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Introduction.

(0.1). The Hodge conjecture asserts that every Hodge class is the image under the cycle
map of an algebraic cycle. If true, then the Hodge classes possess arithmetic properties
which will sometimes admit definitions independent of the conjecture. Thus, the problem
arises of proving such properties unconditionally.

In a basic paper ([D1}), Deligne took an important step along these lines by defining
an absolute Hodge class and proving that on an abelian variety every Hodge class is an
absolute Hodge class. This result has powerful consequences which stem mostly from the

strengthening of the Shimura-Taniyama reciprocity law, in a motivic setting, that it makes
possible ([DM], [D3}).

(0.2). In the present paper, we prove another such arithmetic property of Hodge classes
on abelian varieties. Let p be a rational prime and let o, : Q — Q, be an embedding. Let
X be a proper smooth variety defined over Q and let y5 € H g (X)(7) be an absolute Hodge
class (see 1.3 below). Let v, = I,(v8) € H¥(X)(j) and 7pr = Io(78) € HEp(X)(j) be
the images of v in p-adic étale and algebraic De Rham cohomology, respectively, under the
comparison maps. Recall that Faltings ([F]) has shown that there exists an isomorphism

Ipr: Hg(O'pX)(k) ® Bpr — H{;R(pr)(k) ®,,(@ BDr

where Bpp is the ring introduced by Fontaine ([Fo]). Consequently, it is natural to make
the following definition: an absolute Hodge class yp is De Rham if, for all primes p and
all embeddings o, : Q — Q,, we have

IDR(UP'YP) = O0pYDR:

Of course, every algebraic class is a De Rham class.
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2 DON BLASIUS

(0.3) Theorem. Let X be an abelian variety defined over Q. Then every Hodge class on
X is De Rham.

The purpose of this paper is to prove this result while at the same time sketching a
variant proof of Deligne’s theorem. The proof of the new result here employs the methods
of [D1], replacing the use of the usual De Rham isomorphism I, in [D1] by Faltings’
Ipgr. However, at a crucial point in [D1], the argument (proving Priniciple B) employs the
Gauss-Manin connection. As it appears that the behavior of Ipg relative to Gauss-Manin
is not well-understood, we find it necessary to change this part of the argument in the p-
adic case. Indeed, we replace the use of Gauss-Manin by an appeal to general facts about
the structure of the cohomology of a family of varieties. Apart from this simplification,
the proof of the main result here follows very closely the argument of [D1]. However, for
clarity, we have taken throughout a motivie, i.e. Tannakian viewpoint, which provides a
slight change of perspective on Principle A of [D1]. For progress concerning Gauss-Manin
itself in the p-adic setting, see [W].

(0.4). As an application of (0.3), we deduce formally in the last section that Hodge
classes are crystalline in the case of primes of good reduction. This fact has several
applications in the case of abelian varieties of CM type ([Co}, [O], [W2]). We have neglected
here to include applications of (0.3) itself. Nevertheless, one should note that it is an easy
exercise to define Bpg-valued p-adic periods of CM motives and to develop a formalism of
p-adic period relations parametrized by identities of tensor products (monomial relations)
which occur between such motives, extending the archimedian formalism given in [D2],
[Sch] and [Sh]. In fact, one may easily proceed further to obtain a theory of p-adic periods
with values in C,, at least once one has chosen an identification of C with C,, and obtained
thereby a trivialization of the p-adic Tate module. This follows because the functoriality
of Ipr enables one to define periods in the graded ring Byt associated to the filtration on
Bppr in such a way that an eigenperiod for the complex multiplication is supported on a
single graded component, necessarily isomorphic to C,(n). After invoking the trivialization,
this component 1s identified with C,.

That such a formalism should exist was proven using Dwork theory in the ordinary case
by Gillard ([G]) by a method which imitates Shimura’s proof of his monomial relations
theorem ([Sh]).

More systematically, one may define, as in [DM], a category of motives starting from
abelian varieties of CM type where the morphisms are given by absolute Hodge cycles
which are also De Rham. Then (0.3) says that this category is the same as the category
defined using just absolute Hodge cycles as morphisms. In particular, the Taniyama group
is also the motivic Galois group of this category ([D3], {L]).

(0.5) Acknowledgement. I thank A. Ogus for conversations which led to substantial
simplification and restructuring of the proof, and G. Faltings for a conversation concerning
the compatibility of the De Rham and crystalline comparison maps. I also thank the Max
Planck Institut in Bonn for its hospitality during the preparation of the paper.

1.Cohomologies and comparison maps.

