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1 Introduction

1.1

This paper is a continuation of [Mu]. Let ¢ be a holomorphic cusp form of weight k& on SLs(Z)
which is a common eigenfunction of the Hecke operators, and 2 a Hecke character of an imaginary
quadratic field K such that Q(()) = (a/|a|)* for a € K*. Let L(i, ;) be the Rankin-Selberg
L-function attached to (¢, ) with a functional equation under s — 1 — s, and P(¢,2) an Q-
averaged sum of values of ¢ at certain CM points in K (for the precise definition, see [Mu]). Due
to Shimura’s fundamental results on critical values of Rankin-Selberg L-functions ([S1],[S2]), we
have the equality L(p, Q;1/2) = en* 1| P(p, Q)|? with an algebraic number c. A similar formula
for the central value of L(p,2;s) was investigated by Waldspurger ([W]) in a great generality,
though the constant of proportionality is not explicit in his work. The main result of [Mu] is a
precise description of the constant ¢ under the assumption that the class number of K is odd.
In this paper, we generalize the results of [Mu] for a holomorphic cusp form on T'g(V)
with a character and an algebraic Hecke character of conductor f, assuming that N is square
free (without any assumptions on K and f). The method of the proof is similar to that of [W],
though we need a more precise knowledge of theta lifts used in the proof to determine an explicit

value of the constant of proportionality. For related works, see Remark 1.5.

1.2

We now state the main results of this paper in an adelic setting. Let K be an imaginary quadratic

field of discriminant D. Denote by w the quadratic Hecke character of Q corresponding to K/Q.
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For z € K, we put Tr(z) = z + 2% and N(z) = 227, where o is the nontrivial automorphism
of K/Q. Let Ok be the integer ring of K. We take and fix an element 6 of O such that
Org =7+ Z6,Im(#) > 0 and ord, N() = 1 for any prime factor p of D. For a place v of Q, we
put K, = K ®q Q,, where Q, is the completion of Q at v. Let p be a finite place of Q and fix
a prime element 7, of Q,. Let Ok, = O ®z Z,.

Let N be a positive square free integer and x a Hecke character of Q of finite order whose
conductor M divides N. Denote by x* the Dirichlet character modulo N corresponding to x
(cf. 2.1). Let G = GLy and Gy = GL2(Qy) the adelization of G. Let Sk(N, x) be the space
of functions on Gp\Gx which correspond to holomorphic cusp forms on I'g(N) of weight k& and
character x* (cf. 3.1). Let f € Si(N,x) and assume that f is a primitive form with Hecke
eigenvalues {\, (p XN),A;E (pIN)} (ct. 3.3).

Let ¢ be a Hecke character of K. We denote by &, the restriction of £ to K. We assume

that ¢ satisfies the following two conditions:

(L1) Elgx = X
(1.2) §o(200) = (ZC>O/"ZO<>D]c (200 € CX).

Note that £ is of infinite order. For a finite place p of Q, define
(1.3) ap(§) = Min{a € Z>g | & is trivial on (1 4+ 7,0k )}

and put

(1.4) A(E) = H pr(©),
p<oo
Let L(f, &' s) be the Rankin-Selberg L-function attached to (f,¢~!) (for the definition, see
3.4). The L-function L(f,£';s) is continued to a meromorphic function on C and satisfies a
functional equation under s +— 1 — s.
Let ¢ be an embedding of K into M>(Q) given by

T N(0)y

(1.5) vz +0y) = ( Ly r ot Te(O)y

) (z,y € Q).
We define a period integral attached to (f, &) by

(1.6) P(f.6:g) = / 1)) s (g€ Ga),

QF KK

where the measure d* z is normalized as in 2.4.



Let go = (gow)v € Ga, where

—ap(§)

Tp 0 )
ifv=p<ooandp [N,
0 1
W;ap(§)+l 0 )
gou = if v =p < oo and p|N,
0 1
1 Re(0) Im(#) 0 )
1 if v = 0.
\o 1 0 Tm(0)

Note that go o -7 = 0.

Let S1(€) (respectively Sa(€)) be the set of prime factors p of M~1N such that a,(£) = 0
and p is inert (respectively ramifies) in K/Q. We have S3(&) = S5 (f,€) U Sy (f,€), where

SE(,6) = {p € So(6) | & (M)A = +1}
and I, is a prime element of K},. We are now able to state our main results.

THEOREM 1.1. Let f € Sk(N, x) be a primitive form and & a Hecke character of K satisfying
(1.1) and (1.2).

(i) We have P(f,&9) =0 for any g € Ga if S1(€) # 0 or S (f,€) # 0.

(ii) Suppose that S1(&) = Sy (f,€) = 0. Then we have

IP(f.&90)> = C(f.&)L(f. € 1/2),

where the constant of proportionality is given by

C(f,€) = (4m) F(k — 1) D| 72 AL 12RO TT Lp(ws1)*.
plA(E)

COROLLARY 1.2. Suppose that S1(&) = Sy (f,€) = 0.
(i) We have L(f,671;1/2) > 0.

(ii) The central L-value L(f,671;1/2) vanishes if and only if the period integral P(f,&; go)
vanishes.

REMARK 1.3. If N =1 or M = N, we have S1(£) = S2(§) = (0. In particular, Theorem 1.1

in the case N = 1 implies that the main results of [Mu] hold for any imaginary quadratic field
K.

REMARK 1.4. The period integral P(f,&; go) can be seen as a ¢~ '-average of values of f at
certain CM points in K.



REMARK 1.5. In the works of Gross and Zagier (|G| and [GZ]), the central values L(f,§;1/2)
or L'(f,&;1/2) are studied in the case where ¢ is a ring class character of K (and hence of finite
order). For a generalization of their works, we refer to the work of Zhang [Z]. Recently, explicit
formulas for the central value of L(f,&;s) for a Hecke character ¢ of infinite order have been
studied by a number of authors, notably Popa [P], Xue [X] and Martin and Whitehouse [MW].
They work in a representation theoretic framework and impose an assumption that D, N and
A(€) are coprime to each other. On the other hand, we only assume that N is square free in

this paper.

REMARK 1.6. The period integrals P(f,&;go) appear in explicit formulas for Fourier (or
Fourier-Jacobi) expansions of certain theta liftings (see [MS], [MN]).

