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Abstract.

We study Kahler metrics of zero scalar curvature in four real dimensions admitting

an isometric action of SU(2).

0. Introduction.

A procedure for studying SU(2)-invariant anti-self-dual conformal structures on four-
manifolds has recently been developed by Hitchin [H2], [H3],[H4]. The idea is to use
the twistor correspondence of Penrose to asociate to such a four-manifold a complex
three-fold (the twistor space) with a holomorphic SU(2) action, and to show that the
twistor lines of this space are determined by an isomonodromic family of connections
on P'. In the generic case considered by Hitchin this family in turn is determined
by a solution to the sixth Painlevé equation. This is one of a family of second order
ODEs collectively known as the Painlevé equations, described for example in [AC]. The
upshot is that the conformal structure on the four-manifold is specified by a solution

of Painlevé VI.

On another front, Pedersen and Poon [PP] and Tod [T] have produced ansatze
which give SU(2)-invariant scalar-flat Kahler metrics in four (real) dimensions. The
ODEs arising from these ansatze are equivalent to a special case of the third Painlevé
equation. It is known [G] that Kahler metrics of zero scalar curvature (in four real

dimensions) are always anti-self-dual.



The purpose of this paper is to apply the twistor methods of Hitchin to attack the
general problem of finding scalar-flat Kéhler four-manifolds with SU(2) symmetry,
and to interpret the results of [PP] and [T] in this framework. In the special case of
diagonal Bianchi IX metrics we are also able to tackle this problem by direct methods.
We shall primarily work locally, although in the diagonal case we determine which of
our metrics can be completed (even these complete examples are not compact). We

assume throughout that the generic orbit of the SU(2) action is three-dimensional.

Our techniques are not well suited to the case when the metrics are Ricci-flat. For
Kahler metrics in four real dimensions this condition s equivalent to the metric being
locally hyperkahler. However there is no loss in excluding this case because SU(2)-

invariant hyperkahler four-metrics have been completely classified [AH], [GP].

The layout of the paper is as follows. ‘Section 1 describes the Penrose twistor con-
struction and its application by Hitchin to SU(2)-invariant conformal structures. In
section 2 we explain how the extra data of a Kahler structure on the four-manifold
affects the twistor space, and in section 3 we show how this leads to an isomonodromy
problem involving Painlevé I11. In section 4 we consider the special case of diagonal
Bianchi IX metrics, and in 5 we compare these results with those obtained by di-
rect calculations. Section 6 contains an analysis of which of the diagonal metrics are

complete.
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1. Twistor spaces.

Let M be an oriented Riemannian four-manifold with metric g and let A% denote
the bundle of selfdual 2-forms. We define Z to be the sphere bundle of A} and let =
denote the projection from Z to M. We can identify the fibre of m over a point m
of M with the set of complex structures on 7T,, M compatible with the metric g and

with the orientation.

Using the Levi-Civita connection we can split the tangent space to Z at a point
z into horizontal and vertical spaces A and V', where H can be identified with the
tangent space to M at m(z) and V is tangential to the two-sphere fibre of 7 over n(z).
Now z represents a complex structure on Tyr;)M so induces a complex structure .J;
on H. Also we have the standard complex structure on S? which defines a complex

structure J; on V. We can now define an almost complex structure J on Z by setting

J=J8J;.

The fundamental theorem of Penrose [Pe], [AHS] asserts that this almost complex
structure is integrable if and only if the metricon M is anti-self-dual. In this situation,

Z is called the twistor space of M.

There is a complex four-parameter family of projective lines in Z, each with normal
bundle isomorphic to O (1)® O (1); these lines are called the twistor lines. Moreover
Z carries a free antiholomorphic involution 7, called the real structure, and there is
a real four-parameter family of twistor lines, called the real twistor lines, which are
preserved by 7. In fact the restriction of 7 to each real twistor line is the antipodal

map. The real twistor lines are precisely the fibres of the projection n from Z to M.

The above construction depends only on the conformal class of the metric g on M.
Moreover, the complex manifold Z, its twistor lines, and the real structure together

determine this conformal class.

Hitchin [H2],[H3],[H4] studies the case when there is an isometric orientation-
preserving SU(2) action on M. This lifts to a holomorphic SU(2) action on Z with

associated vector fields X, X3, X3 satisfying the relations [X1, X2] = —X3 etc. These



vector fields generate a local SL(2,C ) action on the twistor space. Now, we have a
holomorphic section s of K7', the anticanonical bundle of Z, defined by s = X; A
X2 A X3 Assuming that s is not identically zero, it will vanish precisely on some

anticanonical divisor £ on Z. We have the exact sequence

0=TP! 5 TZ |pr— N =0

where N is the normal bundle of a twistor line P ' and TPP' = O (2). Taking de-
terminants, and using the description of the normal bundle given above, we see that
K3! |ﬂ3 1= O (4) so each twistor line is either included in £ or meets £ at four points,

counted with multiplicity.

