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Abstract.

V'ie study Kähler metrics of zero scalar curvature in foul' real diIllcnsions admitting

an isometric action of SU(2).

o. Introduction.

A procedure for studying SU(2)-invariant anti-self-dual confoflllal structures on four­

manifolds has recently been developed by Hitchin [H2], [H3],[H4]. The idea is to use

thc twistor correspondence of Penrose to asociate to such a four-manifold a cOInplex

three-fold (the twistor space) with a holomorphic SU(2) action, alld to show that the

twistor lines of this space are determined by an ison10noclromic fan1ily of connections

on !p 1. In the generic case considered by Hitchin this family in turn is determined

by a solution to the sixth Painleve eqllation. This is one of a family of second order

ODEs collectively known as the Painleve equatioIls, described for example in [AC]. The

upshot is that the conformal structure on the four-Inanifold is specified by a solution

of Painleve VI.

On another front, Pedersen and Poon [PP] and Tod [T] have produced ansätze

which give SU(2)-invariant scalar-flat Kähler metrics in foul' (real) dimensions. The

ODEs arising fro111 these ansä.tze are equivalent to a special case of the third Painleve

equation. It is known [G] that I< ähler Inetrics of zero scalar curvature (in foul' real

diInensions) are always anti-self-clttal.
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The purpose of this paper is to apply t.he twistor 1l1ethods of Hitchin to attack the

general problern of finding scalar-flat Kähler four-n1anifolds with 5U(2) symmetry,

and to interpret the results of [PP] and [T] in this framework. In the special case of

diagonal Bianchi IX metrics we are also able to tackle this problen1 by direct methods.

We shall prirnarily work locally, although in the diagonal case we detefllline which o[

our metrics can be completed (even these conlplete examplcs are not compact). vVe

assurne throughout that the generic orbit of the 5U(2) action is three-dimensional.

Our techniques are not weU suited to the case when the Inetrics are Ricci-flat. For

Kähler metries in four real dinlensions this condition is equivalent to the llletric being

locally hyperkähler. However there is no loss in excluding this case because 5U(2)­

invariant hyperkähler four-metrics have been cOllIpletely classified [AH], [GP].

The layout of the paper is a.s folIows. "Section 1 deseribes the Penrose twistor con­

struetion anel its application by Hitehin to SU(2)-invrtriant conformal struetures. In

section 2 we explain how the extra data of a Kähler structure on the four-Inanifold

affeets the twistor spaee, and in section 3 we show how this leads to an isornonodrOlny

problem involving Painleve llI. In section 4 we consider the special case of diagonal

Bianehi IX Inetrics, and in 5 we COInpare these results with those obtained by di­

reet calculations. Section 6 contains an analysis of which of the diagonal metries are

cOInplete.
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1. Twistor spaces.

Let 1\1 be an oriented Rielnannian four-Inanifold with metric 9 and let A~ denote

the bundle of selfdual 2-forn1s. We define Z to be the sphere bundle of i\~ and let 17"

denote thc projection from Z to 111. 'vVe can identify thc fibre of 1T over a point 1'n

of lvI with the set of complex structllres on Tm111 compatible with the metric 9 and

with the orientation.

Using the Levi-Civita connection we can split the tangent space to Z at a point

z into horizontal ancl vertical spaces Hand \I, where 11 can bc identified with the

tangent space to A1 at 17"(z) and \I 1S tangential to thc two-sphere fibre of 7l" over 17"(z).

Now z represents a complex structure on Trr (z)111 so incltlces a cOlnplex structure J1

on lf. Also we have the standard c01nplex strllcture on 8 2 which defines a complex

structure J2 on 11. 'vVe can now define an almost complex structurc J on Z by setting

J = J1 EB J2 •

The fundamental theoren1 of Penrose [Pe], [AHS] asscrts that this ahnost complex

stl'ucture is integrable if anel only if thc lnetric on M is anti-self-dual. In this situation,

Z is callecl the twistOT space of 1\1.

There is a complex four-paralneter falllily of projective lines in Z, each with normal

bundle isolnorphic to 0 (l)EB 0 (1); these lines are called the twistOT fines. 1\1101'eover

Z carries a free antiholomorphic involution T, called the real stTU etv.. Te, anel there is

areal four-parameter family of twistor lines, called the real twistor lines, which are

prcserved by T. In fact the l'cstrictioll of T to cach real twistot' ]ine is thc antipodal

map. The real twistor lines are precisely the fibl'es of thc projection 17" froll1 Z to kf.

The above construction depends only on the confornla.l class of the metric 9 on !v!.

Moreover, the complex Inanifold Z, its twistor lines, and the rea.l structure together

determine this conformal dass.

Hitchin [H2], [H3] ,[H4] studies thc case when there is an iS0I11etric orientation­

preserving SU(2) action on kl. This lifts to a holomorphic SU(2) action on Z with

associated vector fields X 1,X2 ,.)(3 satisfying thc relations [Xt,X2 ] = -X3 etc. These
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vector fields generate a local 5 L(2, a:; ) action on the twistor space. Now l we have a

holoITIorphic section S of fez I , the anticanonieal bundle of Z, defined by s = Xl 1\

X 2 1\ X 3 ASSlllTIing that s is not identically zero, it will vanish precisely on some

antieanonical divisor E on Z. We have the exaet sequence

o--+ TlP I --+ T Z Irr 1 --+ N --+ 0

where Ar is the normal bundle of a twistor line P land T1P I s=: CJ (2). Takillg de­

tenninants, anel llsing the deseription of thc nonnal bllndlc given ahove, we sce that

KZI l[p I ~ 0 (4) so each twistor line is either inclllded in E 01' mcets E at foul' points,

counted with ITIultiplicity.