1.3

The paper is organized as follows. The first two sections are of preliminary nature. In Section
2, we prepare several notation and facts used in later discussions. In Section 3, we recall several
facts on automorphic forms on G = GLo. In Section 4, we study local spherical functions
on (Gp,t(K))), where ¢ is the embedding of K* into G defined by (1.5). In particular, we
prove the vanishing of the spherical functions under certain conditions (Proposition 4.1), which
immediately implies the first asssertion of Theorem 1.1. In Section 5, we construct a mapping
L from the space of cusp forms on G4 to the space of those on G4 x G4 as a theta lifting with a
suitably chosen test function. One of the key in the proof of Theorem 1.1 is Theorem 6.1, which
says that, for a primitive form f € Si(N,x), £(f) coincides with (—24)* fy ® fn, where fy is a
twist of f (cf. 3.6). This fact is proved by calculating the Fourier expansion of L(f) (Proposition
6.2). The proof of Proposition 6.2 is reduced to that of a local result (Proposition 6.8), which
is proved in Section 7 by a lengthy calculation involving local Whittaker functions. In Section
8, applying a method of Waldspurger in [W], we relate |P(f,&; g)|? to a product of certain local
integrals. The proof of the second assertion of Theorem 1.1 is completed by combining the

results in Section 6 and the calculation of the local integrals carried out in Section 9.
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Notation

For a place v of Q, denote by |- |, the valuation of Q,. For a = (ay), € Qf, put |a|s =[], |av|o-
For a linear algebraic group X defined over Q, X, stands for the group of Q,-rational points
of X. We denote by X, and X, ; the adelization of X and the finite part of Xy, respectively.
Let ¢ be the additive character of Q4/Q such that () = e[z for 2o € R. Denote by v,



the restriction of ¥ to Q,. A Hecke character of an algebraic number field F is a continuous
homomorphism of E; /E* to C*.

Throughout the paper, we fix an imaginary quadratic field K of discriminant D. Denote by
w the quadratic Hecke character of Q corresponding to K/Q. Let p be a finite place of Q. If
K, /Qy is ramified, we fix a prime element II, of K. If p splits in K/Q, we fix an identification
between Kj and Q, & Qp, and put IIy , = (mp, 1), = (1, 7). We put Oy =[],
Denote by hx and wg the class number of K and the number of roots of unity in K, respectively.
For X € My, (K), we put X* = X7,

For a non-Archimedean local field F', we denote by Op and pr the integer ring of F' and the

Ok p-

maximal ideal of Op, respectively. For a local field F', we define the local zeta function (r(s) as
follows: If F is a non-Archimedean local field, we put (p(s) = (1—qz°) !, where qp = |Op/pF|.
If F is an Archimedean local field, we put

72T (s/2) if F =R,

Cr(s) = B '
2(2m)~°I'(s) if F =C,

where I'(s) denotes the gamma function.

We write diag(ai,...,a,) for the diagonal matrix of degree n with the (7,7)-component a;.
For z € C, we put e[z] = exp(2my/—12). For a finite-dimensional vector space V over a local
field, S(V') stands for the space of Schwartz-Bruhat functions on V. We put §(P) = 1 if a
condition P is satisfied and 6(P) = 0 otherwise. For a set X, charx denotes the characteristic
function of X. The cardinality of a finite set X is denoted by |X|.

2 Preliminaries

2.1

Throughout the paper, we fix a positive square free integer IV and a Hecke character x of Q of
finite order whose conductor M divides N. For a place v of Q, x, stands for the restriction of
x to Q;f. For n € Z, define

[ ) if (n.N)=1,
X" (n) = { plM
0 if (n, N) > 1.

Then x* is a Dirichlet character modulo N.

2.2

Let Z = {z13 | z # 0} be the center of G = GLy. For x € Q and y,y" € Q*, put

(1 = . _(1 0 ~n_ [y O
n<m)_<0 1)7 n(a:)_(r 1>a d(y7y)_<0 y/>€GQ'



Let N be the algebraic subgroup of G with Ng = {n() | € Q}. We put Uy =[], Up and
Us = [1)co0oUp, where Uy = GLa(Zp) and Uy, = {(uij) € Up | uz1 € NZyp} for a finite place p
of Q. Note that U, is an Iwahori subgroup of G), if p|N and U,, = U, otherwise. We have the

decomposition
G — Unez ZpNpdmly ifp /N,
p= .
Unnez ZoNpdutdy U U, 5 ZoNpdmw'Pth,  if p|N,

where

-1
dpy, = d(70", 1), w) = ( (in . > (m € 7).

The real Lie group G, = {g € G« = G(R) | det g > 0} acts on the upper half plane = {z €
C | Im(z) > 0} by

g-z=(az+b)(cz+d)! (g:(a Z)GG:O’Z€55>
c

as usual. We put j(g,z) = (det g)/?(cz + d). Let Uso = Uso = {g € SLo(R) | g-i =i}.

2.3 Hecke operators

Let p be a finite place of Q. We define a character x, of U, by

" (( a b )) 1 if p fN,
Xp = )
c d xp(d) if p|N.
Note that X, is trivial unless p|M. Let C(Gp; Xxp) be the space of continuous function ¢ on G,
satisfying p(gu) = Xp(u)p(g9) (g9 € Gp,u € Uy). Let ¢ € C(Gp; Xp) and g € Gp. If p [N, we put

Telg) = elgd(m, 1))+ > elgn(a)d(l,m,").
a€Zy /DLy

Then 7,¢ € C(Gp; Xp)- If p|N, we put

7?‘10(9) = Xp(mp) Z gp(gn(a)d(l,ﬂgl)),
a€Zp[pZyp

T, 09)= Y. elgn(ma)d(m,’,1)).
a€Zp/pLyp

Then ’Z;igo € C(Gp; Xp)- Note that the definitions of 7, and ’Z;,i do not depend on the choice of

Tp-



2.4 Normalization of measures

Let v be a place of Q. Let dz, (respectively dz,) be the Haar measure on Q, (respectively K,)
self-dual with respect to the pairing (z,, 2}) — ¥, (2,2}, (respectively (z,, 21) — 1y (Tr(292]))).
Note that vol(Ok ) = |D|}D/ ? and dzs is twice the usual Lebesgue measure on Ko = C. We
put dz = [[ < dz, and dz =[]

and K© by

v<oo dzy. We normalize the measures d*x, and d*z, on QJ

d*zy = (o, (1) 2], da,
d* 2y = (i, (1) | N (20)|, 2o,

respectively. Note that vol((’)}x(p) = |D|11,/2 and d* 2o = 2r tdrdt (2o, = rexp(it)). We put

d*x = [[y<oo Ty and d*z =[], -, d* 2z,. With this normalization, we have

4mh
/ d*z=2L(w;1) = LKUZ
QKX \K wi | D|

Let dg, be the Haar measure on G, given by

/Gv #(g0)dg = /@5 // / lyly Lo (zn(z)d(y, 1)u)dud™ ydod™ 2

for ¢ € L'(G,). Here du, is normalized by

1 if v = o0,
vol(Uy) =
Up: U] ifv=p< 0.

