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SMOOTH LOCUS OF TWISTED AFFINE SCHUBERT VARIETIES AND
TWISTED AFFINE DEMAZURE MODULES

MARC BESSON AND JIUZU HONG

Abstract. Let G be an absolutely special parahoric group scheme over C. When G is
not E(2)

6 , using methods and results of Zhu, we prove a duality theorem for G : there
is a duality between the level one twisted affine Demazure modules and function rings
of certain torus fixed point subschemes in twisted affine Schubert varieties for G . As a
consequence, we determine the smooth locus of any twisted affine Schubert variety in
affine Grassmannian of G , which confirms a conjecture of Haines and Richarz, when G
is of type A(2)

2`−1,D
(2)
`+1,D

(3)
4 . Some partial results for A(2)

2` and E(2)
6 are also obtained.

Additionally, we give geometric descriptions of the Frenkel-Kac isomorphism for
twisted affine Lie algebras, and the fusion product for twisted affine Demazure modules.
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1. Introduction

Let G be an almost simple algebraic group over C and let GrG be the affine Grassman-
nian of G. The geometry of the affine Grassmannian is related to integral highest weight
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representations of Kac-Moody algebras via affine Borel-Weil theorem. Similarly, the
geometry of affine Schubert varieties are closely related to affine Demazure modules.

Let T be a maximal torus in G and let X∗(T )+ be the set of dominant coweights.
For any λ ∈ X∗(T )+, let Gr

λ

G be the associated affine Schubert variety in GrG, which
is the closure of the G(O)-orbit GrλG, where O = C[[t]]. Evens-Mirković [EM] and
Malkin-Ostrik-Vybonov [MOV] proved that the smooth locus of Gr

λ

G is exactly the open
Schubert cell GrλG. Zhu [Zh1] proved that there is a duality between the affine Demazure
modules and the coordinate ring of the T -fixed point subschemes of affine Schubert
varieties when G is of type A and D, and many cases for type E6. As a consequence, this
gives another approach to determine the smooth locus of Gr

λ

G for type A,D and many
cases of type E.

In this paper, we study a connection between the geometry of twisted affine Schubert
varieties and twisted affine Demazure modules. Following the method of Zhu in [Zh1],
we will use the weight multiplicities of twisted affine Demazure modules to determine
the smooth locus of twisted affine Schubert varieties.

Let G be an almost simple algebraic group of simply-laced or adjoint type with the
action of an absolutely special automorphism σ of order m, defined in Section 2.1. As-
sume that σ acts on O by rotation of order m. Let G be the σ-fixed point subgroup
scheme of the Weil restriction group ResO/Ō(GO), where Ō = C[[tm]]. Then G is an
absolutely special parahoric group scheme over Ō, in the sense of Haines-Richarz [HR].
One may define the affine Grassmannian GrG of G . Following [PR, Zh2], we will call
it a twisted affine Grassmannian. For any λ̄ the image of a dominant coweight λ in the
set X∗(T )σ of σ-coinvariants of X∗(T ), the twisted affine Grassmannian GrG and twisted
affine Schubert varieties Gr

λ̄

G share many similar properties with the usual affine Grass-
mannian GrG and affine Schubert varieties. For instane, when G is special, a version of
the geometric Satake isomorphism was proved by Zhu in [Zh3].

Following [HR], when G is not of type A(2)
2` , any special parahoric group scheme

is absolutely special. When G is of type A(2)
2` , there are two special parahoric group

schemes, and only one of them is absolutely special. We prove Theorem 4.5 in Section
4, which asserts that

Theorem 1.1. When the parahoric group scheme G is absolutely special but not of type
E(2)

6 , the following restriction is an isomorphism:

H0(Gr
λ̄

G ,L )→ H0((Gr
λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ ),

where L is the level one line bundle on GrG , Tσ is the σ-fixed point subgroup of a
σ-stable maximal torus T in G and (Gr

λ̄

G )Tσ
is the Tσ-fixed point subsheme of Gr

λ̄

G .

This theorem extends Zhu’s duality to the setting of absolutely special parahoric group
schemes. The dual H0(Gr

λ̄

G ,L )∨ is a twisted affine Demazure module, see Theorem
3.10. Hence, Theorem 1.1 is a duality between twisted affine Demazure modules and the
coordinate rings of the Tσ-fixed point subschemes of twisted affine Schubert varieties.
One of the motivations of the work of Zhu [Zh1] is to give a geometric realization of
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Frenkel-Kac vertex operator construction for untwisted simply-laced affine Lie algebras.
The analogue of Frenkel-Kac construction for twisted affine Lie algebras also exists in
literature, see [BT, FLM]. In fact, our Theorem 1.1 implies a geometric Frenkel-Kac
isomorphism (including the case E(2)

6 ), see Theorem 4.10.
As a conseqence of Theorem 1.1, we obtain Theorem 4.11, which asserts that

Theorem 1.2. Assume that G is of type A(2)
2`−1,D

(2)
`+1 or D(3)

4 . For any λ̄ ∈ X∗(T )σ, the

smooth locus of the twisted affine Schubert variety Gr
λ̄

G is exactly the open cell Grλ̄G .

This theorem confirms a conjecture of Haines-Richarz [HR, Conjecture 5.4] when G
is of type A(2)

2`−1,D
(2)
`+1 or D(3)

4 . In fact, we also get partial results on the smooth locus when
G is of type A(2)

2` and E(2)
6 , see Theorem 4.12. The main reason that Theorem 1.1 does not

cover the case of A(2)
2` , is that map ι defined in Section 3.1 does not necessarily preserve

dominance relation in this case, see Lemma 3.3. As for E(2)
6 , the main reason is that the

duality theorem for E6 is still not fully established, see Remark 4.9. In fact, one can
define absolutely parahoric group schemes over any base field k of any characteristic,
and the twisted Schubert variety Gr

λ̄

G over the field k. By the works of Haines-Richarz
[HR] and Lourenço [Lo], Theorem 1.2 remains true for the twisted Schubert variety over
any field k, see Remark 4.13. The problem of determining the smooth locus of twisted
affine Schubert varieties was first studied by Richarz, and some results in the cases
of A(2)

2`−1, A
(2)
2` were obtained in [Ri2]. A weaker question, the smoothness of twisted

Schubert varieties for special parahoric group schemes have been fully answered by
Haines-Richarz in [HR].

To prove Theorem 1.1, one of the main ingredients is Theorem 4.2 in Section 4,
which asserts that the Tσ-fixed point ind-subscheme (GrG )Tσ

is isomorphic to the affine
Grassmannian GrT , where T is the σ-fixed point subscheme of the Weil restriction
group ResO/Ō(TO).

Let π : P1 → P̄1 be the map given by t 7→ tm, where P̄1 is a copy of P1. Another
main ingredient of the proof of Theorem 1.1 is the construction of the level one line
bundle L on the moduli stack BunG of G-torsors, where G is the parahoric Bruhat-Tits
group scheme obtained as the σ-fixed subgroup scheme of the Weil restriction group
ResP1/P̄1(GP1) with G being simply-connected. This is achieved in Section 3. It is known
that the level one line bundle on BunG does not necessarily exist for an arbitary parahoric
Bruhat-Tits group scheme G over a smooth projective curve, for example when G is of
type A2`, cf. [He, Remark 19 (4)] [Zh2, Proposition 4.1]. In Theorem 3.13, when σ is
absolutely special, we prove that there exists a level one line bundle L on the moduli
stack BunG of G-torsors. Following the method of Sorger in [So], we use the non-
vanishing of twisted conformal blocks to construct this line bundle on BunG, where the
general theory of twisted conformal blocks was recently developed by Hong-Kumar in
[HK].

With the level one line bundle on BunG when G is simply-connected, we can construct
the level one line bundle on the global affine Schubert variety Gr

λ

G for G being either
simply-connected or adjoint. This is a flat family of Schubert varieties over P1. Over a
generic point, the fiber is just a usual affine Schubert variety Gr

λ

G, and over the origin
3



o, we get the twisted affine Schubert variety Gr
λ̄

G . The main idea of this paper is that,
our duality theorem for twisted affine Schubert varieties can follow from Zhu’s duality
theorem for usual affine Schubert varieties via the level one line bundle on the global
affine Schubert variety Gr

λ

G.
In Section 5, we make connection between our geometric approach to affine De-

mazure module for absolutely special parahoric group schemes, and the affine Demazure
modules for twisted current algebras studied in the literature. The fusion product of
affine Demazure modules was studied by Fourier-Littelmann [FL], and Zhu gave a geo-
metric description in [Zh1]. When σ is a diagram automorphism on g and g is not A2`,
the fusion product for the twisted current algebra g[t]σ was proved by Fourier-Kus in
[FK]. Chari-Ion-Kus introduced the hyperspecial current algebra Cg for A(2)

2` and stud-
ied the twisted affine Demazure modules in [CIK], where they presented this algebra by
using a basis. The twisted affine demazure modules of this hyperspecial current algebra
were further studied by Kus-Venkatesh in [KV]. In Theorem 5.5, we prove that their hy-
perspecial current algebra Cg for A(2)

2` can be identified with the twisted current algebra
g[t]σ via a composition of Kac isomorphism and Cartan involution. For any absolutely
special automorphism σ, we give a geometric description of fusion product for twisted
affine Demazure modules of g[t]σ in Theorem 5.1.

For the convenience of the readers, we use the following notations frequently:
C: complex projective curve P1.
G: almost-simple algebraic group of adjoint or simply-connected type.
G : parahoric group scheme over the ring of formal power series.
G: parahoric Bruhat-Tits group scheme over curve.
GrG: affine Grassmannian of G.
GrG : affine Grassmanian of G .
GrG,C: global affine Grassmannian of G.
Gr

λ

G: affine Schubert variety.

Gr
λ̄

G : twisted affine Schubert variety.
Gr

λ

G: global affine Schubert variety for G.
L: level one line bundle on GrG.
L : level one line bundle on GrG .
L: level one line bundle on BunG and GrG,C.

Acknowledgments: We would like to thank the hospitality of Max Planck institute for
mathematics at Bonn during our visits in November and December of 2019, where part
of the work was done. We also would like to thank Timo Richarz and Xinwen Zhu
for helpful conversations and valuable comments. J. Hong is partially supported by the
Simons collaboration Grant 524406, and NSF grant DMS-2001365.

2. Main definitions

Let G be an almost simple algebraic group over C of adjoint or simply-connected
type. We choose a maximal torus and Borel subgroup T ⊂ B ⊂ G. We denote by X∗(T )
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the lattice of weights of T , and by X∗(T ) the lattice of coweights. Their natural pairing is
denoted by 〈, 〉. Let Φ denote the set of roots of G, and denote by Φ+ the set of positive
roots of G with respect to B. Let Φ̌ denote the set of coroots, so (Φ, X∗(T ), Φ̌, X∗(T )) is
a root datum for G, and write W for the Weyl group of G. Let Q denote the root lattice
of G, and Q̌ the coroot lattice.