1.1. Let K be a subfield of C and let X be a smooth projective variety defined over K.
On X we have several cohomology functors.
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First, we have
2dim X

H3(X)= P Hp(X),
j=0
the topological cohomology of X(C) with rational coefficients. Each H{g(X )® C is
equipped with a Hodge decomposition

Hij(X)®C= P H(X).
pta=j

Next we have
2dim X

Hpr(X) = D Hpr(X),
=0
the algebraic De Rham cohomology of X. Each H f) r(X) is a K vector space equipped
with the decreasing (Hodge) filtration F*H7, p(X).
Last, for each rational prime p, we have

2dimX '
Hy(X)= € Hi(X),
=0

the p-étale cohomology of X xx K. Each H ; (X) is a Q, vector space equipped with a
continuous action of Gal(K/K).
Between these cohomology theories we have the graded comparison isomorphisms:

Io : Hy(X)®C — Hbyp ®x C

and,for p a prime,
I,: Hp ® Q, = H; (X).

Of course, the map Isatisfies:

Io( ® HY?)=FPHL,®xC
rtg=2
P2Po

If K C Q C C is a number field, we obtain further structures. Let C, be a completion

of an algebraic closure of Q,, and let o, be an embedding of Qin C,. Let c-r:(?(?) be the
topological closure of o,(K). Let Bpg be Fontaine’s ([Fo]) Z-filtered Q, algebra. If D,
denotes the group of continuous automorphisms of Q_P, then Bpp is a D, module for which
the action is semilinear: T(ab) = 7(a)7(b), if « € Q,, b € Bpg, and 7 € D,. Each element
of D, extends uniquely to a continuous ’aitit:)‘morphism of C,. Let D,, be the subgroup of
D, consisting of the elements which fix o,(K) pointwise and let V,, be a finite dimensional
Q, vector space on which D, acts continuously. Then V, ®q, Bpr acquires a filtration
from that on Bpg and is naturally a D,,-module: one puts 7(v ® b) = 7(v) ® 7(b).

For a variety X defined over a field K C Q, let o, X be the conjugate of X by o,. Basic
to our work is the following result of Faltings, already cited in the Introduction:
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Theorem. For each prime p, there is a functorial D, equivariant filtered isomorphism

Ipr: H}(0,X)®q, Bor = Hpr(0,X) ®q, k) BoR

where on the right hand side D,, acts via the right factor and the filtration is that defined

by the tensor product of the filtrations on Bpp and HéR(apX). The isomorphism Ipg is
compatible with cycle maps and with extension of the ground field.

1.2. Tate twists. Let
Q,(1)= lim ppn (for each prime p)

Q1) =27QCC
Qor(1)=Q

Let
Xp : Gal(Q/Q) — Z; = Aut(Q,(1))

be the p-adic cyclotomic character; it gives the natural action of Gal(Q/Q) on Q,(1) which
we always regard as a Galois module. Let Qp(1) have the unique Hodge structure which
is purely of type (-1,-1), and let Qpgr(1) have the Hodge filtration F“BRQDR(I) = Qpr(1)
for j < ~1 and F},,Qpr(1) = 0if j > 0. Let

Io:Qp(1)@C - Qpr(1)®@C=C

be defined by
Io(a®z)=az

for a € (271)Q and z € C. Let
I, : Qp(1)®Q, — Qu(1)

be the map defined via the inverse limit of the isomorphisms

exp: (p~"2miZ)/(2miZ) — ppn.
We have, for any n, and any finite extension L of Q,

(Bor ®(Qs(1)°")P = 5,(K)
for all K and o, where for n <0, Q,(1)®" = (Q,(1)V)®I"l. Let

Ipr:Q,(1)® Bpr — Bpr

be the Bpg-linear extension of this identity. For each subscript ! = B, DR, p, let Qi(n) =
Q:(1)®", with the same convention as above if n < 0. In this case, let I, I, and Ipg
denote the maps between these objects naturally defined via those just introduced and
having the same symbol.
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1.3 Hodge Classes. Let
HE(X)(n) = HF'(X) ® Qp(n).
Then HY'(X)(n) carries a Hodge structure of weight 0 defined by
Hp(X)?»? = Hg(X)(n)P~™™ ™.
A Hodge class v € HY*(X)(r) is an element of type (0,0). Let

YR = Io(vB)

and
T = p(‘YB)~

Then vp is Absolutely Hodge if, for any automorphism 7 of C, there exists a Hodge
class

v8() € HE'(X)(n)

such that
Io(vB(T)) = TYDR

and
L(va(7)) =77

for each p. In this case, we define 7yg = yp(7). Note that if yp is absolutely Hodge then
vpr € HY%(X)(n) @k L for a finite extension L of K. Indeed, Aut(C/K) acts on the
finite dimensional rational vector subspace of H2"(X)(n) generated be the absolute Hodge
cycles. If the image were infinite, it would necessarily be uncountable, which is impossible.
Since Typr = ypr if and only if 77, = v, , 7pr 1s defined over a finite extension. The
smallest such extension is called the field of definition of vp; it is the field defined, via
Galois theory, by the stabilizer of vp in Gal(K/K).