We put dg =[], dgo-

2.5 Gauss sum

Let p be a finite place of Q dividing N. Define the Gauss sum by
G0 =35 () [ vyl a)pla)da
P

= pilxgl(ﬂ'p) Z wp(ﬂgla)Xp(a%

a€(Zp—pZp)/pLp

where dz is the Haar measure on Z, normalized by vol(Z,) = 1. Note that G,(x) does not

depend on the choice of m,. The following is well-known.
LEMMA 2.1, (i) If plM™'N, we have Gy(x) = —p~ ' x;, ' (mp).

(it) If p|M, we have |Gp(x)| = pil/Q,Gp(X) = X(—I)Gp(xfl) and

/Z () xp(2)dz = Gp()x, (y)char, -1z (y) (v € Q).



2.6

Let & be a Hecke character of K satisfying (1.1) and (1.2). Note that ay,(§) = 0 if and only if &,
is trivial on O ,» and hence a,(§) > 0 for p[M. The following is easily verified.

LEMMA 2.2. For 0 < m < ap(§), we have

/ (1 +yb)dy = 0.
T Ly

3 Automorphic forms on GL(2)

3.1 Automorphic forms

We henceforth fix a positive integer k satisfying (—1)F = xoo(—1). Put ¥ = [I,<o0 Xp (for the
definition of X, see 2.3). Then X is a character of Uy.
Let Si(N, x) be the space of smooth functions on G satisfying the following conditions:

(i) We have f(zygufus) = X(z)i(uf)j(uoo,i)_kf(g) for z € Za,v € Gg,9 € Ga,uy €
U, oo € Uso.

(ii) For any g5 € Ga g, T — fam(T59f) = 7(g9r,1)*f(grgs) is holomorphic on § (17 =z + iy €
9,9- = n(2)d(/7, i) € GL).
(iii) f is bounded on Ga.

Note that 7, (respectively 7;*) defines a linear operator of Sy (N, x) for p JN (respectively p|N).
We write fym,(7) for fgm(7;1). Then we easily see that

fam (aTer) = x*(d)(cm + d)F fam(T) (( ¢ Z ) € FO(N)> ;

C7‘+d C

and that f — fg,, defines an isomorphism of Si (N, x) to the space of holomorphic cusp forms
on I'g(N) of weight k and character x*.

3.2 Fourier expansion

For f € Si(N, x), we have the Fourier expansion:
flg) =Y Wi(d(a,1)g),
ace@QX
where
Wilo)= [ wl-a)fa)g)ds
Q\Qa
Let -
fdm(T) = Z an(fdm)e[nT]
n=1

be the Fourier expansion of fg,,. We say that f is normalized if a1 (fgm) = 1. The following fact

is well-known.



LEMMA 3.1. If f is normalized, we have W(d (Yoo, 1)) = 6(yoo > 0) oé exp(—27Yso) for
Yoo € R*.

3.3 Primitive forms

We say that f € Si(N,x) is a primitive form if fg,, is a primitive form (cf. [Mi, §4.6]). If f is

a primitive form, the following hold:
(i) f is normalized.
(ii) For p /N, we have T,f = X\, f with A, € C, and A\, = xp(m,) .

cee j: _ i .
(iif) For p|N, we have T, f = A7 f with AF, A € C, and

1 if plM~IN,

A=A, A=
g b per p if p|M.

If p|M~'N, we have (A\F)? = xp(mp)*L.
(iv) For p|M 1N, we have

flgw) = e,f(9) (g€ Ga),
(p)

where €, = =} (for the definition of w;", see 2.2).
REMARK 3.2. When p|N, we have A} = P20, (fam)-

We say that f is a primitive form with Hecke eigenvalues {\, (p [N), /\If (p|N)}.

3.4 L-functions

Let f € Sip(N,x) be a primitive form with Hecke eigenvalues {A, (p /N),AF (p|N)}. When
p [N, let t1p,t2, € C be the roots of an equation X2 — p~1x, (7)) \pX + p~txp(mp) = 0. Let £
be a Hecke character of K. The Rankin-Selberg L-function L(f,&; s) is defined by

L(f.&s) = [ Lo(£.69)

p<oo

Here the local factor Ly (f,&; s) is given as follows: If &, is nontrivial on O} » We set L,(f, & s) =
1. Suppose that &, is trivial on O[X(p. Then p fM.

(i) If p is inert in K/Q, we set

Lp(fa §;8) = Rp(gp(ﬂp)p_%)_la

where
[T, (1—pt2,X) ifp [N,

R, (X) =
: 1—p ' (N)2X if p|MTIN,



(ii) If p ramifies in K/Q, we set

Lp(fa §;8) = Rp(fp(Hp)pis)ila

where
H?:1(1 - Pl/Qti,pX) if p SN,

Ry (X) =
! 1—pl/2f X if p[M~IN.

(iii) If p splits in K/Q, we set

2
Ly(f.&8) = [[ Bo(& (T p)p ") 7",
j=1

where
[T2.,(1—p'?t;,X) ifp JN,

Rp(X) =
8 1—p 20F X if p|M1N.

3.5 Local Whittaker functions

Let p be a finite place of Q. Let W,(x,) be the space of functions W on G), such that
W (zn(z)gu) = xp(2)p(z)Xp(w)W (g) for z € Z,,x € Qp,g € Gp,u € U,,.

First suppose that p fN. For A € C, let Wy(xp; A) = {W € Wy(xp) | LW = AW }. The
following fact is well-known.

LEMMA 3.3. Assume that p [N and let W € Wy(xp; ).
(i) If W(12) =0, W is identically equal to zero.
(ii) We have dime W, (xp; A) < 1.

(iii) The support of W is contained in U ZpNpdnUy, and we have
n>0

n+1 n+1
_ tl — 752

W(dy) =2 —2=W()  (n20)

where t1,ty € C are the roots of an equation X* — p~ 1y, (mp)AX + p~Ixp(mp) = 0.

