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. On the Geometry of Projective Immersions

by Katsumi Nomizu*) and Ulrich Pinkall

In two preceeding papers [S] and [6] we have given a new generai -
approach to classical affine differential geometry and established the basic
results concerning the geometry of affine immersions. The purpose of the
present paper is to begin the study of projective immersions. We shall '
concentrate our attention to the case of codimension one. ’

In Section 1 we recall the notion of projective structure on a2 manifoid
and state relevant facts. In Section 2 we define the notion of projective and
equiprojective immersions and related concepts such as totally geodesic
and umbifical immersions: In Section 3 we study equiprojective
immersions of a flat projective structure (M,P) into a flat projective
structure (M, P) of one higher dimension and show that they are umbiltical,
provided dim M » 3 and the ranl{of h 2 2. We derive certain corollaries and

dstermine all conriected, compact, umbiiical hypersurfaces in RPT In -

Section 4 we prove the projective version of the theorem of Berwald which

~ characterizes quadrics in affine differential geometry. In Section 5.we
, study the effect of a projective change of the ambiant connection on a

nondegenerate hypersurface M,namely, how the affine normal, the
Blaschke.induced connection, the affine metric, and the cubic form change,
We find that the difference tensor between the Blaschke connection and the
Levi-Civita connection is a projective invariant. We hope to find some more
applications of these formulas in the study of nondegenerate hypersurfaces

in RPN,

(*x) Partially,supporied by an NSF grant. This paper was written while he
was at Max-Planck-Institut fir Mathematik, Bonn. He would also like to
thank TU, -Berlin, for their hospitality during his visit.



1. Projective structure, _ ,

We recall from [4] the notion of projective structure P on a differentiable
manifold M. It is defined by an atlas of local affine connections (Ua , v 0(),
where {Uy} fs an open covering of M and vV is a torsion-freé affine
connection on Uy such that in any nonem'pty intersection Uy N Up the
connections vy and Vg are projectively equivatent. Here, in general, two
affine connections ¢ and V are saidto be projectively equivalent if there
is al-form p such that.

(1) TyY = 9xY + w(X)Y + n(Y)X for any vector fields X and Y.

As usual, when (M,P) is a projective structure, we consider a maximal
atlas of local affine connections and write (U,v) € (M,P) to mean that an
aff1ne connection ¥ on an open subset U of M belongs to the maximal atlias
for the projective structure (M,P).

ln dealing with projective equivalence and projective structures we
normally assume that each affine connection involved is locally equiaffing
relative to a certain volume element; this condition is equivalent to the
property that the Riccitensor is symmetric, When two such equiaffine

“connections are projectively equivalent, it follows that du =01in (t) and

that they have the same projective curvature tensor:
(2) WI(X,Y)Z =R{X,Y)Z - [¥(Y,2)X - a’(X 2)Y],

where ¥ denotes the normalized Ricci tensor Ric/(n-1), where n IS the

dimension of the manifold. We also remark that if v is an equiaffine
connection and u is a closed 1-form and thus exact on a neighborhood U,
then the projective change of ¥V by u gives rise to an equiaffine connsction
onU. It is known (cf. Propositions 4 in [4]) that for a projective structure
(M,P) and for any volume element w on M there is a unique globally.defined
v compatible with P such that vw = 0. . .

. Let' us also recall that if dim M > 3, vanishing of the projective
curvature tensor W is a necessary and sufficient condition for v to be .

" projectively flat (i.e. projectively equivalent to a flat affine connection). -

If dimM=2, then

C(3) (WO, D) = (wy$)X,2)

isa heces§ary and sufficient ¢ondition for prb]ecttve flatness. |



We may define the notion of path for a projective structure (ﬁ,‘P). »By a
, MWe mean a curve x; in M which, around each of its points, is a
prege'odesic relative to some v € (M,P), that Is, WXy =¢(t) Sc"t for
some function p(t); in this case, ,xt'is a pregeodesic‘ relative to every v €
(M,P). ’

2. Projective immersion.
Let (M,P) and (1, P) be differentiable manifolds each with.a projective
structure defined by means of an atlas .of local affine connectlons (Uou a)

and (Up , v p) respectively, Wesetn=dimMandn+p= dim F’l

Animmersion f: M— M is called a m;g_e_c_tug_i_m_m_e_ps_l_o_nifthe followmg
condition is satisfied:

(A) For each point xg of M, there exist locallaffi'ne connections (U,9) €
(M,P) and (U, ¥) e (M,P), where U and T are neighborhoods of xgand .
f(xg), respectively, such that f: (U,v) = (T, V) is an affine immersion.

This means that there is a field of transversal subspaces x =Ny onU
such that for any vectdr fields X and Y on U we have
(4)  Ty(fe(Y)) = f{OyY) + alX,Y), where a(X,Y)€ N.

