series is absolutely convergent and defines a smooth kernel. Set
(4.19) K=Q+Q=*P.

Then we have

Proposition 4.20. The kernel K is the fundamental solution for 0/t + A on X. More-
over, the following estimate holds

c2(1 4 d*(zg, ) + d*(zo, y)))
1
for t > 0 and certain constants C,cy,c2 > 0. A similar estimate holds for D, K(z,y,t) —

D:Q(z,y,1).

(4.21) 1K (2,5,t) — Qz,y,8)] <C exp(c1t—

The estimate (4.21) follows from (4.18). If we use Proposition 4.5, then it is easy to extend
(4.21) so that derivatives are included. In particular, (4.21) implies that K — @ is the
kernel of a Hilbert-Schmidt operator.

We shall now modify the heat kernels Iy, I{; and I3 by introducing Dirichlet bound-
ary conditions. Let A; p, ¢ = 1,2, be the self-adjoint extension of

o2
~503 + A? : CP(R™ x Z,,B) —» L*(R* x Z;, E)

which is obtained by introducing Dirichlet boundary conditions. Then the kernel K; p of
exp(—tA,-,D) is given by

.K,*,D ((u, w), (v, z), t)
(4.22) 1

(u —v)? (u + v)?
Jant {BXP( el
where Kj is the heat kernel for A?. Next consider
92 a*
0w 0l
and introduce Dirichlet boundary conditions. Let A3 p be the corresponding self-adjoint

extension and let K3 p be the kernel of the heat operator exp(—tAj3 p). Then K; p is
given by

)}Il’,-(w,z,t), i=1,2,

+ D% CP((RY)? x Y, E) —» L*((RY)? x Y, E)

K3,D((u|,u2,w), (v1,v2,2),1)
1

uy — v )? uy + vy )?
(423) = _4.n-t {exp(....(__4t—)) _ exp(_( 1 j;t ) )}
uy — v2)* ug +v2)% 1 ~
X {exl)(—_(_._?)_) _ exp(—( :t ) )} I&3(11),Z,t),

where K3 has the same meaning as in (4.4). We extend the heat operators exp(—tA; p),
exp(—tAq, p) and exp(—tA3z p) to bounded operators in L*(X, E), putting them equal to
zero on the orthogonal complement of the subspaces L2(R* x Z,, ), L*(R* x Z,, E) and
L?((R*)% x Y, E), respectively. We can now prove

31



Theorem 4.24. Let the notation be as above. Then for each t > 0, the operator

6—!Z _ C—tAl'D _ c-—-tAz,D +e—tA3_D

is a Hilbert—Schmidt operator.

Proof. We extend the kernels K; p, : = 1,2, 3, by zero to kernels on X x X and we denote
these kernels also by K; p. To prove the theorem, we have to show that

(4.25) / / |K(:c,1 ) — Ky, plz,y,t) — Ko, p(z,y,t) + Ka,D(lﬂ,y,t)|2 dz dy < oo.
XJX

By (4.21), we may replace K by the parametrix . Since X is compact, we can remove
Ky from the parametrix. Let x;, ¢ = 1,2, be the characteristic function of Rt x Z; ¢ X
and let x3 denote the characteristic function of (R*)? x Y C X. Let K;, ¢+ = 1,2, 3, be the
kernels defined by (4.2) and (4.4), respectively, and set

2
Qe y,t) = Y xi(@)Ki(z,y,)xi(y) — xa(z)Ks(z,v,)xa(y).

i=1

Now observe that
(4.26) O, K;¥; — X,‘K,'X,‘ = (@,' — X,')I\’,“I’,‘ + X,‘K,’(‘I’.‘ - X,‘), 1= 1,2,3.

Furthermore, by definition, the support of each of the functions ®; — x; and ¥; — x;,
i =1,2,3, is contained in ([0,1] x Z;) U ([0,1] x Z3). Therefore, we may use Proposition
4.5 and proceed in essentially the same way as in the proof of Lemma 4.10 to show that

(4.27) ’Q(:c,y,t) - Q"(m,y,t)| < C exp(—c(d(z0,7) + P(z0,v))/4),

for some z¢9 € X,. Hence, in order to prove (4.25), we can replace K by Q, that is, we
have to investigate

4.28 Qz, 2’ t) = Ky p(z,2',t) — Ko plz, 2’ ,t) + K3 p(z, ', 1).
) ? ) )

This kernel vanishes, unless z,z' € R* x Z; or z,z' € R* x Z,. Consider the first case,
that is, z = (u1,w), &' = (v1,2), w,z € Z;. Suppose that w € M;. Then the kernel (4.28)
equals

1

it

By (3.5) of [Miil], |K1(w, z,t)| belongs to L*(M; x Z;). Hence, the kernel (4.28) is square
integrable on (Rt x M) x (R x Z,), and by symmetry, it is also square integrable on

(uy + 0 )2
4t

exp(— ) Ki(w, 2,t).
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(Rt x Z1) x (R x M)). It remains to consider the case z = (u1,u2,y)} and z' = (v, v2,y'),
Y,y € Y. Then (4.28) equals

i "1 2 ] Uy — 2 . ,
\/L% exp(—_( ‘; ) ){Kl((uz, ), (v2,y'),t) — \/4% exp(—.(_Tz)_) Ei(y,y ,t)}
* \/i_ﬂ'i exp(—-w—zzfg—z)—){ﬁ'z((ul’y)’(v] 1y’)at)

1 —u)?, -
Jim o) Kt o)

1 (_("“_+‘il)_) exp(~ (“;E’i)_)f (5, 1).

Since Y is compact, the third term is square integrable on (R*)? x Y. To deal with the
first two terms, we refer again to the estimate (3.5) of [Miil] from which we deduce that

these two terms are also square integrable on (R)? x Y. Combining our results, it follows
that (4.25) holds. q.e.d.

By a more elaborate method one can improve the statement of Theorem 4.24 and show
that the combination of the heat operators is trace class. This result will be important for
the investigation of the continuous spectrum.

5. The analytic continuation of the resolvent

The notation will be the same as in the previous section. In particular, A = D? is the spinor
Laplacian associated with some Dirac operator D. Qur purpose is to extend the resolvent
(A —X?)7! analytically as a function of A to a neighborhood of A = 0. In the present paper
we study this proplem only under the additional assumption that ker Dy = 0, where Dy
is the Dirac operator attached to the corner Y.

Let Aj, 7 = 1,2, be the self-adjoint extension of the Dirac operator 4; : C§°(Z;, E;) —
L*(Z;, E;) defined by (2.1). To begin with, we construct a parametrix for (A% — A?)7!,
Im(A) > 0. Recall that on R* x Y C Z;, A7 takes the form

92
2 _ 2
4= T oul + Dy
This follows immediately from (2.1)-(2.4). Let {¢;}ien be an orthonormal basis for
L%*(Y,S) consisting of eigensections of D3 with corresponding eigenvalues 0 < py < pp <
.-, For u # v put

(5.1) H((w,y),(v,5'),A) = ¢i(y) ® ¢u(y’), Im(A) >0
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Then H()) is the kernel of the parametrix at infinity. We glue it to an interior parametrix
which we construct as follows. Let Z;; = Z;; U(~Z;,) be the double of the compact
manifold Z;; which is defined by (1.5). The operator A?, restricted to Z; i, has a natural

extension to an elliptic operator on ZAJ-,;[, and we denote by @;1(A) its resolvent. Let
p(a,b) € C°(R) be the function introduced in §4 and put

@2 = p(1/4,5/16), ;= p(3/8,5/8)
(I)j] =1 - p(?/&l), ‘I’j] =1 — ‘I’jg.

We regard ®;;, ¥;i, 1,7 € {1,2}, as functions on [0, 1] XY and extend them to C* functions
on Z; in the obvious way. Put

(5.2) Pi(0) = 0;Q1n(N&;1 + TipH(N®,, Im()) > 0.
Then we have
(5.3) Pi(A)(AZ - A =1d 4+ K;()\),
where K;{)\) has a smooth kernel I{;(z, 2, A} which satisfies
supp, K;(z,2,A) C(0,1) x Y and K;(z,2',A)=0 for d(z,2')<1/16.

This implies that K;(A) is a holomorphic family of compact operators in L% Moreover,
using (5.1), it follows that there exists C > 0 such that || K;(zA) ||< C/A, A > 1. Thus

Id-+I (i) is invertible for A 3> 0 and hence, (Id + I(J-()\))_] is a meromorphic function
on Im(A) > 0 [Sb]. By (5.3), we get

(5.4) (A2 =271 = (1d+ K;(0) T R(A), Im(A) > 0.

Lemma 5.5. For each X in the half-plane Im(A) > 0, (A2 - X*)™! — P;()) is a compact
operator in L?.

Proof. By (5.4), we have

(5.6) (.A? — )\2)_' — PJ(A) = —(Id + I(j()\)) ! I&’j()\)PJ'(A), Im(A) > 0,
and the claimed result follows from the compactness of K;(A). q.e.d.

Now we construct a parametrix for (A — A?)~!. Let A;, 7 = 1,2,3, and A be the
differential operators introduced at the beginning of §4. Let A; be the unique self-adjoint
extension of A;. Note that A;, ¢ = 1,2, are self-adjoint operators in L?(R x Z;, E;) and
As is a self-adjoint operator in L2(R? x Y, 5). Here E; and S denote the pullbacks of
the corresponding bundles over Z; and Y, respectively, to vector bundles over R x Z* and
R? x Y, respectively. Put

RN =(A; = X)), Im(A\)>0,i=1,2,3.
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Furthermore, let 3
Ro(A) = (A =257, Im(A) > 0.

Let ®;,¥; € C*(X),:=0,...,3, be the functions introduced in §4. Put
2

(5.7) P()) =Y W;Ri(A\)®: — T3Ry(\)®3, Im()) > 0.
i=0

Then . P(}) is a bounded operator in L? and we shall now verify that P()) is a parametrix
for (A = X2)~1. Put

(5.8) G(A) = P(A)(A = 2*) — Id, Im(}\) > 0.

Then we have to show that G()) is a compact operator in L. By (5.7) we may write

GO = Y650 - Go(),

where
(5.9) G;(N) = (¥;R;(0)®;)(A — A?) — T;1d.
Since ®q, ¥y have compact support, it follows from Rellich’s compactness theorem that

Go(A) is a holomorphic function on the upper half-plane with values in the compact
operators in L%. For j = 1,2 we have

(5.10) Gi(N) = -, (R,(A)oa—w)a_w - BRI G
and R;(}) is given by the operator valued kernel

1 R
(5.11) Rj(u,v,,\) — o / eié(u—v) (.A? A2 4 52)_1 de.

Since || (A7 — A 4+ £3)7! ||= 1/dist(R*, A? — £2), the integral is absolutely convergent. If
u # v, we can integrate by parts which for N € N, gives

(5.12) Rj(u,v,\) = (_2;71)-1\, (u—v)™N /_o:o ei€(u=v) (%)N [(A? — A% 62)—1] de.

If £ > n, then (.A? — A2+ £6%)7F has a continuous kernel. Let T > 0 and let Z; 7 be defined
by (1.5). Since 0®;/0v; and ¥; have disjoint supports, it follows from (5.10) and (5.12)
that the restriction of G;(\) to Rt x Z; s Hilbert-Schmidt. Let x; 7 be the characteristic
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function of Rt x Z; 7 C Rt x Z;. Suppose that z € M; C Z; and 2’ € [1,00) X ¥ C Z;.
Then it follows from (5.2) that P;(z,z',A) = 0. Hence, for T > 1, we get

" (a7 PR - gD ) e,

—0oQ

1
(5:13) x50 By{o0, 1-x37) = 57 |

If we integrate by parts and then apply Lemma 5.5, it follows that x;0G;(A)(1 — x;7) is
a compact operator in L?.