(iv) If X = xp(mp)A, then W(g) = x, ' (det g)W (g) (g € Gp).

Next suppose that p|N. For (AT,A7) € C2, let Wy(xp; AT, A7) = {W € Wy(xp) | T W =
AEW}. We can easily verify the following results.

LEMMA 3.4. Assume that p|N and let W € W, (xp; AT, A7).
(i) If W(12) =0, W is identically equal to zero.

(ii) We have dimc Wy(xp; AT, A7) < 1.

10



1) The support of W is contained in ZyNopd U, U Z,N, dnw(p)l/{ . Forn >0, we have
p/Npdntip p/NpdnWy "Up

n>0 n>0

W(d,) = (p~ AW (1),
W(dw®) = p'Gy(xp) A (0 xp(mp) A7) W (L),

3.6 Global Whittaker functions

For f € Sk(N, x), set

(3.1) fn(g) = x""(det g) f(gun),

0 -1
wNZngp) (wgp):< >6Gp>.
m 0
pIN

It is easy to see that fy € Si(IV,x™!). Lemmas 3.3 and 3.4 implies the following result.

where

PROPOSITION 3.5. Assume that f € Sg(N,x) is a primitive form with Hecke eigenvalues
X (0 IN), NS (PIN)}.

(i) For g = (gv)y € Ga, we have
Wf(g) = H Wv(gv)-

v<00
Here W), is the element of Wy(xp; Ap) (respectively Wy(xp; \f 5 A, ) with Wp(12) = 1 if
p [N (respectively p|N), and

Woo(zn(z)d(y, 1)u) = 5(y > 0) Xoo(2)y*/2e[x + iyl (u, i)~
forx e Ry, z € R u € Uy

(ii)) We have
Wiy (9) = H Wé(gv)a

<00
where
Wy (gv) ifv=p [N orv= o0,

Wi(g0) = X, *(det o) x .
Wp(gpwy”) if v =p|N.

(iii) We have W), = W If p [N, we have W) € Wy(x; 5 xp(m)Xp) and W) (12) = 1. If p|N,
we have W) € Wy(x;, s My, Af) and W)(12) = p~'Gpxp) A,

pr°p

11



4 Local spherical functions

4.1

In this section, we study local spherical functions on (G, ¢(K,)) and prove Theorem 1.1 (i).
Throughout this section, we fix a finite place p of Q such that K, is a field, and often suppress the
subscript p. We write K and F' for K, and Q, respectively. Let Og and O be the integer rings
of K and F, respectively. Let B = {(u;;) € GL2(OF) | ua1 € pr} be an Iwahori subgroup of G.
Let £ be a unitary character trivial on O}; and write y for the restriction of £ to F*. Denote by F¢
the space of functions ¢ on G satisfying ¢(c(2)gu) = £(2)p(g) for z € K*,g € G and u € B. For
(AT,A7,€e) € CxCxC*, define Fe(AT, A 7;¢) = {p € F¢ | TEp = A, p(guwr) = ep(g) (g € G)}
(for the definition of T+, see 2.3). In this section, we prove

PROPOSITION 4.1. Suppose that |\| =1 and A\TA~ = 1.
(i) If K/F is inert, we have F¢(AT,A7;¢) = {0}.
(ii) If K/F is ramified and Y (IDAT = 1, we have Fe(AT,A7;€) = {0}.

REMARK 4.2. Let f € Si(IV, x) be a primitive form with Hecke eigenvalues {\, (p [N), )\?f (p|N)}
satisfying f(gwgp)) = ¢,f(g) for p|M~'N. Note that |A\F| =1 and AfA; =1 for plM N (cf.
3.3). Then, for p € S1(§) US2(§), P(f,&; *)|g, belongs to Fe, (A}, A, €p). Thus Theorem 1.1 (i)
directly follows from the above proposition.

4.2

To show Proposition 4.1, we need the following elementary facts (for the proofs, see [MN]).
LEMMA 4.3. We have

Uso T9mBU,,s0 Tgmun B if K/F is inert,
Us—1 TgmBU >0 Tgmwi B if K/F is ramified,

G =

where T' = «(K*) and gy, = d(1,7™).

LEMMA 4.4. (i) Letm >0 anda € Op. If z, = a—7"0 € O}, we have gyn(a)d(1,771) €

1 20) gmun B.

(ii) Let m > —1 and a € Op. Then gpn(ra)d(r~1,1) € «(n712.)gmi1B, where zi, = 1 —
™ lah € OF.

(i1i) Suppose that K/F' is ramified. Then g_jw; € 1(0)g_15.

12



4.3 Proof of Proposition 4.1

Assume that there exists a nonzero element ¢ of F¢(AT,A7;¢€). Since p(gw?) = x(m)¢(g), we
have €2 = x(7) and hence || = 1.

First suppose that K/F is inert. By Lemma 4.4 (ii), we obtain

Nlgm) = D @1 —7"1a0)p(gmi1) = pX (M)(gmir)  (m > 0).
a€Orp/pr

We thus have ¢(gm) = (p~1x(m)A7)" ¢v(g0) and ¢p(gmw1) = € (p~1x(m)A7)" ¢(go) for m > 0.
In view of Lemma 4.3, this implies that ¢(go) # 0. On the other hand, we have

Ao(go) = x(m) Y &(n (a—6))p(gowr) = per(go)
a€OFp [pp

by Lemma 4.4 (i) and hence A™ = pe. This contradicts to the assumption |AT| = 1.
Next suppose that K/F is ramified and ¢ ~'(II)A* = 1. By an argument similar to the above,

we obtain
olgm) = (" x(mA) " p(gor)  (m > 1),
plgmwn) = ¢ ("X (@A) olgm)  (m>0),

which implies ¢(g—1) # 0. By Lemma 4.4 (iii), we have ep(g_1) = ¢(g9—1w1) = £(0)p(g9-1) =
¢(I)p(g—1) and hence € = £(II). On the other hand, we have

ATe(g0) = x(m)e(g-1) + (p = Dp(gowr)
= {x(m) + (p — Vep™ 'x(m)A"} p(g-1).
This implies AT - p~tx(m)A™ = x(7) + (p — D)ep ' x(7)A~. Since A~AT = 1, we have ¢ = —\*

and hence ¢ ~1(IT)A* = —1, which contradicts to the assumption.