See {6]. Inthe case where'codlrﬁension p=1, thereis a transversal vector
field £ onU such that - : '
(5)  Ty(fe(Y)) = f(VyY) +h(X,Y)E. _

Let (M,9) and. (M, ¥) be manifolds with affine connections. -An affine -
immersion f: (M,9) = (M,¥) is a projective immersion (M,P) — (¥, ),
where P and P are the projective structures determined by v and v,
respectively,
~When condition (A) is satisfied, we can, in fact, pick (U,9) or (T, V)
and find (U,9) or (U,v) which satisfies the condition. More precisely, we
have R '

Proposition 1. If f: (M, P)—>(ﬁ 'F”) is a projective immersion, then

(8) for any point X €M and for any local affine connection (U, ¥) € -
(F,P), where Uis a nelghborhood of f(xy), there exists a local affine
connection (U,v), where U is a neighborheod of xg, such that f: (U,v) -
(U,V) is an affine immersion.. |

() meoeﬂwmumnmnw (u v), '
where U is g sufficiently small neighborhood of X, there exists a local



affine conneétion (U, ¥), where U'is a nelahborhood of f(xp), such that f:
(Uy,v) = (U,9) is an affine immersfon, where Uy is a'neighborhood of U
- such that Uy €U and f(Uy) € 0. | :

~ Proof. Let (U,9) and (U, ¥) be as in (A). Let (U,,’s‘r’,) be any affine
connection belonging to (Ff, ), where Uy is a neighborhood of f(xg),
where we may assume U, e U. Choose a neighborhood U]c U of xq such

that f(U;) © Uy.Then there exists a 1-form & on U} which gives projective
equivalence of ¥ and ¥;. Then
T py (faY) = Ty (faY) + WX Y+ T )X

= fe (U Y + 0 OOY + 0 (X)) # alX,Y).
where u = f* isa 1-form onM and «(X,Y) belongs to the transversal
subspace N for f: (Uy9) = (Uy,¥ ). Now we may pick the connection
(Uy,v ) € (M,P), where V]XY = 9yY + u(X)Y + u(Y)X. Then the equation

above shows that f: (Uy,v 1) = (U;,¥ ) is an affine immersion.

The proof for (C) is similar. Let (U,9) and (0, ¥) be as in (A). For
any (U;,9 1) € (M,P), where U; €U, there is a closed I-form u on U; such
that V‘XY = UyY + u(X)Y + n(Y)X for all vector fields X and Y. Now it Is

easy to find a closed |-form & onU such that f*i =u. If we projectively
change¥ to ¥, by using the form & , then f: (U;,¥ ;) — (U,7)) is an.
affiné immersion. o ' ' B o .

Remark. In stating conditions such as (A),(B) or (C), we shall from now
on omit ekplicit mention of the domains of local affine connections. In many
. cases, it suffices to say that around ) given.'point there is a local affine
connection v € (M,P) with such and such properties. '

A projective immersionf: (M,P) = (M, ) is said to be totally geodesic
at xg € M if for any ¥ € (M, P) around f(xg), fis totallv geodesic relative
to ¥ at xq, that is, for any vector fields X and Y around xg, [Vx(f*(‘f))lxo

{s tangent to f(M), that is, there is a vector Z at xg such that f,(Z) =
[¥y(14(Y))], Now this condition ts independent of the choice of V&
0

(M, PF), as is easily verified. It is equivalent to the condition that h =0 at .
X in (5). We say that f is totally geodesic if it is so at every point of M.
It is not difficuit to see that f is totally geodesic if and only if the image of

-



a path x; in M is a path for .

From this point on, we shall deal with the case of codimensionp=1.
Let f: (M,P) —= (M, P) be a projective immersion of codimension 1. For
any polnt X, there exist v € (M,P) around xq and ¥ € (M, F ) around f(xg)

,such that f is an affine immersion relative to v and ¥ around xq. This

means that there is a transversal vector field £ as inthe equation (5).
We show that the transversal direction [£] at Xq Is Independent of the pair

(v, ¥) if fis not totally geodesic at xg. ,

For this purpose, let (v],'ﬁ 1) be another patr we may choose. We can
assume that v, and v are defined in the sarhe domain and projectively
.’rela_ted: V]XY = VXY + p (X)Y + 5 (Y)X, where u is a certain 1-form, and,

similarly for ¥, and ¥ 'VVIXY =V Y+ 1 (X)Y +u (Y)X, where & is a.