Let 8 be the characteristic function of (R*)?2 x ¥ C X. Then our investigation of

G(A) is reduced to the study of Z§=l 6G;(A)f — 8G3(A)f. Using the definiton of ®3 and
V3, we get

2
8
D 6G; (M6 — 0G5(A)8 = — U1 {Ri(\) — T2Rs(\) &} 37;
j=1 !
8 1 0%,
510 _ [{Rl(,\) — TRy (N)B2} o 3_1)1] T
82,
— lI’2{R2(A) - lI’1R3(A)(I’] } _8—2_
U2
9100
_ \1:2[{112()\) — U, Ry(M\)&, 08_1)2] av;'

We consider the first term. Let H(A) be the operator in L*(R* x Y, E|) which is defined
by the kernel (5.1). Then R3(A) can be represented by the operator valued kernel

1 [ .
Rg(u,v,)\)=2—-/ e B (/AT —¢2) d¢, Im()) > 0.

™

The integral is absolutely convergent. Now observe that the parametrix Pi(A) and H(\)
differ by a compact operator. Hence, up to a compact operator, the first term on the right
of (5.14) can be written as

(5.15) %\I’l{ ! foo ei€(u1—v1) % (A2 =224 €)= Py /N2 {:2)] d{} 9%,

Uy — U —oo a'U] -

The integral is absolutely convergent. Since supp(d®,/9dvy) C (0,1) X Z;, and 0%, /0v,,
¥, have disjoint supports, it follows from Lemma 5.5 that (5.15) is a compact operator in
L?. The remaining terms in (5.14) can be treated in the same way. Using (5.9) one can
show that || G(iA) |[< C/A, A > 1. Thus we proved

Lemma 5.16. Let P(A) be defined by (5.7). Then we have
POOYA = X)) =1d + G(A), Im(A) >0,
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where G(\) is a holomorphic function on the upper half-plane with values in the compact
operators in L*(X, E). Moreover, there exists C > 0 such that || G(i\) ||[< C/A for A > 1.

By Lemma 5.16, Id + G(:)) is invertible for A > 0. Hence A — (Id + G())) isa
meromorphic function on the upper half-plane with values in the bounded operators in

L*(X,E) [Sb). Thus we get
(5.17) (A -2 = (Id+ G(N) ' P()), Tm(A) > 0.

We shall use (5.17) to extend the resolvent to a meromorphic function in a neighborhood
of zero.

Let W; C X, ¢ = 1,2, be the submanifolds defined by (1.2) and recall the decomposi-
tion (1.3). Let p; € C°°(X) be such that p;|W; = 1, p(ui, 2;) = pi(u;) for (ui,2z;) € RT x Z;
and pi{u;, zi) = u; for w; > 1. Set

p=p1+ p.

Given § € R, we define a weighted L%-space by
Li{(X,E)={¢: X = E| ¢ a measurable section and

5.18
(5.18) ] lp(2)]? 2573 dz < 00 }.
X

Note that for § > 0 the following inclusions hold
(5.19) LYX,E) C L*(X,E) C L* (X, E).

Given 6,8’ € R, we denote by L{L3(X, E), L% (X, E)) the space of bounded linear operators
from L}#(X, E) into L% (X, E). Let x; > 0 be the smallest positive eigenvalue of A%, i = 1,2.
Put

1 .
60 = 5 Inln{\/#_l: \/EI! \/E}

and let
(5.20) Q={AeC|Im(N) >0} uU{reC||A <&}

Lemma 5.21. Let 0 < é < §y. Suppose that ker Dy = 0. Then the parametrix P(\)
extends from the upper half-plane to a meromorphic function on Q with values in the

space L(LE(X,E),L* (X, E)).

Proof. Let § < §. We have to show that each term on the right hand side of (5.7)
extends to a meromorphic function on €. Since A is an elliptic operator on a closed
manifold, ¥y Ro(A)®, is a meromorphic function on the whole complex plane with values
in the bounded operators in L?( X, E). Using the inclusions (5.19), ¥4 Ro(A)®, becomes a
meromorphic family on C with values in L(L4(X, E), L% ;(X, F)). Next consider R3()).
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Let S be the pullback of § — Y to R2x Y. Given ¢ € L*R? x Y, 5), let ¢(¢,y)
denote the Fourier transform of ¢(u,y) with respect to the u—variables. Recall that Az =
—8?/8u? — 8% /Oul + D% . Hence, we may write R3(A) in the form

1 i(€,u =1/
(522) (Bs(Me)(w,v) = 15 fm O DY+ NP =A%) T (@6 v) dE, Tm(X) > 0.
Since D%, is self-adjoint and nonnegative, we have

1 (D34 [ €112 =A%) 7" [I= (dist(RF, 22— || € )7

which implies that the integral (5.22) is absolutely convergent for Im(A) > 0. Ifker Dy =0,
then the spectrum of D% is contained in gy, 00), 11 > 0. Therefore, the right hand side
of (5.22) defines a bounded operator in L? for all A € Q. Let 8§, > § > 0 be given. Using
(5.19), we obtain a holomorphic function on § with values in L(L}(X, E), L2 ((X, E)).

It remains to investigate R;(A), § = 1,2. If ker Dy = 0, then it follows from Theorem
4.10 of [Miil] that the continuous spectrum of Af equals [p11,00), where g7 > 0. Let

L%*(Z;, E;)* be the orthogonal complement of ker A; in L*(Z}, E;) and let A;,; denote the
restriction of A; to L*(Z;, Ej)*. Then the spectrum of (A;;)? is contained in [p;,c0).
Since A; = —0%/du? + A?, we get a corresponding decomposition for Aj; namely

(5.23) A; =01 DD

The spectrum of A} is also contained in [g,00) and A}, is the self~adjoint extension of

9% /0u* @ 1d, acting in CP(R) @ ker A;. Let R; () = (A;; — A1), 1,5 € {1,2}. Then
we have

(5.24) Rj(M)=R;7 (M) ® Rj2()), 7=1,2, Im(A)>0.

Since o0(Aj1) C [p1,00), it follows that R; (1)) is a holomorphic function on € with values

in the bounded operators in L?(X,E). Using (5.19), we get a holomorphic function on—- .

 with values in E(LZ(X, E),LEE(X,E)). Let ¢1,...,¢m; be an orthonormal basis for
ker A;. Then for u; # v;, the kernel of R;2(A) is given by

m;

1 A~y WYEY
(5.25) Ri2((ujr 25), (v, 25), ) = 5 €197 Y Doz @ @il2]),  Im(A) > 0.
=1

This kernel has an obvious extension to a meromorphic function on € and for 0 < é <
8o, the extended kernel defines a meromorphic function on  with values in the space

L(LYX,E),L* 4(X,E)). Thus for all terms on the right hand side of (5.7), we have
constructed analytic extensions with the desired properties. g.e.d.

Let
0 = {A € C| Im(A) > |Re(/\)|} U {/\ eCl A< 60}.
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Lemma 5.26. Let 0 < § < §y and suppose that ker Dy = 0. Then the operator G(A),
defined by (5.8), extends from the upper half-plane to a meromorphic function A € ; —
G()) of compact operators in L2 (X, E). Moreover, there exists C > 0 such that for
A>1, || GGEA) ||=s< C/ A

Proof. Let 0 < § < 6. First we show that G(A) extends to a meromorphic function
A€ Q) = G € L((L24(X,E)). As above, we write G(A) = Y7y G,;(A) — Gs()),
where Gj(A) is defined by (5.9). The statement of the lemma holds obviously for Gg()).
To treat Ra(A), we consider the weighted L? space L? ;(R? x Y, 5) which is defined as

the space of measurable sections which are square integrable with respect to the weight
function e?*(*1t%2) § ¢ R. For p € CP(R? x Y, S) and § > § > 0, put

~ 1 ; =1/
BNe=gg | OO0 a6 -2 (BEn) e Ae

Since the spectrum of D} is contained in i1, 00) the integral.is absolutely convergent for
A € Q. Then R3()) extends to a bounded operator in L% ;(R? x Y, S) which coincides

with Rg(A) on the subspace L*(R* x Y, S). By (5.9) we get a holomorphic function A €
Q; — G3(\) € L(L24(X, E)).
Next consider G;(A), 7 = 1,2. We use (5.10) to express G;{A) in terms of R;(A). If we

insert the decomposition (5.24) on the right hand side of (5.10), we obtain a corresponding
decomposition

(5.27) Gi(A) =G;1(A) & Gj2(N).

Consider the kernel (5.25) of R;2(A). We observe that by (4.1) of {Miil], each ¢ € ker Aj,
| ¢ ||= 1, satisfies |¢(u,y)| < Ce™#* for u € R*, y € Y. Using (5.25), it follows that
G, 2(A) extends from the upper half-plane to a meromorphic function A € Q — C;'j,g(/\) €
L(L2 (X, E)). The resolvent R;(A) has the following operator valued kernel

(5.28) Rji(u,v,A) = i/ e (4 )2 + €2 =227 de, Im(A) > 0.

71-—00

By definition, the spectrum of (A4;;)? is contained in [g1,00). Therefore the right hand
side of (5.28) is convergent for A € Q. To study (5.28) we introduce weighted L? spaces
for Z;. Let o; € C°°(Z;) be such that o,(u,y) = u for (u,y) € [1,00) x Y. For § € R let

Liy(Z;,E;)={¢:Z; —» E; | v a measurable section and
/ lp(2)|? €571 (D) dz < oo}
Zj
Note that for § > 0, we have the following inclusions
(5.29) L}(Z;, E;) C L*(2;,E;) C L*5(2;, E;).
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Our goal is to extend ((A;1)* + €2 — /\2)_1 to a bounded operator in L% ((Z;, E;) for
A€ Q. Let L2 (R x Y, 5) be the corresponding local L? space with weight function e=2%,
For ¢ € C§°(R x Y, 5') let 1,5(5, y) be the Fourier transform of 1(u,y) with respect to the
u—variable and set

1

(5:30)  (HOW)(wy) = 5

/l )2 equ(D%, + 62 . /\2)—1 (yB(f,y)) & Aeq,.

Then H()) extends to a bounded operator in L% ;(R x ¥, §) which coincides with H())

on the subspace LZ(R x Y, S ). Being the resolvent of an elliptic operator on a compact
manifold, @;:1(A) is a meromorphic function on C. If @;(A) has a pole at A = 0, we
remove the contribution of this pole and denote the resulting kernel by Q;()). If we pick
bo > 0 sufficiently small, then Qj,](/\) is holomorphic in . Put

Pi(A)=T;1Q;i (M@ + YpHN®j, Ae .

Then P;(A), A € €, is a holomorphic family of bounded operators in L*(Z;,E;). Tt
follows from (5.30) that there exists C > 0 such that

I 250 l-s< CA+ P, Ae .

By the same argument one can prove that the operators K;(A) in (5.3) extend to a holo-
morphic family A € Q — K;(A) of compact operators in L? ;(Z;, E;) and for A > 1, the

norm of K;(i}) is bounded by CA~'. Hence, A € @ — (Id + Rj(A))_] is a meromorphic
function of bounded operators in L2 ;(Z;, E;) [Sb]. Moreover, for A € Q;, |A\| > C we have

| T+ K;(0) 7" f=s< 2. Put
Rz, (A) = (1d+ K;(0) 7 B(N).