Suppose now that K is a number field and vp is an absolute Hodge cycle. As in the
Introduction, we say that vp is De Rham if, for all p and for all embeddings o, : Q- C,,

Ipr(opYp) = OpYDR-

Let X and Y be smooth connected projective varieties defined over K C C. Suppose
that X has dimension n. Define Mory(X,Y) to be the space of all Hodge classes in
HY (X xY)(n) and let Mor 4(X,Y ) be the space of all absolute Hodge classes in H3* (X x
Y)(n). If K is again a number field, let Morpr(X,Y’) be the space of all De Rham classes
in HY"(X x Y)(n). Finally, for X and Y not necessarily connected, define Mor:(X,Y) =
®Mor:(X;,Y;) where the collections {X;} and {Y;} are the connected components of X

3
andY and ? = H,AH,or DR.
2. Motives.
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(2.1) Effective Motives. We now briefly sketch the construction of some categories of
motives. See [DM] for more details on the formalism. Let C be a sub-category of the
category of smooth projective varieties defined over a given field L C C. Assume that
C is closed under disjoint unions and products. Defined ®3C (? = H,AH,DR) to be
the category with objects the symbols A(X) for X in C, and with morphisms given by
Hom(h(X),h(Y)) = Mor:(X,Y). Then @3C is a Q-linear category for which we put
R(X) @ h(Y) = (X []Y) and (X)) ® h(Y) = h(X x Y). Let ®7C be the category whose
objects are pairs (M, p) with M € ®3C and p an idempotent element in End(M). The
morphisms are

Hom:((M1,p1),(Mz,p2)) = {f : M1 - Ma|fop1 = p2 °‘f}/ ~

where
~= {fZMl —&Mglfopl =p20f=0}

We put
(My,p1) @ (Mz,p3) = (M, ® Ma,p1 @ p2)

The definition is so arranged that any Q-linear functor
w: ®3C — {Q — vectorspaces}

extends to ®3_,"C and we have
w((M,p)) = Im(w(p))

Especia.lly, the rational Hodge structure valued functor Hj on C extends to a functor wp
on ®FC, and we put, for M = (h(X),p),

Mp = p(Hp(X))
(2.2) Remark on tensor structure. Note that the canonical decomposition

2dim X

Hy(X) = D Hb(X)

2dimX .
provides a family of idempotents {p;} so that A{(X) = @ A&’ with h? = (h(X),p;) and
. : =0
h = HL(X). The functor sending M to Mp is faithful and Q-linear. However, it is not
a tensor functor (c.f. [DM]) since the commutativity isomorphism ¢* : H(X) @ A(Y) —
h(Y) ® h(X) given by the natural permutation isomorphism X x ¥ — Y x X sends
7 =7x ®1y € Hy(X) ® HE(Y) to ch(v) = (-1)*yy ® 1x € HR(Y) ® HE(X). Hence,

one replaces ¢* = 3 ¢}, by ¢ = 3 c;x where ¢jx = (— 1)%*¢3 . With this change of the
J.k Ik

commutativity isomorphisms on ®'_"C , the category becomes a tensor category and Hp
becomes a tensor functor.
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(2.3) Motives. Suppose that C contains a curve I so that ®FC contains L = h%(T'). Then
Lp = Qp(~1), and, for any n > 0, Hom(M, N) is canonically isomorphic to Hom(M ®
L*" N@L")via¢ - ¢®1 for ¢ € Hom(M,N). Let @:C denote the category obtained
by inverting L: an object of ®:C is a pair (M,n) with M € ®fC and n > 0, and the
morphisms are given by

Hom((M,m),(N,n)) = Hom(M ® LN~™ N @ LN—")

for any N > m,n. For n < 0, put (M,n) = M ® LI". It is conventional to define
M(n) = (M,n). Then the rule M(n)p = Mp(n) extends the functor M — Mp to ®-C.
The categories @ yC, @ 4yC, and @ prC are called the categories of motives for Hodge,
Absolute Hodge,and De Rham classes , generated by C, respectively. Note that we
have obvious inclusions:

®prC C @4nC C ®uC.

If C is the category generated by a single variety X, we write @y X, @45 X, and ®prX.
Finally, we sometimes write wpg for the functor which to a motive M attaches its topological
cohomology Mp, viewed just as a rational vector space.