X
certain 1-form. Suppose £, is a transversal vector field for the affine ~

immersion f relative to (v, , ¥ 17 and write £y =1,(2) +9 &, where Zis a
vector field tangent to M and ¢ is a non-vanishing function. From |

Ty (fx(Y)) = £, (9 yY) +h(X,Y)E
and’

Ty () = 1T 1 1) + 1y (X0,
we obtain , -
(6) 71, Y+hy(X,)Z = 9y + (7 )(Y) X+ (DI
and '
(7)) h(X,Y) =9 hy(X,Y). | ‘_
Now we want to prove that Z =0 at x5. Assume that Z =0 at xp and take a
tangent vector X at xg linearly independent from Z. We may take a geodesic
x¢ for ¢ with inittal condition (xg,X). This curve is a pregeodesic for ¥,
and so lex is a multiple of X by a certaln function of t, 'where X is

considered as the tangent vector field of the cur\)e_xt. From (8) we obtain
hy(X,X)Z = x X at xq , where X Is a scalar. Thus hy(X,X).=0,
We have shown that for any X € TXO(I”I) linearly independent from Z= 0, °

we have hy(X,X)=0. Let Z=X;,X5,...,X, be a basis of Txb(r'!). From
what we proved, we have for each k, 2<ken, hy (X, Xg) =0 and h](Xj,Xk) =0



for all j,k 22. We have also,

hy(Xy + X, Xq+ X)) = n,(x] X1)+2hi (X, Xk) =
as well as -

hi (X + 2Xg, Xp+ 2X) = hy (X, X)) + 4 h(X1,X) =0
which together imply that hy(X;,X;) =hy(X;,X¢) =0, where k22.. We
have shown that hy =0 at xy. This contradicts the assumption that f is not -
totaily geodesic at X0+ '

We may state this result as follows.
Proposition 2. Let f: (M,P) = (M, ) M_D_OJMMJW

QUINNCISIQ]) (1970 A IO WRLOT ININed il y QI

[E] _except in the interior V of the set of points where fis ;Qxa}]y ggggggjg

We shall call [£] on M-V the tcansygcsg]' direction field for the
projective immersion f. The symmetric bilinear form h is determined up to
a scalar factor on M and is 0 at the points where f is totally geodesic. We
call the conformal class [h] the fundamental form for the projective |
immersion f. The rank, uniquely determined at each point, is the rank of f
at the point. In particular, if the rank is n, f is said to be nondegenerate at
the point. We say that f is nondegengrate If it s so at every point of M.

Suppose that f is not totally njeodesic at X and thus not in a neighborhood
of Xq. For any choice of v € (M,P), ¥ € (M, P) and a transversal field ¢ 7

relative to which f is an affine immersion, we write

(8)  Txk =- £, (SX)+ 7(X)¢E, .

where S is the shape operator for £ on M and 7 is the transversal

connection form for £. If we change £ to ¢&, where ¢ is a function, then S

changes to ¢S and 7 into = + d¢. Thus the condition that Sis a scalar

multiple of the identity: S=x1 does not change. Nor does the 2-form dr.
We may also change ¥ to a projectively equivalent ¥, € (¥, P): %']XY =

'5XY + 3 (X)Y + W (Y)X, where & is a certain exact 1-form.: ThenS -.

changes Into Sy =5 - u(§)I and 7 into 7 (=7 + fx % . Thus the conditioﬁ S=
x1 does not change. Nor doés the form dz, '

In view of this observation, we can make the following definiti'on. A
projective immersion f , which is not totalvly'geodesic at a polnt xq, 1s safd
to be umbilical at xg if, for some choice of ¥, ¥ and & relative to which f
s an affine immersion, S is a scalar multfple of the 1dent1t.y at xqg. If fis



umbilical at every point, we say that f is umbilical.
~ Wae now introduce the notion of equiprojective immersion. Let (M,P) and
(M, B) be two manifolds with projective structures and dim ™ =dim M+ 1.
Animmersion f: M — F is said to be equiprojective if |
(Al) for each point xo of M, there exist local equiaffine: connectlons Ve "
(M,P) and Ve (M, ) such that fis an affine immersion.

Note that one of ¥ and ¥ can be always chosen to be equiaffine. Just l'ike
the case of mut'ually equivalent conditions (A),(B),(C) for proj_ectivé N
immersions, we may state the following.

Proposition 4.. If f: (M,P) = (M, ) M&&Mﬁ.ﬂm&m&mﬂm
(B) Eor any point x; € M and for any local equiaffine connection ¥ €
(1, %) around f(xo) there exists a local equiatfine connection ¥ € (M,P)
around xg such that f is an affine immersion.

() mmmxoemmmmummm_mmﬂnve (M,P)
around xq, there exists a local equiaffine connection ¥ € (M, P) around
f(xg) such that f is an affine immersion.

When f is an equiprojective iinmersion, then locally we may~chooAse a
transversal vector field £ to be.equiaffine relative to v and ¥ (cf.
Proposition 3 in [S]. For such a choice of £, we have = =0. Thus for an
equiprojective immersion, we have dr = 0. We now state

‘Proposition 5. A projective immersion f: (M,P) = (¥, ) is
eauiprojective if and only if dr =0. |

Proof. We prove that d= = 0 implies that f is equiprojective. Let Xg €M
and choose an equiaffine ¥ € (M, &) with a local parallel volume element &
around f(xqg) and an arbitrary v.€ (M,P) around xq so that f ts an affine
immersion (with a transversal vector field £). Since dz =0, there exists a
function ¢ around Xy such that = =-dg¢. Then for T=9t weget the same
connection ¥ induced, namely,

Uy (feY) = f (9 Y) + h(X, V)T,
and, on the other hand, T =0. This means that the local volume element w
defined by

W(Xy.e e, Xg) = @(Xy, ..., X0, ), where Xy,...,Xp € Ty(M)
is parallel retative to v (cf. [3]). Thus v is equiaffine, and f has been
shown to be equiprojective. 0 '



Remark. If dr =0, then there is a chofce of £ for the affine immersion f
so that the equation h(SX,Y) = h(X,SY) holds (see [5]). Inthe terminology
of projective differential geometry, this proper'ty is expressed by saying
that the normal congruence £ is conjugate (for instance, see [1],p.31).