5 Theta lift

5.1 Metaplectic representations

b — d —b
Let V. = M3(Q). For X = (a d) eV, put X = < ) For a place v of Q, let
—c

c a
Vv — MQ(QU)'

For p < oo, §'(V, x Q) denotes the space of locally constant and compactly supported
functions on V,, x Q5. We denote by S'(Vo x Q%,) the space of smooth functions ® on V. x Q%
such that, for any ¢t € QX, X — ®(X,t) is in S(Vi).

LEMMA 5.1 ([W]). Let v be a place of Q. There exists a smooth representation R, of G, X

13



Gy X Gy on 8'(V, x QX) such that the following holds:
Ry(1, g1, 02)®(X,t) = (g, ' Xg1,det(g7 'g2)t) (91,92 € Gu),
R,(n(b),1,1)®(X,t) = b, (bt det X)P(X, ) (b e Qy),

Ry(d(a,d),1,1)®(X, ) = ‘% O(dLX,adt)  (a,d € QX),

0 —1 _
R, (( Lo >,1,1> d(X,t) = |t|%,/vu Uy (—t Tr(Y X))®(Y, t)dY.

Here dY is the Haar measure on V,, self-dual with respect to the pairing (X,Y) — b, (Tr(Y X)).
REMARK 5.2. For z € Q, we have

Ry(2,1,1)®(X,t) = R,(1,27 1, 1)®(X,t) = Ry(1,1,2)®(X,t) = &(271 X, 2%t).

5.2 Intertwining operators

7, (( vy ) ,t) = |t|v/ Uy (t(zy —ya'))® (( oy > ,t) dx'dy'
z w Q2 z w

for ® € §'(V,, x Q). A straightforward calculation shows the following:

We put

LEMMA 5.3. We have
Ty o Ry(g,91, )®(X,t) = I,®(g ' Xg1,det(gg; ) t) (9,91 € Go),
Zy,o Ry(1,1,n(b))®(X,t) = 1 (bt det X)Z,P(X, t) (b€ Qy),

T, 0 Ry(1,1,d(a,d))®(X, t) = (g T,8(d" X, adt)  (a,d € QX)

for & € S'(V, x Q).

5.3 Test functions

For a place v of Q, we define a test function @, € S'(V,, x Q) as follows. When v = p < oo,

we put
char X) - char,x (¢ if p /M,
( 2 7, )( ) z; () p/
NZ, 7Z
(I)O7p(X7t) = 1 ? !
—+(Xg2)char X) - char,x(t) if p|M,
G ehar - (X) charg (1)t
PLy L)
where X9 is the (2,2)-component of X. When v = oo, put
k
1
(11)X exp(—mt Tr(*X X)) ift >0,
(PO,oo(Xa t) = 7
0 if £ <0.
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LEMMA 5.4. (i) We have Z,®q ), = Pop.

(1) We have Zoo®p o0(X,t) = Ppoo(d(—1,1)X,1).
Proor. This is proved by a direct calculation. O
LEMMA 5.5. (i) For u,u1,us € Uy, we have Ry(u,u1,u2)®o, = Xp(uug  uz)®o .

(ii) For u,uy,us € Uso, we have Rog(u, u1,u2)®o 0o = j(u, 1) Fj(ur, i) *j(uz,i) g o0-

(111) For z € Zs, we have Roo(2,1,1)Pp o0 = z‘k<I>07oo.

Proor. This follows from the definition of R, and Lemmas 5.3 and 5.4. ]

5.4 Theta kernel

Let 8'(Vy xQ} ) be the restricted tensor product of §'(V;, x Q;\) over v with respect to {®g p}p<oo-
Then R = Q) R, defines a smooth representation of Gy x Gy x Gy on §'(Vy x Qy). We

<00
put Z = @, Z,. We define a theta kernel by
_ k/2
(5.1) 0(g,91,92) = |det(gg; 192)‘1! Z R(g,91,92)®0(X, 1),
(X,t)eV xQX

where ) = ®,P¢, € §'(Viy x QF). By Poisson summation formula and Lemma 5.5, we have

the following:

LEMMA 5.6. (i) Forvy,v1,72 € Gq, 9,91,92 € Ga, ug,u1 f,us r € Uy and e, U1 00, U200 €

U, we have

O(YgU flhoo, Y1G1U1, FUL 005 Y292U2, FU2,00)

= S(J(Ufui}c?,@’f)j(uoo,l) j(ul,oovli) ](UQ,Ooui)kg(g)glqu)‘

(ii) For zoo € Zoo, we have 0(209, 91, 92) = (g, 91, g2).

(iii) For z € Zy, we have 0(zg, g1, g2) = 0(g, 27 g1, g2) = 0(g, g1, 292).

5.5 Theta lift

For f € Si(N, x), we define

(5.2) LF(g1,02) = / 1(9)0(g 91, 92)dg.

Z£Gg\Ga

Since g — 6(g, g1, g2) is of moderate growth on Z1 Go\Ga for (g1, g2) in any compact subset of
Ga x Gy, the integral (5.2) converges absolutely. By Lemma 5.6, we have the following:

LEMMA 5.7. For z; € Zy,7v; € G, 9i € Ga,uip € Us, Ui 00 € Uso (1 =1,2), we have

Lf(217191U1, U1 00, 227292U2, U2 00)

= X(z125 )X, g5 1) (1,00, 8) 5 (2,00, 1) FLF (g1, g2).-
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6 The image of the theta lift
6.1
The object of this section is to show the following key result of the paper.

THEOREM 6.1. Let f € Sp(N,x) be a primitive form. Then we have

Lf(g1,92) = (—20)" fn(91) fn(g2) (91,92 € Ga).

Recall that we have defined fn(g) = x'(det g)f(gwn) (cf. 3.6). For (m,n) € Q?, set

(6.1) L1 g1, 92) = /( o, VUt T e L) g n(w2)g2)dmds.

Since L™ (g1, g2) = LD (d(m, 1)g1,d(n,1)go) for (m,n) € (Q*)2, the proof of Theorem
6.1 is reduced to that of the following fact:

PROPOSITION 6.2. Let f € Si(N,x) be a primitive form.
(i) If mn =0, we have L™ (g1, g2) = 0.