(2.4) Proposition. The categories @ yC, ® ayC, and ® prC are semisimple, Tannakian
categories for which wp is a fiber functor.

Proof. This is proved in [DM, Section 6] for the AH case. The other cases are identical.

(2.5) Other realizations. Let M = (h(X),e) be a motive in one of the categories of
motives just constructed. Via the comparison isomorphisms I, and I, the idempotent
class e = ep defines epr = Io 0 ep o I} in Endc(Hpp(X)®x C)and ey = Iyoepol,’
in Endq,(H;(X)). Put Mpgc = Im(epr), M, = Im(e,), and extend these functors to
all of ®:C in the evident way, i.e. via the rule M(n)g = Mg(n), etc.

If M € @4uC, and ep is defined over K, then M, is a Gal(K/K)-module, and epg €
Endg(H}p(X) so that Im(epr) = Mppg is a K-vector space such that Mpr ® C =
Mppr,c. Then Mpr carries a K-rational filtration F"Mppg such that

Io( ® Mg,q) =FP°Mpr®K C

P2Po

If M € ®prC, then we have also, for each prime p and each oy, : Q- C,, the comparison
isomorphism
Ipr:(0,M,) ®q, Bpr — (6, Mpr) ® 7k Bor

(2.6) Dual groups. Let
Gr = Aut®(wg, ®:C)

be the group of automorphisms of wp which respect the tensor structures (see [DM]). Then
G+ i3 a a connected reductive pro-algebraic group defined over Q ; it is algebraic if and
only if the ring of isomorphism classes of objects of ®-C is finitely generated. Note that

G CGan CGOpRr
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Each @7 acts on each Mp (M € ®-C) via a representation pp and the correspondence
M — ppy, extended to morphisms, defines an equivalence of categories for which

wp(Hom+(M,N)) = Homg,(Mp,Np)

We have evident notions of Hodge (resp. absolute Hodge, resp. De Rham) classes on a
motive M in the category ®yC (resp. ®anC, resp. @prC). Especially, if 7 € Aut(C),
and M € @:C, (7 = AHorDR), and M = (X, e)(n), then M = (7X,7¢e)(n) is defined.

(2.7) Proposition. Let M € ®:C. Then the subspace Mg' of G- invariants in Mp is
the subspace of all ?-classes, for 7 = H, AH,orDR.

(2.8) Proof. We give the proof for Gpgr. The other cases are the same. Note first that
the space of De Rham classes on M is

{¢5(1)|¢ € Hom(Q(0), M)}

where 1 € Q = Q(0)p. Thus every De Rham class is Gpg-invariant. If yg € Mp is fixed
by Gpr, then the map ¢, 5 : Qp(0) - Mp such that ¢, g(1) = yp is Gpg-invariant.
Hence it belongs to Hom(Q(0), M) and so vp is De Rham.

(2.9) Proposition. Let A and B be Q-linear Tannakian categories with 4 C B. Let
w: B — {Q —vectorspaces} be a fiber functor, and denote its restriction to A by w_4. Let
Gs = Aut®(w,B) and G4 = Aut®(w,, A), so that Gg C G4. Suppose that

Ge=Ga

Then the inclusion of A into B is an equivalence of categories.

(2.10) Proof. This is evident: .4 and B are both equivalent to the category or repre-
sentations of the same group, hence they are equivalent. That the inclusion of A into B
defines an equivalence is also clear since under w4 the inclusion of the representations of
G4 obtained from A into those obtained from B is an equivalence of categories.

(2.11) Proposition(Principle A). Let X be a smooth projective variety defined over
the complex numbers. The following are equivalent:

(1) ®anX =@uX
(2) Gu =Gan
(3) Every Hodge class in ® X is absolutely Hodge.
Suppose that X is defined over a number field. Then the following are equivalent:
(4) ®auX = ®prX
(5) Gpr =Gan
(6) Every absolute Hodge class in ® 4y X is De Rham.

(2.12) Proof. By Prop.(2.7), it is clear that [1] is equivalent to [3] and [4] is equivalent
to [6]. Furthermore, [3] implies [2] and [6] implies [5]. Hence we need only show that [2]
implies [1] and [5] implies [4]. Let M € ® 4y X with associated representation pps of Gan-
Then M is indecomposable in ® 4 X if and only if pas is irreducible, since the category is
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semisimple. Suppose that, as an element of @ gy X, M = M; & M,. Then the restriction of
pM to Gy is a non-trivial direct sum p; @ p2. But since Gy = Gy, this cannot happen.
Thus each M which is irreducible in ® 44y X remains irreducible in ® yX. On the other
hand, every irreducible object of ® g X is a constituent of a ® 4y X irreducible object, by
definition of the categories. Hence, ® 4y X and ® g X have the same objects. Since

wp(Hompy(M,N)) = Homg, (Mg,Ng) = Homg ,,,(Mp,Ng) = wp(Hom 44(M, N))

we conclude that
Homy(M,N) = Homay(M,N)

as well. Thus, ® 4y X = ®yX , as was to be shown.
The proof for the second case is exactly parallel, with “AH” replacing “H” and “DR”
replacing “AH”. (See [D1] for another approach which does not employ Tannakian duality.)