The holonlorphic action of 5U(2) on thc twistot' space defines a hOlnOlTIOrphism X

of vector bundles from the trivial bundlc Z x ,9((2, <C ) to the tangent bundle of Z. On

Z - E the vector fields Xl, X 2 , X 3 are pointwisc linearly independent over ce anel X

is an iSOITIOrphislll. Thc inverse of X nlay be viewed as an 5((2, <C )-valuecl Olle fornl

<I> on Z - E. Ir we use thc loeal 5 L(2, <C ) action to identify a neighbourhood of

a point in Z - E with an open set in 5L(2, <C )/f for some discretc group r, then

on this neighbourhood <I> pulls back to thc Maurcr-Cartan fornl under the projeetion

5L(2, <C ) f-t 5L(2, <C )/f.

'vVe can regard <I> as a Bat Ineromorphic connection on Z, holomorphic on Z - E

anel with poles on E. Restricting to twistor lines not eontained in E gives us a falnily

of flat connections A(t), each 11lcromorphie on [p 1 with poles at foul' points (with

multiplicity). Here t is a coorelinate on a curve C transverse to the 5U(2) orbits in

1\1, anel wc are considering thc real twistor lines OVCl' points of C. In thc case considered

by Hitchin, corresponding to a gcneric anti-self-dual conforn1al structul'e, we da in fact

havc foul' simple poles for generic t. ~1areover, because each such connection is a

restriction of our -Aat connection <I> on Z, we see that the holonolny af the connections

around the poles stays constant a.s we vary the connection within the family.

'vVe can view the fanlily of connections as defining a family of ordinary differential

equations with foul' regular singularities on lP 1. The above statelnent about the holon­

omy renlaining canstant becOines, in this interpretation, the statelnent that this family
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of differential equations is isomonodronlic. This condition was analysed by Painleve

alld his sehool [AC] anel shown to be equivalent Lo the eonclition that a eertain fune­

tion defined in tenns of the eoefficients of the conneetion fonn A(t) should satisfy the

sixth Painleve equation. Here t is the dependent variable of this differential equation.

Conversely, given a solution of a Painleve VI cqua,tion we ean reeover the isomon­

odromie family of connections. This falnily in turn detern1ines the restrietion of the

twistor fines to the open set Z - E of the twistor spaee Z, and this is enough to

determine the eonformal structure of 1V[.

To sUlnn1arise, the eonfonnal structurc on Jlt[ 1S detennined by the solution of

Painleve VI.

2. The anticanonical divisor.

Let us oow consider the case when At admits a scalar-flat metric 9 allcI a cOInplex

structure I with respect to whieh 9 is Kähler. As noted earlier, 9 must now be anti­

selfeItlai so wc can associate to AI! a twistor space. The twistor spaces of scalar-fiat

K ähler surfaces have been studied by Pontecorvo [Po].

Now the cornplex structure / on 1\1 defines aglobai section of the twistor fibration,

alld the ilnage of this section is a divisor D on Z interseeting eaeh real twistor line

onee. Sinülarly the reverse cOlnplex structure - / gives another divisor lJ intersecting

each real twistor line at one point, anel the two divisors are intcrchanged by the real

structure T of Z. In thc case whcn 9 is Kähler with rcspect to I Pontecorvo shows

that thc divisor dass of D + tJ is given by

[D + D] = /("2 1
/
2

In fact, he explicitly constructs a holomorphic section of /(ZI/2 vanishing precisely

on D, lJ. vVe BOW relate the divisor E to Pontecorvo's divisor. As lnentioned in thc

introduction, we are assuming throughout this paper that the generic 5U(2) orbit on

the four-lnanifold is three-dill1ensional. vVe are interested principally in the loeal fonn
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of the metric, so in what follows we assumc, by restricting to a.n open set if necessary,

that the orbits of SU(2) on NI are all three-dinlcnsional.

Lemn1a 2.1

Let NI be a four-manifold with an SU(2)-invariant scalar-fiat K ähler rnetric g,

not locally hyperkähler, where SU(2) acts with three-diJnensional orbits. Then thc

section S of 1eil is not identically zero.

Proof

The vector fields Xl, ~\'2, X 3 on Z span an integrable distribution. Ir s is iden­

tically zero then these vector fields are every,,·,rhere linearly dependent so the rank of

the distribution is of cornplex dimension two 01' less. As we have assumed that the

SU(2) orbits on NI all have real dimension equal to three we see that the rank of thc

distribution is in fact precisely equaJ to two. For each point z in thc twistor space we

therefore have a cOillplex surface L: passing through that point, such that Xl, x 2 , X 3

are tangential to L:. These sllrfaces are j list the orbi ts of the local S L(2, [; ) action

on Z generated by the vector ficlds Xi.

The nlembers of this falnily of surfaees define (loeally) a. falnily of seetions of thc

twistor fibration, which induces a Ioeal hyperhermitian structure on !vI. That is,

we have cornplex struetures 11, [2,13 Illtrltiplying like the quaternions, such that 9 is

herrnitian with respect to each of 111 [2,13 ; these generate a. whole two-sphere of locaJ

hermitian struetures [a = Lai/i wherc a = (al, (l2, a3) is a unit veetor in IR 3.