The holomorphic action of SU(2) on the twistor space defines a homomorphism x
of vector bundles from the trivial bundle Z x si(2,C ) to the tangent bundle of Z. On
Z — F the vector fields X, X3, X3 are pointwise linearly independent over € and y
is an isomorphism. The inverse of x may be viewed as an s((2,C )-valued one form
® on Z — E. If we use the local SL(2,C ) action to identify a neighbourhood of
a point in Z — E with an open set in SL{2,C )/I' for some discrete group T', then

on this neighbourhood ® pulls back to the Maurer-Cartan form under the projection

SL(2,@ )~ SL(2,€ )/T.

We can regard ® as a flat meromorphic connection on Z, holomorphicon Z — F
and with poles on £. Restricting to twistor lines not contained in £ gives us a family
of flat connections A(t), each meromorphic on P’ with poles at four points (with
multiplicity). Here t is a coordinate on a curve C transverse to the SU(2) orbits in
M , and we are considering the real twistor lines over points of C'. In the case considered
by Hitchin, corresponding to a generic anti-self-dual conformal structure, we do in fact
have four simple poles [or generic ¢t. Moreover, because each such connection is a
restriction of our flat connection ® on Z, we see that the holonomy of the connections

around the poles stays constant as we vary the connection within the family.

We can view the family of connections as defining a family of ordinary differential
equations with four regular singularities on [P '. The above statement about the holon-

omy remaining constant becomes, in this interpretation, the statement that this family
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of differential equations is isomonodromic. This condition was analysed by Painlevé
and his school [AC] and shown to be equivalent to the condition that a certain func-
tion defined in terms of the coeflicients of the connection form A(¢) should satis{y the

sixth Painlevé equation. Here ¢ is the dependent variable of this differential equation.

Conversely, given a solution of a Painlevé VI equation we can recover the isomon-
odromic family of connections. This family in turn determines the restriction of the
twistor lines to the open set Z — I of the twistor space Z, and this is enough to

determine the conformal structure of M.

To summarise, the conformal structure on M is determined by the solution of

Painlevé VI.

2. The anticanonical divisor.

Let us now consider the case when M admits a scalar-flat metric ¢ and a complex
structure [ with respect to which ¢ is Kahler. As noted earlier, ¢ must now be anti-
self{dual so we can associate to M a twistor space. The twistor spaces of scalar-flat

K ahler surfaces have been studied by Pontecorvo [Po].

Now the complex structure / on M defines a global section of the twistor fibration,
and the image of this section is a divisor D) on Z intersecting each real twistor line
once. Similarly the reverse complex structure —/ gives another divisor D intersecting
each real twistor line at one point, and the two divisors are interchanged by the real
structure 7 of Z. In the case when ¢ is Kahler with respect to / Pontecorvo shows

that the divisor class of D + D is given by

[D+ D)= Kk;'*

& vanishing precisely

In fact, he explicitly constructs a holomorphic section of 1\‘;1
on D,D. We now relate the divisor £ to Pontecorvo’s divisor. As mentioned in the
introduction, we are assuming throughout this paper that the generic SU(2) orbit on

the four-manifold is three-dimensional. We are interested principally in the local form



of the metric, so in what follows we assume, by restricting to an open set if necessary,

that the orbits of SU(2) on M are all three-dimensional.
Lemma 2.1

Let M be a four-manifold with an SU/(2)-invariant scalar-flat [{ahler metric g,
not locally hyperkéhler, where SU(2) acts with three-dimensional orbits. Then the

section s of K7' is not identically zero.
Proof

The vector fields X;, X2, X3 on Z span an integrable distribution. Il s is iden-
tically zero then these vector fields are everywhere linearly dependent so the rank of
the distribution is of complex dimension two or less. As we have assumed that the
SU(2) orbits on M all have real dimension equal to three we see that the rank of the
distribution is in fact precisely equal to two. For each point z in the twistor space we
therefore have a complex surface ¥ passing through that point, such that X;, X,, Xj
are tangential to . These surfaces are just the orbits of the local SL(2,C ) action

on Z generated by the vector fields X;.

The members of this family of surfaces define (locally) a family of sections of the
twistor fibration, which induces a local hyperhermitian structure on M. That is,
we have complex structures I, [, I3 multiplying like the quaternions, such that g is
hermitian with respect to each of I, I3, [3; these generate a whole two-sphere of local

hermitian structures I, = 3 a;/; where a = (a1, az,a3) is a unit vector in R 3.
\
The assumption that the metric is not hyperkahler implies that the space of co-

variant constant two-forms will have dimension less than three. However this space is
a real representation of the isometry group SU(2) and hence will be acted on trivially
by this group. Hence the IKahler form Q and complex structure / on M are preserved
by the SU(2) action. It follows that the lift to Z of the SU(2) action preserves D,
and so the vector fields generated by this action are tangential to D. We deduce that
D is a union of members of the family of surfaces discussed above. It follows that one

of the local hyperhermitian structures may be identified with 7.

Now there is a unique torsion-free connection, the Obata connection V | such that
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Vi,

It
o

for each a € §2.