3. Principle B.

(3.1) Theorem. Let S be a smooth, geometrically connected variety defined over the
subfield K of C. Let 7 : X — § be a smooth proper morphism defined over K. Let
vg € H°(S,R*"7,Q)(n). For s € S(L), let vg(s) € H%*(X,)(n) be the restriction of 75
to the fiber X, = #71(s). Let so € S(K). Then:

(1) Suppose K = C. If yp(so) is a Hodge class, then yg(s) is a Hodge class for all
s € 5(C).

(2) Suppose K = C. If yp(sq) is an absolute Hodge class, then vg(s) is an absolute
Hodge class for all s € S(C).

(3) Suppose K C Q. If vg(sp) is De Rham, then v5(s) is De Rham for all s € $(Q).

(3.2) Proof. The Leray spectral sequence degenerates at E, and provides a surjection
a: HP(X)(n) » HYS,R?*"r,Q)(n) whose kernel we denote Kg. For s € S(K), the
restriction 8, : H%(S,R*"7,Q)(n) = HE'(X,)(n) is injective. Let Y5 € HE(X)(n) satisfy
a(78) = v8. Then v5(s) = B;0a(75), and the kernel of B,0a : HF(X)(n) = HE(X,)(n)
equals K g and is independent of s € S(K). Since B, 0 « is a morphism of mixed Hodge
structures, 8,0« identifies H4"(X)(n)/Kp with a pure sub-Hodge structure of H3*(X,)(n)
which is independent of s. Let 75 be the image of 75 in H5*(X)(n)/Kp.Since 8, 0o a(7B)
is a Hodge class, so is ¥5. Hence 8, o a(75) = vp(s) is a Hodge class for all s € S(C).
This proves the first claim.

We now prove the second claim. Let 9pr = Io{7B), 7p = I;(78), Kpr = Io(Kp ® C)
and K, = I,(Kp ® Q,). Restricting to X, , we have Ypr(so) = Ioo(78(0)) and 7,(s0) =
I,(vB(80)). Let o € Aut(C). Then o(K,) is the kernel of restriction H2*(cX)(n) —
HX™(X,(»)(n) and 0 Kpp is the kernel of restriction HER(0X)(n) = HEr(Xo(s))(n) for
all s € 5(C). Since o(;) restricts to o(I(v8(s0))), v* = I, (a(%)) € HFH (e X)(n)® Q,
restricts to I, (0vp(s0)) = ovB(s0). But if 4 : V. — W is a linear map of rational
vector spaces, and there exists v € V @ Q, such that ¢(v) = w € W, then there ex-
ists v/ € V such that ¢(v') = w. Hence there exists ¥g(c) € HE(0X)(n) whose re-
striction to HF(X,(s,))(n) is 0vB(s0). Note that i) I,(¥8(0)) — o(%,) € o(K,) and ii)
Io(78(0))—0(7DR) € 0(KpRr). Let Kp(o) denote the kernel of restriction H* (0 X )(n) —



10 DON BLASIUS

HE(X4(s0))(n). Then I,(Kp(c)) ® Q, = o(K,) and hence Kp(o) is also the kernel of
restriction Hy*(0X)(n) = HE(X,(5))(n) for all s € S(C). We now argue as before. Let
¥8(0) be the image of Y5(0)) in H*(c X )(n)/Kp(c). Then 5(0) is a Hodge class , and
hence its image Fg5(0,s) € HY*(X,(,))(n) is a Hodge class for every s € S(C). Finally,
that I.(¥5(0,)) = o(vpr(s)) and I,(75(o, s)) = o(,(s)) follows at once from i) and ii)
above. This proves the second part.

To prove the third part, let 0, : Q — C, be an embedding and define the maps Ipg
relative to this o,. Let X be a smooth compactification of X, defined over K, with X — X
a union of smooth divisors having normal crossings. By [D4, Thm. 4.1.1], the natural map

& : HY(X)(n) - H(S, R™"7,Q)(n)

is surjective. As before, this means that the kernel K p of the restriction §,06 : H (X)(n) =
HE(X,)(n) is independent of s € S(L). Let Kpr CH 2 (X)(n) be the kernel of restric-
tion to HYL(X,,)(n). Since Kpr= I(Kp ® C, it is also the kernel of restriction for all
s € S(L).