We follow the labelling of the vertices of the Dynkin diagram in [Ka, Table Fin, p.53].
We denote by {αi | i ∈ I} (respectively {α̌i | i ∈ I} the set of simple roots in Φ (respectively
coroots in Φ̌), where I is the set of vertices of the associated Dynkin diagram of G. Let
{ωi | i ∈ I} be the set of fundamental weights of G, and let {ω̌i | i ∈ I} be the set of
fundamental coweights of G. We also choose a pinning {xαi , yαi | i ∈ I} of G with respect
to B and T .

Let g, b, t denote the Lie algebras of G, B,T respectively. Let {ei, fi | i ∈ I} denote the
set of Chevalley generators associated to the pinning {xαi , yαi | i ∈ I}. Let eθ (resp. fθ) be
the highest (resp. lowest ) root vector in g, such that [eθ, fθ] is the coroot θ∨ of θ.

2.1. Absolutely special automorphisms. Let σ be an automorphism of order m on G
preserving B and T . Let τ be a diagram automorphism preserving B,T and a pinning
{xαi , yαi | i ∈ I}. Let r be the order of τ.

When g is not A2`, we take σ to be τ. When g is A2`, by [Ka, Theorem 8.6] there exists
a unique automorphism σ of order m = 4 such that

(1)


σ(ei) = eτ(i), if i , `, ` + 1;
σ(ei) = ieτ(i), if i ∈ {`, ` + 1};
σ( fθ) = fθ,

where i is a square root of −1. One can check that

(2)


σ( fi) = fτ(i), if i , `, ` + 1;
σ( fi) = −i fτ(i), if i ∈ {`, ` + 1};
σ(eθ) = eθ

.

In fact, σ = τ ◦ ih, where h ∈ t such that

αi(h) =

0, if i , `, ` + 1
1, if i = `, ` + 1

.

This automorphism induces a unique automorphism on G. We still call it σ.
We call these automorphisms on G or g absolutely special. Throughout this paper,

we will only consider absolutely special automorphisms.
The following table describe the fixed point Lie algebras for all absolutely special

automorphisms:

(3)
(g,m) (A2`−1, 2) (A2`, 4) (D`+1, 2) (D4, 3) (E6, 2)

gσ C` C` B` G2 F4
,

where by convention C1 is A1 and ` ≥ 3 for D`+1. When (g,m) , (A2`, 4), the fixed point
Lie algebra gσ is well-known as listed in the above table. When (g,m) = (A2`, 4), the
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fixed Lie algebra gσ is of type C`, which can follow from the twisted Kac-Moody theory,
cf. [Ka, §8].

Recall that we follow the labelling of the vertices of the Dynkin diagram of g in [Ka,
Table Fin, p.53]. Set
(4)
βi = αi|tσ , for i = 1, 2, · · · , `, when (g,m) = (A2`−1, 2), or (D`+1, 2)
β1 = α2|tσ , β2 = α1|tσ , when (g,m) = (D4, 3)
β1 = α6|tσ , β2 = α3|tσ , β3 = α2|tσ , β4 = α1|tσ , when (g,m) = (E6, 2)
βi = αi|tσ , for i = 1, 2, · · · , ` − 1; β` = (α` + α`+1)|tσ = 2α`|tσ , when (g,m) = (A2`, 4).

Let Iσ be the set of all subscript indices of βi. Then for each case, the set { β j | j ∈ Iσ }
gives rise to the set of simple roots of gσ. One can see easily that this labelling will
coincide with the labelling of non simply-laced Dynkin diagrams in [Ka, Table Fin,
p.53].

We now define a map η : I → Iσ. When (g,m) , (A2`, 4), η is defined such that
βη(i) = αi|tσ for any i ∈ I. When (g,m) = (A2`, 4), set

η(i) = η(2` + 1 − i) = i, for any 1 ≤ i ≤ `.

Let { β̌ j | j ∈ Iσ} be the set of simple coroots of gσ. We can describe β̌ j as follows:

(5) β̌ j =
∑

i∈η−1( j)

α̌i.

Let { λ j | j ∈ Iσ } be the set of fundamental weights of gσ, and let { λ̌ j | j ∈ Iσ } be the set
of fundamental coweights of gσ. The fundamental weights can be described as follows:

(6) λ j = ωi|tσ , for some i with η(i) = j.

In the case of fundamental coweights, we need to describe them separately. When
(g,m) , (A2`, 4),

(7) λ̌ j =
∑

i∈η−1( j)

ω̌i.

When (g,m) = (A2`, 4), we have

(8) λ̌ j =

ω̌ j + ω̌2`+1− j, j = 1, 2, · · · , ` − 1
1
2 (ω̌` + ω̌`+1), j = `

.

2.2. Affine Grassmannian of absolutely special parahoric group schemes. Let K
denote the field of formal Laurent series in t with coefficients in C. Let O denote the
ring of formal power series in t with coefficients in C. By abuse of notation, we still use
σ to denote the automorphism of order m on K and O such that σ acts on C trivially,
and σ(t) = εt, where we fix a primitive m-th root of unity ε. Set K̄ = Kσ and Ō = Oσ.
Then K̄ = C((t̄)) and Ō = C[[t̄]], where t̄ = tm.

Let G be the smooth group scheme ResO/Ō(GO)σ over Ō, which represents the follow-
ing group functor

R 7→ G(O ⊗Ō R)σ, for any Ō − algebra R,
6



where the G(O⊗Ō R) denotes the group of σ-equivariant morphisms from Spec (O⊗Ō R)
to G. Then, G is an absolutely special parahoric group scheme in the sense of Haines-
Richarz [HR], as we choose σ to be absolutely special. In fact, up to isomorphism,
this construction exhausts all absolutely special parahoric subgroups in G (K) that are
defined in [HR].

We can similarly define the smooth group scheme T := ResO/Ō(TO)σ, which is a
maximal torus in G . Note that, for general almost simple algebraic group G, we can
still define G and T , but we need to take the neutral components of ResO/Ō(GO)σ and
ResO/Ō(TO)σ respectively. For convenience, throughout this paper we only work with G
being adjoint or simply-connected.

Let L+G denote the jet group and LG be the loop group of G over C, that is, for all
C-algebras R, we set L+G (R) = G (R[[t]]) and LG (R) = G (R((t))). We denote by GrG the
affine Grassmannian of G , which is defined as the fppf quotient LG /L+G . In particular,
we have

GrG (C) = G(K)σ/G(O)σ.

It is known that GrG is a projective ind-variety, cf. [PR]. Following [PR, Zh2], we will
call it a twisted affine Grassmannian of G . We can also attach the twisted affine Grass-
mannian GrT := LT /L+T of T . This is a highly non-reduced ind-scheme. Moreover,

GrT (C) = T (K)σ/T (O)σ.

Note that the actions of σ on T,T (O) and T (K) agree with the action of its diagram
automorphism part τ. For any λ ∈ X∗(T ), we can naturally attach an element tλ ∈ T (K).
We now define the norm nλ ∈ T (K)σ of tλ,

(9) nλ :=
m−1∏
i=0

σi(tλ) = (
∏

i

σi(λ)(ε))t
∑
σi(λ).

There exists a natural bijection

(10) T (K)σ/T (O)σ ' X∗(T )σ,

where X∗(T )σ denotes the set of σ-coinvariants in X∗(T ). Any λ̄ ∈ X∗(T )σ corresponds to
the coset nλT (O)σ, where λ is a representative of λ̄. By Theorem [PR, Theorem 0.1], the
components of GrG can be parametrized by elements in π1(G)σ, where π1(G) ' X∗(T )/Q̌,
and (X∗(T )/Q̌)σ is the the set of coinvariants of σ in X∗(T )/Q̌.

When G is of adjoint type, we describe (X∗(T )/Q̌)σ in the following table.

(11)

(G,m) (A2`−1, 2) (A2`, 4) (D2`+1, 2) (D2`, 2) (D4, 3) (E6, 2)

X∗(T )/Q̌ Z2` Z2`+1 Z4 Z2 × Z2 Z2 × Z2 Z3

(X∗(T )/Q̌)σ Z2 0 Z2 Z2 0 0

.
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2.3. Twisted affine Schubert varieties. Let e0 be the base point in GrG (C). For any
λ̄ ∈ X∗(T ), let eλ̄ denote the point nλe0 ∈ GrG (C). The point eλ̄ only depends on λ̄ ∈
X∗(T )σ. Let X∗(T )+

σ denote the set of images of X∗(T )+ in X∗(T )σ via the projection
X∗(T )→ X∗(T )σ. Then, we have the following Cartan decomposition for GrG (cf. [Ri1]),

(12) GrG (C) =
⊔

λ̄∈X∗(T )+
σ

Grλ̄G ,

where Grλ̄G := G(O)σeλ̄. The Schubert variety Gr
λ̄

G is defined to be the reduced closure
of Grλ̄G in GrG . Moreover,

dim Gr
λ̄

G = 2〈λ, ρ〉,

where ρ is the sum of all fundamental coweights of g. It is easy to see that the dimension
is independent of the choice of λ.

For any λ̄, µ̄ ∈ X∗(T )+
σ, we write µ̄ � λ̄ if Grµ̄G ⊆ Gr

λ̄

G . For any i ∈ I, let α̌i denote the
image of α̌i in X∗(T )σ. For any j ∈ Iσ, set

(13) γ j = α̌i, if j = η(i).

It is clear that γ j is well-defined.
The following lemma follows from [Ri1, Corollary 2.10].

Lemma 2.1. µ̄ � λ̄ if and only if λ̄ − µ̄ is a non-negative integral linear combination of
{ γ j | j ∈ Iσ }.

By the ramified geometric correspondence [Zh3], the set X∗(T )σ can be realized as the
weight lattice of the reductive group H := (Ǧ)τ, where Ǧ is the Langlands dual group of
G and τ is a diagram autorphism on Ǧ corresponding to the one on G, and { γ j | j ∈ Iσ }
is the set of simple roots for H. Moreover, X∗(T )+

σ is the set of dominant weights of H,
and the partial order � is exactly the standard partial order for dominant weights of H.

We now assume G is of adjoint type. From the perspective of the geometric Satake,
we can determine the minimal elements in X∗(T )+

σ, in other words the minimal Schubert
variety in each connected component of GrG . From the table (11), we see that when
(G,m) = (A2`−1, 2), GrG has two components, where Grω̌1

G is the minimal Schubert va-
riety in the non-neutral component, since ω̌1 gives the miniscule dominant weight of
H ' Sp2`. When (G,m) = (D`+1, 2), GrG also has two components and Grω̌`G is the
minimal Schubert variety in the non-neutral component, since ω̌` is the miniscule dom-
inant weight of H ' Spin2`+1. Otherwise, GrG has only one component. In fact, when
(G,m) = (A2`, 4), H ' SO2`+1, in which case the weight lattice X∗(T )σ concides with the
root lattice of H.