As explained in [PS] , [PPS] there is a 1-form w such that

Vg=w@®g
and moreover
dle =w A,

where (), is the two-form defined by ¢ and 1,.

However we have seen that one of the hermitian structures (/4 say) equals I and
so is Kahler. Therefore d?4 = 0 and as 24 is nondegenerate this means that w is

zero. Hence d€), = 0 for all a and all the hermitian structures are Kahler.

The metric on M is therefore locally hyperkahler and we have the required con-

tradiction. O
Theorem 2.2

Let M be a four-manifold with an SU(2)-invariant scalar-flat {ahler metric, which
is not locally hyperkahler; suppose also that SU(2) acts with three-dimensional orbits.

Then the divisor I where s vanishes is equal to 2D + 2D.
Proof

Note first that because s is invariant under the SU{2) action on Z, and because
the SU(2) orbits on M are three-dimensional, if s vanishes on a real twistor line then
it vanishes everywhere. It follows [rom Lemma 2.1 that this contradicts the hypotheses
of the theorem, so we deduce that F contains no real twistor line and hence E meets

each real twistor line at four points counted with multiplicity.

As shown in Lemma 2.1, the SU(2) action on Z preserves the divisor D, and so

the holomorphic vector felds Xy, X, X3 are tangential to D, and hence are linearly



dependent over € . It follows that our section s of K7' vanishes on D (and, using
a similar argument, on D). Note that this argument shows that s vanishes on any

SU(2)-invariant divisor on Z.

We may now write the anticanonical divisor £ where s vanishes as D+ D+ F for
. . . . =172 C
some divisor F'. If p, denotes Pontecorvo’s holomorphic section of K / vanishing

= . . . ~—1/2 I
on D, D, then p; = s/p; is a holomorphic section of K7 / vanishing on F', so

[F] = [(51/2. As E, D, D are SU(2)-invariant we sce that F is also SU(2)-invariant.

Assume now that F #£ D + D. From above we then have distinct holomorphic
sections py, ps of 1{5‘/2 with divisors D + D and F respectively. Now as D, D are
SU(2)-invariant , the image of p; under the SU(2) action has the same divisor as py,
so must be of the form p| = fp; where [ is a nowhere zero holomorphic function on Z.
However any holomorphic function on a twistor space is constant [H1], so p} must be a
constant multiple of p,. Hence the one-dimensional subspace of H°(Z, [\’EUZ) spanned
by p1 is a representation of SU(2) and so is acted on trivially by SU(2). In particular

p1 is SU(2)-invariant. The same argument shows that ps is also SU(2)-invariant.

. . . ' : . . ~—1/2
Consider now the two-dimensional space of SU(2)-invariant sections of K /

spanned by pi,pe. As above? two such sections define the same divisor if and only
if they agree up to a constant, so we obtain a pencil of distinct SU(2)-invariant divi-
sors in the linear system | [‘;’51/2 |. But s must vanish on every member of this pencil,
so will vanish on some twistor line at more than four points (counted with multiplic-
ity), thus contradicting the hypotheses of the theorem. [t lollows that our assumption

that 7 and D + D are unequal is false, and the theorem is proved. O

3. The isomonodromic family.

[n the light of Theorem 2.2, we know that our flat meromorphic connection ® has
double poles on D, D and is holomorphic elsewherec on Z. We shall next show that
restriction to the real twistor lines defines an isomonodromic family of connections,

leading to the appearance of the third Painlevé equation.



Let C be a curve in M transverse to the SU(2) orbits, and consider the region
U of the twistor space projecting onto C'. Let ¢ be a coordinate along C and z a
coordinate on the real twistor lines such that D, D meet each twistor line at 0,00

respectively.

The restriction of our connection form to U is given in these coordinates by

—Ade—Bdt

where A, B are sl(2,C )-valued functions of z,¢.
From our comments above about the poles of ® we can write A, B as

A_ A_
A=A0+Tl+—2

22
and

B,

x?

B.
B = Byz® + Bz + Bo+—'c“l+

where A;, B; are functions of ¢ taking values in s1(2,C ).

We shall assume that there is a range of ¢ where the eigenvalues of Ag and A_,

are nowhere zero, and restrict ourselves to this range in the following calculations.

By rescaling o we can take Ag and A_, to have the same eigenvalues and hence be
conjugate. If the eigenvalues of Ag, A_; are constant in ¢ it is easy to show, using the
flatness of —A dz — B dt, that we can gauge B to be zero and A to be constant in 7.
Excluding this trivial case, and restricting the range of ¢ if necessary, we can choose
t so that the eigenvalues of Ay and A_; are 3¢, —3t. Morcover, by a choice of gauge

we can take Ay to be diagonal.

We write Ap, A_1, A_; as

i 0 PG uv
Ap=| ? VAL = VA, =1 (1)

0 ——.—;—t ro—p w —u

where



w? 4+ vw = —.
4

(2)

We can perform a gauge transformation by a diagonal matrix in SL(2,C ) (de-

pending on ¢) to ensure that

for some functions §,¢ of t.