Let ¥ € HY"(X)(n) restrict to v5. Then F5(so) = v8(s0) is a De Rham class by hy-
pothesis. Replacing K by a finite extension, if necessary, we see that the restriction to X,
of Io(7B) equals Io(7B(s0)) € HYR(X,,)(n). Hence, there exists Jpr € Hik(X)(n)
such that F5r(30) = Io(7B(s0)). Similarly, there exists ¥, € H:"(f)(n) such that
Yp(30) = L,(7¥B(s0)). By assxi_n_ll)’i:ion, we have Ipp(0,¥,(80)) = 0,7DR(S0). Hence
Ipr(0,7;) — 7ok belongs to 0,Kpr ® Bpg. Let s € S(L). Then

Ipr(op(75(s))) = Ipr(op7p)(s) = 0,(FDR(s))

since Ipp commutes with restriction and apm restricts to 0. Since p, 0, and s € S(L)
are arbitrary, we are done.

4. Completion of the proof. In this section, we review the objects and steps of Deligne’s
proof of his absolute Hodge cycles theorem, giving also the extension to the p-adic maps
Ipgr. However, our exposition is not fully self-contained and the reader will need to consult
[D1] to fill in the details.

Let A be an abelian variety. We have attached to A the 3 Tannakian categories @ yC,
®anC, and ® prC, and hence three groups

G CGan CGpr.

By Proposition (2.11), it is enough for us to prove

Gn =Gan =Gbpr.

(4.1) The CM case: a reduction. Let K be a CM field (i.e. a totally imaginary
quadratic extension of a totally real number field) which is Galois over Q. A CM type of
K is a set @ of complex embeddings of K such that @U ®p is all embeddings and #N&p is
empty. Embedding K into C* by sending k € K to z(k) € C? defined by z(k(¢)) = o(k),
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the ring of integers Ok of K becomes a lattice in C* and A¢ = C®/Ok is an abelian
variety. Let S be the set of all CM types. By definition , an abelian variety of CM type is
an abelian variety which is isogenous to a product of such Ag, where K is allowed to vary.
All such abelian varieties admit projective models defined over Q

Note that, if A C B and if the above equality of groups holds for B, then it holds for
A, by Prop.(2.11). Furthermore, the equality i) holds for A if and only if it holds for A"
with any positive integer n, and ii) holds for A if and only if it holds for abelian variety
isogenous to A. Note finally that if A has an action of K, then A™ carries an action of
any field extension of K of degree n. Hence, starting from any A of CM type we can find
a Galois CM extension L of Q such that A is isogenous to a quotient of a power of

B:HA.,

$eS

where § denotes the set of all CM types of L. By the above remarks, to prove our claim
for A, it is enough to prove it for B. (c.f. [D1,p.65] for more detail about this reduction.)

(4.2) Special De Rham classes. Deligne finds three special types of absolute Hodge
classes:

[1] Classes of the graphs of endomorphisms given by the evident embedding of L into
End(Ag) for each .

[2] Let 0 € Gal(L/Q). Via o : L — L, each Ag becomes also of type Ag,, and we have
a natural isomorphism of Ag with Ag,.

[3] Let T C S have d elements. Let

Br= [] 4e

®eT

Suppose that for the action of L on H'®(Br) each embedding of L occurs with equal
multiplicity, necessarily equal to d/2. Then

N\ H(Br)(d/2) C Hi(Br)(d/2)
L

consists of De Rham classes.

The classes of types [1] and [2] are De Rham because they are algebraic and a principal
point of the argument of [D1] is to show that the classes of type [3] are absolutely Hodge
using Principle B. To do this, one first constructs a universal family of abelian varieties
7 : A — X parametrized by an arithmetic quotient X of the symmetric space attached to
a certain unitary group in d variables associated to the quadratic extension defined by L
relative to its maximal totally real subfield. This family contains Bp, carries an action of
OL, and has a fiber of the form A{,L:Q] where the L action is that defined by an embedding
of L into

Mir.q|(Q) € End(AF"Y)

The association to = € X(C) of AYHL(A;)(d/2) is a constant local sub-system on X
whose global sections lie in H°(X, R?r,Q). Further, at the point zo with fiber ALL:Q] all
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the elements of /\i HE(A;,)(d/2) are algebraic, hence absolutely Hodge and De Rham.