\

The assumption that the I1letric is not hyperkähler inlplies that the space of eo-

variant constant two-forrns will have dimension lcss than three. Howcver this space is

areal representation of thc isometry group SU(2) and hence will be aeted on trivially

by this group. Hence the K ähler fOrIll n and c0I11plex structure [ on lV[ are preserved

by the SU(2) action. It follows that the lift to Z of the SU(2) action preserves D 1

and so thc veetor fields generated by this action are tangential to D. \Ve deduce that

D is a union of lnembers of thc family of surfaces discussed above. lt follows that one

of thc loeal hyperhennitian structurcs may be identified with J.

Now there is a unique torsion-free connection, the Obata connection \7 , such that
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for each a E 52.

As explained in [PS] , [PPS] there is aI-form w such that

\lg=w0g

anel moreover

where Da is the two-form defineel by g anel Ia.

However we have seen that one of the hermitian structures (JA say) equals J and

so is K ähler. Therefore dnA = 0 anel as nA is nondegenerate this lneans that w lS

zero. Hence dn a = 0 for all a anel all the hennitian structures are Kähler.

The Inetric on J\![ is therefore locally hyperk ähler and we have the required con­

tracliction. 0

Theorem 2.2

Let A1 be a four-manifold with an SU(2)-invariant scalar-flat Kähler Inetric, which

is not locally hyperkähler; suppose also that 5U(2) acts with three-dimensional orbits.

Then the divisor E where s vanishes is equal to 2D + 2D.

Proof

Note first that because s is invariant uneler thc 5U(2) action on Z, and because

thc 5U(2) orbits on 1\1 are three-elinlensional, if s vanishes on areal twistor line then

it vanishes everywhere. lt follows [rom Lemlna 2.1 that this contradicts the hypotheses

of the theorem, so we deeluce that E contai!}s no real twistor Ene anc! hence E meets

each real twistor line at foul' points counted with multiplicity.

As shown in Lernlna, 2.1, the 5U(2) action on Z preserves the divisor D, anel so

the holoI110rphic vector fields ~\'l, .\'2, ..\'3 are tangential to D, anel heuce are linearly
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dependent over [; . It follows that our seetion s of ICzl vanishcs on D (anel, using

a sinlilar argument, on f)). Note that this argtunent shows that s vanishes on any

SU(2)-invariant divisor on Z.

vVe may now write the antieanonieal divisor E where s vanishes as D + j) + F for

some divisor F. If PI denotes Pontecorvo's hololl1orphie section of I<i l
/

2 vanishing

on D, D, then P2 = siPI is a holoIl1orphie section of ICzI
/

2 vanishing on F, so

[F] = ICZ1
/

2
• As E, D, D are 5'U(2)-invariant we see that F is also SU(2)-invariant.

Assurne now that F =f D + fj. Fl'om above we then have distinct ho]ornorphie

sections PI, P2 of !(i l
/

2
with divisors D + D anel F respectively. Now as D, D are

SU(2)-invariant , the ilnage of PI under the 5U(2) action has the salne divisor as PI,

so must be of the form p~ = JPI where J is a nowhere zero holol11orphic function on Z.

However any hololl1orphic function on a twistor space is constant [Hl], so P~ 111Ust be a

constant I11ultiple of PI' Hence the one-diI11ensional subspace of H O
( Z, !(i 1/2) spanned

by PI is a representation of 5'U(2) and so is acted on trivially by SU(2). In particular

PI is SU(2)-invariant. Thc sanle argulllent shows that P2 is also SU(2)-invariant.

Consider now the two-ditnensional space of S'U(2)-invariant sections of !(i l
/
2

spanned by PI, P2. As above~ two such sectiol1s define the sanle divisor if and only

if thcy agree up to a constaut, so we obtain a pencil of distinct SU(2)-invaria,nt divi­

sors in the linear systeIll I 1'(zl/2 I. But s must vanish on every nlelnber of this pencil,

so will vanish on sOIne twistor line at l110re than foul' points (counted with I11ultiplic­

ity), thus contradicting the hypotheses of thc theorem. It follows that our assull1ption

that F anel D + lJ are unequal is false, and the theoreln is proved. 0

3. The isomonodromic family.

[n the light of Theorenl 2.2, we know that our flat 11leromorphic connection <I> has

double poles on D, D and is hololllorphic elsewhere on Z. We shall next show that

restriction to the real twistor lines defines an iSOl110nodronl ie faIl1i Iy of connections,

leading to the appearance of the third Painleve equation.
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Let C be a curve in At! transverse to the 5U(2) orbits, anel consider the region

U of the twistor space projecting onto C. Let t be a coordinate along C anel x a

coordinate on the real twistor lines such that D, fj meet each twistor line at 0,00

respecti vely.

The restriction of our connection form to U is given in these coordinates by

-A dx - B elt

where A, Bare .6((2, Q; )-valued functions of x, I.

From our COIlllnents above about the poles of <I> we call write A, ß as

A A
A_I A_2

= 0+-+-
X x 2

and

ß B 2 ß B B_ 1 B_2
= 2 X + IX + 0+-- + -2-

X :r

wherc Ai, Bi are functions of t taking values in g((2, Q; ).

"'vVe shall assurne that there is a range of t where the eigenvalucs of Aa and A_2

are Ilowhere zero, allel restrict ourselves to this range in the following calculations.