We say that A, B are in canonical form if (1)-(3) are satisfied.

The Hatness condition for the connection is

0A 0B

E—EE‘-F[A,B]:O.

This is the isomonodromy condition for the ordinary differential equation

= A_ Ao\

dz 2

and it is well known that this condition ts equivalent to the Painlevé I1] equation.

now give details of an argument to show this equivalence.

liquation (4) is equivalent to the relations

[A_s, B_g] = 0
9By +[Ay, B_y] + Ay, B_g] = 0

diﬁ'” + B_y + [Ao, BLo) + [ACy, By +[A_y, By) = 0
"‘3;1 + [Ao, Bi] + [A_y, Bo] + Ao, B)] = 0

% — Bi+ (Ao, Bol + [A-y, Bl + [A2, Bo) = 0

—232 + [Ag, Bl] + [A_l, Bg] - 0
[Ao, B:] = 0.

Let us now analyse these equations.
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The first and last equations imply that B_, = ¢pA_; and B, = ¢Ay, where ¢ and
t are scalar-valued functions of ¢. Multiplying (10) by Ag and (6) by A_; and taking

the trace implies that ¢ and + (and hence B, and B_; ) are both zero.

Equations (6) and (10) now show that B_; = guA_; and B; = MAg, where A, p are

scalar-valued functions of t.

We obtain the equations

{A_
T 4 A+ A, Al 4[4, Bo] = 0 (12)
dA_
7!- + P”[A07A—2] + [A—la BU] + )\[A_z, AO] =0 (13)
dA
=% = Mo+ [Ao, Bo] + NA-i, 4] = 0. (14)

The last equation implies that A = ¢! (so By =t 'Ay ) and that

t—-—l t_l
By = P 1 :t—IA_l.
=y —i_]p

Observe from (12) that

d
ETI‘AEQ = —2uTrA%,.

But we know that TrA?, = %t2, so p=—t"land B_; =—1t7"A_,.

The flatness equation (4) now becomes

d@
- = 2([P, 7]
dR
AE = 2[R,Q)]

where P = —t"'Ap, @ = —A_, and R=1"1A_,.

This system of equations (together with the condition ‘fi—f: = 0 which is automatic
in our case) is a reduction of the sell-dual Yang-Mills equations and has been studied
by Mason and Woodhouse [MW]. They show that it is equivalent (if neither 7 nor w

is identically zero) to the third Painlevé equation

11



Py 1 [(dy\® 1dy K1y? + Ko P
d_ﬁ"_E(E et T g TRty
where y is defined by y = —Z-.

The constant parameters «; (¢ =1,2,3,4) are given by

ki o= STr(A_iA_y/1) (15)
Ky = 4—8Tr(AgA_ /1) (16)
ks = 4 (17)
ke = —d. (18)

Any Painlevé Il equation with &3 and x4 nonzero may be brought to this form by

scaling y and ¢.

If r or w is identically zero we can use the substitution y = —Z to obtain Painlevé
III, unless ¢ or v is identically zero, when the flatness equation (4) becomes trivial.

In the latter case both r,w,q and v are all in fact identically zero.
The next theorem summarises our findings.

Theorem 3.1

Let M be a scalar-flat Kahler, not locally hyperkahler, manifold of real dimension
four, admitting an isometric action of SU(2) with three-dimensional orbits. Suppose
that the matrices Ag, A_; of (1) have nonzero, nonconstant eigenvalues, and that
r,w,q and v are not all identically zero. Then we have an isomonodromic deformation

problem leading to the Painlevé T1T equation. D.

Finally, it is straightforward to show that matrices A;, B; (: =0,1,2;57 = =2,-1,0,1,2)
satisfying equations (5-11) and such that A, B are in canonical form are determined

by y = —Z up to a gauge transformation.

Ay — @A{O_l , BJ' — @BJ'G_I (19)



where © is a diagonal SL(2,C )-valued matrix, constant in z and ¢.

Therefore our solution of Painlevé TI1 determines the connexion
O=—Ade— Bdt

up to constant gauge transformations.

Now, the real twistor lines in U are embedded into Z by a family of maps f;.
Equivalently we have a map from C xIP ' into Z given by (¢,z) = fi(z). Restricting,

we get a map
F:Cx(P'—{0,00}) 2> Z~£E

Moreover the restriction of —Adz ~ Bdt to the domain of F is the pullback by F
of the restriction of ® to Z — F.

Locally we can identify & with the restriction of the Maurer-Cartan form to an
open set in SL(2,C ). Under this identification F is a fundamental solution for the

equations

oF
= = —FA (20)
dF
- = —FB. (21)

The general real twistor line in Z is given by
T Flz, )

for some ¢ and some G € SU(2).

We see that & = —A dz — B dt determines F up to premultiplication by a
constant matrix in SL(2,C }. Also, conjugating ® by a constant matrix © as in (19)

just corresponds to postmultiplying F by ©71.

We can view ¢t and G as giving coordinates on the four-manifold M. An element
(£, G) of the complexified tangent space at (1, () may be identified with an infinitesimal

deformation
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aF

T Gt + FG

of the twistor line. Here { € ¢ and G € 1(2,C ).