3. Equiprojective immersions between flat projective structures,

Now we recall (see [4)) that a projective structure (M,P) is said to be
flat if each local affine connection v € (M,P) is projectively flat; in other
words, if the atlas (M,P) contains a flat affine connection around each
point. We now prove ' '

Theorem 4. Let f:'(M,P)— (M, )be an equiprojective immersion, |
where dimM=n23, dim f=n+1. Assume that (,P) is flat, Ihgn (M P) .
is flat if and only if at each point x5 € M :\y_o;hm '

either 1) S=¢l,
or '2) rankh=1andS=¢1onkKerh,
QL 3) h=0.

Proof., Assume that (M,P) is flat. For Xg €M, choose equiaffine

connections v € (M,P) and ¥ € (M, ) such that f s an affine immersion
-with an equiaffine transversal vector field £.

Since V is projectively flat, we have
(9) R(x,v)Z=%(Y,2)X - ¥(X,2)Y,
where ¥ is the normalized Ricci tensor. Thus the Gauss equation (see [5])
says S ' -
(10)  R(X,Y)Z = %(Y,2)X - F(X,2)Y + h(Y,2)SX - h(X,Z)SY.
From this we find that the normalized Ricci tensor ¥ of ¥ is given by'/
(11) ¥(¥,2) = 3(Y,2) + [h(Y,2Z) trS - h(SY,2))/(n-1).
Since we assume that v is also projectively flat, we have an equation
similar to (9):. |
(12) R(X,Y)Z = %(Y,2)X - 5(X,2)Y.
Using (11) in (12) and comparing it with (10) we find
(13) (n-1) [h(Y,2)8X - h(X,2)8Y]

= [(tr $) h(Y,Z) - h(SY,Z)X - [(tr 8) h(X,Z) - h(SX,2)Y].

It is easy to see that, conversely, this equation implies that ¢ is
projectively flat. ‘

Now assume that rank h* 22, and we'll show that S =pl. Let

{x, yeoe s Xpa Xpgts . ,x‘n} is a basis such that the last n-r vectors form a



basis of Ker hy andthe first'r vectors are orthonormal: h(Xj,X;) = & &,
for 1 <i,j<r. " N , _
LetY=2Z be from X1, X}, If r=n(23), choose X =Y, Z from
{X1,...,X}. If £<n, choose X from (Xpp,:..,Xp). From (13) we get
h(SY,Z)X = h(SX,Z)Y. Since X and Y are linearly independent, we get
h{SY,Z) = h(SX,2) = 0. This means that there exist constants ¢y, .., ey,
~ such that ij = ijj .mod Ker hy for 1 <} < r. Bya similar argument to [6,
Lemma 2] we see that all pj’s are equal, say, tog. ’
Now take X =Y from {Xy,...,X;}, and set Z=X. (13) implies

(14)  -(n-1)h(X,X) SY = -h(SY,X)X - (tr S)R(X,X)Y + h(SX,X)Y. .
Write o S ‘ |
(15) SY =pY+W, SX= gX+V, where W,VeKer h,.

Since h(SY,X) =0, h(SX,X) = ph(X,X), we get

(16) . (n-1)(pY+ W) =(trS)Y -pY.

This implies that W'=0, as well as, tr S=np, and SY =Y,

Since Y is arbitrary from {X{,...,X.}, we have S X =pXj, 1 <jgr.

Now take X from {Xp4y,...,Xp} and y= Z from {Xy,...,X}. (13)
implies h(SY,Z) X = h(SX,Z)Y. But h(SY,Z) = Ph(Y,Z) = (0 and thus
h(SX,Z) = 0. Since Z is arbitrary in {X{,...,X.}, we see that SX € Ker h,.
‘Since X is arbitrary in Ker hy, we-have S(Ker hy) cKer hy.