By rescaling x we can ta.ke Aa anel A_2 to have thc sanle eigcnvalues anel hence be

canjugate. If thc eigcnvalues of Aa, A_2 are constant in t it is easy to show, using the

flatness of - A dx - B dt, that wc can gauge B to be zero and A to be constant in t.

Excluding this trivial case, and restricting the range of t if necessary, we can choase

t so that the eigenvalues of Ao anel A_2 are tt, -tt. Moreover, by a choice of gauge

we can take A a to bc diagonal.

We write Aa, A_ 1, A_2 as

(

~'l
Aa =

o

where

(

]J CI) _ (u v),A_2 - t
l' -p W -'/l

9
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1
7.l

2 +vw= -.
4

(2)

'vVe can perform a gauge transfonnation by a diagonal lnatrix in S L(2, <C ) (de­

pCIHling ont) to ensurc that

(3)

for SOllle functions Ö, ( of t.

vVe say that A, B are in canonical fonn if (1 )-(3) are satisfied.

The flatness condition for the connection is

DA aB
-8 --8 +[A,B]=O.

l x

This is the isornonodrorny condition for the ordinary differential cquation

d'3 _ (A A_ 1 A_2 ) '='-- 0+-+- .......
dx x x 2

(4)

and it is weIl known that this condition is cquivalent to the Painieve IrI equation. We

now give details or an arglunent to show this equivalence.

Equation (4) is equivalent to the relations

I

[A_ 2 ,8_2]

28_2 + [A_ 2 , B-d + [A_ 1, B_2 ]

d~;2 + B_ I + [Ao, B_2]+ [A_
"

fLd + [A_ 2, Bo]

dA_ 1
-l- + [A o, B-d + [A_ h Bo] + [A_ 2 , Bd( t

dA o
---;;;: - B 1 + [Ao, Bo]+ [A_ 1 , BIl + [A_ 2 , B2]

-282 + [A o1 Btl + [A- 11 B2]

[A o,B2]

Let us now analyse these equatioDs.

10

o

o

o

o

o

o

o.

(5)

(6)

(7)

(8)

(9)

(10)

(11)



The first and last equations in1ply that B_2 = 1/JA_2 anel 8 2 = cf>Ao , where cf> anel

1/J are sealar-valued fUlletiolls of t. Multiplying (10) by Au alld (6) by A_2 anel taking

the traee implies that cjJ a.nel 1/J (and henee 8 2 ancl 8_2 ) are both zero.

Equations (6) and (10) now show tha.t B_ l = ttA_ 2 anel 131 = AAu, where A,lt are

sealar-valued funetions of t.

'vVe obtain the equations

(12)

(13)

(14)

The last equation irnplies that A =l-1 (so BI = t- I Au ) and that

Observe from (12) that

But we know that TrA~2 = ~t2 1 so Jl = _t- 1 anel 13_ 1 = -t- I A_2 .

The flatness equation (4) now bceomes

dQ

dt
dR
l­

dt

= 2l[P, R]

2[Fl, Q]

where P = _t- 1AOl Q = -A_ t anel R = t- 1A_2 •

This system of equations (together with the condition elf: = 0 whieh is automatie

in our ease) is a recltletioll of the selr-dual Yang-Mills equations allel has been studied

by Mason anel 'vVoodhousc [MW]. They show that it is cquivalent (if ncithcr r nor w

is ielentieally zero) to thc third Painleve equation
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where y is dcfineel by y = - ~t •

The constant paranleters "'i (i = 1,2,3,4) are givcn by

"'I 8 Tr(A_ 1 A_2 /t) (15)

"'2 4 - 8 Tl' (A0 A_ I / l ) (16)

"'3 4 (17)

"'4 -4. (18)

Any Painleve III equation with "'3 and /{,4 nonzero Inay be brought to this form by

scaling y anel L

lf r or 10 is identically zero we can tlse the substitution y = -~ to obtain Painleve

III, unlcss q 01' V is identically zero, when the flatness equation (4) beC0111eS trivial.

In the latter case both 1',10, q and v are all in fact identically zero.

The next theorem sllInmarises our findings.

Theorem 3.1

Let l\!r bc a scalar-flat I< äJl1er, not locaJly hyperk ä,ll1er, tnanifold of real dimension

four, adll1itting an isollletric action of 5U(2) with thrce-dill1ensional orbits. Suppose

that thc matrices Ao, A_2 of (1) have nOllzero, nOllconstant eigenvalues, anel that

r, 10, q anel v are not all identically zero. Then we have an iSOI110110drOll1ic clefofIl1ation

problenl leading to the Painleve TlT equation. D.

Finally, it is straightforward to show that Inatrices Ai, Bi (i = 0,1,2; j = -:2, -1,0,1,2)

satisfying equations (.5-11) and such that A, B are in canonical fornl are detennined

by y = - ~t up to a gauge transfornlation.

B· -t 8B·8- 1
'J J

12
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where e is 30 diagonal S L(2, (C )-valucd matrix, constant in x anel t.

Therefore our solution of Painleve In eleternlines thc connexion

~ = -A dx - B eit

up to constant gauge transfornlations.

Now, the real twistor lines in U a.re clnbeclded into Z by a family of maps ft.

Equivalently we have a map fronl C xlP 1 into Z given by (t,x) t-+ ft(x). Restricting,

we get a map

F: C X (lP 1 - {O, oo}) -+ Z - E

Moreover the restriction of -Adx - Bdt to the domain of :F is the pullback by :F

of the restrietion of ~ to Z - E.