Let S denote the following set

(14) S =


{0} if (G, r) , (A2`−1, 2), (D`+1, 2)
{0, ω̌1} if (G, r) = (A2`−1, 2)
{0, ω̌`} if (G, r) = (D`+1, 2)

.
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For any κ ∈ S , let GrG ,κ be the component of GrG containing the Schubert variety Grκ̄G ,
or equivalently containing the point eκ̄. Then,

GrG = tκ∈S GrG ,κ .

2.4. Global affine Grassmannian of parahoric Bruhat-Tits group schemes. Let C
be a complex projective line P1 with a coordinate t, and with the action of σ such that
t 7→ εt. Let C̄ be the quotient curve C/σ, and let π : C → C̄ be the projection map.
Then C̄ is also isomorphc to P1. Let G = ResC/C̄(G × C)σ be the group scheme over C̄,
which is the σ-fixed point subgroup scheme of the Weil restriction ResC/C̄(G ×C) of the
constant group scheme G × C from C to C̄. Then, G is a parahoric Bruhat-Tits group
scheme over C̄ in the sense of Heinloth [He] and Pappas-Rapoport [PR]. Let o (resp.ō)
be the origin of C (resp.C̄), and let∞ (resp. ∞̄) be the infinite point in C (resp. C̄).

The group scheme G has the following properties:
(1) For any y ∈ C̄, if y , ō, ∞̄, the fiber G|y over y is isomorphic to G; the restriction
Gy to the formal disc Dy around y is isomorphic to the constant group scheme
GDy over Dy.

(2) When y = ō or ∞̄ in C̄, G|y has a reductive quotient Gσ; the restriction Gy to Dy

is isomorphic to the parahoric group scheme G .
Similarly, we can define the parahoric Bruhat-Tits group schemeT := ResC/C̄(T×C)σ.
Given an R-point p ∈ C(R) we denote by Γp ⊂ CR the graph of p where CR :=

C × Spec(R), and denote by Γ̂p the formal completion of CR along Γp, and let Γ̂×p be
the punctured formal completion along Γp. Let p̄ be the image of p in C̄. We similarly
define C̄R, Γp̄, Γ̂ p̄ and Γ̂×p̄ .

For any C-algebra R, we define

(15) GrG,C(R) :=

 (p,P, β)

∣∣∣∣∣∣∣∣∣∣
p ∈ C(R)

P a G-torsor on C̄

β : P|C̄R\Γ p̄ ' P̊|C̄R\Γp̄

 ,
where P̊ is the trivial G-bundle.

The functor GrG,C is represented by an ind-scheme which is ind-proper over C. We
call it the global affine Grassmannian GrG,C of G over C.

For any p , o,∞ ∈ C, the fiber GrG,p := GrG,C |p is isomorphic to the usual affine
Grassmannian GrG, and the fiber GrG,p over p = o,∞ is isomorphic to the twisted affine
Grassmannian GrG of the parahoric group scheme G .

Remark 2.2. One can define the global affine Grassmannian GrG over C̄, see [Zh2,
Section 3.1]. The global affine Grassmannian defined above is actually the base change
of GrG along π : C → C̄.

We can also define the jet group scheme L+GC over C as follows,

(16) L+GC(R) :=

(p, γ)

∣∣∣∣∣∣ p ∈ C(R)

γ is a trivialization of the trivial G-torsor on C̄ along Γ̂ p̄


9



Again, L+GC is the base change of the usual jet group scheme L+G of G along π : C →
C̄. For any p , o,∞ ∈ C, the fiber L+GC |p is isomorphic to the jet group scheme L+G of
G, and the fiber L+GC |p over p = o,∞ is isomorphic to jet group scheme L+G .

We have a left action of L+GC on GrG,C given by

(17) ((p, γ), (p,P, β)) 7→ (p,P′, β),

where P′ is obtained by choosing a trivialization of P along Γ̂p̄ and then composing this
trivialization with γ and regluing with β.

We also can define the global loop group LGC of G over C,

(18) LGC(R) :=

(p, γ)

∣∣∣∣∣∣ p ∈ C(R)

γ is a trivialization of the trivial G-torsor on C̄ along Γ̂×p̄

 .
Then GrG,C is isomorphic to the fppf quotient LGC/L+GC. We can also define L+TC and
LTC similarly. Then,

LTC |p '

TKp if p , o,∞
T if p = o,∞

,

where Kp is the field of formal Laurant series of C at p.

2.5. Global Schubert varieties. For each p ∈ C, we can attach a lattice X∗(T )p,

X∗(T )p =

X∗(T ) if p , o,∞
X∗(T )σ if p = o,∞

.

By [Zh2, Proposition 3.4], for any λ ∈ X∗(T ) there exists a section sλ : C → LTC, such
that for any p ∈ C, the image of sλ(p) in X∗(T )p is given byλ ∈ X∗(T ) if p , o,∞

λ̄ ∈ X∗(T )σ if p = o,∞
.

This naturally gives rise to C-points in GrT ,C and GrG,C, which will still be denoted by
sλ. Following [Zh2, Definition 3.1], for each λ ∈ X∗(T ) we define the global Schubert
variety Gr

λ

G,C to be the minimal L+GC-stable irreducible closed subvariety of GrG,C that
contains sλ. Then, [Zh2, Theorem 3] asserts that

Theorem 2.3. The global Schubert variety Gr
λ

G,C is flat over C, and for any p ∈ C the

fiber Gr
λ

G,p is reduced and

Gr
λ

G,p '

Gr
λ

G if p , o,∞

Gr
λ̄

G if p = o,∞
.

Remark 2.4. In fact, we can construct the section sλ : C → GrT ,C explicitly. For any T -
torsor P over C̄, the pull-back π∗(P) is a (σ,T )-torsor on C, i.e. π∗(P) carries an action
of σ of order m and compatible with the action on T . Then, the section sλ amounts to the
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triple (Id : C → C,F , β), where Id : C → C is the identity map, F is the (σ,T )-torsor
with the trivialization F |C2\∆C ' F̊ as (σ,T )-torsor, such that for any weight ν ∈ X∗(T ),

βν : F ×T C
ν ' OC2

( m−1∑
i=0

〈σi(λ), ν〉Γσi
)
,

where Γσi represents the graph of σi : C → C.

3. Construction of level one line bundle

In this section, we keep the assumption that G is of adjoint type with the action of an
absolutely special automorphism σ.

3.1. Borel-Weil-Bott theorem on GrG . We define the twisted affine Lie algebra L̂(g, σ) :=
g(K)σ ⊕ CK with the canonical center K as follows,

(19) [x[ f ] + zK, x′[ f ′] + z′K] = [x, x′][ f f ′] + m−1Rest=0
(
(d f ) f ′

)
(x, x′)K,

for x[P], x′[P′] ∈ g(K)σ, z, z′ ∈ C; where Rest=0 denotes the coefficient of t−1dt, and (, )
is the normalized Killing form on g, i.e. (θ̌, θ̌) = 2.

We use P(σ, c) to denote the set of highest weights of gσ which parametrizes the
integrable highest weight modules of L̂(g, σ) of level c, see [HK, Section 2]. For each
λ ∈ P(σ, c), we denote by Hc(λ) the associated integrable highest weight module of
L̂(g, σ).

Recall that {λi | i ∈ Iσ} be the set of fundamental weights of gσ, where we follow the
labellings in (4). Also, { β̌i | i ∈ Iσ } is the set of simple coroots of gσ.

Lemma 3.1. For an absolutely special automorphism σ, we have

P(σ, 1) =


{0} if (g,m) , (A2`−1, 2), (D`+1, 2)
{0, λ1} if (g,m) = (A2`−1, 2)
{0, λ`} if (g,m) = (D`+1, 2)

.

Proof. We first consider the case when (g,m) , (A2`, 4). We can read from [HK, Lemma
2.1], for any λ ∈ (tσ)∗, λ ∈ P(σ, 1) if and only if

〈λ, β̌i〉 ∈ Z≥0 for any i ∈ Iσ,

and 〈λ, θ̌0〉 ≤ 1, where θ0 is the highest short root of gσ and θ̌0 is the coroot of θ0, and
hence θ̌0 is the highest coroot of gσ. In this case, λ ∈ P(σ, 1) if and only if λ = 0 or a
miniscule dominant weight of gσ (cf. [BH, Lemma 2.13]). Following the labellings in
[Ka, Table Fin,p53], when gσ is of type C`, λ1 is the only miniscule weight; when gσ is
of type B`, λ` is the only miniscule weight. Any other non simply-laced Lie algebra has
no miniscule weight. This finishes the argument of the lemma when (g,m) , (A2`, 4).

Now, we assume that (g,m) = (A2`, 4). In this case, it is more convenient to choose a
different set of simple roots for gσ, rather than the one described in (4). Namely, we can
also choose

{αi|tσ | i = 1, 2, · · · , ` − 1} ∪ {−θ|tσ}
as the set of simple roots of gσ. With this set of simple root, we can also read from [HK,
Lemma 2.1], for any λ ∈ (tσ)∗, λ ∈ P(σ, 1) if and only if λ = 0.

11



�

Remark 3.2. It is not true that 0 ∈ P(σ, 1) for any automorphism σ. For example,
0 < P(τ, 1), when g = A2` and τ is a diagram automorphism; instead 0 ∈ P(τ, 2).

We define the following map

(20) ι : X∗(T )→ (tσ)∗,

such that for any λ ∈ X∗(T ), ι(λ)(h) = (λ, h), where we regard λ as an element in t and (, )
is the normalized Killing form on t. It is clear that ι(0) = 0. This map naturally descends
to a map X∗(T )σ → (tσ)∗. By abuse of notation, we still call it ι.

Recall some terminilogy introduced in Section 2.1. Iσ is the set parametrizing simple
roots of gσ, and we also defined a map η : I → Iσ. The set {λ̌ j | j ∈ Iσ} is the set of
fundamental coweights of gσ, and {λ j | j ∈ Iσ} is the set of fundamental weights of gσ.
We also recall that α̌i is a simple coroot of g for each i ∈ I, and γ j is the image of α̌i in
X∗(T )σ. The following lemma already appears in [Ha, Lemma 3.2] in a slighly different
setting.

Lemma 3.3. For any j ∈ Iσ, we have

ι(γ j) =

β j, if (g,m) , (A2`, 4), or , (g,m) = (A2`, 4) and j , `
1
2β`, if (g,m) = (A2`, 4) and j = `

.

Proof. By the definition of ι, for any γ j = α̌i with j = η(i), and k ∈ Iσ we have the
following equalities:

〈λ̌k, γ j〉 = 〈λ̌k, ι(α̌i)〉 = (λ̌k, α̌i) = 〈λ̌k, αi〉.