Finally, take X from {X.4y,...,Xp} and Y =27 from {X,...;X.}. (13)

impties
(n-1) h(Y,Y) SX = (tr 3) h(Y,Y)X - h{(SY,Y)X .
From h(SY,Y) = eh(Y,Y), h(Y,Y) = 0, we se6 SX = X for X €{Xps |, - - -, Xpl-
We have thus proved that S=¢ 1, under the assumption that rank hy 2 Z.
We now consider the case where rank ﬁx= 1. Let {X1 Xy o -Xn}. be a .
basis of T, (M) such that h(Xy,X;) =2 1and {Xp,...,X,} is a basis for
Ker hy. Taking X =Y from {X5,...,X,} and Z =X;, we get from (13)
h{SY,X{)X=h(8X,X{)Y. Since X and Y are linearly independent, we have
h(SX,X;{) =0, which implies that SX € Ker h,. Thus S(Ker hy) < Ker hx;
Now take X = Z =X; and Y € Ker hy (so that SY € Ker hy). (13) implies
SY=pY, where p=[1/(n-1)][(tr 8} - h(8Xy,X;)7h(Xy,X;)]. Hence we
have seen that S=¢1 on Ker hy.

The converse part of Theorem 4 is easy, because either S=p 1, or S=‘p [
on Ker hy, or h=0 implies (13). - D



In ordler to take care of the case where the rank of his < 1, we make use
of a resuit by Ferus [2,Theorem l] Let f: M"—)S”"’" be an isometric
immersion.of a complete Riemannian manifold M“, nx2, into the un{t
sphere S™1. Let tg be'the maximum type number and assume tg £ n-1.
Then t, is an even number and tg > 0 implies that tg 2 n/z.

Rephras1ng this result we get the following. D_e_n_o_t_e_p_z r{n) the

smallest even jnteger > n/2. Then if the rank of Ln_e_s_e_c_o_n_d_m_ag_a_mm_
formhis <r(n), then f is totally geodesic. '

We now observe that we have the projective version of this result. To.

state it, let MM be a connected compact differentiable manifold, n » 2, and

Jet f: M? = RPP*! be an immersion. The notion of the rank of f at each point
is well defined as follows. For xg € M, let ¥ be any local affine connection

belonging to the canonical projective stfucture of RPM*1 around f(xo) ~and
Tet { be a transversal vector field around xg. Write the transversal
" component of VXY as. h(X Y)F, The form h is defined up to a scalar
multiple and its rank is independent of the choice of £. We call it the rank
of the 1mmers1oh f. When the rank 13'0, f is totally goedesic.

_Bg_m_aﬂi The definitions of the rank of h and the rank of the immersion f
at each point are valid when RPN*T i replaced by any manifold with a

projective structure (M, ﬁ')
We have now

Proposition 5. Let f: M"—>RPn+1 be an immersion of a connected,
- compact differentiable manifold, where n 2 2. If the rank Qt fis<r(n)at

every point, then fig totally geodesic.

Proof. Let gg be the Riemanntan metric of RP"‘” as well as that of the
unit sphere s™* 1. Denote by g = f* .90 be the Riemannian metriic induced on
MM, and let M 1 be the universal covering manifold of M" with the natural
complete metric g . We can then find an isometric immersion ¥ : M " —
§™ 1 suchthat m « ¥'=f« 1y, where m: S™1 5 RPM™ ! ang m: F =1 are
the natural projections. Since the rank of 7 at & ff M) coincides with the

rank of f at m(X) € M, we may now apply the result of Ferus to conciude
that T is totally geodesic. It follows that f is totally geodesic. 0
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Combining Theorem 4 and Proposition 5 we obtain

Iheorem 6 . Let f: (M,P) = RP™! bo a rea) analvtic and equiprojective -
immersion with codimension 1 of a flat projective structure (M,P) , where
dim M2 3. If Mis connected and compact, then f is totally geodesic or

Proof. If the rank of his < | everywhere, then Prooositiion 5 apptlies. If
the rank of his 2 2 somewhere (and so on some open subset W), then S =l

on W by Theorem 4. By analyticity this holds on the whole M, o
Proposition 7. Let f: (M,P) = RP™! be an equiprofective immersion.
fis umbilical if and only if the orbiectiye lines in the transversal directions
{£] go through a point in RP™M™ I,
Proof. Assume S=x1, wherex is a function. For each point x of M,
there is an o-pen neighborhood U of x such that f(U) lies in AR = gpntl .
H, whereHis a certain projective hyperplane. The flat affine connection T?'O

in the affine space Ah” belongs to the atlas of local affine connections for
RPN* 1, Relative to '\5’0 and ¢ € (M,P) and for a ¢choice of an equiaffine
transversal vector field &, fis an affine immei‘sion whi'c_h'is umbilical S = 5
A, with constant x. If x = 0, then for the mapping x €M = y=x+ E/n, we
have Dyy=0, shpw_ing‘that the 1ines in the direction of meet at one single '
point. If x =0, then the lines in the direction of £ are parallel. In either
case, these lines, when considered in RPM™ T, meet at a single point. We
have shown that all lines in the transversal direction through the poirfit;» of
U {neighborhood of X} meet at a single point. - ' '