Locally we can identify <l> with thc restrictioll of the IVlaurer-Cartan fonn to an

opcn set in S' L(2, (C ). Undet' this idcntification :F is a fundanlcntal solution for the

equations

fJ:F = -:FA
8x

0:; = -F8.

The general real twistor line in Z is given by

x f-t :F(x, t)G

for somet and sonle G E SU(2).

(20)

(21 )

vVe see that <f) = -A dx - B eit determines :F up to preITIultiplication by a

constant Inatrix in S L(2, (C ). Also, conjugating <I> by a consta,nt matrix 8 as in (19)

just corresponds to postlTIttitiplying :F by 8-1
.

"Ve can view t anel G as giving coordinates on thc four-nlanifold M. An element

(i, C/) of the complexified tangent space at (1" Cl) l11ay be idenLified with an infinitesimal

deformation

13



8F. .
-Gt +FG
8t

of the twistor lille. Here i E <C and G E .51(2, <C ).

"Ve can rewrite this deformation using (20) ,(21) as

- FBe;i +FÖ. (22)

The confornlal structurc is elefined by eleclal'ing the tangent vector to be null if

and only if the projection of the c1efonnation (22) outo the nornlal bUlldle of the real

twistor linc vanishes for SOl1le x. This is equivalent to (22) being tangential to the real

twistor line for SOille x. Now the tangent vectors to the real twistor line are multiples

of (8F / 8x)G = -FAG, so we see that (t, C/) is null ir anel only if

for SOlue x, A.

- Bi + (;G- 1 = -AA (23)

It is deal' that conjugating <I> by the constaut matrix G just corresponds to a

reparametrisation of the confornlal 1netric by G l-+ Ge, so \\TC havc tbe following

result.

Theorem 3.2

The confofInal structure is detefIl1ined by the solution y of Painleve III, where

y = -~t and 7',10 are as in (1).0

4. The diagonal case.

In this section we shall consider the special case when the Inetric can be put in the

form

(24)

1\
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where al, a2, a3 are invariant one-forms, satisfying thc relations dal = 0"2 i\ 0"3 and

eyc1ieally, T is a eoordinate orthogonal to the orbits of SU(2), anel a, b, c, h are func­

tions of T only. We refcr to this as e1iagonal Bianehi IX fonn. We ean ehoosc the

coordinate T so that h = abc.

Let us now apply thc techniques of the preccding sections to this case. Because

the metric is in the diagonal form (24) we have, for each point 711 in 111, a copy of

the four-group VI ~ Z2 X Z2 which preserves the 11letric 9 anel fixes m. The non­

identity elements of the group change thc signs of two of the one-fonns al, a2, a3' This

action lifts to a hololll0rphic cffective action of V4 on thc twistor space prescrving the

real twistor line over n1.. So wc have an injection of \"4 into the group of Möbius

transfonnations of this lille.

As before, we choose a coordinate x on the twistot' line so that D, D intersect the

line at 0,00 respectively.

There are two possibilities; either \14 fixes the K ähler forn1 01' else two of the order

two elements change thc sign of thc Kähler form anel the third order two elelnent fixes

the fonTI. But the first possibility Ineans that thc \J4 action on thc twistor line 11lllst

fix 0,00, anel the only Möbius transforll1ations with square equal to the identity which

fix these two points are x --+ x anel x --+ -x. This contradicts thc effcctivencss of the

action.

So we 11lust have two order two elements interchanging °anel 00 , anel two elelnents

fixing these two points. This Ineans that on the twistor line the action of the four-group

must be by the f\1öbius transfornlations

x --+ x

x --+ -x

J{
x --+

x
[(

x --+
x

for some [{ E Q; •.
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The 8((2, <C )-valueel one-fornl <I> transforms by the adjoint representation under the

V4 action. So, restricting to a. twistor line, we sec that the connection fonll - A (x, t) dx

will be conjugated by an elenlent of 5'U(2) when we apply the Möbius transfonnations

above.

This ilnplies that there cxist 8 1,82 such that

e (A A-l A_2 )8- 1 _ A A_ t A_2
1-0------ 1 - 0---+--

X x2 X x2

anel

vVe deduce that Tr AoA_ 1 and Tl' A_ 1 A_2 are zero. Referring Lo our expressions

(15)-(18) for the paralneters of the Painlcve equation in terms of Ao, A_ I and A_2 ,

we have the following result.

Theorenl 4.1

The Painleve TU equation arising from a scalal'-flat Kähler, not 10ca11.1' hyperkähler

lnetric in diagonal Bianchi IX fOrIn has parameters ti:l = 0, ti:2 = 4, ti:3 = 4, tc4 = -4.

D.

Renlark

Tod [T] has found an ansatz to produce scalar-flat Kähler 111etrics with Si action.

A special case of this ansatz gives diagonal Bianchi IX soluLions. The differential

equation produced in this case is a rescaled version of the above Painleve [TI equation.

If the metric is of diagonal Bianchi IX fonn we can find the confonnal structure

explicitly in terms of Painleve transcendents.

As in section 3, we paralnetrise the lnanifold underlying our nletric by (t, G) whel'e

G E SU(2) and t is a coordinate transverse to the SU(2) orbits.

vVe saw that if (t, G) (whel'c t E <C anel Ö E .61(2, <C )) IS an elelnent of the

complexified tangent space, then it is null if anel only if

16



-Bi +ÖC- I = -AA

for son1e x, 1\. The 1l1atriees A, Bare as in §3.