We can rewrite this deformation using (20),(21) as

~ FBGi + FG. (22)

The conformal structure is defined by declaring the tangent vector to be null if
and only if the projection of the deformation (22) onto the normal bundle of the real
twistor line vanishes for some «. This is equivalent to (22) being tangential to the real

twistor line for some z. Now the tangent vectors to the real twistor line are multiples

of (9F/0z)G = —FAG, so we see that (£, is null if and only if

~ Bi+ GG =-AA (23)
for some z, A.

It is clear that conjugating ® by the constant matrix @ just corresponds to a
reparametrisation of the conformal metric by ¢ — OG, so we have the following

result.
Theorem 3.2

The conformal structure is determined by the solution y of Painlevé 111, where

—_ r - ]
y=—=< and r,w are as in (1). O

4. The diagonal case.

In this section we shall consider the special case when the metric can be put in the

form

g = WA dT? + a*o? + b*or + ol (24)
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where oy,09,03 are invariant one-forms, satisfying the relations doy = o5 A 03 and
cyclically, T' is a coordinate orthogonal to the orbits of SU(2), and a,b,c, k are [unc-
tions of T" only. We refer to this as diagonal Bianchi IX form. We can choose the

coordinate T so that h = abe.

Let us now apply the techniques of the preceding sections to this case. Because
the metric is in the diagonal form (24) we have, for each point m in M, a copy of
the four-group Vy = Z; x Z; which preserves the metric ¢ and fixes m. The non-
identity elements of the group change the signs of two of the one-forms oy, ¢4, 53. This
action lifts to a holomorphic effective action of V, on the twistor space preserving the
real twistor line over m. So we have an injection of V; into the group of Mobius

transformations of this line.

As before, we choose a coordinate & on the twistor line so that D, D intersect the

line at 0, co respectively.

There are two possibilities; either V, fixes the Kahler form or else two of the order
two elements change the sign of the Kahler form and the third order two element fixes
the form. But the first possibility means that the V} action on the twistor line must
fix 0,00, and the only Mobius transformations with square equal to the identity which
fix these two points are £ — = and z — —z. This contradicts the effectiveness of the

action.

So we must have two order two elements interchanging 0 and co , and two elements
fixing these two points. This means that on the twistor line the action of the four-group

must be by the Mobius transformations

T = T
T — -2z
K
T = —
z
K
T = =
T

for some K € C ~.

15



The s1(2, € )-valued one-form ® transforms by the adjoint representation under the
Vi action. So, restricting to a twistor line, we see that the connection form — A(z,t) dx
will be conjugated by an element of SU(2) when we apply the Mobius transformations

above.

This implies that there exist @y, @, such that

A_[ 14_2 -1 A—l -2
61(“40—__7)@1 =A0_T+_,Lz_
and
A_ A_ A A_
Oy (—Ag — it —22)@2'1 = f\"—; + -1 + K 'A_,.
T T T x

We deduce that TrAgA_; and TrA_;A_; are zero. Referring to our expressions
(15)-(18) for the parameters of the Painlevé equation in terms of Ag, A-; and A_,,

we have the following result.
Theorem 4.1

The Painlevé 111 equation arising from a scalar-flat Kahler, not locally hyperkahler
metric in diagonal Bianchi IX form has parameters x; = 0,k = 4, k3 = 4, k4 = —4.

0.

Remark

‘od [T] has found an ansatz to produce scalar-flat Kahler metrics with S action.
A special case of this ansatz gives diagonal Bianchi IX solutions. The differential

equation produced in this case is a rescaled version of the above Painlevé [l equation.
If the metric is of diagonal Bianchi IX form we can find the conformal structure
explicitly in terms of Painlevé transcendents.

As in section 3, we parametrise the manifold underlying our metric by (¢,G) where

G € SU(2) and t is a coordinate transverse to the SU(2) orbits.

We saw that if ({,G) (where t € € and G € s(2,C )) is an element of the

complexified tangent space, then it is null if and only if

16



~Bi+ GG = —AA
for some z, A. The matrices A, B are as in §3.

Using our explicit expressions for A, B from section 3 we find alter some calculation

that the conformal class of the (real) metric is represented by

2 2 (W2 — Lyo2
9 di? %1 T2 1/93
T T T (@
where W = —u and u is as in (1) of section 3. We can relate ¥ to the Painlevé

transcendent by remarking that the equations (12-14) imply that

where y 1s our solution to Painlevé l11.

5. A direct approach.

In the case of diagonal Bianchi IX metrics we can also classify the scalar-flat Kahler

examples by direct methods. These involve a result used in [DS], which we now recall.

Suppose that we have a Kéahler, non-hyperkahler, diagonal Bianchi [X metric ex-

pressed in the form

g = (abe)*dT? + a*o} + b0l + c*ol (25)

where «,b and ¢ are functions of T, and o; are the invariant one-forms satisfying

doy = o9 A 03 etc.