In fact, this space is generated over L by the class of the cycle ALL:Q]—I x {0} C A{[,L:Q].
Thus, Principle B applies: the classes of type [3] are absolutely Hodge. To see that they
are De Rham we need only note also that i) # : A — X is defined over a number field,
since it is a universal family attached to a moduli problem of PEL type, ii) the point of
X corresponding to Br is algebraic, since Br is of CM type, and iii) the Aq of Deligne’s
construction is, up to isogeny, any abelian variety of dimension d/2, and hence both Aq
and z, can be taken to be defined also over a number field. Thus, Principle B applies and
the classes in A} HL(Br)(d/2) are De Rham.

(4.3) Completion of the CM case. Note first that the classes of type [1] force

G € Gan C6or S (L) x6n ¥ G
¢

Next, observe that Gy can be explicitly described: it is the Q-Zariski closure in G(C) of the
cocharacter p : G, /C — G/C which acts on the (1,0) classes in H}(Ag) by sending z to
271 | acts on the (0,1) classes trivially, and projects to the identity on the G, factor. Since
G acts on H}(B) and Q(1)p via projection on the first and second factors, respectively,
it acts on all tensor expressions

(H5(B)®" ® Hy(B)"®")(k) =W

and the subspaces of Wy, Way, and Wpg of Hodge absolutely Hodge, and De Rham
classes are stable for this action. If v € Wy @ Q (resp. Way ® Q, resp. Wpr @ Q)
transforms according to the character x of G/Q, then x has trivial restriction to Gy (resp.
GaH, resp. Gpr). The classes of types| 2] and [3] are De Rham and therefore provide an
explicit submodule A of the character group Xg of G whose elements restrict trivially to
Gpr- On the other hand, using the explicit description of Gy via u, Deligne shows by
linear algebra that any element of X'z which restricts trivially to Gy belongs to X'. Thus,
every character of G which restricts trivially to Gy also restricts trivially to Gpg. Hence
Gpr C Gy and so Gpr = Gy and we are done.

(4.4) Completion of the proof. Let A be an abelian variety, not of CM type. The data
(GH,p), with gt : G /C — G /C defined as above for A, define (choosing additional struc-
ture, in particular a sufficiently small open compact subgroup U of Gy(Ay) ) a Shimura
variety Shy which carries a natural family of abelian varieties 7 : A — Shy, such that
there exists sp € Shy(C) for which 771(sq) is isogenous to A. Identify 7~ 1(s) with A. If

Yo € (Hp(4)®"

is a Hodge class, then this family has the property that -,, extends to a global section
v of H*(Shy, R™*"*r,Q), where we have used the identification H(C)¥ = HL(C)(1)
for any abelian variety C. Further , since A is not of CM type, dim(Shy) > 0 and, by
a general principle (c.f.[D1]), there exists s; € Shy(C) such that 7=!(s;) is of CM type.
Hence, by Principle B, v5(s¢) is an absolute Hodge class since this is true of vp(s1).
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To obtain the De Rham result, we must only check that # : A — Shy and s, are
defined over Q. This is clear for Shy itself since it is a Shimura variety, and to see it for
the family, one may remark either: 1) that = : A — Shy is the universal family attached
to a moduli problem defined by absolute Hodge cycles, polarization and level structure,
or 2) that there is a natural Q-embedding of Sh into A, the moduli space of abelian
varieties of dimension n = £[L : Q] of polarization degree § (determined by the degree of
the polarization chosen on A), and that = : A — Shy is just the pullback of the universal
family over A; ,. Finally, it is clear that s, is defined over Q: from the first viewpoint, it
is the modulus point on Shy associated to 7~1(s;) and its additional structure, and since
7~1(s;1) is of CM type, this data can have only finitely many distinct isomorphism classes
of conjugates under the elements of Aut(C); from the second viewpoint, the image of s; in
Ajs n is algebraic, by the same argument, and hence so is s;. Hence, we can apply Principle
B to conclude that +,, is De Rham.

5. A crystalline consequence.

5.1. Let X be a proper smooth variety defined over the number field K. Suppose that
0X Xgo,(k) 9p(K) has good reduction. Then:

(1) the crystalline cohomology groups H’ (6pX) are defined for all 7 > 0. They are

vector spaces over the maximal subextension W(o,) of 5:(-!? ) which is unramified
over Q,. Each carries a Q, linear automorphism ¢ which is ¢ semi-linear, where
¢ denotes the Frobenius automorphism of W(o,): &(av) = ¢(a)®(v) for v €
ngia(aPX) and « € W(JP)'

(2) There is a canonical identification

) e .

ngia(aPX) ®W(5y) aP(K) = HJDR(GPX)

(3) Let B, denote the algebra introduced by Fontaine in [Fo]. It contains the maxi-
mal unramified extension of Q, inside C, and it carries a D, action extending the
natural action on the maximal unramified extension. Further, it carries an auto-
morphism ®.,;, which extends the action of Frobenius on the maximal unramified
extension and commutes with the action of D, . Then

there is B,,i, linear isomorphism

Icria : H,J;(UPX) ®Q, Bcria - ng,',(apx) ®W(o,,) Bris

which is D, equivariant. Here we use the same definitions for the D, action on
each side as in the De Rham case. The isomorphism is compatible with products
and with cycle maps.