Combining our results with (5.4), we obtain

Lemma 5.31. Let 0 < § < §. The resolvent (A% — A?)™! extends from the upper half-

plane to a meromorphic function A € Q — Rz, ()) € L(L*4(Z;, E;)). Moreover, there
exists C > 0 such that Rz, (A) is holomorphic in Q; N {A € C | [A| > C} and satisfies

| Rz, (M) l-s< C A+ AT, AeQu.

Suppose that A € §2; is a pole of Rz (A). It follows from (5.3) that there exists ¢ €
L? (Z;,E;) such that A?(p = AMyp. On Rt x Y, we may expand ¢ in terms of the
eigensections {¢;}ien of D¥:

en,y) = 3 (e VI eV gy

=1
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Here the square root has been chosen such that Im(\/  — /\2) > 0 for all A in the upper
half-plane. If Im()) # 0 then Re(y/j1 — A?) # 0 and we may pick § > 0 such that
|Re(\/,u1 — /\2)| > § for all Il € N. Then ¢ is square integrable and ,therefore, vanishes if
Im(A) # 0. By Lemma 5.31, Rz, ()) has only finitely many poles in ;. Hence, we may
pick 6o > & > 0 such that the only poles of Rz, (A) in €y are real. But, by our choice of
6o, the only possible pole can occur at A = 0. Let Rz, ;(A) be the operator obtained by
removing the contribution of the pole at A = 0. Then Rz; 1(}) is still a bounded operator
in L2 ;(Z;, E;) which is a holomorphic function of X € ;. Put

~ 1 ce
(5.32) Ri1(u,v,A) = — f e Ry 1 (VAT —€2)dE, N € Q.

2T J_ o

By Lemma 5.31, the integral is absolutely convergent and for all u,v € R, the kernel defines
a bounded operator in L2 ;(Z;, E;). From the construction it is obvious that for A € £,
R;1(}) is an extension of R;;(\). Let R;2()) be the extension of the operator defined by
the kernel (5.25) and put 3 3 )

Ri(A) = R£ji(A) @ Rj2(2)-

We replace R;()) by R;(}) on the right hand side of (5.10) and denote the resulting kernel
by G;(A). Since the support of 0®;/dv; is contained in [0, 1] X Z;, it follows from Lemma
5.31 that G;()) defines a bounded operator in L2 (X, E). Let

A~ 2 ~ -~

GO = G5(N) = Gs().

=0

Summarizing our results, we have proved that A € Q; — G()) € L{L*(X,E)) is a
meromorphic function which extends G(X).

It remains to verify that G’(A) is compact. To establish compactness, we may proceed
in essentially the same way as in the proof of Lemma 5.16. Let 6 be the characteristic

function of (R*)? x Y C X. Let A € . Then 8G())# is given by

8GN0 = — U {Ry(N) — T R5(\)®,) 3;;1;‘
- ~ 0, ({7 () - TR} o a%] aa‘f]‘
| — P {Re(N) — U1 Ry(N)®y) %
~ B [{Ra() — BB (M)} o a%] g‘fj,

where ij()\), 7 = 1,2,3, are the operators introduced above. Consider the first term.
Observe that R3(A) can be written as

Ry(u,v,\) = %/ e =) (/A2 — €2) de.

— o0

41



Now replace H()) by the parametrix Pi()). Using (5.30) and (5.32), it follows that, up to
a compact operator in L2 ;(X, E), R1(\) — U2R3(A\)®; equals

o [ (104 B (VTS E)) T R (VAT ) B (VR ) e

— 00

Since K (A), A € Q, is a compact operator in L% ;(Z;, E;), it follows that the first term on
the right hand side of (5.33) is a compact operator in L? ;(Z;, E;). The other terms can
be treated in the same way. Thus, we obtain that 0@(/\)9 1s a compact operator. Let x; 1
be the characteristic functions defined above. By a similar argument, it can be shown that
Xj,gfij()\)(l — Xx;,7), 7 = 1,2, is compact. This completes the proof of the compactness of
G(A). The claimed estimate of the norm follows directly from the definiton of the analytic
continuation of the operators R;(A). q.e.d.

By Lemma 5.26, Id + G()\) is invertible for A > 0. Since G()) is compact , we get

a meromorphic function A € Q; — (Id + G())) e L(L%4(X,E)) [Sb]. Together with
(5.17) and Lemma 5.21, we obtain

Theorem 5.34. Suppose that ker Dy = 0. For every ¢ > 0 there exists §, 0 < § < dy, such

that the resolvent (A — A?)™! admits an analytic continuation from the upper half-plane
to a meromorphic function A € Q; — R(A) € L(LA(X, E), L* (X, E)).

6. The continuous spectrum near zero

In this section we shall investigate the continuous spectrum of A = D? near zero. Since our
approach depends on the analytic continuation of the resolvent, we can treat this problem
only under the assumption that ker Dy = 0.

Let A; be the self-adjoint extension of the Dirac operator 4; : C§°(Z;, E;) — L*(Z;, E)
defined by (2.1). Our first result concerning the continuous spectrum of A is the following

Proposition 6.1. Suppose that ker Dy = 0 and ker A; = 0, 1 = 1,2. Then the essential
spectrum of A has a positive lower bound.

Proof. Let A; p, ¢ = 1,2,3, be the Dirichlet Laplacians introduced in §4 (cf. Theorem
4.24). If ker Dy = 0, then the spectrum of D% has a positive lower bound gy > 0 and it
follows from the definition of A3 p that

(Ds,pp,0) Zm llel?, peCs(RY)? xY,E).
Thus, the spectrum of Ay p is contained in g1, 00). Next observe that by Theorem 4.10 of
[Miil], the assumption ker Dy = 0 implies also that the continuous spectrum of A; has a

gap at zero. Since ker A; = 0, it follows then that the spectrum of A? has a positive lower
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bound. Using the definition of A; p, we deduce that the same holds for the spectrum of
A;i p, t = 1,2. Therefore, there exists ¢ > 0 such that for every A > 0, we have

” (Ai,D + ’\)_-] ”S 1= 112)3~

c+ N

This estimate of the norm implies that the spectrum of
(A1,p+ 07" A+ (Bgp + )7 = (Asp+A)7

is contained in (—3/(c + A),3/(c¢ + A)). Let A be a positive self-adjoint operator in some
Hilbert space. Then for Re(A} > 0, the resolvent of A is given by

(A+ /\)_] = /°° e~ et gt
0

Using this observation and Theorem 4.24, it follows that the operator
(A+N7 = [(21p+ 07" + (D20 + 17 = (As0+1)7']

is compact. Applying Lemma 3, Ch. XIII, §4, of [RS], we conclude that the essential
spectrum of (A 4+ A)~! is contained in {0,3/(c + A)). This fact combined with Lemma 2,
Ch. XIII, §4, of [RS] implies that the essential spectrum of A is contained in [(c—2))/3, c0).
Since A > 0 is arbitrary, it follows that the essential spectrum of A has the lower bound
c/3>0. qed.

As Proposition 6.1 shows, the continuous spectrum of A near zero is completely de-
termined by ker Dy, ker A; and ker .A;. We shall now study the case where ker Dy = 0,
but at least one of the spaces ker A;, 1 = 1,2, is nonzero. Then the argument used in the
proof of Proposition 6.1 implies that the continuous spectrum of A extends down to zero.
Our purpose is to construct generalized eigensections of A, associated with elements of
ker A;, and to describe explicitly the continuous spectrum of A near zero in terms of these
eigensections.

Let ¢ € ker A; and let A € C. Define (¢, A) € C°(RY x Z;,E) by

hi(, A, (uj,25)) = €7 (z;).

Note that hj(¢, A) satisfies

82
(6.2) (_W + A?)hj (¢: A (u, zi)) =\ h; ((,75, Ay (uj, ZJ'))'
J

Let f € C(R) be such that f(u) = 0 for v < 1 and f(u) = 1 for v > 2. Define
fi € C(R* x Z;) by fi(uj,z;) = f(uj) and then extend this function by zero to a
smooth function on X. Using (4.1) together with (6.2), it follows that (A — A?)(f;h;(¢,A))
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is a smooth section of E which belongs to L*(X, E). Hence we can apply the resolvent
(A — A?)7! to this section. Put

(63)  Fy(,0) = fihs(9,) = B =27 (A = A)(fh5(4,1) ), Tm(x) >0

Then Fj(¢,A) belongs to C®(X, E) and satisfies

(6.4) AF;(¢,0) = MNeF3(4,)), Im(A) >0

Since ¢ € ker A;, it follows from (4.6) in [Miil} that there exists C' > 0 such that
6(u,y)| S Ce™ /2 u>0,y€Y,

where g1 > 0 is the smallest positive eigenvalue of Dy . Let 0 < § < min{p1/2,85}. Then
(A=A2)(f;h;(4,A)) is contained in LE(X, E) for all A € C. Since ker Dy = 0, we can apply
Theorem 5.34 which implies that the right hand side of (6.3) extends to a meromorphic
function A € Q — Fj(4,)) € L24(X, E). In particular, Fj(¢,A) is locally integrable and
therefore, we can apply A in the distributional sense. By (6.4) we get (A — A*)F;(¢,A) =0
for Im(A) > 0. Since (A — A?)F;(4, \) is a meromorphic function, it vanishes for all A € 2.
By elliptic regularity, it follows that F;(¢,A) € C*°(X, E). Thus we have proved

Theorem 6.5. The section F;(¢, ) defined by (6.3) extends to a meromorphic function
A€ Fi(¢,\) € L? 4(X,E) with the following properties
1) Fj(¢, A, z) is smooth in z € X and satisfies

(A = \D)F;(4,0) =0, XeQ.

2) For Im(A) > 0, f;h;(¢,A) — Fj(é,A) is square integrable.

Now consider the restriction of F;(¢, A) to Rt x Z;. For Im(}) > 0, Fj(¢, A, (u,-)) is square
integrable on Z;. Hence, we can expand Fj (¢, A, (u, )) in terms of the cigensections of
A?. Let L%(Z;, E;) be the subspace of L?(Z;, E;) which is spanned by all L? eigensections
of A% In the orthogonal complement of ker 4; in L%(Z;, E;), we pick an orthonormal
basis {@ }rer consisting of eigensections of A§ with corresponding eigenvalues Ag, k € 1.
Furthermore, let {¢;}ien be an orthonormal basis of L*(Y, S) consisting of eigensections
of D} with eigenvalues 0 < y; € pg < --- — o00. For each | € N, let Ej(¢,A) be the
generalized eigensection of A?% associated with ¢; (cf. [Mii1,84]). Using the fact that
(A = A?)Fj(¢, ) = 0, we obtain the following expansion of Fj(¢,A) on Rt x Z;:

Fj (¢, X, (u,2)) = e7"g(z) + e™*(C;(N)¢)(2)

+ ag(A)e” ’\"’\"(z
(6.6) Lzelk) pul?)

‘*‘Z b;AA VA=A BB, A, 2) dry(A).
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Here Cj(A) : ker A; — ker A; is a linear operator which is a meromorphic function of
A € Q2. We call C;()) “scattering matrix”. The measure dr is given by

2 _
dri(A) = YA Z 1 gy

2rA

The convergence of the series and integrals on the right hand side of (6.6) is understood

in the L? sense. Moreover, the expansion (6.6} holds for all A € §2. We define the constant
term Fjo(¢,A) € C®°(R™ x Z;, E) of Fy(¢,) by

(6.7)  Fjo(¢, A (us,25)) = e g(2;) + €% (C;(Ne)(25),  (uj,25) € R x Z;.