Using our explieit expressions for A, B frolll seetion 3 we find after some ealculation

that the eonfol'Inal dass of the (real) metrie is represented by

where \fJ = -1l anel 1l is as in (1) of scction 3. vVe ean reiate W to the Painleve

transeendent by remarking that thc equations (12-14) ilnply thai;

where y is our solution to Painleve UI.

5. A direct approach.

In the ease of diagonal Bianehi IX lnetries wc ean also classify the sea.laf-ftat K ähler

exalnples by direct methods. These involve a result usecl in [DS], whieh we now recall.

Suppose that we have a Kähler, llon-hyperk ä,hler, diagonal Bianchi IX lnetric ex­

pressed in the fornl

(25)

where Cl, band c are functions of T, and O'i are thc invariant One-rOfmS satisfying

dO'l = 0'2 /\ 0'3 etc.

We have an orthonormal coframe for 9 given by Co = abc dt, el = aal, e2 = ba2, e3 =

C0"3, anel we ehoose the orientation so that [2+ = eo /\ el + e2 /\ e3 anel thc forIlls obtained

froI11 [2+ by cyclically pern1tlting (1,2,3) are seIf-dual.

We make thc standard change of variables

17



w\ = be

'W3 = ab

and elefine functions 0', ß" by

TheorelTI 5.1 [DS]

If the metric 9 of (25), with our choice of orientation, is K ähler anel non-hyperk ähler

then one of the following three statements is true.

(i) Ci = 0, ß = ,

(ii) ß = 0" = Ci

(iii) ,= 0,0' = ß.

If one of thcse statenlcnts holds then thc 111ctric is Kähler. Thc J( ähler rorms are

(i) n = 'W21V3 dT 1\ aj +W] a2 1\ a3

(ii) n = W3'WI dT 1\ az + 'WZa3 1\ al

(iii) n = 'WI'WZ dT 1\ a3 + 'W3a] 1\ az

respectively. 0

Hyperkählel' structurcs with an SU(2) action preserving each Kähler form corre­

spond precisely to the case 0' = ß = , = 0.

In the last section we considercd the action of \~1 on the Kähler fonns. lt is deal'

froIn the expressions given in Theorenl 5.1 that there will be two elenlents of \14 fixing

n anel two eleInents changing the sign of n, in accol'dance with our previous eliscussion.

18



Let us now reqllire that the scalar Cllrvatllre is zero. Using the expressions of

Peclersen-Poan [PP] for the connection fonns of the Inetric we can calculate the Rie­

11lann curvature tensor ancl hence the scalar curvature. "Ve find that the latter quantity

is given by

-1
4 (20" + 2ß' + 2,' + 0'2 + ß2 +,2 - 20ß - 2ß, - 2ü,). (26)

'Wt'W2'W3

Comparing with thc expressions of (i),(ii),(iii) in the statement of Theorern 5.1, we

find that the scalar-flat candition forces 0', ß" to bc constant.

vVe SUillmarise our results as folIows.

Theorem 5.2

The general scalar-flat K ä,hler, non-hyperkähler metric of diagonal Bianchi IX form

cOlnpati ble with our choice of orientation is given (up to pernnttations of 'WI, W2, W3)

by

where

and a is a nOllzero constant.

o

Note

Choosing the opposite orientation just corresponds to reversing the sign of T.

Renlark

The metries of Theorem 5.2 are precisely those ansIng from the Pcdersen-Poon

ansatz [PP]. So we have shown that this ansatz produces all scalar-flat Kähler nOll­

hyperkähler diagonal Bianchi IX 111etrics cOlnpatible with our choice of orientation.
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As remarked in [PP]' the metrics with WI = W2 are the U(2)-invariant examples

of LeBrun [L].

Let us COInpare the Inetrics of Theorem 5.2 with those which we obtained using the

method of isomonodron1ic defonnations in section 4.

As explained in [PP], if one makes the substitutions

aTF'Wl = e },

6 1
F2 = -(y - -:-)

2 y

anel

in the systen1 of equations given in TheoreIn 5.2, then 6 is constant and y satisfies

This is the Painleve III equation with para.n1eters

1 2
ti: 1 = ti:2 = 0, 1i3 = -1\'4 = -6 .

4

Of course, this substitution is only valid whel'e Wl #- W2, hut in fact it follows from

the equations that if WI anel W2 are not ielentically cqual thCIl they arc nevcr equal,

so the above procedure is valid cxcept in tbe special case 'Wl =W2 (when we get the

metrics of [LJ).

Now, if we change variables by

4
Y = 1 + -2 + --2 2 'y y -

we arrive at the equation

d
2y = (_1 + _1_) (dy)2 _ ~ dY + Y,

dZ 2 2Y Y - 1 dz z dz z

20



which is Painleve V with pa.ra.meters

(v\Te are lead to this change of variables by a cOlnparison of the ca.lculations of [PP]

and [TJ).

In these variables the 111etric is

Letting

Z - ·)t2
-..., ,

we find that the tl1etric is

\l1 - 1.
Y

_ 2
-~,

'cl' +-2

and

satisfies Painlevc III with paraIneters.

T'his agrees with the expression for the conforn1al structure we dcrived by twistor

Inethods in section 4.