We have an orthonormal coframe for g given by ¢p = abec dt, e; = aoy,e3 = boy, e3 =
co3, and we choose the orientation so that ¥ = egAe; +e;A ez and the forms obtained

from Q% by cyclically permuting (1,2,3) are self-dual.

We make the standard change of variables

17



w, = be

w, = ac
wy = ab
and define functions «, 8, by
w'1 = wytz + aun
!
w, = waw; + Pw
!
Wy = W)W+ yws

Theorem 5.1 [DS]

If the metric ¢ of (25), with our choice of orientation, is Kahler and non-hyperkahler

then one of the following three statements is true.
(iJa=0,=7
(ii) f=0,7y =«
(iii) v =0, = 8.
If one of these statements holds then the metric is Kahler. The Kahler forms are
(i) Q= wow3 dT Aoy +wio3 A o3
(11) @ = waw, dT A gy + w03 A oy

(1i1) Q = wywy dT A 03 + waoy A oy

respectively. O

Hyperkahler structures with an SU(2) action preserving each Kahler form corre-

spond precisely to the case o = =~ =0.

In the last section we considered the action of V; on the IKahler forms. It is clear
from the expressions given in Theorem 5.1 that there will be two elements of Vj fixing

2 and two elements changing the sign of £, in accordance with our previous discussion.

18



Let us now require that the scalar curvature is zero. Using the expressions of
Pedersen-Poon [PP] for the connection forms of the metric we can calculate the Rie-
mann curvature tensor and hence the scalar curvature. We find that the latter quantity

is given by

-1

41w wqtws

(20 4+ 26" + 2 + &® + B2 + 4% — 208 — 267 — 2a7). (26)
Comparing with the expressions of (i),(i1),(iii) in the statement of Theorem 5.1, we

find that the scalar-flat condition forces a, 4,7 to be constant.
We summarise our results as follows.
Theorem 5.2

The general scalar-flat Kahler, non-hyperkahler metric of diagonal Bianchi X form

compatible with our choice of orientation is given (up to permutations of wy,wq,ws)

by

Wt W3 Wy
g = wywaws dT? + ot + os+ ol
(15} Wa W3
where
w; = wqtz + un
!
Wy, = w3 +
" —
Wy = Wy

and ¢ 1s a nonzero constant.

O

Note

Choosing the opposite orientation just corresponds to reversing the sign of T'.

Remark

The metrics of Theorem 5.2 are precisely those arising from the Pedersen-Poon
ansatz [PP]. So we have shown that this ansatz produces all scalar-flat Kahler non-

hyperkahler diagonal Bianchi IX metrics compatible with our choice of orientation.
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As remarked in [PP], the metrics with w, = w, are the U(2)-invariant examples
of LeBrun [L].

Let us compare the metrics of Theorem 5.2 with those which we obtained using the

method of isomonodromic deformations in section 4.

As explained in [PP], if one makes the substitutions

) = eC'TF'l, Wy = 6QTF2, W3 = Fg,

and

( — Q,—leaT

in the system of equations given in Theorem 5.2, then A is constant and ¢ satisfies

d*y 1 [dy ldy 1 273 1)
el [ B b TAN (/A
d¢® g \d¢ ¢d¢ 4 Y

This is the Painlevé 111 equation with parameters

1
K| = K = 0,.‘63 = —KRy4 = ZAQ

Of course, this substitution is only valid where w; # w,, but in fact it follows from
the equations that if w; and w; are not identically equal then they are never equal,
so the above procedure is valid except in the special case w; = w; (when we get the
metrics of [L]).

Now, if we change variables by

_ 122 ;o 4
z = 2AC, }—1+1~,2+ﬂ—2_2’

we arrive at the equation

42y 1 1 dy\* 1dy Y
() () 1 Y

dz? 2Y Y -1 dz z dz z

20




which is Painlevé V with parameters

.‘Gl=f€2=&-4=0,f€_3=1.

(We are lead to this change of variables by a comparison of the calculations of [PP]

and [T]).

In these variables thie metric is

dY [ d2? z .z ay\"'
E(z(y—m*Y(Y—1)"'_Y—1"2 T o

Letting
J - L
— 2 2 — 2
z t* , Y T %,
we find that the metric is
dt 20 —1 20 41 (%)2
and
1., dY TN p-t
==t ) 3D

satisfies Painlevé 11 with parameters.
Ky =0,k =4,63 = 4,5y = —4.

This agrees with the expression for the conformal structure we derived by twistor

methods in section 4.

6. Completeness analysis.

In the case of diagonal Bianchi IX metrics we can classify the complete scalar-flat
Kahler examples. This analysis has already been performed for hyperkahler metrics
[GP],[AH] so, as in the rest of this paper, we exclude this case.

21
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Theorem 5.2 gives us a description of the metrics we are interested in. It is conve-

nient to cast the equations of Theorem 5.2 in terms of «,b,c. They become

, 1
a = §a(b2 + ¢ —a?) (27)
1
b= §b(02 +a* — b?) (28)
, 1
d = §c(a2 + b% = c* 4 2a). (29)

As we are assuming the metric is not hyperkahler we take the constant o to be

nonzero.