Suppose that [A| < 1/2min{y, A1 }. Let m > 1. Using (6.6), we get

DA F (82 (,) [P = 3 lar(A)[2 2R (VA3 2

kel

o0 oo
+ Z/ |b1(/\,A)|2 e—2Re(\/K§—_A!)u A4m dTL(A)
=1 v

< Cre™ ",

We observe that the injectivity radius of Z; has a positive lower bound and all covariant
derivatives of the curvature tensor of F are uniformly bounded on Z;. Hence, the norm of
the Sobolev space H™(Z;, E;) is equivalent to the norm || (I + Af)"‘/zgo || and the Sobolev
embedding theorem holds [Ei]. This implies that (6.6) is pointwise convergent. Moreover,
by the Sobolev embedding theorem we get

sug [Fi (8,7, (u,2)) — {e7™¢(2) + eiA"(Cj(Ai¢)(z)}| < Ce™",
(6.8) 7 X
Al < §min{,ul,/\1}.

Next consider the restriction of Fj(¢,A) to RT x Z;, | # j. We shall now expand
F; (qS,A,(u;,-)) in terms of the eigensections of A?. Let L3(Z;, E;) be the subspace of
L%*(Z;, E;) which is spanned by all eigensections of A?. Let {1,},es be an orthonormal
basis of L3(Z,, E) consisting of eigensections of A? and denote by v,, p € J, the corre-
sponding eigenvalues. Let {¢x}reny and 0 < g < pz < --- — oo be as above and let
Ei(¢x,A) be the generalized eigensection of A? associated with ¢y (cf. [Miil,§4]). Sup-
pose that Im(A) > 0. Then by Theorem 6.5, Fj(¢,A) — f;jFjo(#,A) is square integrable.
Therefore on Rt x Z;, we may write F;(¢, A) as

Fy(, A, (ui, 21)) = fiFjo(d, Nut, 21) + Y aplue, X) hp(20)

peJ

(6.9) 00 oo
+ 57| Bulur, A\ A) Bk, A, 1) dri(A).
k=1"YHk
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Again, the convergence of the series and integrals has to be understood in the L? sense.
As functions of u, both «, and g, satisfy certain differential equations which we describe
now. First note that on Z;, the section (A — A?)(f;F;0(¢, A))(x, ) is square integrable for
each u € RT. Let

(6.10) gy, A) = (A = X)(FFyo(d, ) (1, ), $p)-

To proceed further, we need to know the asymptotic behaviour of g,(ul) as u — o0. By
definition, we have

(A_’\2)(fiFi»0(¢a )‘)) (ula Uz, y)

6.11 ) .
(6.11) = & (uj) e dlur,y) + Eauj) e (C5(N)d) (ur, y).

where suppé; C [1,2], 7 = 1,2. Since ¢ is square integrable on Z; and satisfies A;¢ = 0,
we can expand ¢ on RT x ¥ C Z; in terms of the eigensections ¢, of D3. Using that

A? = —8?/9u? + D% on R* x Y, we obtain the following expansion
o0

(6.12) Blur,y) =D ek eV gi(y),
k=1

A similar expansion holds for C;(A)¢. Moreover, the eigensections 3, have also an expan-
sion of this type on Rt x Y C Z;:

(6.13) plusyy) = 3 dme VIR g(y).

Hm>Vp
Using (6.10) - (6.13), we get the estimate

_\/m'u/'z, v, = 0;
VUl vp > 0;

(614 (N <0 { ¢

which holds uniformly for A in a compact subset of C.

Since (A — A2)Fj(¢,A) = 0, (6.9) implies that the functions @), satisfy the following
differential equation:

d?

du?

(6.15) ap(u, A) = (A2 — vp)ap(u, A) + gp(u, A).

Let 1 > 0 be the smallest positive eigenvalue of A} and put

1
§= Emin{pl,ul}.
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Let v, > 0 and suppose that [A| < §. In view of (6.14), the general solution of (6.15) has
the form

vp—/\ u

/ V)
616 up—)\ u
(6.16) ' + f V=AY g (0 ) de

vp — A2
+ep(A) e VTN 4 oA eV e
The branch of the square root has been chosen such that Re(\/up - /\2) > 0 for A as above.

Since «, is square integrable as a function of u, we get ¢,2(A) = 0. Hence, for each v, > 0,
there exists Cp, > 0 such that

ICYP('U.,/\)| S CP eV ua u € R+) |)\| < ‘51

e

ap(u, A) = f eV A g (0, A) do

and 3 ¢ |Cp]? < oo
Now assume that v, = 0. Then for |A| < §, the general solution of (6.15) is given by

. tAu u .
cvp(u,/\) — dp(/\) RE + z.ezl\ ]{; e~ iAY gp(’U,/\) dv
(6.17) Tl e
+ i 5 u\v ('U A)d
Put

1

cp(A) = dp(N) + T\ /(; e g,(v, A) dy.

Then (6.17) can be rewritten as

6"\u

. = —iAv
zQAL e gp(v, A)dv

e—iAu ©0 o\
+ 2 / e’ g,(v, A) dv.
2/\ " P( )

ap(u, A) = cp(A) e —

(6.18)

Using (6.14), we get
(6.19) lop (1, A) — cp(A) e < Cpe™®™, uwe R, |A| <8,

for some constant C), > 0. The coefficients Gx(u, A, A) in (6.9) can be determined in a
similar way. If we proceed as above and use the Sobolev embedding theorem, we get

sup [Fy (4,2, (1,2) = B30 (60 (1,2) = 3 ep(N) () €] < C e,
(6.20) €21 y’,=0
u € RY, [A <4,
for certain constants C, ¢ > 0. Combined with (6.8), this estimate implies that c,(A) =0

for vp = 0 and Im(A) < 0. But cp(A) is a meromorphic function of A and therefore, vanishes
identically. Putting together (6.8) and (6.20), we can summarize our results by
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Theorem 6.21. Suppose that ker Dy = 0. Let 8o = 1/2min{pq,v1,A1}. Let x; be the
characteristic function of R x Z; C X and for ¢ € ker A;, let F;o(¢,)) be the constant
term of Fj(¢, ), defined by (6.7). For each ¢ € ker A;, the restriction of the generalized
eigensection Fj(¢,)) to Rt x Z; C X, 1 =1,2, satisfies

sup |F}'(¢,/\,(U,Z)) - Xij,U (QS,/\,(U,Z)H S Ce—cu, u e ]R+, |)‘l < 507
2€EZ}

for some constants C,c > 0.

We can now proceed in essentially the same way as in [Mii2,§7] and derive the basic
properties satisfied by the generalized eigensections. Suppose that |A| < 8y and Im(A) < 0.
Then it follows from the estimations proved above that Fj{¢,A) — f;h;(C;(A)¢,—A) is
square integrable. Put u(A) = Fj(C;(A)¢,—A) — Fj(¢,A) and assume that Im(X) < 0
and |A| < . Then u()) is square integrable and satisfies (A — A?)u(A) = 0. Since
A is essentially self-adjoint, it follows that u(A) = 0, ie., F;(Cj(A)¢,—A) = F;(é,A).
Comparing the expansion (6.6) for the left and the right hand side, we get

Theorem 6.22. Let j = 1,2. The generalized eigensections F;(¢, ), ¢ € ker A;, satisfy
the following functional equations

(6.23) Fi(C;(\)d,—=A) = Fj(¢,0) and C;{(MNC;(=A)=1d, |A| < .

Given T > 0, let x7 be the characteristic function of [T, 00) x Z; C X, where [T, 00) X Z;
is regarded as submanifold with respect to the decomposition (1.3). Put

(6.24) FI(¢,\) = Fj(¢,)) = x1Fjo(é,A).

where F; o(¢, A) 1s defined by (6.7). f A € Q, then FJT((;S, A) 1s square integrable by Theorem
6.21 and the inner product of the F' JT’S can be computed as follows. Let ¢, € ker A; and
let A, A" € Q be such that A # ). Integrating by parts, we get

(FT(6,A), FT (16, A1)

= (A =X {(AFT (8,2, FT (6, X)) — (F(6,0), AF] (,))) }

(6.25) _ {6—='T(A~?\7)(¢’¢)_eiT(*—V)(Cj(/\)q&,Cj(A’)¢)}

%
{0 g, 0,0) ~ TG (006,8) )

1

A+ N

+ >

Put T = 0, assume that 0 # A € R, |A] < g, and let A’ — A. Then the left hand side stays
bounded and therefore, the right hand side must stay bounded as well. This fact implies
that C;(r) is unitary for r € R, 0 < |r] < . For r = 0, the functional equation gives
C;(0)* =Id. Hence, C;(r) is regular for r € (—&,8). Now let 0 # r,7' € R and suppose
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that |r|,|r'| < & and r # »'. Let r — r' and apply the functional equation (6.23). Then
(6.25) leads to

(FT (6,70, BT (8,)) = 2746,9) = (C(-n) (5:C) 9.8

+ 5= {7, G0 - HTTCH 8,9}
reR, 0<lr| <ép.

(6.26)

Since C;(r) is regular on (—éo, 60 ) — {0}, it follows that F;(¢, A) is also regular on (—éo, éo).

Using C;(0)? =Id, one may derive a similar formula for » = 0. Summarizing, we proved

Proposition 6.27. The scattering matrix C;(A), 7 = 1,2, is unitary for A € (—ég,6¢).
Both Cj(A) and Fj(¢,)), ¢ € ker A;, have no poles on (—éq, 6).

We can now use the generalized eigensections Fj(¢,7), r € (—80,6), to describe the
continuous spectrum of A near zero. Let 0 < 6 < §y and let ¢ € ker A;. By Proposition
6.27, Fj(¢, A) is square integrable as function of A € [0,6]. Let f € L?([0,6]) and put

, P
W;e(f) = \/—12—; /(; Fi(é,7) f(r)dr.

Lemma 6.28. 1) For all f € L*([0,6)), W; 4(f) belongs to L*(X, E), and for any f,g €
L*([0,8]), ¢, € ker A;, the inner product of W; 4(f) and W; y(g) is given by

(Wio(£), Win(9)) = (f, 9) (6, ).

2) Let L be the bounded operator in L*([0,8]) which is defined by Lf(r) = r?f(r). Then

we have
(A=2)""W;s(f) =W,s((L-2)7"f), zeC-RT, feL¥0,d]).
3) For all ¢ € ker A, ¢ € ker A and f, ¢ € L?([0, §]), we have

(W1,6(£), Wa,p(9)) = 0.

Proof. Let T > 0 and put

1 5
T . , .
Wielf) = 7= /0 Fj'(¢,7) f(r) dr,
where FJT(qS, A) is defined by (6.24). Since F](¢,A) is square integrable, Wqu(f) is also

square integrable. Using the inner product formula (6.25) and the Riemann-Lebesgue
lemma, we get

6 IS
Jim | WE) = [ 6P 67
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Applying Lebesgue’s theorem, it follows that W; 4(f) is square integrable. The inner
product formula can be derived in the same way. This proves 1). Since AF;(¢,A) =
A2 F;(¢,A), we get 2). By Theorem 6.21, we obtain

Jim (F(6,0), F5 (%, 1) = 0,
which implies 3). q.e.d.