Then, this lemma can readily follows from the description of fundamental coweights of
gσ in (7) and (8). �

Recall the set S defined in (14).

Lemma 3.4. For any i ∈ I, we have ι(ω̌i) = λη(i). As a consequence, ι maps X∗(T )+
σ

bijectively into the set of dominant weights of gσ. Furthermore, ι maps S bijectively into
P(σ, 1).

Proof. For any i ∈ I and j ∈ Iσ, we have

〈ι(ω̌i), β̌ j〉 = (ω̌i, β̌ j) = (ω̌i,
∑

a∈η−1(i)

α̌a) = δη(i), j.

Hence, ι(ω̌i) = λη(i).
In view of Lemma 3.1, ι maps S bijectively into P(σ, 1). �

Remark 3.5. In view of Lemma 3.3 and Lemma 3.4, when (G,m) , (A2`, 4), the root
systems of gσ and H := (Ǧ)τ can be naturally identified, where H is discussed in Section
2.3. Namely, { ω̌i | i ∈ I} is a set of fundmental weights of H corresponding to {λ j | j ∈ Iσ}
of gσ, and the set of simple roots { γ j | j ∈ Iσ} corresponds to { β j | j ∈ Iσ } of gσ.
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For any g ∈ G(K)σ, we can define a Lie algebra automorphism

(21) Âdg(x[ f ]) := Adg(x[ f ]) +
1
m

Rest=0(g−1dg, x[ f ])K,

for any x[ f ] ∈ g(K)σ, where (, ) is the normalized Killing form on g. By Lemma 3.4,
ι(κ) ∈ P(σ, 1) for any κ ∈ S . Thus, cι(κ) ∈ P(σ, c) for any level c ≥ 1.

Set

(22) Hc := ⊕κ∈S Hc(cι(κ)).

Let g̃ := g⊗K ⊕CK′ ⊕Cd′ be the untwisted Kac-Moody algebra associated to g, where
K′ is the canonical center and d′ is the scaling element. We may define an automorphism
σ on g̃ as follows,

σ(x[ f (t)]) = σ(x)[ f (εt)], σ(K′) = K′, σ(d′) = d′,

for any x[ f ] ∈ g ⊗ K . Then the fixed point Lie algebra g̃σ is exactly the twisted Kac-
Moody alegbra L̃(g, σ) containing L̂(g, σ) as the derived algebra. Following from [Ka,
Theorem 8.7,§8], in this realization the canonical center K in L̃(g, σ) is equal to mK′,
and the scaling element d in g̃ is equal to d′ when g̃σ is not A(2)

2` , and d = 2d′when
g̃σ = A(2)

2` .
For any g ∈ G(K), one can define an automorphism Âdg on g̃ as in [Ku, Section

13.2.3]. From the formula loc.cit, it is clear that if g ∈ G(K)σ, then Âdg commutes
with σ. In particular, it follows that Âdg restricts to an automorphism on L̃(g, σ). One
may observe easily that, restricting further to L̂(g, σ), this is exactly the automorphism
defined in (21).

By demanding that d ·vκ = 0 for each κ ∈ S , the action L̂(g, σ) on H extends uniquely
to an action of L̃(g, σ).

Lemma 3.6. For any g ∈ G(K)σ, there exists an intertwining operator ρg : Hc ' Hc

such that

(23) ρg(x[ f ] · v) = Âdg(x[ f ]) · ρg(v),

for any x[ f ] ∈ g(K)σ and v ∈Hc. In particular, for any κ ∈ S ,

(24) Âdn−κ(Hc(0)) = Hc(cι(κ)), and Âdn−κ(Hc(cι(κ))) = Hc(0).

Proof. Let G′ be the simply-connected cover of G, and let p : G′(K)σ → G(K)σ be the
induced map. Then,

(25) G(K)σ = tκ∈S n−κG′(K)σ,

where G′(K)σ = p(G′(K)σ). By twisted analogue of Faltings Lemma (cf. [HK, Propo-
sition 10.2]), for any element g ∈ G′(K)σ, there exists an operator ρg which maps
Hc(cι(κ)) to Hc(cι(κ)) with the desired property (23), for any κ ∈ S . By decomposi-
tion (25), it suffices to show that, for nonzero κ, n−κ satisfies property (24).

Assume κ , 0 in S . From the table (11), the group (X∗(T )/Q̌)σ is at most of order 2.
Therefore, n−2κ ∈ G′(K)σ. For each Hc(cι(κ)), we denote the action by πc,κ : L̂(g, σ) →
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End(Hc(cι(κ))). Then the property (23) for n−2κ, is equivalent to the existence of an
isomorphism of representations,

(26) ρn−2κ : (Hc(cι(κ)), πc,κ) ' (Hc(cι(κ)), πc,κ ◦ Âdn−2κ).

Let vκ be the highest weight vector in Hc(cι(κ)). Then vκ is of tσ-weight cι(κ). We regard
β̌i as elements in tσ. By formula (21),

Âdn−κ(β̌i) = β̌i − (κ, β̌i)c = β̌i − 〈ι(κ), β̌i〉c.

Hence, vκ is of tσ-weight 0 and a highest weight vector in the representation

(Hc(cι(κ)), πc,κ ◦ Âdn−κ).

By Schur lemma, there exists an intertwining operator ρ0κ,

(27) ρ0κ : (Hc(0), πc,0) ' (Hc(cι(κ)), πc,κ ◦ Âdn−κ).

We also can regard ρ0κ as the following intertwining operator

(28) ρ0κ : (Hc(0), πc,0 ◦ Âdn−κ) ' (Hc(cι(κ)), πc,κ ◦ Âdn−2κ)

Combining isomorphisms (26),(28), we get

(Hc(cι(κ)), πc,κ)
ρn−2κ
−−−→ (Hc(cι(κ)), πc,κ ◦ Âdn−2κ)

(ρ0κ)−1

−−−−→ (Hc(0), πc,0 ◦ Âdn−κ).

We define ρn−κ to be the following operator

ρn−κ = (ρ0κ, (ρ0κ)−1 ◦ ρn−2κ) : Hc(0) ⊕Hc(cι(κ)) 'Hc(0) ⊕Hc(cι(κ)).

The map ρn−κ satisfies property (23). �

As discussed in Section 2.2, the components of GrG are parametrized by elements in
(X∗(T )/Q̌)σ. Moreover, GrG = tκ∈S GrG ,κ, where S is defined in (14).

Let G ′ be the parahoric group scheme ResO/Ō(G′
O

)σ, and let L+G ′ (resp. LG ′) denote
the jet group scheme (resp. loop group scheme) of G ′. The group LG acts on LG ′ by
conjugation. Set

L+G ′κ := Adn−κ(L+G ′).

Then, L+G ′κ is a subgroup scheme of LG ′. We have

(29) GrG ,κ ' LG ′/L+G ′.

By the twisted analogue of Faltings lemma (cf. [HK, Proposition 10.2]), there exists a
group homomorphism LG ′ → PGL(H1(0)). Consider the central extension

(30) 1→ Gm → GL(H1(0))→ PGL(H1(0))→ 1.

The pull-back of (30) to LG ′ defines the following canonical central extension of LG ′:

(31) 1→ Gm → L̂G ′ → LG ′ → 1.

It is known that L̂G ′ is a Kac-Moody group of twisted type (up to a scaling multi-
plicative group) in the sense of Kumar and Mathieu, see [PR]. Let L̂+G ′κ denote the
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preimage of L+G ′κ in L̂G ′ via the projection map L̂G ′ → LG ′. As the same proof as in
[BH, Lemma 2.19], L̂+G ′κ is a parabolic subgroup in L̂G ′, moreover

(32) GrG ,κ ' L̂G ′/L̂+G ′κ ,

i.e. GrG ,κ is a partial flag variety of the Kac-Moody group L̂G ′.

Proposition 3.7. There exists a line bundle L on GrG such that L is of level one on
each component of GrG .

Proof. We first consider the simply-connected cover G′ of G. By [HK, Theorem 10.7
(1)], there exists a canonical splitting of L̂G ′ → LG ′ in the central extension (30) over
L+G ′. We may define a line bundle L on GrG ′ = L̂G ′/L̂+G ′ via the character L̂+G ′ :=
Gm × L+G ′ → Gm defined via the first projection. In fact, as the argument in [LS,
Lemma 4.1], this line bundle is the ample generator of Pic(GrG ′) of level 1. This finishes
the proof of part (1).

We now consider the case when G is of adjoint type. Since the neutral component
GrG ,◦ is isomorphic to GrG ′ , we get the level one line bundle on GrG ,◦ induced from
the one on GrG ′ . For any other component GrG ,κ, by (32) we have an isomorphism
GrG ,◦ ' GrG ,κ. Therefore, this gives rise to the level one line bundle on GrG ,κ.

�

The line bundle L on GrG naturally has a L̂G ′-equivariant structure, since L admits
a unique L̂G ′-equivariant structure on each component of GrG as a partial flag variety of
L̂G ′. Now, by the standard Borel-Weil-Bott theorem for Kac-Moody group (cf. [Ku]),
we get the following theorem.

Theorem 3.8. As representations of L̂(g, σ), we have H0(GrG ,L c)∨ 'Hc, where L c is
the c-power of L .

Let v0 be the highest weight vector in H0. For any λ̄ ∈ X∗(T )σ, we define

(33) vλ̄ := ρnλ(v0),

where ρnλ in defined in Lemma 3.6. Then vλ̄ is independent of the choice of the repre-
sentative λ in X∗(T ) and is well-defined up to a nonzero scalar.

Lemma 3.9. The tσ-weight of the vector vλ̄ is −cι(λ̄).

Proof. For any h ∈ tσ, by Lemma 3.6,

h · vλ̄ = h · ρnλ(v0) = ρnλ(Âdn−λ(h)v0).

By the formula (21), we have

Âdn−λ(h) = h − 〈λ, h〉K.

It follows that
h · vλ̄ = −〈λ, h〉cvλ̄ = −cι(λ)(h)vλ̄.

This concludes the proof of the lemma. �
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Definition 3.10. For any dominant λ̄ ∈ X∗(T )+
σ, we define the twisted affine Demazure

module D(c, λ̄) as the following g[t]σ-module,

D(c, λ̄) := U(g[t]σ)vλ̄.

In view of Lemma 3.9, D(c, λ̄) contains an irreducible representation V(−cι(λ)) of gσ

of lowest weight −cι(λ). The following theorem follows from [Ku, Theorem 8.2.2 (a)].

Theorem 3.11. As g[t]σ-modules, H0(Gr
λ̄

G ,L
c)∨ ' D(c, λ̄).

3.2. Construction of level one line bundles on BunG. In this subsection, we consider
the parahoric Bruhat-Tits group scheme G := ResC/C̄(G ×C)Γ over C̄ as in the setting of
Section 2.4.