(i) We have LD (g1, g2) = (—20)* Wy, (91) Wy (92)-

6.2 Intertwining operators

In this section, we recall a definition of a certain intertwining operator introduced in [W]. Let v
be a place of Q. Define a linear operator I,,: S'(V, x Q) — S'(V, x Q) by

(6.2) 1,® (( ””” i ) ,t> = |t|3/2/Q bu(tyy')® (( ‘” Z} ) ,t> dy

for ® € S'(V,, x Q). A straightforward calculation shows the following:
LEMMA 6.3 ([W]). Let ® € S8'(V, x Q).

(i) For b,b' € Q,, we have

hoRdLn@%MUﬁ@((x y>’0

ZM@MM+Hw+muDh¢<<$_HZ y )’Q.

(ii) For a,d € QF, we have

v

I, 0 Ry(1,d(a,d),1)® (( v ) ’t> - ’g
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(iii) For ',d € QJ, we have

v

I o Ry(1,1,d(d, d))® (( vy >t> _

(iv) For b e Q,, we have

I, 0 Ry(n(b),1,1)® << v > ,t) — 4y (bzw) I, ® (( v oy—be ) ,t) .

(v) For a,d € Qf
a2 U@<(l‘/d W),adt).
z/d w/d

/

1/2 / '
AN e[ Y YV pan)
v z/d w/d

d

o> we have

I, o Ry(d(a,d), 1,1)® (( vy ) )

(vi) We have
Ivon(wg,l,l){)((x y)t)
z w

:|t|v/ Uy (—t(wzy + zwy)) L, P e ,t | dzidw;.
Q3 -y w

6.3 Fourier coefficients of Lf

Put I = @), I,. By Poisson summation formula, we obtain

0(9791792) = 00(9791792) + 91(9791792)7

where

_ k/2 z 0
00(g, 91, 92) = |det(gg; 192)’A/ Z IoR(g,91,92)%0 (( 0 ) 7t> ;

z,weQ,teQX

01(g, 91, 92) = |det(gg; " g2)|; " > > 1o R(g,91,92)%0 (( v > ,t> :

z,weQ,teQ* (y,2)€Q?—{(0,0)}

LEMMA 6.4. (i) We have

01
00(g, 91, 92) = |det(gg; ' g2)| Z Z o R(v9, 91, 92)®o (( 00 ) 71>,

veNQ\Go

r —1
019, 91 92) = |det(ggr ' g2)[> S S ToR(v9.91.92)%0 ((0 ; >1>

z,weQ veNg\Go

(ii) Fori=0,1, g 0;(g,91,92) is left ZL Gg-invariant.
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ProOF. By Poisson summation formula, }det(ggflgg)‘[gk/2 00(g,91,92) is equal to

Y. ToR(g,01,92)%0 << 8 i ) ,t> -

z,weQ,teQX*

By Lemma 5.3, this is equal to

> ToR(1,1,g2)% << 8 8 > adet(9911)t> + Y. IoR(y9,01,92)%0 << 8 é > ,1> :

teQx ’YENQ\GQ

The first term vanishes, since

0 0
Zoo 0 Roo(1,1, oo ) Po 0] =0

holds for any go, € Goo and t € R* in view of Lemmas 5.3, 5.4 and 5.5. Thus the first formula
of (i) has been verified. Next observe that

Z Z I o R(vg,91,92)®0 (( vl ) ,1> =J1+ Jo.

z,weQ ’YEN@\GQ 0 w
where

Ji= > > IoR(d(md)g,gl,gz)@o((x _1>,1>,

z,weQ a,deQ* 0 w

Jy = Z Z I o R(wod(a,d)n(b)g, g1, g2)Po (( v -1 ) ,1> )

z,w€eQ a,deQ* ,beQ

By Lemma 6.3 and Poisson summation formula, we have

Jo = Z Z I'o R(d(a,d)n(b)g, g1, 92)Po << v 0 ) ,1)

z,weQ a,decQ* ,beQ 1w

d 'z —d'b
= Z Z IOR(Q?.gth)(I)O (( d_l d_lw ) 7ad>

z,weQ a,deQ* ,beQ

= Z Z IOR(9791792)‘P0<<$ 4 ),t).

2 wEQLEQ (y,2)EQX QX =
On the other hand, we have
r y
=) > " IoR(g,91,92)%0 ],
0 w
z,weQ,teQ* yeQx

which completes the proof the second formula of (i). The left Gg-invariance of g — 6;(g, g1, 92)

follows from (i). The left Z1 -invariance is derived from Lemma 5.5 (iii). O
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LEMMA 6.5. For f € Si(N, x), we have

/ f(9)00(g,91,92)dg =0 (91,92 € Gn)
ZHGo\Ga

and hence

Lf(g1,92) :/ f(9)01(g, 91, 92)dg.

Z3,Go\Gy

Proor. This follows from Lemma 6.4, the cuspidality of f and the fact that

0 1 0 1
oo (2 ))-ze((2 1))

for any ® € §'(Vy x Q) and = € Q4.

For m € Q, we put

Wr(g) = (—ma) f(n(z)g)d.
Q\Qa
Note that W})(g) =0 and Wi (g) = Wy(d(m,1)g) for m € Q*.

PROPOSITION 6.6. For (m,n) € Q% we have
L1 (g1, 92)

_ k/2
= \detgl 192|A/ /+

ZgoNa\Ga

k m —1
| det gl * W™ (9) I o R(g, 91, 92) o (( > ,1) dg.
PROOF. By Lemmas 6.4 and 6.5, £f("™™ (g1, go) is equal to

| det (g7 g2) |5 / / (may — nay)| det gt f(g)
(@\Q4)? J/2£Go\Ga

Z Z I o R(vg,n(z1)g1,n(72)g2)Po << :g ;}1 > ,1) dgdz1dzs.

z,we€Q veNp\Go

Since

0 w

= 1/1(95931 _wx2)IOR(’Y.gagl)g2)(p0 (( v 1 > )1) ;
0 w

I'o R(vg,n(z1)g1,n(x2)g92) 0 (( vt ) »1>
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we obtain

L™ (g1, g2)

_ m —1
= | det(g; g2} / et gls*F(9) Y. IoR(vg.91,92)%0 1) dg
Z£Go\G 0

vENQ\Gg

= det(g; ' g2)1}/” [ 1detglt @)
ZEN\Ga JQ\Qa
1
(mnx)I o R(g, g1, 92)Po (( 73 ) ,1) dzxdg
n

— mn m -1
— | det(gy "g2) [/ / | det g|s/*W¥"(g) I o R(g, g1, 92)Po 1) dg.
ZEN\Ga 0 n

The first assertion of Proposition 6.2 immediately follows from this proposition.