Let m; = dim(ker A;). Let ¥;1,...,%jm; be an orthonormal basis for ker A;. Then we

define the operator
IT!j

w; - @ L*([0,5]) — L*(X, E)

k=1

I?lj

1 )
Wi({fe}) = — = Fi(¥jk,7) fi(r) dr.
D=2 75 ), Bt

By Lemma 6.28, W; is an isometry onto a closed subspace ’Hg- C LY X,E) and H¢ is
orthogonal to HS. Moreover, we have

(6.29) W;W;=1d and W,W} =P},

where Pf is the orthogonal projection of L?(X, E) onto H_f-. Lemma 6.28 implies that ’H?

is an invariant subspace for A. Let A? denote the restriction of A to ’H?. Let o € C=(R)
be such that a(u) =1 for |u| € §/2 and a(u) = 0 for |u| > 4. Using (6.29), it follows that
the kernel of a(A?) exp(—tA‘;) is given by

,le ]- oo )
(6.30) I‘f;—'(:n,:c',t) = ZQ_T( /0 a(AQ)e“’\ Fj(t/)jk,/\,:l:) ®Fj(¢jk,/\,$’)dz\.
k=1

We extend a(A?) exp(—tAg), j = 1,2, to operators in L?(X, E), putting them equal to
zero in the orthogonal complement of Hj-.

Lemma 6.31. Let 0 < § < & and let o € C§°(R) be as above. For j = 1,2 and t > 0,
the operators

a(Ag) exp(—tAf) — a{Aj p) exp(—tA; p)
are Hilbert—Schnidt.

Proof. Let F}(%ji,A) be defined by (6.24) where T = 0. Then we may write

Fi(jk, A 2) ® Fi(hie, A, 2') = Fi(wn, A z) @ Ff (0, A, z")
+ F{ (e, 2, 2) @ Fjo(hji, A, z') + Fjo(ik, A7) ® Fjo(thjn, A, ')
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which induces a corresponding decomposition of the kernel (6.30), say
K7 (t) = K () + K$(t) + Kj4(2).

Now consider the individual kernels. Let ¢ € L*(X, E). Then it follows from Lemma 6.28,
1), that

n i

1K 0 P= 3 [ ot e [(E e M)
k=1 v0

2
’ A

Hence, the Hilbert-Schmidt norm ||| K¢ (2) (|| of K§,(2) is finite and given by

my

(o s]
K@) 12=3 ] a(A2) ™ || F9(ihse, M) [ dA.
k=1

In the same way one can show that K3,(¢) has finite Hilbert-~Schmidt norm. Hence, it
is sufficient to prove that Ky(t) — (Y(Ale) exp(—tA; p) is a Hilbert—Schmidt opera-
tor. Since ker Dy = 0, the spectrum of Aj p, restricted to the orthogonal complement
of L*(R*) ® ker A; in L*(Rt x Z;, F), is contained in [65,00). Hence, the kernel of
a(A;,p) exp(—td; p) is given by

2 o0 2 ”11‘
(6.34) 2 f a(A) = sin(w)sin(Ao) dX 3 e(2) @ Tia(e).
T Jo k=1
Since C;(A) is unitary for A real, we have
D CiM\bie ® Ci(0 sk = Y ik @ Pk
k=1 k=1

Using (6.7), (6.33) and (6.34), it follows that the kernel of K{3(t) — a(4; p) exp(—tA; p)

equals

1 = —tA? _iMu+tv
2 Jo a(AP)e™ N A (C5(Ahje — sk ) ® Pk dA
1 = —t22  —ix(u4v
(6.35) —5 | e e Mot ik @ (Ci(\ ik — i) dA
0
1 > 7 -
=% CY()\Q)G-M eiA(u+v) (Cj(A)¢jk — ﬂbjk) ® Yk dA.

To obtain the equality, we made use of the relation C;(A)* = C;(—A) which is a consequence
of the functional equation (6.23). Integrating by parts, it follows that the right hand side
can be estimated by Cn(u + v)~ for every N € N. This proves our claim. q.e.d.

If we use Theorem 4.24 together with Lemma 6.31 and proceed as in the proof of
Proposition 6.1, we obtain
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Proposition 6.36. Suppose that ker Dy = 0. Let 0 < 6§ < 1/2min{u1, 1,1} and let
'HE C L} (X,E), j = 1,2, be the A-invariant subspaces introduced above. Let A be the

restr;ct;on of A to the orthogonal complement of H @ HS in L*(X, E). Then the essential
spectrum of A is contained in [§, 00).

This result implies that for the case ker Dy = 0, the generalized eigensections constructed
above give a complete description of the continuous spectrum of A near zero. Using the
spectral theorem together with Proposition 6.36, it follows that for every p € N, there
exists Cp > 0 such that

| APe~B ||< C 1P, £> 0.

Applying Proposition 2.7 and Proposition 2.8, we get

Corollary 6.37. Suppose that ker Dy = 0. Let K{(x,z',t), 7 = 1,2, be defined by (6.30)
and let K(z,z',t) be the kernel of exp(—tA). Then there exist C,c > 0 such that

2
D.K(z,2',t) — ZDrI(f(m,x',t) <Ce™®, forall z,2'€X,t>1.

=1

7. The L*-index formula

Let D : C®(X,E) —» C™(X, E) be a generalized Dirac operator satisfying (2.1) - (2.4).
Assume that n = 2k, k € N. Then the Clifford bundle E splits into the +1-eigenspaces
E. of the canonical involution 7, and our goal is to derive a formula for the L%-index of
D, : C=(X,Ey) » C®(X,E_). The method that we shall employ to prove the index
theorem is based on the local version of the McKean-Singer formula. This formula has
been used, for example, by Stern {St1], [St2] to derive a formula for the L?-index of the
signatur operator on locally symmetric spaces of finite volume.

Let h(z,y) be the kernel of the orthogonal projection of L?( X, E) onto ker D where, as
above, D denotes the unique self-adjoint extension of D : C§°(X, E) — L*(X, E). Recall
that by Corollary 2.23, ker D is finite-dimensional. Let ¢1,...,¢,, be an orthonormal basis
of ker D. Then h is given by

3?}) Z¢J ®¢JU

Let K(z,y,t) be the heat kernel for A = D? which was constructed in §4. Then we have
the following result.
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Lemma 7.1. We have pointwise convergence of kernels
tlﬂlggﬁ(m,y,t) = h(z,y).

The convergence is uniform in the C* topology on compact subsets of X x X.

Proof. We may follow essentially the proof of Lemma 6.3 in [CG]. For the sake of complete-
ness we include details. Pick a parametrix P for exp(—tA) which is compactly supported
in space and time, that is, P(z,y,t) =0if d(z,y) > e > 0or t > ¢y > 0. Set

3]
Pl(:c,y,t) = (E + AI) P(:I;,y,t).

By Duhamel’s principle we can write

t
K(z,y,t) = P(z,y,t) — f e~(=98 o Py(5) ds.
0

As y varies in a compact subset ©® of X the functions P;(z,y,t) (viewed, for each s, as
function of z) vary in a compact subset of L*(X, E). Thus, using the spectral theorem
and the fact that P(¢) is compactly supported in time, we have pointwise convergence as
t — oo

(7.2) K(z,y,t) — —/ f h(z,z)Pi(z,y,s) dz ds.
0o Jx

Since X has uniformly bounded C* geometry for all k € N (see [CG] for the definition), it
follows that the convergence is uniformly C® as y varies over © and z varies over X. The
right hand side of (7.2) can be written as

— ll_l}}]/c /,\ h(m,z)(% + Az) P(z,y,s)dzds = —51'1"%/5 A ft(x,z)a—ip(z,y,s) dz ds

= lim [ h(z,2)P(z,y,¢)
e=lJx

= h(z,y).
q.e.d.
Next recall the local index theorem for generalized Dirac operators [Gi]. Note that our
Dirac operators are compatible. Therefore, we can apply Theorem 5 of [Gi]. Let wp(z) be
the local index density for Dy. Then as t — 0, we have
(7.3) tr(7K(z,z,t)) dz = wp(z) + O(2).

The constant occurring in O(t) is uniformly bounded on compact subsets.
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Now consider the compact submanifolds X7, T > 0, of X defined by (1.6). Using
Lemma 7.1 and (7.3), we obtain

t— 00

=f wp +] / 2tr('i"]’\"(:r:,:r:,t))nf:a:dt.
Xr 0 NT ot

If the spectrum of A has a gap at 0, then the t—integral is absolutely convergent. Below
we shall prove that this holds in general.

As T — oo, the left hand side of (7.4) converges to the L?*~index of D4. Now consider
the right hand side. It follows from Proposition 4.20 that in (7.3), we may replace K by the
parametrix () and we still get the same asymptotic expansion as ¢ — 0. In particular, wp
is determined by @. Since 4; commutes with —8%/0u? + A% i = 1,2, and anticommutes
with 7, it follows that wp = 0 on Rt x Z;, : = 1,2. Hence the limit as T — oo of the
double integral on the right hand side of (7.4) exists and we have

/X tr(rh(z,z)) dz = lim /X tr(rK(z,z,t)) do
(7.4) T T

(7.5) L*-Ind D, =/ wp + 11111 / / =tr(rK(z,z,t)) dz dt.
XT

To treat the double integral we use the following lemma which is the local version of the
McKean-Singer formula.

Lemma 7.6. Let D : C®(X,E) — C*(X,E) be a generalized Dirac operator and let

: E — E be a bund!e isomorphism which satlsﬁes 2 Id2 and D = ~Dr. Let
- (z,y) and De~ tD? (z,y) be the kernel of ™' and De_‘D , respectively. Then we
have 5

Etr(‘rc"m?(m, z)) = div Vp,

where Vp is the vector field on X whose j-th component with respect to an orthonormal
moving frame {e;}*_, is given by

%tr( DD (3, 7).

Proof. We have

%tr(‘re tb (:r: :c)) tr( _‘Dz (z .E))
= {r (1" y)(::: )

—tr(rD (2, Y)|z=y)
tr(D rD e —tD* (z,Y)|o=y) + ;tr(Dy'rDze_‘Dz(a:,y)|$=y).

T

& SeICDSBIQJ

t\DI}—J
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Choose normal coordinates at zo and pick a local frame field {e; }.; such that (V. e;)(zo)=

0 and e;(zo) = %

|z=z,- Then the right hand side can be rewritten as

n

1 n o 1 s
9 Z tr(e,—(;r:) ' Ves(I)TDﬂ: e”tP (.'E,y)|1-,=y) + 2 Z tr(e"(y) : vei(y)TDx e P (z, y)[r=y)
=1

=1

=3 {(Vesmes(®) 7D (5,2))

i=1

QZtr(V (o (ei(z) - TD e —iD $,y)|$=y))

+ 2 ; tr(ve;(y) (ef(y) 7D e_tDz(:E’ y)lﬂ:y))

The first sum on the right hand side vanishes at © = z4, and the remaining two terms,
evaluated at = = zy, give

el Z Do, tre;(z)rDe™! (m,y))lzo =y T35 Zitr (ei(y)rDe” tD? (z, y))|$0_I y
== ———tr( i(z)r e-tDﬂ(;c’q;))Lu:z = div Vp(zo)

where Vp is the vector field which is given by

Vb= Z tr(ei(z)rDe” 2(:1:, z))ei(z).

=1
g.e.d.

The corresponding statement for a power of the resolvent has been used by Stern in
[St1], [St2]. We now apply Lemma 7.6 to (7.5). Let e, be the outward unit normal vector
to the smooth part of X 7. Then we get

(7.7) L*Ind Dy = /
X

wp + lnn —f f en TDe™ ( ,:c)) dz dt.
X7

To compute the limit, we split the {-integral as follows:
o0 VT o0
L=l
0 0 VT
Put

(7.8) R(T) = //BXT en - TDe"P (2, 3)) dz dt.
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The convergence of this integral follows from the manipulations above. Below we shall see
that the integral is indeed absolutely convergent. Moreover recall that

OXp = ({T} x Z1,r) U({T} x Za,1)

and that v; is the outward unit normal vector field to Z;;: = 1,2. Hence, the double
integral on the right hand side of (7.7) can be written as

1 VT 2
- tr ,TDe_‘D ((T, 2 ),(T, Zy )) d21 dt
o) : ), /z < )

1 T 2
+ 5/ / tr(’yg'rDe_'D (T, 22), (T, 22))) dze dt + R(T),
0 ZQ,T

and we have to investigate the limit as T' — oo of the individual terms. We begin with the
first two terms.