Let BunG be the moduli stack of G-torsors on C̄. It is known that BunG is a smooth
Artin stack (cf. [He]). By [He, Theorem 3], the Picard group Pic(BunG) of BunG is
isomorphc to Z, since the group X∗(G|y) of characters for G|y is trivial for any y ∈ C̄. In
this subsection, we will construct the ample generatorL ∈ Pic(BunG) when G is simply-
connected, and we will construct a level one line bundle on every component of GrG,C
when G is of adjoint type.

By Lemma 3.1, we have 0 ∈ P(σ, 1) for any absolutely special automorphism σ.
Recall that H1(0) is the basic representation of level one associated to 0 ∈ P(σ, 1).

We now define the following space of twisted covacua of level one,

(34) VC,σ(0) :=
H1(0)

g[t−1]σ ·H1(0)
,

where g[t−1]σ is the Lie subalgebra of L̂(g, σ).

Lemma 3.12. The dimension of the vector space VC,σ(0) is 1.

Proof. Let v0 be the highest weight vector in H1(0). Then

H1(0) = U((t−1
g[t−1])σ) · v0 = U((t−1

g[t−1])σ)(t−1
g[t−1])σv0 ⊕ Cv0,

where U((t−1g[t−1])σ) denotes the universal enveloping algebra of (t−1g[t−1])σ. We can
write g[t−1]σ = gσ ⊕ (t−1g[t−1])σ. Hence,

g[t−1]σ ·H1(0) = gσ · U((t−1
g[t−1])σ)(t−1

g[t−1])σv0 + U((t−1
g[t−1])σ)(t−1

g[t−1])σv0(35)

= U((t−1
g[t−1])σ)(t−1

g[t−1])σv0,(36)

where the first equality holds since gσ · v0 = 0, and the second equality holds since gσ

normalizes (t−1g[t−1])σ under the Lie bracket. Therefore, dim VC,σ(0) = 1. �

Let G′ be the simply-connected cover of G. Recall the Heinloth uniformization theo-
rem for G′ := ResC/C̄(G′ ×C)Γover the affine line C̄\ō (cf. [He]),

BunG ′ ' G′[t−1]σ\ GrG ′ ,

where GrG ′ denotes the affine Grassmannian of G ′ := ResO/Ō(G′
O

)σ, and G′[t−1]σ\ GrG ′
denotes the fppf quotient.

Theorem 3.13. The line bundle L descends to a line bundle L on BunG ′ .
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Proof. Let L be the level one line bundle on GrG ′ constructed from Proposition 3.7.
To show that the line bundle L can descend to BunG′ , as in the argument in [So], it
suffices to show that there is a G′[t−1]σ-linearization on L . This is equivalent to the
splitting of the central extension (31) over G′[t−1]σ. We use the same argument as in
[So, Proposition 3.3], since the vector space VC,σ(0) is nonvanishing by Lemma 3.12,
the central extension (31) splits over G′[t−1]σ. �

We consider the projection map pr : GrG′,C → BunG′ . By abuse of notation, we still
denote by L the line bundle on GrG′,C pulling-back from L on BunG′ .

Corollary 3.14. The restriction of the line bundle L to the fiber GrG′,p is the ample
generator of Pic(GrG′,p), for any p ∈ C.

Proof. It follows from Theorem 3.13 and [Zh2, Proposition 4.1]. �

The following theorem is interesting by itself, but will not be used in this paper.

Theorem 3.15. There is a natural isomorphism

H0(BunG′ ,L) ' VC,σ(0)∨,

where VC,σ(0)∨ denotes the dual of VC,σ(0). In particular,

dim H0(BunG′ ,L) = 1.

Proof. The theorem follows from the same argument as in [HK, Theorem 12.1]. �

Now, we would like to construct the line bundle L of level one on GrG,C, where
G = ResC/C̄(GC)σ with G of adjoint type.

Theorem 3.16. There exists a line bundle L on GrG,C such that the restriction of L to
the fiber GrG,p is the level one line bundle on GrG,p, for any p ∈ C.

Proof. Let X be a component of GrG,C. Fix any point x ∈ X, x ∈ GrG,p for a unique
p ∈ C. If p = o, then X contains at least one component of GrG . If p , o,∞, then x is
a point in an affine Schubert variety Gr

λ

G,p for some λ ∈ X∗(T )+. By Theorem 2.3, Gr
λ

G,p

admits a flat degeneration to Gr
λ̄

G . If p = ∞, x is a point in a twisted affine Schubert

variety Gr
λ̄

G,∞. Similarly, there is a flat family connecting Gr
λ̄

G,∞ and Gr
λ̄

G . This concludes
that X must contain at least one component of GrG . In other words, GrG has as many or
more components than GrG,C.

Recall that the components of GrG are parametrized by (X∗(T )/Q̌)σ. On the other
hand, by [He, Theorem 2], π0(BunG) can also be identified with (X∗(T )/Q̌)σ. We have
a natural projection pr : GrG,C → BunG. In view of Heinloth’s uniformization theorem
[He, Theorem 3], the map pr is surjective. Hence GrG,C has as many or more components
than BunG. It forces that GrG , GrG,C and BunG have the same number of components.
In particular, it follows that there is a natural bijection bertween components of GrG and
GrG,C.

It is well-known that the neutral component GrG,C,◦ of GrG,C is isomorphic to GrG′,C.
Thus, we naturally get the level one line bundle L on the neutral component GrG,C,◦.
Recall the set S in (14) that parametrizes the components of GrG . For any nonzero κ ∈ S
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(if it exists), the component GrG ,κ of GrG contains eκ̄. Thus, the associated component
GrG,C,κ is exactly the one containing sκ. The component GrG ,κ is isomorphic to

LGC/Adsκ(L+GC),

where is sκ is a C-point in GrG,C as defined in Section 2.5. Then there exists a natural
isomorphism

GrG′,C = LG′C/L
+G′C ' LG′C/Adsκ(L+G′C),

given by gL+G′C 7→ Ads−κ(g)Adsκ(L+G′C). Therefore, the line bundle of level one on the
non-neutral component can be realized as the pull-back from the line bundle L on the
neutral component GrG,C,◦ via this isomorphism. �

4. Smooth locus of twisted affine Schubert varieties

In this section, we always assume that σ is an absolutely special automophism on G,
and G is of adjoint type.

4.1. GrT as a fixed-point ind-subscheme of GrG . We first recall a theorem in [Zh1,
Theorem 1.3.4].

Theorem 4.1. The natural morphism GrT → GrG identifies GrT as the T-fixed point
ind-subscheme (GrG)T of GrG.

The original proof of this theorem is not correct (communicated to us by Richarz and
Zhu independently), also see [HR2, Remark 3.5]. A correct proof can be found in [HR2,
Proposition 3.4], and a similar proof was known to Zhu earlier.

It is clear that Tσ is a subgroup scheme of LT and LG . Hence there is a natural action
of Tσ on GrG . We now prove an analogue of Theorem 4.1 in the setting of absolutely
special parahoric group schemes.

Theorem 4.2. The natural morphism GrT → GrG identifies GrT as the Tσ-fixed point
ind-subscheme (GrG )Tσ

of GrG .

Proof. Let L−−G be the ind-group scheme represented by the following functor, for any
C-algebra R,

L−−G(R) := ker(ev∞ : G(R[t−1])→ G(R)),
where ev∞ is the evaluation map sending t−1 to 0. Let L−−G be the ind-group scheme
which represents the following functor , for any C-algebra R,

L−−G (R) := ker(ev∞ : G(R[t−1])σ → G(R)σ).

We can similarly define L−−T and L−−T .
By the similar argument as in [Zh4, Lemma 2.3.5] or [HR2, Lemma 3.1], we have an

open embedding
L−−G ↪→ GrG

given by g 7→ ge0, where e0 is the base point in GrG . Let I be the Iwahori subgroup of
L+G , which is the preimage of Bσ via the evaluation map ev : L+G → Gσ for a σ-stable
Borel subgroup B in G. We have the following decomposition

(37) GrG =
⊔

λ̄∈X∗(T )σ

Ieλ̄.

18



For each λ̄ ∈ X∗(T )σ, we choose a representative λ ∈ X∗(T ). The twisted Iwahori
Schubert cell

Ieλ̄ = nλAdn−λ(I)e0

is contained in nλL−−G e0. Then by the decomposition (37),
⋃

λ̄∈X∗(T )∗ nλL−−G e0 is an
open covering of GrG . We may naturally regard GrT as an ind-subscheme of GrG .
Hence, we may regard e0 as the base point in GrT . Under this convention,⋃

λ∈X∗(T )σ

nλL−−T e0 =
⋃

λ∈X∗(T )σ

L−−T nλe0

is an open covering of GrT . Therefore, it suffices to show that for each λ̄ ∈ X∗(T )σ,

(nλL−−G e0)Tσ

' nλL−−T e0.

Further, it suffices to show that (L−−G )Tσ
' L−−T , where the action of Tσ on L−−G is

by conjugation. From the proof of [HR2, Proposition 3.4], one may see that (L−−G)Tσ
'

L−−T . This actually implies that (L−−G )Tσ
' L−−T . Hence, this finishes the proof of

the theorem. �

An immediate consequence of Theorem 4.2 is the following corollary.

Corollary 4.3. The Tσ-fixed C-point set in GrG is {eλ̄ | λ ∈ X∗(T )σ}.

4.2. A duality isomorphism for twisted Schubert varieties. Let GrG be the affine
Grassmannian of G, and let L be the line bundle on GrG that is of level one on every
component of GrG. For any λ ∈ X∗(T ), let Gr

λ

G denote the closure of G(O)-orbit at
Lλ := tλG(O) ∈ GrG. Let (Gr

λ

G)T denote the T -fixed point subscheme of Gr
λ

G. Zhu [Zh1]
proved that

Theorem 4.4. When G is simply-laced and not of type E, the resriction map H0(Gr
λ

G,L)→
H0((Gr

λ

G)T ,L|(GrλG)T ) is an isomorphism.

It was proved by Evens-Mirković [EM] and Malkin-Ostrik-Vybonov [MOV], that the
smooth locus of Gr

λ

G is the open cell GrλG for any reductive group G. In fact, this theorem
can also be deduced from Theorem 4.4 when G is of type A,D , and in many cases when
G is of type E.

We will prove a twisted version of Theorem 4.4, and as a consequence we get the
similar result of Evans-Mirković and Malkin-Ostrik-Vybonov in twisted setting. This
confirms a conjecture of Haines-Richarz [HR], when G is of type A(2)

2`−1,D
(2)
`+1,D

(3)
4 .

From Theorem 4.2, we have the identification GrT
'
−→ GrTσ

G . Let I λ̄ denote the ideal

sheaf of the Tσ-fixed subscheme (Gr
λ̄

G )Tσ
of Gr

λ̄

G . Then we have a short exact sequence
of sheaves

(38) 0→ I λ̄ → O
Gr

λ̄
G
→ O

(Gr
λ̄
G )Tσ → 0.