We now show that all projective lines ff,] in the transversal direction

- . +
through the points of M meet at a single point. For each point p in RPn ],
let W be the set of points x € M such that in a neighborhood of x, all [E)go

through p." Each Wp is an open subset (possibly empty). If p= q, then Wp' '
and Wq are disjoint. Suppose x € wp N Wq. If they are on one line, then we

can take a point y € M near x such that the lines yUp andy U q are
distinct, and this contradicts the fact that [£],, must coincide with the lire

yU'p as well as with the line yuq, since y € wpan. Since M is the union of

all W, it follows that M =Wp for one point p. Thus al1 {{] go throughp. o
We now give an analytic description of a connected, compact hypersur-

face in RPT*1 with transversal directions [£] that go through a single point.
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MRP"*'wmmummﬂsn”mmumm
antipodal points. Let enep = (0,...,0,1) be the north pote of S™!. Let "
—{x—(_x1,...,xn+|,0),2x1 I}Mmmmmmgm_amm

T, (S™1). Letr=r(x) bea positive differentiable function on S". Define

n+2 o ,
(17) f(x) = (05 r(x)) eqep + (sin r(x))x €M1, xe 8N
(18) 'g(x) = mwef(x) € RPO+1, |

Then the hypersurface g: 5" — RPM™ ! has the destr

To see this, let X € T'X(S”). We have '
(19) £ = (- 810 r(x))(Xr) epyq + (cos rOANXP)x + (sin (r(x))X,
If f,.(X) =0, it follows that X =0. Thus f is an immersion, and so is g.
The curve t = xq =(cos t)epsp + (sint)x is a great circle and m(x) is a
path in RP™ 1. The tangent vector X; at t= r(x) s
(20) - (sin r(x)) on+p + (cos r(x)) X,
which is transversal to fx(TyS™), since it is linearly dependent, from (19).
Going to RPM* ! we see that the path from m(ensp) to g(x) is transversal to
g(Snj. Relative to this choice of transversal direction field, M acquires &
projective structure. Namely, for any local-equiaffine 'connection

compatible with RPM™ ! we 'may induce a Jocal equiaffine connection on M,
which is determined up to a projective change. Clearly, ¢ is an equi-
projective immersion which is umbilical. (We n‘iight say that a hypersurface

M in RPM! 45 umbilical if it fs umbliical in the manner above relative toav'
choice of transversal direction field. )
Remark. In the model discussed above, suppose r is an odd functlon on

SN, that is, r(-x) =- r(x). Then f(-x)=f(x). This means that f induces
an umbilical hypersurface g: RP" — RPM 1T, ' ' ,
Proposition 8. A connected compact umbilical hypersurface M in RP™*!
mmmmm_ms_fmm 9(s™) described above. upto  projective

Lr_am_to_r_m.tmn_rztnp

Proof. We may asgume that the paths in the transversal directions meet
at m{ep42 ). By taking x € M into the unit tangent vector at ep,p of the

ge_od.esic in gt} projecting on the path in the transv’&sal direction, we get



a mapping of M Into S" (the unit sphere iIn T, (S™1), which Isa Tocal
' n+2

diffebmorphism. Since M is connected and compact, it follows that the M is

of the form g(SN) described above. o

As another application of Theorem 4 we obtain a result related to the
possibilities of isometric immersion between riemannian or pseudo-
riemannian manifolds each of constant sectional curvature. For example,
it is known that there is no isometric immersion of a Euclidean space£"
into SM1 of constant curvature 1, while EP can be isometrically imbedded
(as a horosphere) into the hyperbolic space HN* Y of constant"curvature -1.
We now consider a manifold M with flat affine connection v and show that it
cannot be immersed as a nondegenerate Blaschke hypersurface (in the

classical sense, see [5], Example 6) inS"*1. More precisely, we have
Theorem 8. Let M be an (n+1)-dimensional pseudo-riemannian manifeld
with metric § of constant sectional curvature ¢ and its Levi-Civita
‘connection ¥, where n23. If there exists a nondegenerate hypersurface MM
__mmgummmmﬁmm_mv J§_a1._1h_e11 ¢< 0. Inparticular,
sN+1, 3,

Proof. Suppose'r'!n is a nondegenerate Blaschke hypersurface with flat

induced connection. | We show that its affine normal is perpendicular to MN
_relative to the metric g and that MM is umbilical in the metric sense,
* The Gauss equation for the affine hypersurface MM is ,

R(X,Y)Z = %(Y,Z)X - ¥(X,2)Y + h(Y,Z)SX - h(X,Z)SY,
where ¥ is the normalized Ricci tensor of M, whichis ¢g by assumption,
and h and S are the affine fundamental form and.the affine shape operator.
Now since R=0, ¢ is péojectively flat in particutar. From Theorem 4.
applied to the affine immersion of (M, v) into (M, ¥), which is also
projectively flat, we know that S =g 1, where p is a constant. The Gauss
equation above now reduces to | _ ‘

[cGCY,2) + ph(Y,2)] X + [c§(X,2) + ph(X,2Z)]¥ = O,

For arbitrary X and Z tangent'to M, ¢choose Y to be linearly independent of.X.
We get ¢G(X,Z) = -ph(X,Z). Thus p=0and h=-(c/p) 9o, where gg is the
restriction of g'to M™. Since h is nondegenerate, so is gg.