As above, let A; be the self-adjoint extension of the Dirac operator 4; : C=(Z;, E;) —
C>=(Z;, E;) defined by (2.1). Since dim X is even, we have

(7.10) TtA;=Air and vyt =-—-717v, 1=12.

Let E; = E} @ E be the decomposition into the +1-eigenspaces of 7. By (7.10), 4; and
v; take the following form with respect to this decomposition:

_ (AT 0 (0 a7
(T a=(8 ) (30

In particular, on RT x Z; we have

0
Dy =7 (BT +A§h)

and Af: is the Dirac operator associated with the Clifford bundle Eft Let Aft be the

self-adjoint extension of Afh. Since A;" is a compatible Dirac operator [Gi], it follows from
[Mii1,§6] that the cta invariant of A} can be defined by

1 e 2
(7.12) (0, A7) = 7 f =172 / tr(AFe AN (2, 2)) dz dt.
0 Z;

™

Proposition 7.13. We have

ﬁ 2
lim ] / tr("Y,'TD e (T, 2:),(T, z,-))) dzidt = 5(0,AT), 1=1,2.
1] Z;r

T—o00
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Proof. Let Q(z,y,t) be the parametrix defined by (4.7). It follows from Proposition 4.20
that

/G\/’T /Z"T {tr(’y;TDe_tD’ ((T, z:), (T, z;‘))) - tr('r,"rDzQ((T, zi), (T, z,-),t))} dz; dt

ﬁ 2
<Cy VOI(Z,',T)/ ete T/t g
0

< C’zTSﬂecﬁe_CTwz -0

as T — oco. Hence we may replace the heat kernel by the parametrix Q.

Now consider the integral over Z; 7. Suppose that T > 1. Since the supports of ¢ and
1o are contained in X, the term ¢9Ro1g in (4.7) makes no contribution. Hence, using
the definition of @), we get

1 2
tel it D QT 2),(T,2),t) )dz = / tr(rA;e” z,z)) dz dt
/z.,T (71 (T.),(T:2),1)) Vit Jz, . (rAre™ (2, 2))
1 T .
+ ,_-47“/0 "pz(uﬂdu?/;_tr(71772(‘42)(u1,}’){f\2((ul,y),(T,y'),t)
1 2 .
_ —(ul—T) /4t I\.’ ! 4 d
Vart 3(v,9',1)} :;’.’;) y

Here we used that ¢}, and ¢, have disjoint support. By (3.5) of [Miil], the second integral

on the right hand side can be estimated by T'e=¢T" /et Next observe that by (7.11), we
have

tr(r 4, e_‘Ai(z, z)) = tr(A} e_‘(AT)z(z, z)) —tr(A] e_'(Al_)z(z, z)).

Moreover, using (2.2) and (7.11), we get AT = —(v; )~ ' Afv; . Thus we obtain

VT
/ / tr(”“ -7D.Q((T, Z),(T,z),t)) dz dt =
(7.14) © Jaur

1 VT +y2 Cy T34
7/ t_l’lzf tr(ATe "M (2, 2)) dzdt + O(em 7).
m™ Jo ZI,T

We are now exactly in the situation of Proposition 7.6 of [Miil] which implies that the
right hand side of (7.14) tends to 5(0, AT ) as T — co. The same holds for 7 = 2. q.e.d.

We are left with the third term, R(T'), in (7.9). First, we shall derive two further
properties of the scattering matrix.

Lemma 7.15. Let j = 1,2. The scattering matrix C;(A) satisfies
7C;(A) = Cj(M)7,  7iC;(A) = =Cji(A)y;, A€
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Proof. Let ¢ € ker A; and suppose that Im(A) > 0. Then it follows from Theorem 6.5
that 7F;(¢, A)— Fj(r¢,A) and DFj(¢, \)+1AF;(v;¢, ) are square integrable eigensections
of A with eigenvalue A? and therefore, both must be zero. Hence, we get

(7.16) TFi(¢,A) = Fj(r¢,A) and DFj(¢,A) = —iAF;(v;é, A).

These equations hold for all A € @. Comparing the constant terms of both sides of these
equations, the desired relations follow. g.e.d.

Given ¢ € ker A;, put

Li(¢, A z) = (v; - T(DF;)(¢, A, 2), Fj (8, A, 2)) -

Lemma 7.17. Let ¢ € ker A; and suppose that C;(0)¢ = *¢. Then for every compact
subset U C X, there exists Cy > 0 such that

1Li(6, A 2)l < Cud®, A<, ze€l.

Proof. First note that by (7.16), we have

(7'18) Ii(¢vA1m) _7‘)\<7J (T7J¢’a)‘ 'E) ((vﬁa/\"r»

Let ¢ € ker A; and suppose that C;(0)y = —3. Then the functional equation (6.23)
implies that F;(4,0) = 0. Furthermore, if ¢ satisfies C;(0)¢ = £¢, then by Lemma 7.15,
we get C;(0)(rvy;¢) = Frv;é. Hence, under the given assumption, it follows that either
Fi(¢,0) = 0 or Fj(rv;¢,0) = 0. Therefore, by (7.18), we get I;(¢, A, z) = O(A\?), uniformly
on compact subsets. q.e.d.

Let ¢ € ker A; be an eigenvector of C;(0). Then Lemma 7.17 implies that -

(7.19) < C(T)N2,  |A| < b,

/ I (ng,A,(T,z)) dz
ZiT

for some constant C(T) > 0 depending on T. By the functional equation (6.23), we have
C;(0)? =Id. Thus C;(0) is a symmetric operator with eigenvalues equal to +1 or —1. Let
¥j1,...,%jm; be an orthonormal basis for ker A; consisting of eigenvectors of C;(0), i.e
C;(0)Y;x = £1jk. Using Corollary 6.37 and (6.30), it follows that as T — oo,

(7.20)  R( ZZ/ / —“’/ i (i, A (T, 2))) dzj dadt + O(e™T).

=1 k=1

We note that by (7.19), each of the integrals is absolutely convergent.
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Let F}o(#, A) be the constant term of Fj(¢, A), defined by (6.7), and put

Lio(#, A, 2) = (v; - T(DFj0)(6, A, z), Fj0($, A, z)).

Consider the expansion (6.6). If ¢ € ker A; is such that F;(4,0) = 0, then all coefficients
in this expansion must vanish, i.e., ax(0) =0, k € I, and b(0,A) =0, ! € N. Now suppose
that C;(0)¢ = +¢. As above, it follows from the functional equation (6.23) and Lemma
7.15 that either Fj(¢,0) = 0 or Fj(v;¢,0) = 0. Hence, if we proceed as in the proof of
(6.8), we may deduce that there exist C,c > 0 such that

sup |Ij (¢,A,(u,z)) - Ij,g(gﬁ,/\,(u,z))] <CMe™™ [\ < b, ueRT
2€Z;

Therefore, in (7.20), we can replace I;($, A) by I;,0(¢, A) and the resulting expression equals
R(T) up to an exponentially small term in T' as T' — oco. Next observe that by (6.12), each
¢ € ker A; satisfies [¢p(u,y)| < C exp(—/ta u), y € Y, for some constant C > 0. Using
(6.7), this estimate implies

|/ Lio(¢, ) (T, 2)) dz —/ Lio(#, M\ (T,2)) dz| SCXTe T || < 6.
i Zi,T

Furthermore, by (6.7) and (2.1), we get

7o /| T30(8, 0 (1,2)) de = =id{(r,8) = (rC006,C5()6)

+e B (1, C5(N)g) — 2 T(rC(N)¢, 4)}.
Applying Lemma 7.15 and using the fact that C;(A) is unitary for A € (—ép,80), we get
(r¢,9) = (rC;(A)9,C(N)¢), & €ker Aj,

l.e., the first two terms on the right hand side of (7.21) cancel. The remaining terms on
the right of (7.21) are equal to

(€72 — )4, 7C;(0)¢) + ¥ (8,7(C5(A) = Ci(=N))4).
Putting these remarks together, we get
2 5 .
R(T) = —= Z{ / VTN Ty(royn)) ST
= | Jo

Cor £ A
J_

+ /6 e~ VT A? 20T Tr(rC;(N) — Te(rC5(=A)

: dA} + O(e™cT).
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The first integral can be treated as follows:

§ .
] eV Te(rCj(N)) ——sm(i’\T) dX
0

/T8 : )
=f e VTX Tr(rCj(N)) w dr + 0"
0

:TI'(TCj(O))/O o~ VT A? sm(if\T) a4+ O(e_TIM).

Applying Fourier’s integral formula, we get

lim R(T) = -iTr(’rCl(O)) - iTr(TCQ(U)).

T—o0

Now observe that
(7.22) ker A; = ker Aj' Gker A7, j=1,2,

is the decomposition of ker Aj; into the +1-eigenspaces of 7 : ker A; — ker A;. By Lemma
7.15, C;{X) preserves the decomposition (7.22). Let C;-t()\) be the restriction of C;(A) to

ker .A;-t. Then we get
Tr(rC;(0)) = Te(CF(0)) — Tr(C;(0)).
By Lemma 7.15, we know that v;C;(0) = —C;(0)y;. Since v;7 = —77;, we obtain

(7.23) C;(0) = =7 C5 ()77

Hence, as final result we get

Jim R(T) = —%Tr(ClJr(O)) - %Tr(C;'(O)).

We note that CJT"(O) : ker Aj — ker Aj’, Al < &g, may be regarded as scattering matrix

associated with the continuous spectrum of D_ D4 near zero. Indeed, let ¢ € ker Aj'. Then
F;($, ) belongs to C°°(X, E1) and hence, it is a generalized eigenfunction for D_D_.. The
scattering operator C';"(/\) is determined by the constant term of Fj(¢, A).

Summarizing our results, we have proved Theorem 0.1.

According to Theorem 0.1 of [Miil], the eta invariant 5(0, Aj’) can also be described
in terms of the restriction of Aj' to the compact submanifold M; C Z;. On Rt x Y C Z;,
A;" has the form

+ (2 .
AT =o0; (a—% + B J)

where v; 1s the outward normal coordinate, o; : Ej'|Y — E7|Y is a bundle isomorphism
and B; : C*°(Y, ET|Y) — C(Y, E;*'|Y) is a generalized Dirac operator on Y. By (2.3), o;
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and B; can be expressed in terms of 1, y2 and Dy as follows: 0y = (ya71)*, 02 = (1172)™,
By = (Dyv2)T and By = (Dyy1)", where “4” denotes the restriction of the corresponding
operator to the +1-eigenspace of 7. Let P; be the negative spectral projection with respect
to B;. Using Pj, we impose spectral boundary conditions on dM;. More precisely, put

H'(M;,Ef; P;) = {p € H'(M;,E]) | Pi(¢l0M;) = 0}
and let
(Ah)p, : H'(M;,E}; Py) — L*(Mj, E} )

be defined by (A;-*')p,. p = A;-Ft,o. Since ker B; = 0, it follows that (Aj')pj is self-adjoint.
Moreover, (Aj') p; has pure point spectrum and the eta invariant of (A;") p;, which we

denote by 7;(Aj'; P;), can be defined in the same way as in the closed case. Since Aj' 1s a
compatible operator of Dirac type, it follows from Corollary 1.29 of [Miil] that

+. Y R +y. —t((ae)”

(7.24) wAfiP) == | Tr((Aj )p e~ LA, ) dt.
T Jo

Then by Theorem 0.1 of [Mil], we have

(0, AF) = (4], P;).