Recall that L is the line bundle on GrG which is of level one on every component.
Tensoring the above short exact sequence with L and taking the functor of global sec-
tions, we obtain the following exact sequence
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(39) 0→H0(Gr
λ̄

G ,I
λ̄ ⊗L )→ H0(Gr

λ̄

G ,L )
r
−→ H0((Gr

λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ )→ · · · ,

where r is the restriction map.

Theorem 4.5. When G is not of type E(2)
6 , the restriction map

H0(Gr
λ̄

G ,L )
r
−→ H0((Gr

λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ )

is an isomorphism.

This theorem will follow from the following proposition and Lemma 4.8. In fact, this
theorem holds for many twisted affine Schubert varieties of E(2)

6 , see Remark 4.9. The
following proposition does not exclude E(2)

6 .

Proposition 4.6. The map r is a surjection.

Proof. It is well-known that any twisted affine Schubert varietiety Gr
λ̄

G is a usual Schu-
bert variety in a partial affine flag variety of Kac-Moody group. See the identification
(29) and an argument for untwisted case in [BH, Proposition 2.21]. By [Ku, Theorem
8.2.2 (d)], we have that for any λ̄ � µ̄ in X∗(T )+

σ, the following restriction map

(40) H0(Gr
λ̄

G ,L )→ H0(Gr
µ̄

G ,L )

is surjective, and

(41) H0(GrG ,L ) = lim
←−−

H0(Gr
λ̄

G ,L |Grλ̄G
).

We also have the following surjective map

(42) H0((Gr
λ̄

G )Tσ

,L )→ H0((Gr
µ̄

G )Tσ

,L )

for all λ̄ � µ̄, since these Tσ-fixed closed subschemes are affine and the morphism
(Gr

µ̄

G )Tσ
↪−→ (Gr

λ̄

G )Tσ
is a closed embedding. Moreover,

H0((GrG )Tσ

,L |(GrG )Tσ ) = lim
←−−

H0((Gr
λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ ).

Therefore, for any λ̄ ∈ X∗(T )+
σ we have the following surjective maps

H0(GrG ,L )→ H0(Gr
λ̄

G ,L ), H0((GrG )Tσ

,L )→ H0((Gr
λ̄

G )Tσ

,L ).

Then to prove the map

H0(Gr
λ̄

G ,L )→ H0((Gr
λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ )

is surjective, it is sufficient to prove that the map

(43) H0(GrG ,L )→ H0((GrG )Tσ

,L |(GrG )Tσ )

is surjective, since we will have the following commutative diagram, for all λ̄,
20



(44)

H0(GrG ,L ) H0((GrG )Tσ
,L |(GrG )Tσ )

H0(Gr
λ̄

G ,L |Grλ̄G
) H0((Gr

λ̄

G )Tσ
,L |

(Gr
λ̄
G )Tσ ).r

By Theorem 4.2, we have GrT ' (GrG )Tσ
. Therefore, the surjectivity of the map (43)

follows from the following Lemma 4.7. �

We first make a digression on Heisenberg algebras and their representations. The sub-
space t̂σ := (tK )σ ⊕ CK ↪→ L̂(g, σ) is a Lie subalgebra. In fact, t̂σ is an extended (com-
pleted) Heisenberg algebra with center tσ ⊕ CK. Therefore, any integrable irreducible
highest weight representation of t̂σ is parametrized by an element µ ∈ (tσ)∗ and the level
c, i.e. K acts by the scalar c on this representation. We denote this representation by πµ,c.
By the standard construction,

(45) πµ,c = indt̂
σ

(tO)σ⊕CKCµ,c,

where ind is the induced representation in the sense of univeral enveloping algebras
,and Cµ,c is the 1-dimensional module over (tO)σ ⊕ CK where the action of (tO)σ factors
through tσ.

Lemma 4.7. The restriction map H0(GrG ,L c)→ H0(GrT ,L c|GrT ) is surjective.

Proof. Proving surjectivity here is equivalent to proving injectivity for the dual modules,

0→ H0(GrT ,L c|GrT )∨ → H0(GrG ,L c)∨.

Note that both of these spaces are modules for the Heisenberg algebra t̂σ; the mor-
phism is a t̂σ-morphism. Since T is discrete, we naturally have the following decom-
position

H0(GrT ,L c|GrT ) '
⊕

λ̄∈X∗(T )σ

OGrT ,eλ̄ ⊗L c|eλ̄ ,

where OGrT ,eλ̄ is the structure sheaf of the component of GrT containing eλ̄. We also
notice that, the identify component of GrT is naturally the formal group with Lie algebra
(tK )σ/(tO)σ. In view of the construction (45), we have

H0(GrT ,L c|GrT )∨ =
⊕

λ̄∈X∗(T )σ

π−cι(λ̄),c;

where the map ι : X∗(T )σ → (tσ)∗ is defined in (20). Since each π−cι(λ̄),c is irreducible,
and generated by a −cι(λ̄)-weight vector w−cι(λ̄), it suffices to show that the morphism

π−cι(λ̄),c → H0(GrG ,L c)∨

sends w−cι(λ̄) to a nonzero vector.
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By Theorem 3.8, we may define a Plücker embedding

φ : GrG → P(Hc)

given by ge0 7→ [ρg(v0)] for any ge0 ∈ GrG , where ρg is defined in Lemma 3.6, and
[ρg(v0)] represents the line in Hc that contains ρg(v0). Then we may pick a linear form
fλ̄ on Hc which is nonzero on [vλ̄], and which is 0 on other weight vectors, where vλ̄ is
defined in (33). The restriction fλ̄|φ(GrG ) produces a nontrivial element in H0(GrG ,L ),
since φ(eλ̄) = vλ̄.

Observe that the map π−cι(λ̄),c → H0(GrG ,L c)∨ sends w−cι(λ̄) to a nonzero scalar of vλ̄.
Thus the map π−cι(λ̄),c → H0(GrG ,L c)∨ is nontrivial and thus injective. �

By Lemma 4.7, we obtain the following short exact sequence

0→ H0(Gr
λ̄

G ,I
λ̄ ⊗L )→ H0(Gr

λ̄

G ,L )
r
−→ H0(Gr

λ̄

G ,L ⊗ O
(Gr

λ̄
G )

)→ 0.

Thus, the obstruction to the map r being an isomorphism is the vanishing of the first
term H0(Gr

λ̄

G ,I
λ̄ ⊗L ).

Let Iλ denote the ideal sheaf of the T -fixed subscheme on Gr
λ

G. We will show that the
vanishing of the first term can be deduced from the vanishing of H0(Gr

λ

G, I
λ ⊗ L).

Recall that Gr
λ

G,C is a global Schubert variety defined in Section 2.5. The constant
group scheme Tσ × C over C is naturally a closed subgroup scheme of T . Hence Tσ

acts on Gr
λ

G,C naturally. Let (Gr
λ

G,C)Tσ
be the Tσ-fixed subscheme of Gr

λ

G,C, and let Iλ be

the ideal sheaf of (Gr
λ

G,C)Tσ
. Then, Iλ|p is the ideal sheaf of (Gr

λ

G,C |p)Tσ
. Recall that,

Gr
λ

G,o = Gr
λ̄

G , Gr
λ

G,∞ ' Gr
λ̄

G , Gr
λ

G,p,o,∞ ' Gr
λ

G.

In particular, we have

Iλ|o = I λ, Iλ|∞ ' I λ, Iλ|p,o,∞ ' Iλ.

Lemma 4.8. Assume that G is not of type E6. Then the ideal Iλ is flat over C.

Proof. Consider Gr
λ

G,C\{o,∞} and the Tσ-fixed subscheme (Gr
λ

G,C\{o,∞})
Tσ

. We denote by Zλ

the flat closure of (Gr
λ

G,C\{o,∞})
Tσ

in GrG,C. Since Z is the closure of a Tσ-fixed subscheme,

we see that Zλ|o ⊂ Gr
λ

G,C |o, and Zλ|∞ ⊂ Gr
λ

G,C |∞.

To show Iλ is flat over C, it is sufficient to show that (Gr
λ

G,C)Tσ
is flat over C. This

is equivalent to showing Zλ = (Gr
λ

G,C)Tσ
. In particular, it suffices to show the fibers Zλ|o

and Zλ|∞ are isomorphic to (Gr
λ̄

G )Tσ
. Since the fiber Zλ|∞ at∞ is similar to the fiber Zλ|o

at o, it suffices to show that Zλ|o = (Gr
λ̄

G )Tσ
. Note that both of these are finite schemes,
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we can compare the dimensions of their structure sheaves as follows:

dim O
(Gr

λ̄
G )Tσ ≥ dim OZλ |o = dim O(Gr

λ
G,p,o,∞)Tσ

= dim O(Gr
λ
G,p,o,∞)T

= dim H0(Gr
λ

G,L|p,o,∞)

= dim H0(Gr
λ̄

G ,L )
≥ dim O

(Gr
λ̄
G )Tσ ,

where the first equality follows from the flatness of Zλ over C, the third equality follows
from Theorem 4.4, the fourth equality follows since Gr

λ

G,C is flat over C (cf. Theorem
2.3), and the last inequality follows from Proposition 4.6 . From this comparision, it
follows that dim OZλ |o = dim O(Gr

λ
G,p,o)Tσ . Hence, OZλ |o = O(Gr

λ
G,p,0)Tσ . This concludes the

proof of the lemma. �

Proof of Theorem 4.5. By Lemma 4.8, if H0(Gr
λ

G, I
λ ⊗L) = 0, then H0(Gr

λ̄

G ,I
λ̄ ⊗L ) =

0. When G is not of type E6, from [Zh1, Section 2.2] it is known that H0(Gr
λ

G, I
λ⊗L) = 0

for any λ ∈ X∗(T ). Hence, when G is not of type E(2)
6 , H0(Gr

λ̄

G ,I
λ̄ ⊗ L ) = 0 for

any λ̄ ∈ X∗(T )+
σ. Therefore, the theorem follows from Lemma 4.7 and the long exact

sequence (39). �

Remark 4.9. In [Zh1], Zhu also proved Theorem 4.4 for many cases of affine Schubert
varieties when G is type E. In particular, when G is type E6 and for any λ which is a non-
negative summation of fundamental coweights ω̌1, ω̌2, ω̌4, ω̌5, ω̌6 following the labelling
in [Ka, Table Fin, p.53], Theorem 4.4 holds. Therefore, it follows that when λ̄ ∈ X∗(T )σ
is a non-negative summation of ω̌1, ω̌2, ω̌6 ∈ X∗(T )+

σ, our Lemma 4.8 and Theorem 4.5
hold. Note that ω̌1 = ω̌5 and ω̌2 = ω̌4. To fully prove the case of E6, by the method
in [Zh1], it suffices to prove Theorem 4.4 when λ = ω̌3. Due to the complexity of this
method for exceptional groups, this case is still open.