6. Completeness analysis.

In the case of diagonal Bianchi IX 111etrics we can classify the cOIl1plete scalar-flat

K ähler exalnples. This analysis has alrcady been perfol'Il1ed for hyperk ähler lnetrics

[GP],[AH] so, as in thc rest of this paper, wc cxcludc this casc.
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Theorem 5.2 gives llS a descl'iption of the Inetrics we are interested in. lt is conve­

nient to cast the equations of TheoreIn .5.2 in terms of (l, b, c. They become

(27)

(28)

(29)

As we are assllming thc Inetric is not hypcrkälder we take thc constant 0: to be

nonzero.

Consider a solution to (27-29), analytic Oll a InaxiInal interval (e, 11). It is dear

from the equations that if any Olle of a, b, c is zero at SOTlle point in this open interval,

thcn it is identically zero. As this will not give a metric with three-dinlensional orbits

we can exclude this case, and hence assunle that (L, b, c are nowhere zero in (e, 1]).

lt follows that the metric will be elefined for T E (e, 11), so to decide whether it is

cOInplete we need to stlldy the behaviour of a, b, casT approaches efrom a.bove anel

1] from below.

As the equations anel 1l1etric are invariant uneler sign changes of (1" b, e we shall

frolll now on take (l, b, e to be nonnegativc on (~, 1]).

vVe recorcl SOIlle usefnl facts about thc equations (27-29) in thc next lemlna.

Len1n1a 6.1

(ab)'

(be)' =

(ac)'

(a2 _ b2 )'

(~ )'
b

(abc )'

be(a2 +a)

ae(b2 +a)

(a 2 _ b2 )(e2 _ a2 _ b2 )

a-(b2 _ ( 2 )
b
1
-abc(a2 + b2 + c2 + 20:).
2
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The critical points of the equations (27-29) are the points (a, b, c) satisfying

(i) a = b, c = 0 01'

(ii) a = b= Ü,e = y'2""Q (ir () > 0).

o

'rVe see that either a is identically equal to b 01' else a is never equal to b on (~, 1]) .

In the fonner case the metl'ics are those of LeBrun [L]. If a is ncver equa.l to b then,

by the syn1metry of the equations, we can without loss of generality take a > b.

From the above remarks, we can take a ~ b. It follows frolll (27-29) anel Lernma

6.1 that band .ab are incrcasing; morcover I is greater tha,n 01' equal to 1 and either

identically equaJ to 1 01' else stri ctly decrcasing on (~, 1]). In part icular, note that if ~

tends to 1 as T tends to ~, then a is identically equal to b.

We first consider the situation when Q:' is positive.

It follows frOln Lemma, 6.1 that b, ab, ac, bc are increasing on (~, 1]).

Case 1. Suppose that ~ is finite. FrOll1 Lerl1rna 6.1 wc see that abc is increasing

on (~, 1]) , so tends to a finite liIl1it as T -+ ~. I-lcnce the geodesie distance

JeT abc

is finite, and to get a complete rnetric we woulel have to add a nut (point orbit of

SU(2)) 01' bolt (two-dimcnsional orbit of SU(2)) at T = ~. In thc former case we

would have a, b, c = Ü at ~; in thc lattcr casc olle of a, b, c would be zero anel the other

two would attain nonzero finite limits at ~. Both cases would force at least one of

CL, b, c to be identically zero, giving a contradiction.

Case 2. Assurne instead that the rnaxilnal interval is (-00,1]).

As b, ab, be, ac are increasing they tend to finite nonnegative lirnits )'1, A2, A3, A4 as

T tends to -00.

(i) Ifthe lirnit Al of b is nonzero thcn a, e also tend ta finite lin1its, so (a, b, c) tends

to a criticaJ point (tl, Al, lJ) with Al positive. By LeITIlna 6.1 we mnst have Ar = p
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and v = 0, so ~ tends to 1 as T tends to -00. FrOl1l our comnlents following Lemma

6.1 we deduce that a is identically equal to b. The trajectory is an unstable curve of

the critical point (,t, f.l, 0) .

(ii) Let us assume instead that )'1 = 0, that is, b tends to 0 as T tends to -00.

Using Lenlma 6.1 we now find that (ac)' tends to --'40' as 'T tenels to -00. However we

know that ac tends to a finite limit as T tends to -00 so, as 0' is nonzero, it follows

that --'4 = 0; that is, ac tends to 0 as T tcnds to -00.

lf b2 + c2
- a2 is negative at SOlllC Ta then it follows [rom the equations that the

derivative of this expression is positive at Ta. Hence b2+C2 -a2 is negative on (-00, Ta)

anel b, c are increasing anel a elecreasing on this interval. vVe deduce that

a -+ 1/, b -+ 0, c -+ It as T -+ - 00

where v is positive and l11ay be 00, while Il is nonnegative anel finite.

Since ac tends to zero as T tends to -00 ,ve havc It = O. By considering the limit

of a' as T tends to -00 wc find that v = 00 anel it reaclily follows froln the equations

that a becomes infinite at a fini te vallle of T Icss than Ta, giving a contradiction.

Sinlilar arguments show that if a2 +b2
- c2 + 20' is negative at SOIlle point Ta then

c becomes infinite at a. finite value of T less than Ta, again giving a contradiction.

'rVe see, therefore, that we need

on (-00,1}).

This ilnplies that a, b, c are increasing so tcnd to finite Jimits as T tenels to -00.

Therefore (a, b, c) tends to a criticaJ point. 110reove1', recal1 tha.t b tends to 0 so this

critical point is eithel' (0,0,0) 01' (0,0, J2a). ]f the critical point is (0,0,0) then the

equations (27-29) iInply that abc decays exponentially [ast as T tends to -00. Hence

the geodesie distance

L: abc
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to -00 is finite anel to obtain 30 complete mctrie we Illust have 30 nut at T = -00.