The term Tr(C’j-”(O)) has also an alternative description analogous to [APS]. As observed

above, the scattering matrix satisfies C;(0)* =Id. Let S;t be the +1-eigenspaces of C;{0).
Then

ker A; = 5;-'" ®E; .

Let ¢ € SJ'-" and put ¢ = 1 Fj(4,0). Then we have

2D¢ = DFj(¢, M| ,_o = —iAFj(7¢,A)] 5o = 0.

Let ¥; be the characteristic function of Rt x Z; C X. It follows from Theorem 6.21 that

©=x;9 + ¥,

where 1 € L*(X, E). In anology with [APS, p.58], we call ¢ an extended L*~solution of D
with limiting value ¢ € ker A;. Let £; C ker A; be the subspace consisting of all limiting
values of extended L?-solutions of D.

Lemma 7.25. We have £; = 8_;", j=1,2

Proof. Above we have seen that EJ'-F C £;. To prove the reverse inclusion, let ¢ € £; and
suppose that ¢ € C®(X, E) is an extended L?-solution of D with limiting value ¢. Write
¢ = ¢4 + ¢_ where C;(0)d4 = ¢+. Put { = %Fj(*yjqb__,(]). Then ¢ satisfies D = 0 and
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£ —X;v9— € LX(X,E). Let X;7 =X — ((T,00) x Z;). Applying Green’s formula, we
get

= [ (De)ee) ds= [ G, 6z2) de + [ (ole), DeCe)) do
X;r Z; Xi1
=l 756~ Il +0(e=°T).
Hence ¢_ = 0. q.e.d.

The space L£; decomposes according to the decomposition (7.22). Let ﬁ;k C ker Aji
be the subspace of all limiting values of extended L?-solutions of Dy. Then we have

Li=LT®L; j=1.2

Lemma 7.26. Let h;': = dim E;-i:, j =1,2. Then we have

Tr(CF(0)) =hf — k], j=1,2.

Proof. Using Lemma 7.25, we get ﬁ;-t = L;Nker A;!E = 817" Nker A;-E, 7 =1,2. Since C_;E(O)
is the restriction of C;(0} to ker A;-l:, it follows that h;-h = dim ker(C;t(O) — Id). Moreover,
(7.23) implies that dim ker(Cj_(O) — Id) = dim ker(C}"(O) + Id). Putting everything
together, we obtain

Tr(C;(0)) = dim ker(C}(0) — Id) — dim ker(C{(0) +1d) = r} — 2}, j=1,2.
g.e.d.
Finally observe that by Proposition 3.11 of [APS], we have ker .AJ’-L = ker(AT)p,,

i
7 =1,2. We can now rewrite the index formula (0.10) in the following way:

(727)  L*Ind Dy =f wp, —

2
1 ) _ -
i 5 E {7;(A;-*';Pj) + dlm(ker(Aj')pj} + hT + hy.

Theorem 0.2 follows directly from (7.27). There is an obvious extension of this result to
the case of several corners of codimension two.
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8. A splitting formula for eta invariants

In this section we apply our index formula to derive a splitting formula for eta invariants.

FIG.4. Cutting X in two pieces X7 and X5.

Let X be a 2k—dimensional compact oriented Riemannian manifold with C* boundary
M. Let Z — X be a compact oriented hypersurface with C* boundary Y such that Z
intersects the boundary of X transversally in Y and devides X in two submanifolds X
and X, (see Fig.4). We assume that the metric on X is a product in a neighborhood
(—¢,0] x M of the boundary and in a tubular neighborhood (—¢,¢e) x Z of Z. Let E be a
Clifford bundle over X and assume that the metric and the connection of E are products
near M and Z. Let D : C°(X,E) — C*(X, E) be the associated Dirac operator and
denote by D; : C(X;, E;) —» C*®(X,, E;) the restriction of D to X;, 7 = 1,2. Then D,
and Dy are Dirac operators which satisfy (2.1)-(2.4). Let D* and DY, 1 = 1,2, be the
restriction of D and D;, respectively, to Bt and E;*', respectively. Near the boundary and
near the hypersurface we have

(8.1) Dt =+ (i + A), on (—¢,0] x M,
aul

(8.2) Dt =, (—Q— + Dz), on (—e,¢e) X Z,
8u2

where A and Dz are the induced Dirac operators on M and Z, respectively, v; denotes
Clifford multiplication by the inward unit normal vector field to M and 7, denotes Clifford

multiplication by the unit normal vector field to Z which points into X;. Furthermore, on
(—e,0] x (—&,¢) x Y, D takes the form

d d
(8.3) D= 7]8_1“ + 720—112 + Dy,
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where Dy : C°(Y,E|Y') —» C®(Y,E|Y) is a Dirac operator on Y and the commutation
relations (2.4) hold. We assume that ker Dy = 0. From (8.3) follows that

Dz = o (53—1 + Bl) on (—¢,0]xY,

and

A=02(5i_2+32> on (—g,e)xY,

where B, and B, are the restrictions to ET|Y of —y,Dy and —v; Dy, respectively. In
particular, the assumption ker Dy = 0 implies that ker B; = 0, ¢ = 1,2. Let P* (resp.
P~) be the positive (resp. negative) spectral projection for B;, and let P be the negative
spectral projection for By. Finally, let A; be the restriction of A to M;, : = 1,2. If we
apply our index formula of Theorem 0.2 to D}, then we get

Ind D} =/ w; — l{1;.!(14.,P_) + dimker(A;)p- }
X 2
(8.4) ! )
- E{?](DZ’P) + dimker(Dz)p},

Ind D} :/ wy — -1—{1;(A2,P+) + dimker(Az)p+ }
(85) Xooo 2

1
+ -2—{17(DZ,P) + dimker(Dz)p},

where w; is the Atiyah-Singer index density of D}, and (A1)p-, (42)p+ and (Dz)p are
the self-adjoint extensions of A;, Ay and Dy, respectively, defined by the corresponding

spectral projections. On the other hand, the index theorem of Atiyah, Patodi and Singer
[APS] applied to X gives

(8.6) Ind D =/ w — %{W(A) + dimker A},
X

where w is the Atiyah-Singer index density of D and Ind Dt is the index of the APS-
boundary value problem. The index formulae suggest to introduce the {-invariant

_ n(A) + dimker 4
f(a) = 1A+ dmber 4,

Similarly, we denote by £(Ay, P~) and £(A2, P*) the é—invariants for 4, and A, with
respect to APS boundary conditions defined by P~ and Pt respectively. Since w, w; and
woy are locally computable, we have

fw=f Wi -|—/ woy.
X Xy Xa

Hence, if we compare (8.4), (8.5) and (8.6), we obtain
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Theorem 8.7. Let the assumptions be as above. Then the following splitting formula
holds for the {-invariants

£(A) = £(A), P7) + £(Ag, PY) + Ind D} + Ind D} — Ind D" + dimker(Dz)p.

Note that the same result holds if X has additional C* boundary components which are
disjoint from the hypersurface Z.

We shall now employ this result to derive a mod Z splitting formula for the {-invariant.
Such formulae were recently proved by various authors [Bu], [DF}, [MM], [Wo].

Let M be a closed oriented (2k — 1)-dimensional spin manifold. This means that M
is equipped with a Riemannian metric and a spin structure is fixed. Let ¥ — M bhe a
closed oriented hypersurface which devides M in two pieces M, and M., that is, M, and
M; are submanifolds of M with boundary ¥ and M is obtained by gluing M, and M,
along the common boundary Y. We assume that the metric of M is a product in a tubular
neighborhood (—¢,¢) X Y of the hypersurface Y. Let Dy be the Dirac operator on M.
On (—¢,e) x Y we have

Dy =’Y(% + DY)7

where v is Clifford multiplication by the unit normal vector field to ¥ which points into
M.

We shall now construct two 2k—dimensional manifolds X; and X, with a corner at Y.
Let M;. =M; — ((—¢,0] xY),7=1,2, and let

X, = ([-¢,0] x M, ) U ([~¢,01* x Y) U ([~¢,0] x M2 .),

where the three manifolds are glued together along pieces of their boundaries in the fol-
lowing manner: We identify [—¢,0] x M . with {—¢} x [—¢,0] x ¥ and [—¢,0] x OM; .
with [—€,0] x {—¢} x Y. Then X, is a manifold with two boundary components which are
piecewise smooth. One component equals M’ = M; U M, and the other component equals
M. = M, . Uy M;.. Both boundary components are homeomorphic to M. The product
metrics on [—¢, 0] x M; and [—¢, 0] X Mz coincide on the common submanifold [—¢,0]* x ¥’
and therefore, extend to a metric on X, in the obvious way. We smooth X, at the corner
of M,. The manifold X!, obtained in this way, is isometric to X, in a neighborhood of
M'. The other boundary component M, of X is diffeomorphic to M. Next we glue the
cylinder [0,1] x M to X! by identifying {1} x M and M] by a diffeomorphism. Let X
be the manifold obtained in this way. Finally, we patch together the product metric on
the cylinder and the given metric on X, to get a smooth metric on X;. Then 90X, is the
disjoint union of M and M’. Moreover, in a neighborhood of M, the metric of X; is a
product and in a neighborhood of M’, the metric has the structure described in §1 (see
Fig.5 below).
Then X, is also a spin manifold and we can pick the spin structure such that it extends
the given spin structures on the boundaries.

Now let N = M U(—M3). Then N is a spin manifold and, using the same construction
as above, we get a spin manifold X, with boundary NUN' where N is the smooth boundary
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component and N' is homeomorphic to N with a corner at Y. We glue X; and X, at the
corner along their boundary components My C M’ and —M, C N'. In this way we get
a spin manifold X with three smooth boundary components M, —M and —N. Applying
Theorem 8.7, we obtain

Theorem 8.8. Let M be a closed odd—dimensional spin manifold. Let Y <« M be a
closed oriented hypersurface which devides M into two submanifolds M, and M,. We
assume that the metric is a product near Y and that ker Dy = 0. Let Pt (resp. P~) be
the positive (resp. negative) spectral projection of Dy. Furthermore, let Dy, Dy, and
Dy, be the Dirac operators on M, My and M, respectively. Then we have

(D) = E(Daty, P7) + €(Dary, PY) + Ind DY, + Ind DY, — Ind DY + dimker(Dag, ) p-,

where D}, D}l and D:{?z are the Dirac operators on half-spinors of X, X; and X,
respectively, (Dpg,)p- denotes the self-adjoint extension of Dy, with respect to P~ and
Ind is defined by (0.11).

A similar result holds for twisted Dirac operators. In particular, we recover in this way
the mod Z splitting formulae of [Bu], [DF], [MM], [Wo] in the case the Dirac operator Dy
is invertible.

FIG.5. The manifold X; with corner Y.
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9. An Example

In this section we consider the case where X is the product of two manifolds with cylindrical
ends, and the Clifford bundle is the exterior tensor product of Clifford bundles over the
factors. Then we compare our index formula with the result obtained by using the product
structure.