As an application of Theorem 4.5, we get a geometric Frenkel-Kac isomorphism for
twisted affine algebras.

Theorem 4.10. For any absolutely special G , the restriction map

H0(GrG ,L )→ H0(GrT ,L |GrT )

is an isomoprhism, via the embedding GrT → GrG .

Proof. By Theorem 4.2, it suffices to show that the restriction map r : H0(GrG ,L ) →
H0(GrT ,L |(GrG )Tσ ) is an isomorphism. In view of (41) and (42) and as a consequence
of Theorem 4.5, the restriction map r is an isomorphism when G is not E(2)

6 .
When G is of type E(2)

6 , the element ω̌1 ∈ X∗(T )+
σ corresponds to the highest root of

H := (Ǧ)∨, see Section 2.3. Thus, for any λ̄ ∈ X∗(T )σ, there exists k ∈ N such that
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λ̄ � kω̌1. It follows that

H0(GrG ,L ) = lim
←−−

k

H0(Gr
kω̌1

G ,L |
Gr

kω̌1
G

),

and

H0((GrG )Tσ

,L |(GrG )Tσ ) = lim
←−−

k

H0((Gr
kω̌1

G )Tσ

,L |
(Gr

kω̌1
G )Tσ

).

Now, by Remark 4.9, we see that the restriction map r is also an isomorphism when G
is E(2)

6 .
�

4.3. Application: Smooth locus of twisted affine Schubert varieties. We now wish
to investigate the smooth locus of the Schubert variety Gr

λ̄

G .

Theorem 4.11. Assume that G is of type A(2)
2`−1,D

(2)
`+1,D

(3)
4 . For any λ ∈ X∗(T )+

σ, the

smooth locus of Gr
λ̄

G is precisely the open Schubert cell Grλ̄G .

Proof. For any µ̄ ∈ X∗(T )+
σ, if eµ̄ = nµe0 is a smooth point in Gr

λ̄

G , then by [Zh1, Lemma
2.3.3] dim O

(Gr
λ̄
G )Tσ ,eµ̄

= 1.

By Theorem 3.11, we have H0(Gr
λ̄

G ,L )∨ ' D(1, λ̄), where D(1, λ̄) is the Demazure
module defined in Definition 3.10. Then by Theorem 4.5, we have

dim D(1, λ̄)−ι(µ̄) = lengthO
(Gr

λ̄
G )Tσ ,eµ̄

,

where D(1, λ̄)−ι(µ̄) is the −ι(µ̄)-weight space in D(1, λ̄). We will prove that for any µ̄ � λ̄,

dim D(1, λ̄)−ι(µ̄) ≥ 2, which would imply that eµ̄ is not a smooth point in Gr
λ̄

G . From the
surjectivity of (40), we have an embedding D(1, µ̄) ↪→ D(1, λ̄). On the the other hand,
V(−ι(λ̄)) ↪→ D(1, λ̄), where V(−ι(λ̄)) is the irreducible representation of gσ of lowest
weight −ι(λ̄). In view of Lemma 2.1, Lemma 3.3 and Lemma 3.4, when G is not of type
A2`, the relation µ̄ � λ̄ implies that ι(µ̄) � ι(λ̄). Hence, V(−ι(λ̄))−ι(µ̄) , 0. Furthermore,
as subspaces in D(1, λ̄),

D(1, µ̄) ∩ V(−ι(λ̄)) = 0.

It follows that dim D(1, λ̄)−ι(µ̄) ≥ 2. This concludes the proof of the theorem. �

From the proof of the above theorem, we see that our technique does not fully apply
to the Schubert variety Gr

λ̄

G when G is of type A(2)
2` . Also, since the duality theorem is

not fully established yet for E(2)
6 , we can only get some partial result in this case.

Recall the group H = (Ǧ)τ mentioned in Section 2.3. By the ramified geometric
Satake, (X∗(T )σ, X∗(T )+

σ, γ j, j ∈ Iσ) can be regarded as the weight lattice, the set of
dominant weights, and simple roots of H. When (G,m) = (E6, 2), H is F4; when
(G,m) = (A2`, 4), H is B` of adjoint type. We follow the labelling of Dynkin diagram in
[Ka, Table Fin, p 53]. Let {$ j | j ∈ Iσ } be the set of fundamental dominant weights of
H.
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Theorem 4.12. (1) Let G be of type E(2)
6 . If λ̄ is a non-negative linear combination

of the fundmental weights $1, $2, $4 of H, then the smooth locus of Gr
λ̄

G is the
open cell Grλ̄G .

(2) Let G be of type A(2)
2` . For any λ̄, µ̄ ∈ X∗(T )+

σ with µ̄ � λ̄, the Schubert cell Grµ̄G is

contained in the singular locus of Gr
λ̄

G , except if µ̄ ≺ λ̄ is a cover relation such
that the simple short root γ` appears in λ̄ − µ̄.

Proof. Part (1) of the theorem follows from Remark 3.5 and Remark 4.9, where under
the map η : I → Iσ, $1 = ω̌6, $3 = ω̌2, $4 = ω̌1.

For part (2) of the theorem, we will prove this part by several setps. Let c` be the
coefficient of γ` in λ̄ − µ̄.

Step 1. Observe from the proof of Theorem 4.11, when the coefficient c` is even, we
have dim D(1, λ̄)−ι(µ̄) ≥ 2. Thus, eµ̄ is singular in Gr

λ̄

G .
Step 2. Assume that the coefficient c` > 1. There exists sequence of dominant ele-

ments in X∗(T )+
σ,

(46) µ̄ = λ̄k ≺ λ̄k−1 ≺ · · · ≺ λ̄1 ≺ λ̄0 = λ̄,

such that each ≺ is a cover relation. Then, by a theorem of Stembridge [St, Theorem
2.8], for each i, λ̄i − λ̄i+1 is a positive root of H, for any 0 ≤ i ≤ k − 1, and the coefficient
of γ` in each λ̄i − λ̄i+1 is either 0 or 1. Let j be the least integer such that the coefficient
of γ` in λ̄ j−1 − λ̄ j is 1. Such j exists, since c` , 1. Then the coefficient of γ` in λ̄ j − µ̄
is even. By Step 1, we have dim D(1, λ̄ j)−ι(µ̄) ≥ 2. On the other hand, we have the

inclusion D(1, λ̄ j) ⊂ D(1, λ̄). It follows that dim D(1, λ̄)−ι(µ̄) ≥ 2. Hence, the variety Gr
λ̄

G

is singular at the point eµ̄.
Step 3. We now assume that the coefficient c` = 1. By assumption, µ̄ ≺ λ̄ is not a

cover relation. Then, in the sequence of cover relations in (46), either the coefficient
of γ` in λ̄k−1 − λ̄k is 0, or the coefficient of γ` in λ̄0 − λ̄1 is 0. If the coefficient of γ`
in λ̄k−1 − λ̄k is 0, by Step 1 dim D(1, λ̄k−1)−ι(µ̄) ≥ 2, implying that dim D(1, λ̄)−ι(µ̄) ≥ 2.

Hence eµ̄ is singular in Gr
λ̄

G . If the coefficient of γ` in λ̄0 − λ̄1 is 0, then by Step 1 again,

eλ̄1 is a singular point in Gr
λ̄

G . Since the singular locus of Gr
λ̄

G is closed, the point eµ̄ is
also singular. �

Let G be of type A(2)
2` . We now explicitly describe the cover relation µ̄ ≺ λ̄ such that

γ` appears in λ̄ − µ̄. Note that X∗(T )σ is a root lattice of H ' S O2n+1. In fact, X∗(T )σ is
spanned by $1, $2, · · · , $`−1, 2$`. Reading more carefully from [St, Theorem 2.8], we
can see that, µ̄ ≺ λ̄ is a cover relation such that γ` appears in λ̄ − µ̄, if and only if one of
the followings holds:

(1) λ̄ − µ̄ = γ`.
(2) λ̄ − µ̄ =

∑`
j=i γ j and µ =

∑i−1
k=1 ak$k with all ak > 0, for some 1 ≤ i ≤ ` − 1.

Remark 4.13. (1) When G is a special but not absolutely special parahoric group
scheme of type A(2)

2` , i.e. when σ is the diagram automorphism and G is of type

A2`, there is a counter-example that Gr
λ̄

G is smooth but Gr
λ̄

G , Gr
λ̄
G , cf. [HR,
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Section 5.1] or [Zh3, page 3]. This phenomenon is somewhat related to Remark
3.2.

(2) One can define the affine Grassmannian GrG and twisted affine Schubert va-
rieties Gr

λ̄

G of the absolutely special parahoric group scheme G with the base
field k of characteristic p. In [HR, Section 6], when p , r, Haines and Richarz
reduced the question of the smooth locus of the Gr

λ̄

G over characteristic p to char-
acteristic zero case. In fact, by the work of Lourenço [Lo], one may construct
a global twisted affine Schubert variety over Z so that the base change to the
field k of characteristic p (including p = r) is the given twisted affine Schubert
variety defined over k. Then the argument of Haines and Richarz can still apply
to the case of characteristic p = r. Therefore, Theorem 4.11 also holds for any
base field k.

5. Fusion product for twisted affine Demazure modules

5.1. Fusion product via the geometry of affine Grassmannian. In this section, for
convenience we assume G to be simply connected. We describe a geometric formula-
tion of fusion product for twisted affine Demazure modules. This closely follows the
approach in [Zh1, Section 1.2].

Keeping the same set-up as in Section 2.4, we first introduce the Beilinson-Drinfeld
(BD for short) Grassmanian over C = P1. For any C-algbra R, we define

(47) GrG,Cn(R) :=

 (p1, . . . pn,F , β)

∣∣∣∣∣∣∣∣∣∣
pi ∈ C(R)

F a G-torsor on C̄R

β : F |C̄R\∪Γ̂p̄i
' F̊ |C̄R\∪Γ̂ p̄i

 ,
where F̊ is the trivial G-torsor. When n = 1, this is the global affine Grassmannian
GrG over C. Let GrG,p,q denote the fiber of GrG,C2 over the point (p, q) ∈ C2. The BD
Grassmannian GrG,C2 satisfies the following property

GrG,p,q =

GrG,p × GrG,q if p , q
GrG,p if p = q

.

There is a projection morphism π2 : GrG,C2 → BunG, given by (p1, p2,F , β) 7→ F .
We get the level one line bundle L on GrG,C2 which is the pull-back (via π2) of the level
one line bundle on BunG constructed in Theorem 3.13. This line bundle satisfies the
following property:

L|p,q =

Lp �Lq if p , q
Lp if p = q

,

where Lp is the level one line bundle on the affine Grassmannian GrG,p for any p ∈ C.
When p , o,∞, the affine Grassmannian GrG,p is isomorphic to GrG and Lp can be
identified with L as discussed in Section 4; when p = o or∞, GrG,p is isomorphic to GrG
and Lp can be identified with L .