6.4

Let {A, (p JN), XE (p|N)} be the Hecke eigenvalues of f. Recall that A = AJ if p|N, and

1 if plM~IN,

A =
P p if p|M.

For a place v of Q, let W,, and W, be as in Proposition 3.5. Set

Ju(91,92)

1 -1
= / | det g|%/2W,(9) I o Ry(g, 91, 92)Po.0
NG 0 1

where
N, ifv=p< oo,
P

ZiNs ifv=o0.

The following is easily verified.

LEMMA 6.7. For z; € QF,x; € Qy, 9 € Gy,u; €U, (i =1,2), we have

Jy(z1n(z1)g1ut, zon(x2)gous)
~ 1 .
~ , Xo(uy u2) if v < o0,
= Ju(91,92) - xo(2123 )|z125 HE ho(—21 + 22) x { 7001
G(u,9)¥5(ug,i)™%  if v = co.
In view of Propositions 3.5 and 6.6, we have

LD (g1, g2) = |det g7 ool TT Jol0100920) (9 = (Gio)o € Gayi = 1,2).

v<oo

In order to show Proposition 6.2 (ii), it now suffices to show the following.
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PROPOSITION 6.8. Let v be a place of Q. Then, for g1,g92 € G, we have

if v < o0,

To(91,92) = | det g1g; ' [&/> W (g1) W, (92) X (=2i)% if
— 21 i v = OQ.

7 Proof of Proposition 6.8

7.1

In the subsections 7.1-7.4, we consider the case where v = p < oo, and often suppress the

subscript p. We write F,Ofr and pr for Q,,Z, and pZ,, respectively. Recall that d,, =

d(7™,1) (m € Z) and
B ( 0 -1 >
w1 = - 0 .

For m € Z, we write 7, and 7, for the characteristic functions of 7™ Op and 7™ O}, respectively.
Observe that we have the following integral formula: For ¢ € L'(N\G/U),

ez e(md; it p I,
S O et pl(rd) »t

Zi,jez ijD(W_idj) + Z@jezpjso(ﬂ'_idjwl) if p|NV.
Recall that
Wi(g)  ifp [N,

W'(g) = x"'(det g) x .
Wigwy) if plN.

7.2

In this subsection, we suppose p fN. Note that W/(g) = x(det g)W(g) = W(g) by Lemma 3.3.

To prove Proposition 6.8 in this case, it suffices to show
(7.2) J(dp, dy) = pFCmH 20 () "W (d )W (dn)  (mun € Z)

in view of Lemma 6.7. We may (and do) assume that m,n > 0, since both sides of (7.2) vanish
unless m,n > 0. Recall that I®g(X,t) = ®g(X,t) and W(d,,) = (7T —t7T1) /(t; — ta), where
t1,ta € C satisfy t1 4+ to = p~ 1 x(7)\, t1ta = p~x(7). By (7.1), J(d,,, d,) is equal to

© o . ; L -
Zzp]_k(—zzﬂ)ﬂw(ﬂ—ldj)IoR(ﬂ'*’dj,dmadn)(I)O (( 0 1 ) 71)

1€Z j=0

)2 NN i (1K) /2 i AR —2itj—m+n
=p > x(m) " W (d;)®o i '

i€Z j=0 ’ '
_ p_n+k(—m+n)/2 Z pix(ﬁ)_iW<d2i+m—n+l)'

0<i<n, 1 >2n—m, 2i+m—n>0
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If m > n,
t2i+mfn+1 t21l+mfn+1
1 2

t1 —to

J(dpm,dy) = p~ " HEmERRZN iy ()
0<i<n
o et - gt

(t1 —t2)? ’

— pk(fm+n)/2x(ﬂ_)fn (

which proves (7.2) in this case. We can verify (7.2) similarly in the case m < n.

7.3
In this subsection, we suppose p|M ~!N. We then have
(7.3) W(gw) =eW(g)  (9€G)

Or Or

with € = —AT. Recall that ®; is the characteristic function of
pr OF

) x Op. Let @

pr Of

denote the characteristic function of
Pr PFr

) X 77_10;. A straightforward calculation

shows the following;:

LEMMA 7.1.
R(wy,1,1)®0 = R(1,w; ', 1)@ = R(1,1,w1)®¢ = .

LEMMA 7.2. We have
J(g1wi,g2) = p~ %I (g1, 92),  T(g1, g2wn) = p*>x " (m)e(g91,92) (91,92 € G).
PrOOF. By using the fact w; = —7rw1_1 and Lemma 7.1, we have

J(glwlagQ) = X(W)p_k‘](glwfl792)

1 -1
= X(’/T>p_k //\/’\G ‘ detg‘k/QW(g)[ o R(gwlvgth)@O (( ) 71> dg

0 1

Changing the variable ¢ into gwl_1 in the integral and using (7.3), we get J(giwi,g2) =

p~*/2€J (g1, g2) as required. The second formula is proved in a similar manner. O

In view of Lemma 7.2, to prove Proposition 6.8 in this case, it is sufficient to show the

following:

LEMMA 7.3. For m,n > 0, we have

(7.4) J(dpm,d,) = pUmm ORI, )W (d).

22



PROOF. By (7.1), we have

J(dp, dy)
) ) ) i+m—n  _ _i—j+m o
_ Z pkz+(1—k)]/2—(m+n)/2x(7r)—zW(dj)IcI)O << T . s i > ,71_—21+j—m—|—n>
1,jEZL g
) ) ) i+m—n _ _i—j+m o
+ Z pkH_(l_k)]/2_(m+n)/2_k/2€X(W)_ZW(dj)I(I)B << m . 7T7Ti ) ’77'21+Jm+n> .
1,J€ZL

Since I1®¢ = @y and 1d(, = pl/QCharﬂM2(OF)Xﬂ_1O;, J(dpm,dy) is equal to

p(—m+n)k/2—n % Z piX(W)_i (p—l)\+)2i+m—n
0<i<n, i+m—n>0

+ Z piEX(ﬂ,)fi(pfl)\Jr)ZL#mfnfl
1<i<n, i+m—mn>1

Using € = —A* and (A\1)? = x(7), we have

J(dp,dy)

_ p(—m+n)k/2—n Z p—i—m+n - Z p—i—m+n+1 ()\—i-)m—n

0<i<n, t+m—n>0 1<i<n,i+m—n>1

_ pk(fm+n)/27mfn()\+)mfn.