Let X and X, be two oriented Riemannian manifolds with cylindrical ends of dimen-
sion 2k; and 2k,, respectively, and let X = X, x X;. The manifold X; has a decompo-
sition as X; = N; Uy, (Rt x Y;) where N; is a compact manifold with boundary Y;. Let
E; - X;, 1=1,2, be a Clifford bundle over X; and assume that on R* x ¥;, the connec-
tion and the Hermitian metric of E; are products. Let Dfl:: Cw(X;,E?:) — C®(X;, E)
be the corresponding chiral Dirac operators. Our assumption implies that on Rt x ¥;, D
takes the form

(9.1) D} =+ (5‘1— + B.-)

where ~; denotes Clifford multiplication by the outward unit normal vector field and
Bi:CC’O(Y},E?’[Yi) — C°°(Y,-,E;|'|y:_) is a Dirac operator on Y;. Let E = E; ® F3 be
the tensor product of By and E; over X = X; x X,, that is, the fibres are given by
E(zp) = (E1): @ (E2)y. Now recall that the Clifford algebras satisfy

CUT. X)) ® CUT,X,) = CT, X, @ T,X3).

This implies that E is a Clifford bundle over X. Let 7; be the canonical involution of E;.
Then 7 = 73 ® 72 is the corresponding involution of E and therefore, the +1 eigenspaces
E* of T are given by

E* =(Ef ® By ) ® (BE] ® Ey)

(9.2) B~ =(E7 ® Ef) & (E} ® E7).

Let D:C*®(X, E) — C*(X, E) be the Dirac operator of E and let D* be the restriction
of D to C°(X, E%). Then with respect to the decomposition (9.2), we have

Df®Id ~Id® D,
Dt =
Id® DY Dy ®Id
(9.3)

Dy ®Ild Id® D,
D™ =
-ld®@ Df Df ®Id
Lemma 9.4. The following equality holds
L*Ind D* = (L*-Ind D}) - (L*-Ind D).
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Proof. From (9.3) follows that

Dy D} @1d+1d® Dy D} 0
D™Dt =
0 DDy ®1d +1d @ Dy Dy
(9.5)
. D} DT ®1d+1d @ Dy Df 0
DtD™ =
0 DD} ®ld+1d® DF D7

Let A% and A?: denote the closures in L? of DF D* and DEFD?:, respectively. By Corollary
2.23 and Theorem 4.1 of [Miil], the kernels of these operators are all finite-dimensional,
and (9.5) implies

ker AT = (ker At ® ker AF) @ (ker A7 ® ker A])

ker A™ = (ker A7 @ ker AT) @ (ker AT @ ker A}).

Hence, we get
L*Ind DV = dimker A" — dimker A~

= (dimker AT — dimker A7) - (dimker A — dimker A})
= (L*Ind D}) - (L*-Ind DF).

q.e.d.

Suppose that ker B; = 0. Then by Corollary 3.14 of [APS], the L?-index of D} is given
by the index of the APS boundary problem, that is, it equals (0.3). Using Lemma 9.4, we
get

1
L*Ind DT =/ wp, * / wp, — =n(Bz) wp,
(9.6) X X2 2 X

1 1
~51(B1) [ o, + g(Bon(Ba).
X2

We shall now compare (9.6) with the result obtained by applying our index formla (0.10).
Firstly, it follows from (9.5) that

tr e_tAJr(a:,a:) —tr e (z,2)
= (tr e_mf(m,x) — tr e7"%1 (z,2)) (tr e_m;(x, z) — tr e”"%2 (z,3)).

By Theorem 5 of [Gi], this equality implies that the local index densities are related by
wp = wp, Awp, and therefore, we obtain

/wg=f le~[ wp,.
X X] X2
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[t remains to compute the eta invariants. If we use the terminology of §1, then the
hypersurfaces Z; are given by Z; =Y; x X and Z; = X, x Y;. We may use v; to identify
EHY; with E;"|y; which we call 5;. Using (9.3) it follows that on Rt x Z;, D* can be

written as 5
DT = il=—+ A4,
g (aui * )

where

Bigld 1d@Dj
(9.7) AI = ? Z’J = 1}27 1’ '_iéJ}
ld® D} -Bi®ld

and p; denotes Clifford multiplication by the inward unit mormal vector field. Let A; be
the unique self-adjoint extension of A; in L*. The eta-invariant (.A;) of A; is defined as
in (0.9). To compute 7(A;), we introduce the following function defined in terms of the
spectrum Spec(B;) of B;. Let

tgn A
(9.8) 6ty = Y S’g; erfe(|A[VE), ¢>0,i=12,

AESpec(By)

where erfc(z) is the complementary error function defined by

2 [ 2
erfc(z) = —/ e " du.
@=%.
The series (9.8) is absolutely convergent and as ¢ — oo, we have
(9.9) |8:()| < Ce™*,

for some constants C,¢ > 0. The small time behaviour of #;(t) is described by

Lemma 9.10. Ast — 0, we have

(1) = —3n(B) +0(1), i=1,2

Proof. Differentiating (9.8), we get

06; 1
B =~

ot Vart

Since Y; is odd-dimensional, it follows from Theorem 2.4 of [BF] that

(9.11) Tr(Bie_‘B‘Z).

Tr (Bie™*%7) = bit'/? + O(£*/?)

as t — 0. Hence, we get

9,‘(:‘,) =a; + ¢t + O(tz)
as t — 0. The constant term of this expansion can be computed in the same way as in
[APS], p.53, which gives a; = —1/2%(B;). q.e.d.
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E—

Lemma 9.12. The eta invariants of Ay and A, are given by

n(A1) = W(Bl)/;( wp, — %n(B] Y(By) — 2/0 06,

(t)92 (t) (lf

06,

n(As) = ( Bg)/ wp, = 3n(Bi)n Bg)—2/ 0 (1) 2% (1) .

Proof. First, observe that by (9.9) and Lemma 9.10, the infinite mtegrals are absolutely
convergent. We consider A;. From (9.7) follows that

(41”4 (0,2), (0,2)) )
= tr(Blc_‘Blz(y,y)) {tr(e_mt(m,m)) — tr(ﬁ_m‘; (13'5))}:

for y € Y7 and z € X;. Integration over Y, gives Tr(B e ‘Bl) on the rigt hand side. It
remains to mvestlgate the integral over X,.

Let Q2 be a parametrix for e~'43 defined as by (3.3) in {Miil]. Using (9.1), it follows
that tr QF (z,2,t) = tr Q5 (z,x,t) for z € [2,00) X Y3. Together with (3.5) in [Miil], this
implies that tr(e_“'\;r(:c,:v)) — tr(e™"®1 (z,z)) is absolutely integrable on X,, and with
respect to t, we can differentiate under the integral sign. Using Lemma 7.6 together with
these observations, 1t is easy to prove that

(9.13)

d —tat, . (L —tAT _ 1 —tB2
o x,{tr(c 2 (z,z)) — tr(e (z, 7)) } dz = \/‘mTr (B2€ ) :
Hence, by (9.13) and (9.11) we get
/ {tr( —af 2 (z,z)) —tr(e” "2 (z, ) } dz
X3
(9.14) = L*Ind D — —-\/i_ w2y (Bze—"B;) du
T

= L*-Ind D;‘ + 62(t).

As observed above, the L?—index of D;’ can be computed by the index formula (0.3).
Hence, the right hand side of (9.14) equals

1
/ wp, — 577(32) + 62(t),
X2

and by (9.13) and (9.11), we obtain

n(A; )—-——-/ /2 /Yl /thr Ale ((y,:z:),(y,:::))) dy dx dt

- (/X) wp, — §-.r;,(Bz)) (B1) + \/—_/Omt“/zTr (31 e—‘Bf) 6o (1) dt
=i(B) [ wn, = (BB -2 | Sronwma.
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The computation of n(Asz) is similar. q.e.d.

If we apply our index formula together with Lemma 9.12, we obtain

1 1
L% Ind DT =/ wp, / Wp, — —1}(31)/ wp, — =n(B2) wp,
X X3 2 X, 2

X1
+30BE) + [ 2 (E06() b

By Lemma 9.10, the last integral equals —1n(B;)n(B;) and, after replacing the integral
by this term, our index formula coincides with (9.6), as it should.

Remark. We observe that by our assumption ker B; = 0, the continuous spectrum of A*
has a positive lower bound. Therefore, if we modify the manifold X and the Clifford bundle
E on a compact set, the boundary contribution in the index formula for the corresponding
Dirac operator will be the same. This follows from a relative index formula as proved in
[GL].

The boundary contribution in the index formula (9.6) has a natural decomposition
where each term is associated with a particular stratum of the boundary at infinity. As the
formula suggests, one may regard n{B;) ij wp;, © # j, as being associated with ¥; x Xj,

and 1/47n(B1)n(B;) as being attached to the corner ¥; x ¥;. We don’t know if such
a natural decomposition exists in general. If it exists, it must be related to a natural
splitting of the eta invariants n(A}) and (A7) occurring in (0.10).

One possible approach to obtain such a splitting is to use the decomposition of the
spectrum of A?’ into the point spectrum and the continuous spectrum. Let Z be an odd-
dimensional Riemannian manifold with cylindrical ends. Let A : C®°(Z,F) —» C*(Z, F)
be a Dirac operator on Z and let A be the unique self-adjoint extension of A in L?.
By Theorem 4.1 of [Miil], the point spectrum of A consists of real eigenvalues of finite
multiplicity and the number of eigenvalues, counted with multiplicity, in (—p, 1), g > 0,
is bounded by C(1 + u*"). Therefore, the series

sign A
(9-15) Na(As) =Y ﬁ—
A#0

where A runs over the nonzero eigenvalues of A, is absolutely convergent in the half-plane
Re(s) > 2n. We don’t know if, for general A, this series admits a meromorphic continuation
to C. Now consider the special case where, for example, Z = Y; x X; and A = A4 as
defined by (9.7). Let A, 4 be the restriction of A; to the subspace of L?(Y; x X3, 5 @ E»)
which is spanned by all L? eigensections of A;. Furthermore, let A;l': 4 be the restriction of

A to the subspace of L?( X3, EE) which corresponds to the point spectrum of A¥, Then
it follows from (9.7) that

tr(Are™ 40 (9,2), (4, 2))
= tr(Bre=®H ) {tr(e ™2 He(z,2)) ~ te(e™ORe(e,2) },
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for y € Y7 and z € X,. The right hand side is absolutely integrable and we have
/ / tr (Ale"mf,‘ ((y, z), (v, .'E))) dyde =Tr (316_'312) L*-Ind DY .
Vi /X,

This implies that n4(A;, s) has a meromorphic continuation which is regular at s = 0 and
the value at zero, which we denote by nq(A;), is given by

1
(9.16) na(A1) = 7(B1) L*Ind P = 5(B)) | wp, — =n(B1)n(Bs).

X2 2

Set
ne{A,s) = (A, s) — n4(A4,s), Re(s) > 2n.

This is the contribution of the continuous spectrum to the eta function of A. Again we don’t
know if, in general, n.(A4, s) has an analytic continuation to C. For A = A, however, it
follows from the above results that 7.(.A4;, s) has an analytic continuation which is regular
at s = 0. Let n.(A4A;) = 1:(41,0) be the corresponding eta invariant. It follows from
Lemma 9.12 and (9.16) that

% 56
ne(A;) = —2 0 Wg(t)ﬂz(t)dt.

A similar formula holds for A, and we have

1
Ne(A1) + ne(Az) = 5n(Br)n(Bz).
Thus the decomposition of the spectrum of A; leads to the splitting
(Ai) = na(Ai) + no(Ai)

of the eta invariants which in turn induces a natural decomposition of the boundary term
in {9.6). It has to be seen if this approach can be generalized.
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