(4) The isomorphism I.,;, satisfies

Icr:'a o (1 ® ‘I)cria) = ((p ® chia) o Icria

(5) We have
I.ix®1=1Ipgr
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Remarks. The first two properties are basic to the theory of crystalline cohomology.
The third and fourth are fundamental results of {F] and the fifth, while not explicitly
claimed in [F), follows easily ([F2]) from the compatiblity of the constructions of I.,;, and
Ipr. :

We extend these assertions to the Tate-twisted case by setting

HI . (0pX)(k) = H

cria ris

(UPX)a

and by putting
P,

ceris

-k
(opX)(k) =P P

cris

(op X))

5.2. Let 75 € HF(X)(j) be a De Rham class which is defined over the number field K.
Let 0, : K — C, be an embedding. We say that vp is crystalline at o, if

(1) X has good reduction at o,. ‘ .
(2) Ypr belongs to the crystalline subspace H2;,(0,X)(5) of HFr(0,X)(j)
(3) ®(vpr) =vDR

5.3 Theorem. Let A be an abelian variety defined over K with good reduction at oy.
Let vp € H¥ (A)(j) be a Hodge class defined over K. Then vp is crystalline at o,.

Proof. We have

op1pr = IpR(0p7p) = Lria(0p7p) € H, (0, A)(5),

thus proving the first claim. Since

q’(ap')'DR) = Q(Icris(o'p’fp)) = Icrl’a((l ® q’cria)(ap7p ® 1)) = Icr:'a(ap'Yp) = OpYDR;

the second claim follows as well.

REFERENCES

[COP. Colmez, preprint.

[DSJE. DeShalit, Monomial relations between p-adic periods, J.Reine Angew. Math. 374 (1987), 193-207.

[D1]P.Deligne, Hodge cycles on abelian varieties (Notes by J.S. Milne), Hodge cycles, Motives, and Shimura
varieties, Lecture Notes in Mathematics 900, Springer, 1982, pp. 9-100.

[D2]P. Deligne, Valeurs de fonctions L et periodes d'integrales, Proc. Symp. Pure Math. 33(Part2) (1979),
313-346.

[D3]P.Deligne, Motifs et groupe de Taniyama, Hodge cycles, Motives and Shimura varieties, Lecture Notes
in Math. 900, Springer, 1982, pp. 261-279.

[D4]P.Deligne, Theorie de Hodge I, Pub. Math. THES 40 (1972), 5-57.

[DMP.Deligne and J.Milne, Tannakian Categories, Hodge cycles, Motives and Shimura varieties, Lecture
Notes in Math. 900, Springer, 1982, pp. 100-228.

[F] G. Faltings, Crystalline cohomology and p-adic Galois representations, Algebraic analysis, Geometry,
and Number Theory (J.I. Igusa, eds.), Johns Hopkins University Press, 1990, pp. 25-79.

[F2]G. Faltings, personal communication.

[Fo] J.-M. Fontaine, Sur certains types de representations p-adiques du groupe de Galois d’un corps local;
construction d’'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982), 529-577.

[G] R. Gillard, Relations entre periodes p-adigues, Inv.Math. 93 (1988), 355-381.



A P-ADIC PROPERTY OF HODGE CLASSES ON ABELIAN VARIETIES 156

[L] R.P.Langlands, Aufomorphic representations, Shimura varielies, and motives, Proc. Symp. Pure
Math. 33(Part2) (1979), 205-246.

{O] A.Ogus, Hodge cycles and crystalline cohomology, Hodge cycles, motives, and Shimura varieties, Lec-
ture Notes in Math. 900, Springer, 1982,

[O2]A. Ogus, A p-adic analogue of the Chowla-Selberg formula, P-adic analysis, Lecture Notes in Math
1454 (F. Baldissari, S. Borch, B. Dwork, eds.), Springer, 1990.

[Sc] N. Schappacher, Periods of Hecke characters, Lecture Notes in Math. 1301, Springer, 1988.

[Sh]G. Shimura, Autemorphic forms and the periods of abelian varieties, J.Math.Soc. Japan. 31 (1979),
561-592.

[W] J.P. Wintenberger, work in preparation.

{W2).P. Wintenberger, preprint.

Los ANGELES, CA 90024