Consider a solution to (27-29), analytic on a maximal interval (£,7). It is clear
from the equations that if any one of a,b, ¢ is zero at some point in this open interval,
then it is identically zero. As this will not give a metric with three-dimensional orbits
we can exclude this case, and hence assume that «,b,c are nowhere zero in (€,7).
It follows that the metric will be defined for 7' € (¢,7), so to decide whether it is
complete we need to study the behaviour of @,b,¢ as T approaches £ from above and

7 from below.

As the equations and metric are invariant under sign changes of «,b,c we shall

from now on take a,b,c to be nonnegative on (&,7).
We record some useful facts about the equations (27-29) in the next lemma.

Lemma 6.1

(ab) = abc?

' = bc(az-}-a)

(az_bzr — (az_b2)(c2_a2__52)
a

U E(bz_a‘Z)

1
(abe) = aabc(a2 + b + ¢* + 2a).

)
)
(ac) = ac(b®+a)
)
)

o
o



The critical points of the equations (27-29) are the points (a, b, ¢) satisfying

(i) a=b=0,c=v2a (if « >0).

We see that either a is identically equal to b or else a is never equal to b on (£,7).
In the former case the metrics are those of LeBrun [L]. If a is never equal to b then,
by the symmetry of the equations, we can without loss of generality take a > b.

I'rom the above remarks, we can take a > b. It follows from (27-29) and Lemma
6.1 that b and ab are increasing; moreover § is greater than or equal to 1 and either

identically equal to 1 or else strictly decreasing on (£,7%). In particular, note that if §

tends to 1 as T tends to £, then a is identically equal to b.
We first consider the situation when o is positive.
It follows from Lemma 6.1 that b, ab, ac, bc are increasing on (£,7).

Case 1. Suppose that £ is finite. From Lemma 6.1 we see that abec is increasing

on (£,71) , so tends to a finite limit as 7" — €. Hence the geodesic distance

T
j abe
¢

is finite, and to get a complete metric we would have to add a nut (point orbit of
SU(2)) or bolt (two-dimensional orbit of SU(2)) at 7" = £. In the former case we
would have a,b,¢ =0 at £; in the latter case one of a, b, ¢ would be zero and the other
two would attain nonzero finite limits at €. Both cases would force at least one of

a, b, ¢ to be identically zero, giving a contradiction.
Case 2. Assume instead that the maximal interval is (—o00,7).

As b, ab, be, ac are increasing they tend to finite nonnegative limits Ay, Az, Az, Ay as

T tends to —co.

(i) If the limit A; of b is nonzero then @, ¢ also tend to finite limits, so (a, b, ¢) tends

to a critical point (u, A;,v) with A; positive. By Lemma 6.1 we must have Ay = p

23



a

and v =0, so §{ tends to 1 as 1" tends to —co. From our comments following Lemma
6.1 we deduce that « is identically equal to b. The trajectory is an unstable curve of

the critical point (g, p,0).

(ii) Let us assume instead that A\; = 0, that is, b tends to 0 as T tends to —oo.
Using Lemma 6.1 we now find that (ec)’ tends to A\gja as 7" tends to —oo. However we
know that ac tends to a finite limit as T' tends to —co so, as « is nonzero, it follows
that Ay = 0; that is, ac tends to 0 as T tends to —oo.

If b% + ¢? — a* is negative at some Tp then it follows from the equations that the

2

derivative of this expression is positive at Tp. Hence b*+c®—a? is negative on (—oo, Tp)

and b, ¢ are increasing and a decreasing on this interval. We deduce that

a—=+v,b—=0c—=pasT — —o0

where v is positive and may be oo, while g is nonnegative and finite.

Since ac tends to zero as T' tends to —oco we have ¢ = 0. By considering the limit
of ¢’ as T tends to —oo we find that v = 0o and it readily follows from the equations

that a becomes infinite at a finite value of T' less than Ty, giving a contradiction.

Similar arguments show that if a® + b* — c* + 2« is negative at some point Ty then

¢ becomes infinite at a finite value of T' less than Tj, again giving a contradiction.

We see, therefore, that we need
a? <P+ P <a’+ b 4 2

on (—oo,n).

This implies that «,b,c are increasing so tend to finite limits as 7' tends to —oo.
Therefore («,b,c) tends to a critical point. Moreover, recall that b tends to 0 so this
critical point is either (0,0,0) or (0,0,v2a). If the critical point is (0,0,0) then the
equations (27-29) imply that abc decays exponentially fast as 7" tends to —oco. Hence

the geodesic distance

f_ ::o abe
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to —oo is finite and to obtain a complete metric we must have a nut at 7 = —co.

This means that as T tends to —oo the terms a,b and ¢ all tend to zero like 1 times

the square of the geodesic distance, and it is easy to see that this is inconsistent with

the equations.
If, on the other hand, the critical point is (0,0, v2a) then for T' large and negative
we have

a~mel b~ et e~ V2o

and 1t easily follows that the metric is incomplete.