If we denote by £ the unit normal vector field for MM (relative to §) and
by hg the second fundamental form in the metric sense, we know that ho =
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zh, where x is a certain scalar function. But then hg = -{xc/p)gp. As is
well known, it now follows that k = -x¢/p and thus x are constants. Hence
MM is umbilical in M in the metric sense.

Recall now how the affine normal £ is determined for a nondegenerate
hypersurface (cf. [3], proof of Theorem 1). We now have hy=k gg. Let

{Xq,...,X,} beanorthonormal basis relative to gg. When we take the

absolute value of det[ho('xi,xj)], we get the constant |k{". This means that
the affine normal {,'is inthe same direction as the unit normal vector £n and
hence the induced connection v on M7 coincides with the Levi-Clvita
connection 9y of 90 The metric shape operator Sg is equal to k I, because
hg = kgg. By the Gauss equation in the metric sense we now see that ¢+ kZ =
0, which implies that ¢<0. o '

Remark. Forn=2, there are many Blaschke immersions of a flat torus

(TZ,V) into 83, for example, all Clifford torf. In view of Theorem 4 for n2
3, it will be an interesting problem to study projectively flat surfaces in

-RP3,

4. Extension of the theorem of Berwald ,
Let (M,P) be an (n+1)-dimensional manifold with a projective structure.
Let f: M > M be an immersion of an n-dimensional manifold M into M.

~ Without assuming that M is provided a priori with a projective structure, we

shall define a ¢ertain property extending the ¢lassical condition of vanishing
cubic form. For the case of an affine immersion this was already discussed
in [6].

For each point x € M, choose a local affine connection'¥ € (M, F) around
f(x). Also choose any transversal field £ around x. From ¥ and ¢ we-may
obtain a local affine connection ¥ around x so that
(21) Ty (1)) = fa (0 Y) + h(X,Y)E
and :

(22) gk = - £, (SX) + T (X)¢,

" where h is the fundamental form and < the transversal connection form

for the affine immersion f of a neighborhood U into M. In [6] we defined the
cuble form C(X,Y,2) = (¥xh)(Y,2) + =(X)h(Y,2) and defined the notion
that Cis divisible by h(denoted by h{C), meaning that there is a 1-form ¢
such that o



(23) C(X,Y,2)-= pCONCY, 2) + p(VIN(Z,X) + p(Z)A(X, )
-~ for all tangent vectors X,Y and Z to M. '

Proposition 9. The property that h | C does not depend on the choice of ¥
(M,P) nor of a transversal field £. Thusitis a property we can speak of
for any immersion f: M — (M, P) of a differentiable manifold M into (1, P)..
Proof. Suppose we have chosen ¥ & (T,P). Then the property h|C is
independent of the choice of §, as is known in Proposition 5 of [6] Now we
‘change Vto V' e (M,P) so that
(24) TyY'= Y + 0 (X)Y + w(Y)X, where u is a certain {-form,
From (15) and the borresponding equation for' ¥V’ we obtain
(29)  O'yY = UyY + 2 (XY + pu(Y)X
and o
(26) N(X,Y)=n(X,Y).
From (16) and the corresponding equatibn for V' we obtain
(27) (X)) =7(X)+ n(X). '
Thus the cubic form C' resulting from V' is given by
C(X,Y,2) = (vyh)(Y,2) + = (XI)n'(Y,2Z)
| =X h(Y,2) - h{(9'xY,2) - h(Y,9'y2)+ (2(x) + n(X)IN(Y,2)
=Xh(Y,2) - h(9yY,2) - n(XIR(Y,Z) -u(YIn(X,2)
- h(Y,9%Z) - (XY, Z) - n(Z)h(Y,X)
+ T (X)h(Y,2) + n(XOh(Y,2)
= (vxh)(Y Z) + = (X)h(Y,2)
- 1 OODY,2) - (KX, 2) - (2IN(Y,X),
that is, - ‘ '
(28)  C(X,Y,2) =C(X,Y,Z) - x(X)h(Y,2) = n(YIN(X,Z) -n(Z)h(Y,X).
Thus tf (23) holds for C, then a similar equation holds for C with ¢
replaced by ¢.- n. Thus the property h|C implies h'}C.. o
Recall the notion of the rank for an immersion M — (M, F) in the remark
before Prop051t0n 5.
We shall now prove
Theorem 10. mfmﬂlmxmm_qn_ﬁ_ann dimensional connected
differentiable manifold into RP™! such that the rank of his » 2, then f(M)
lies in 2 quadric Q™ in RP™*! f and only If f has the property that h | C.
Proof. Assume the pr'operty h|C. For each point x €M, thereis a

neighborhooa U of x such that f(U) s contained’in an affine space ANt =



. RP™! - H, where H is a projective hyperplane, say, xg =0.. The flat affine
connection '60 belongs to the atlas of local connections for RPN Now for