In the proof of the following theorem, we adpat an argument of [Zh1, Theorem 1.2.2]
in the setting of parahoric Bruhat-Tits group scheme G.
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Theorem 5.1. For any λ ∈ X∗(T )+ and µ̄ ∈ X∗(T )+
σ, we have the following isomorphism

H0(Gr
λ

G,L
c) ⊗ H0(Gr

µ̄

G ,L
c) ' H0(Gr

λ̄+µ̄

G ,L c),

as Gσ-modules, where Lc (resp. L c) is c-th power of the line bundle L(resp. L ) with
c ≥ 0.

Proof. We first introduce the global convolution Grassmannian GrG,C×̃GrG over C. For
any C-algebra R, we define

(48) GrG,C×̃GrG (R) :=


(p,F1,F2, β1, β2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p ∈ C(R)

F1,F2 : G-torsors on C̄R

β1 : F1|C̄R\Γ p̄ ' F̊ |C̄R\Γ p̄

β2 : F2|(C̄\ō)R ' F1|(C̄\ō)R


.

We have the projection
pr : GrG,C×̃GrG → GrG,C,

given by (p,F1,F2, β1, β2) 7→ (p,F1, β1). This projection is a fibration over GrG,C with
the fibers isomorphic to GrG . We also introduce the following L+G -torsor P over GrG,C,

P(R) =


(p,F , β1, β2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p ∈ C(R)
F : G-torsor

β1 : F |C̄R\Γ p̄ ' F̊ |C̄R\Γ p̄

β2 : F |Γ̂ p̄
' F̊ |Γ̂p̄


.

Then P ×L+G GrG ' GrG,C×̃GrG .
Recall that for any λ ∈ X∗(T )+, we have the global affine Schubert variety Gr

λ

G,C. Let

P|
Gr

λ
G,C

be the restriction of P on Gr
λ

G,C. For any λ ∈ X∗(T )+ and µ ∈ X∗(T )+
σ, we define

Gr
λ

G,C×̃Gr
µ̄

G := P|
Gr

λ
G,C
×L+G Gr

µ̄

G .

Therefore, Gr
λ

G,C×̃Gr
µ̄

G is a fibration over Gr
λ

G,C with fibers isomorphc to Gr
µ̄

G . In par-

ticular Gr
λ

G,C×̃Gr
µ̄

G is flat over C. The variety Gr
λ

G,C×̃Gr
µ̄

G has the following properties:

Gr
λ

G,C×̃Gr
µ̄

G |p,o,∞ ' Gr
λ

G × Gr
µ̄

G

and
Gr

λ

G,C×̃Gr
µ̄

G |p=o ' Gr
λ̄

G ×̃Gr
µ̄

G := p−1( Gr
λ̄

G ) ×L+G Gr
µ̄

G ,

where p is the projection p : LG → GrG .
Note that we also have a natural morphism

m : GrG,C×̃GrG → GrG,C2 |C×o,

given by (p,F1,F2, β1, β2) 7→ (p, o,F2, β1 ◦ β2). This is an isomorphism away from o
and over o, we get the usual convolution morphism

mo : GrG ×̃ GrG → GrG .
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This morphism restricts to the following morphism

mo : Gr
λ̄

G ×̃Gr
µ̄

G → Gr
λ̄+µ̄

G .

This is a partial Bott-Samelson resolution. The line bundle m∗Lc on GrG,C×̃GrG |p,o,∞ is
isomorphic to Lc � L c, where we identify GrG,C×̃GrG |p,o,∞ with GrG × GrG . The line
bundle m∗Lc on GrG,C×̃GrG |o ' GrG ×̃ GrG is exactly (mo)∗L c. Since mo is a partial
Bott-Samelson resoluton, we have

(49) H0(Gr
λ̄

G ×̃Gr
µ̄

G , (mo)∗L c) ' H0(Gr
λ̄+µ̄

G ,L c),

as L+G -modules. Note that Gσ ×C is naturally a subgroup scheme of L+G over C.
The variety Gr

λ

G,C×̃Gr
µ̄

G is flat over C and it connects Gr
λ

G × Gr
µ̄

G and Gr
λ̄

G ×̃Gr
µ̄

G . More-

over, Gr
λ

G,C×̃Gr
µ̄

G admits an action of Gσ and Lc is also Gσ-equivariant (by construction
of L as the pull-back from the line bundle from BunG), we get

(50) H0(Gr
λ̄

G ×̃Gr
µ̄

G , (mo)∗L c) ' H0(G
λ

G × Gr
µ̄

G ,L
c �L c) ' H0(G

λ

G,L
c)⊗H0(Gr

µ̄

G ,L
c).

as Gσ-modules. Combining isomorphisms (49) (50), we conclude the theorem. �

Remark 5.2. When G is of adjoint type, Theorem 5.1 should also hold, but we need to
replace G by its simply-connected cover G′. One needs some extra argument to show
that the line bundle L is (G′)σ-equivariant on non-neutral components of GrG,C2 .

Set

D(c, λ) := H0(Gr
λ

G,L
c)∨.

This is an affine Demazure module of the current algebra g[t], cf. [Ku, Theorem 8.2.2
(a)]. As a consequence of Theorem 5.1, we have

Corollary 5.3. For any λ ∈ X∗(T )+ and µ̄ ∈ X∗(T )+
σ, we have

D(c, λ) ⊗ D(c, µ̄) ' D(c, λ̄ + µ̄)

as Gσ-modules.

Fourier-Kus proved the fusion for twisted affine demazure modules of the twisted cur-
rent algebra g[t]σ when g is not A2` and σ is a diagram automorphism. Chari-Ion-Kus
introduced the hyperspecial current algebra Cg for A(2)

2` and studied the twisted affine
Demazure modules in [CIK], where they presented this algebra by using a basis. The
fusion product of the twisted affine demazure modules of this hyperspecial current alge-
bra were further studied by Kus-Venkatesh in [KV]. In Section 5.2, we will prove that
the hyperspecial current algebra Cg can be identified with the twisted current algebra
g[t]σ where g is A2` and σ is the absolutely special automorphism. With all this said, our
Corollary 5.3 is a consequence of the works of [FK, CIK, KV].
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5.2. Matching with the hyperspecial current algebras in case of A(2)
2` . We define an

element h ∈ t by the condition that αi(h) = 0 for all i , `, `+ 1, and α`(h) = α`+1(h) = 1.
Then σ = τih, where i =

√
−1 .

Let αi j denote the positive root αi + · · · + α j, for any 1 ≤ i ≤ j ≤ 2`. Notice that
τ(αi j) = α2`+1− j,2`+1−i. For each root α, let eα denote the standard basis in g = sl2`+1.

Lemma 5.4. We have the following formula

(51) σ(e±αi j) = (−1) j−ii±αi j(h)eα2`+1− j,2`+1−i , for any 1 ≤ i ≤ j ≤ 2` + 1,

and σ(hi) = h2`+1−i, for any 1 ≤ i ≤ 2` + 1.

Proof. In [Ka, §7.10], the formula for the action of τ on every basis vector in g is given.
Combining this formula and σ = τih, we can deduce the formula for σ.

�

Following [KV, Section 1.8], the hyperspecial current algebra Cg ⊂ g[t, t−1]τ consists
of the following basis elements:

(1) e±α ⊗ tk + (−1)i+ je±τ(α) ⊗ (−t)k, α = αi j with 1 ≤ i ≤ j < `, and k ≥ 0;

(2) e±α ⊗ tt±1 + (−1)i+ je±τ(α) ⊗ (−t)k±1, α = αi,2`− j with 1 ≤ i ≤ j < `, and k ≥ 0;

(3) e±α ⊗ t2k±1, α = αi,2`+1−i with 1 ≤ i ≤ `, and k ≥ 0;

(4) e±α ⊗ t(2k+1±1)/2 + (−1)`+ie±τ(α) ⊗ (−t)(2k+1±1)/2, α = αi` with 1 ≤ i ≤ `, and k ≥ 0;

(5) hi ⊗ tk + h2`+1−i ⊗ (−t)k, 1 ≤ i ≤ `, and k ≥ 0.
There exists an isomorphism ηk : L̂(g, τ) ' L̂(g, σ) due to Kac (cf. [HK, p8] and [Ka,

§8.5]), which is defined as follows

ηk(x[t j]) = x[t2 j+k],

for any x a simultaneous (−1) j-eigenvector of τ, and a k-eigenvector of adh.
Let φ be the Cartan involution on g such that φ(ei) = − fi and φ(hi) = −hi. Notice that

for any root α, φ(eα) = −e−α. Now, we define an automorphism ηc : L̂(g, τ)→ L̂(g, τ) as
follows,

ηc(x[tk]) = φ(x)[tk], for any x[tk] ∈ L̂(g, τ).
It is easy to verify that ηc is well-defined, since ηc ◦ τ = τ ◦ ηc, where τ is regarded as
the twisted automorphism on the untwisted affine Lie algebra ĝ. We define the following
isomorphism of twisted affine algebras

(52) η := ηk ◦ ηc : L̂(g, τ) ' L̂(g, σ).

Theorem 5.5. The map η restricts to the following isomorphism of Lie algebras

η : Cg
∼
−→ g[t]σ

Proof. From the definition of (52), we have the following calculations:
(1) When α = αi + · · · + α j with 1 ≤ i ≤ j < `, and k ≥ 0, we have

η(e±α ⊗ tk + (−1)i+ je±τ(α) ⊗ (−t)k) = −(e∓α ⊗ t2k + (−1)i+ je∓τ(α) ⊗ (it)2k).
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(2) When α = αi,2`− j with 1 ≤ i ≤ j < `,, and k ≥ 0, we have

η(e±α ⊗ tk±1 + (−1)i+ je±τ(α) ⊗ (−t)k±1) = −(e∓α ⊗ t2k + (−1)i+ je∓τ(α) ⊗ (it)2k).

(3) When α = αi,2`+1−i with 1 ≤ i ≤ `, and k ≥ 0, we have

η(e±α ⊗ t2k±1) = −e∓α ⊗ t4k.

(4) When α = αi` with 1 ≤ i ≤ `, and k ≥ 0, we have

η(e±α ⊗ t(2k+1±1)/2 + (−1)`+ie±τ(α) ⊗ (−t)(2k+1±1)/2) = −(e∓α ⊗ t2k+1 + (−1)`+ie∓τ(α) ⊗ (it)2k+1).

(5) For any 1 ≤ i ≤ `, and k ≥ 0, we have

η(hi ⊗ tk + h2`+1−i ⊗ (−t)k) = −(hi ⊗ t2k + h2`+1−i ⊗ (it)2k).

Then, it is easy to check that the image of the described basis in Cg under the map η is
exactly a basis in g[t]σ. This completes the proof of the theorem. �
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