To recapitulate, if o > 0 there are no complete metrics except those arising from

unstable curves of (g, x,0) for positive g. Such metrics all have a identically equal to
b.

Let us now consider the situation when « is negative.

Case 1. We suppose first that ¢ is finite.

As above, b and ab are increasing so tend to finite limits Ay, Az as T tends to £.

(1) First assume A; > 0. We deduce that « tends to a finite positive limit also, as

T tends to £.

If A2+ a > 0 then ac is increasing so ac, and hence ¢, tend to finite limits at £.

This contradicts the fact that ¢ is a singularity.

If M+« < 0 then ac is decreasing for T near £ so ac tends to a limit , possibly
00, as T tends to £. As £ is a singularity this limit is in fact co and ¢ tends to oo
at €. Therefore abe is increasing near ¢ so tends to a finite limit at €. It follows that

the geodesic distance

T
/ abe
¢

is finite, so the metric is incomplete.

(i1) Suppose on the other hand that A; = 0, that is, b tends to 0 as T' tends to

¢. 1t follows that (ac)’ ~ ace near € and ac tends to a finite limit at €. Hence abc
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tends to 0 at £ and again the geodesic distance is finite. To obtain a complete metric
we must have a nut or bolt at 7" = £, and as in the case of positive a this leads to a

contradiction.

Case 2. Let us consider, therefore, the case when the trajectory is defined on
(—o0,n). .

Again b, ab tend to finite limits Ay, Az as 1" tends to —o0.

(1) First suppose that A; > 0, so that e tends to a finite positive limit.

Arguing as before we see that if A2 + o > 0 then c also tends to a finite limit. So
(a,b,c) tends to a critical point which must be (g, x,0) for some g > 0. As belore

this implies that « is identically equal to b.

If, on the other hand, A} + o < 0 then we find that either (a,b,¢) tends to a
critical point (in which case @ = b) or else ¢ tends to co. The latter case implies that

¢ becomes infinite at a finite value of T less than #, giving a contradiction.

(ii) Suppose instead that A; = 0, so b tends to 0 as T" tends to —oo. As (ac) ~ aca

and o is negative we see that ¢c tends to oo as T tends to —o0.

If a? +b%—¢? < 0 at Ty then its derivative is positive at Ty and so a?+b* —c% < 0
on (—o00,Tp). It follows that a,b are increasing and ¢ is decreasing on (—o0, Tp).

Combined with the fact that ac tends to oo as T tends to —oo, this implies that

a— pu,b—=0,c>ro00asT — —o0
where y is finite. It easily follows that our solution cannot be finite on all of (—o0, 1),
giving a contradiction.

Similarly, we find that if a® — 0% — ¢ + 2 > 0 at any point Tp, then the solution

is not finite on all of (—o0,Tp).

The remaining case to consider is when

A< a4+ bt a? <b 4t =20 (30)



on (—oo,7). Since b tends to 0 and ac tends to co we deduce from these inequalities

that « and ¢ hoth tend to co as T tends to —oc.

It follows that abc is increasing for 7' large and negative so tends to a finite limit
L as T tends to —co. Moreover %)—' tends to co. If L > 0 then (abe) tends to oo
as T tends to —co, which gives a contradiction. So we have

(abe)

abe

abe — 0, — 00 as T'— —o0.

It easily follows by considering log(abc) that abe decays exponentially fast as T'
tends to —oo. Therefore the geodesic distance to T' = —oo is finite, and, since a,c

become infinite at T = —co, the metric is incomplete.
We summarise our results in the final theorem.
Theorem 6.2

The only scalar-flat Kahler, non-hyperkahler, diagonal Bianchi IX metrics which

are complete have ¢ identically equal to b* (and hence have U(2) symmetry). O.

In fact our discussion shows that all the complete metrics arise from the unstable
curves of points (p,p,0) for g > 0. 1t follows [rom (27-29) that in this situation we

have
an~ g, by, o kel talT

as T tends to —oo, for some constant k.

Taking

ku?

v = elw?+a)T
1+«

as a new coordinate, we find that the metric is asymptotically
2 2/ 2 2 2,2 2
dv® + (01+02)+(1+#—2)v03

as v — 0.

This metric can be completed (by adding a bolt) precisely when 1+ % equals in

for some positive integer n.



If we put » = 2v/ab then the metric corresponding to a solution of (27-29) with

e = b becomes

8o 16(s" +2au?)\ ! 44902
(1+—a— (1" + 20 )) (17'2+3141'2 (o?+a§+(1+§g—16(# - 2o )) a§).
"

pd

As explained above, we obtain the complete examples by setting

(a1

n
2
7

B | —

I+

and the resulting metrics are

4t (n—2)  16utn—1)\ 7" 1 4y (n — 2 An —
(1+ #(:lz ) _ 16p (11: )) d7,2+4_7,2(012+0§+(1+ pin —2) 16w 1))0—3

where p € R .

These are the complete U/(2)-invariant metrics found by LeBrun [L].
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