f:U— (A™1 ¥,), the conditions h | C and rank h22 are satisfied by the
assumptions of the theorem. By Theorem 10 in [6], we see that f(U) lies in
a quadric in AN and hence in a quadric in RPM 1, Since f is locally an

immersion into a quadric in RPN*| , It follows that it is so globally.
~ The converse part of the theorem also follows from Theorem 10 of {6] and

the proof is omitted. u]

and let f: M — ™ be an immersion of a manifold of dimension n. We assume
that the rank of f is n at every point, that is, f is nondegenerate. Unlike the
case of a nondegenerate immersion into a manifold with an equiaffine
structure which determines a unique equiaffine structure on the
hypersurface, weé cannot determine a projective structure on the
hypersurface. We have already shown that a certain property such as h|C
fs an invariant notfon for f. ' | '

Let xq € M. As soon as we pick’a local equiaffine connection ¥ € (1, F)

with a paraliel volume element w in a neighborhood U of f(xg), we can
consider a neighborhood U of X as a nondegenerate hypersurface in

(0, %). By the classical procedure due to Blaschke, we can get an
equiaffine structure (v,w) in U. Together with this structure we get the
fundamental form h, the cubic form C = vh, the Levi-Civita connection h,
the difference tensor K between v and ﬁ, and so'on. The question is how
these quantities change as we pick another V' e (¥, P) with a parailel
volume element o .

In this case, we have
(28) w'=¢ w, where ¢ >0

(30) Ty = Ty + 0 (X)Y + w(Y), where n=d (In¢)/(n+2) .

Relative to the affine connection ¥, let &, h, vand w be the afhne
normal, the affine metric the induced connection, and the induced volurﬁe
element (equal to the volume element for h) for M. In order to obtainthe
corresponding objects for M-relative to the affine connection 7', let us take



t as a tentative choice as transversal vector field and folldw the standard
procedure described in [3]. We write

(31) ¥ XY—v*xY+n“(x Y)E.
Because of (30) we see that ,
(32)  9FgY = OyY + u(X)Y + u(Y)X
(33)  h#¥(X,Y) =h(X,Y).

Also from
Vrgk =Tk + n(OE + ()X = -sx+n(x)£ + p (&)X
= - §8X + TH(X)
we obtain

(34)  =H(X)=p(X) ;
(35) S*=5- (&) (I:identity).
The volume element 6# given by -
(36) " 6%(Xy,....Xp) = @ (Xq,.euy X, b)
is equal to 9w. Let {X;,...,X,} be a basis in T, (M) with 6*(X;,...,X,) =
I. Then | . '

w( /M%), ., 9V X) = 1, hi; = h(g!/n Xi,?”nxj) =g2/n h(X;, %)
" s0 that ' : ’

h¥ 55 = h¥(Xj, %) = h(Xy, X)) = ¢7M/2 i -
Setting H* = det | h# ] we get

H“‘ (9~ Z/n)n det [ hU ] 9 2 :
since det [hij] = 1 It follows that the affine metric h’ of M relative to V is
given by |
(37) W= 92/("“2) h.

In order to find the affine normal vector ¢’ of M relative to V' we set
(38) t'=1 +?-2/(n+2) t

and choose the tangen't vector Z in such a2 way that %"x t'is tangentto M.
Such Z is determined by the following equation to be satisﬁed for all X: .
(39) X (¢72/(n+2)y 4 h(X,2) + ¢-2/(n+2) 2(x) =

The first term equals -2 X¢/(n+2) 9. Alsousingp=4d (ln $)/(n+2) and
(34), our equation becomes

(40) h(X,2) =9-2/(n+2) u(X).



18

If we introduce a vector ﬁeld‘U. by
(41) h(X,U) =p(X) forallX (i.e.Ucorresponds to u relative to h),
then we get '
(42) Z=¢72/(n*2)y
and the affine normal £’ is given by
(43) b =9 2/(My+y), .

Finally, the affine connection ¥' induced on M by (¥, &) is given by
(44) W'yY = OyY + 1 (0¥ + w(Y)X - h{X,Y)U.
This can be easily verified by using (30) and (43).

Remark. (44) is exactly the same as a general formula for the'chan'ge
of the Levi-Civita connection when a metric h is changed conformally to

“92h, the 1-form u being d1n9 (see, for example,[7]).

If his changed to h' = (91/(M2))2 45 in (37), then x = (d In9)/(n+2),
exactly as in (30). From this fact forms we get the following theorem.

Theorem 1. When an equiaffine structure (¥ , @) inthe ambiant
manifold M is changed projectively to an equiaffine structure (¥, ’), the

difference tensor K of the induced connection v and the Levi-Civita . -

mnnmgn w&wwmmmm

™M does not change, The cubic form C conformally with the same factor as
Proof. For the cubic-form C, recall that C(X,Y,2) = - 2h(KyY,Z2). o

Remark. The same conformal change of the affine metric and the cubic

form for a nondegenerate hypersurface in RPT ! comes up in the projective
~ theory described by using moving frames (see [8]).
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