This lneans that as T tends to -00 the ternlS (l, band C 3011 tend to zero like ~ tinles

the square of the geodesic distanee, and it is easy to see that this is ineonsistent with

the equations.

If, on the other hand, the criticaJ point is (0,0, J2;) then for T large and negative

we have

"'" T eoT b "'" oT "'" ~2a _ 1 ,- T2e ,C - V L,a

anel it easily follows that thc tnetric is incomplete.

1'0 recapitulate, if 0: > °there are no cOlllplete Inet1'ics cxeept those arising frolll

unstable curves of (/t, tt, 0) for positive p. Such lnetrics 0.11 have a identically cqual to

b.

Let us now consider the situation when a is negative.

Case 1. 'Ne suppose first that ~ is finite.

As above, band ab are increasing so tend to finite linlits AI, A2 as T tends to f.

(i) First assume Al > 0. 'rVe elecluce that a tencls to a finite positive limit also, as

T tends to ~.

If Ai + 0: ~ °then ac is inereasing so ac, and henee c, tend to finite limits at ~.

This contradicts the fact that ~ is a singularity.

lf Ai + 0: < 0 then ac is decreasing for T near ~ so ac tencIs to 30 linlit , possibly

00, as T tenels to e. As ~ is a singularity this limit is in fact 00 and c tends to 00

at ~. Therefore abc is incrcasing neal' eso tends to a finite liIllit at ~. It follows that

the geodesie distance

T

Je abc

is finite, so the Inetric is inconlplete.

(ii) Suppose on the other hand that Al = 0, that is , b tenels to 0 as T tends ta

e. 1t follows that (ac)' ~ aca nea1' ~ anel ac tenels ta a finite lilnit at ~. Henee abc
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tends to 0 at ~ and again the geodesie distance is finite. To obtain a cOlnplete met1'ic

wc finst have a nut 01' bolt at T = ~, anel as in the case of positive 0: this leads to a

contraeliction.

Case 2. Let HS consider, therefore, the ca.se when the trajectory IS defined on

(-00,77) .

Again b, ab tend to finite limits A" A2 as T tends to -00.

(i) First suppose that A, > 0, so that a tends to a finite positive lilnit.

Arguing as before we see that if Ai + 0' 2:: 0 then c also tends to a finite limit. So

(a, b, c) tends to a critical point which finst be (/l, fl, 0) for SOlne fl > O. As before

this inlplies that a is ielentically cqual to b.

If, on the other hand, Ai + 0' < 0 then we finel that either (a, b, c) tends to a

critical point (in which case a =6) 01' else c tenels to 00. The latter case implies that

c beconles infinite at a finite value of T less than Tl, giving a contradiction.

(ii) Suppose instead that Al = 0, so 6 tcnds to 0 as T tcnds to -00. As (ac)' ~ aco:

anel 0: is negative we see that ac tends to 00 as T tcnds to -00.

If a2 + 62
- c2 < 0 at Ta then its derivative is positive at Ta and so a2 + 62

- c2 < 0

on (-00, Ta). It fo11ows that a,6 are increasing anel c is decreasing on (-00, Ta).

COlnbinecl with the fact that ac tends to 00 as T tends to -00, this inlplies that

a -+ JL, 6 -+ 0, c -+ 00 as T -+ - 00

where Il is finite. It easily follows that our solution cannot be finite on all of (-00, Ta),

giving a contradiction.

Similarly, we find that if a2
- 62

- c2 + 20: > 0 at any point Ta, then the solution

is not finite on all of (-00, Ta).

The remaining case to consider is when

(30)
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on (-00,7/). Since b tends to 0 anel ac tends to 00 we deduce froll1 these inequalities

that Cl anel c both tend to 00 as T tends to -00.

It follows that abc is increasing for T large and negative so tends to a finite limit

(abc"L as T tends to -00. ~/Ioreover abc tends to 00. ]f L > 0 then (abc)' tenels to 00

as T tends to -00, which gives a contradiction. So we have

(abc)'
abc -t 0, -b- -t 00 as T -t -00.

a c

It easily follows by considering log(abc) that abc decays exponentially fast as T

tends to -00. Therefore the geodesie elistance to T = -00 is finite, anel, since Cl, c

become infinite at T = -00, the metric is incolllpiete.

vVe sUIllInarise our results in the final theoreI1l.

TheorelTI 6.2

The only scalar-flat Kähler, non-hyperkähler, diagonal Bianchi IX Inetrics which

are complete have a2 identically equal to b2 (anel hencc have U(2) synlmetry). D.

In fact our discussion shows that all the cOlnplcte lnetrics arise froln the unstable

curves of points (,I, II, 0) for fl > O. 1t follows [raIn (27-29) that in this situation we

have

as T tends to -00, for S0I11e constant k.

Taking

a.s a new coordinate, we find that the lnetric is asYInptotically

asv-tO.

This metric can be cOlllpleted (by adding a bolt) precisely whcn 1 + -;r equals ~n

for sonle positive integer n.
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If we put r = 2VJ> then thc metric corresponding to a solution of (27-29) with

a =b becotnes

As explained above, we obtain the cOInplete exanlples by setting

a 1
1 + - =-n

p2 2

and the resulting metrics are

where f-1 E IR .

These are the cOInplete U(2)-invariant rnetries found by LeBrun [L].
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