On the other hand, by Lemma 3.4, the right-hand side of (7.4) is equal to

p(fern)k/Qfman(ﬂ,)mfn (F)m()\+)n — pk(fm+n)/27mfn()\+)mfn

)

which completes the proof of Lemma 7.3. O

7.4

In this subsection, we suppose that p|M. Recall that

B, << vy ) ,t) = x "N w)ro (@) 0 (y) 1 (2) T (W) Th (E).

Z w

The following is proved by a straightforward calculation.
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LEMMA 7.4. For X = ( Ty ) eV andt € F*, we have

I9o(X,t) = Do(X, 1),
Io R(wy, 1, 1)@(X,t) = p"/? G(x) x(tz) m(x)71 (y)1(2) 71 (w) 7’1 (£),
To R(1, w1, )®o(X, t) = p'/*x " (=2) 70(a)70(y) 79 (2)70(w) 7] (¢),
o R(wy, w1, 1)®o(X, 1) = x~ ' (y) T0(2)75(y)71.(2)70(w) 70 (1),
o R(1,1,w1)®0(X, t) = p"*G(x) x(ty) 71(2)7(y)71 ()71 (w) 74 (1),
I'o R(wi,1,w1)®o(X,t) = G(x) x(t2) 71 ()71 (y)7 (2) 71 ()75 (8),
Io R(1,wi,wi)®o(X,t) = x~ () 7 () 10(y) 11 (2) 70 (W) 75(),
To R(wy, wi, wi)®o(X,t) = p'/? G(x) x(tw) 71 (x) 71 (y)71 (2) 7 (w) 7/, (£)

LEMMA 7.5. For m,n > 0, we have

J(dp, dy) = pTm TR (T (AT,
J(dmwy, dn) = pCm DRy ()G () x ()™ (o7 AT,
J(di, dpwy) = pm DR ()G (x)x () T (p AT
J(dmwy, dywy) = ptUm IR 2y () (p AT )™ (p AT,

PROOF. In view of (7.1), we have

J(91,92) ZZPICH ~1=Ri/2 X(m) (AT

i€Z §>0

i g
xIo R(laglng)(I)O " Tr‘ 77T72i+j
0 '

+ Z Zpki+(—1—k:)j/2—k:/2—1X(7T)—i+jG(X)—1()\—)j—H

i€Z §>0

i i
xTo R(w07.gla 92)(1)0 i Tr- 77T_2i+j .
0 't

24



Then, by Lemma 7.1 and using the fact that ATA~ = p and AT = A\~, we obtain

J(dym, dn) Zzpkw( 1-k)j/2—(m+n)/2 x(m)~ i()\+)j

i€Z 520

7Ti+m—n _ﬂ.i—j-l—m o
x I®g (( 0 ; 77r—21+3—m+n
71'

+ Z Zpki+(—1—k)j/2—k/2—1—(m+n)/2X(7T)—i+jG(X)—1 ()\—)j+1

i€Z §>0

7ri+mfn _Wifj+m o
x I o R(wy,1,1)®q 0 . , w2tk —mtn
T

= 6(m > n)plh=D/ T2 (NI (4 < ) p R/ 220 2 (=)
= p(_m"‘n)k/Q(p—l)\-‘r)m(p—l)\—)n’

which proves the first formula of the lemma. The other ones are proved in a similar manner. [

We now prove Prop 6.8 in the case p|M. It suffices to show
(7.5) J(dpws, dywf) = pCm ORI, 0 )W (dwf)

for m,n > 0 and €,¢ € {0,1}. We prove (7.5) only in the case e = ¢ = 0, since the proofs are

similar in the other cases. In this case, the right-hand side of (7.5) is equal to

T (T W (o)
= plm Ry ()2 G () AT (e I (M)A (p () A"
_ p(—m+n)k/2(p—l)\—)m(p—l)\—i-)n

)

which implies (7.5) by Lemma 7.5.

7.5

To prove Proposition 6.8 in the case v = oo, it is sufficient to show the following result in view

of Lemma 3.1, Proposition 3.5 (iii) and Lemma 6.7:

LEMMA 7.6. For ay,as € R*, we have

_ 9k 4k ofs .
Joo(d(al, 1),(1(&2’ 1)) _ ( 22) aq e[z(al + CLQ)] if a1, as > 0,

0 otherwise.

Proor. We write J (a1, az2) for J(d(a1,1),d(ag,1)). Then

0 1

> Y172 aay' —ary! 1 x
J(a1,a2) = exp(—2my)+/|a1az| I1Pg yay azy |d*y.
0
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Since I®y(X,t) = 0if t < 0, we see that J(a1,a2) = 0 if ajaz < 0. Assume that ajaz > 0. Since

-1 -1
a1ay —a1y -1
1P LG, @

. k
= \/al_lagy/ e [—agx =+ %al_lcwy (a%agz + 2%+ 1)] (—x + ia1:a2> dzx,
R 2

we obtain
J (a1, a2)
k  proo
a1+ a _ _ _
= |ag| / elagz] <—x - zla22> / y* exp(—my(2 + aray ' + ay tag + ay taga?))d y dx
R 0

a k al +a k a +a 2 —k
= |as|T(k)r " <1> /e[az{l}‘] <—x — 112> <x2 n <12> ) I
a2 R as as
—k @ : a1 + as —k
= (k-7 "as| [ — elarz] ( —z+ i 2 d.
az R as

By the residue theorem, the last integral vanishes if as < 0. Suppose that ai,as > 0. Then the

last integral is equal to

—k
. & a1 + ag
2mi(—1) Resx:a;1(al+a2)ie[a2x] (x —i o >
1
= 2mi(—1)*efi(a1 + a)] = 1)1 (2miag)* 1,
which implies (a1, az2) = (—2i)kake[(a1 + az)i]. O

8 Periods of automorphic forms

8.1

The object of this section is to show that, if f is a primitive form, |P(f,;g)|? is expressed as
an integral involving the Whittaker function attached to f.

8.2 Waldspurger’s formula
We first recall several results due to Waldspurger ([W]) on the period integral of £(f) defined
by

Q(f, & 91,92) = /(QXKX\KX)Q €7 (21 " 22) L(F)(1(21) g1, 1(22)g2)d™ 21 d* 2 (91,92 € Ga),

where £7(z) = £(27) for z € K. For g = n(z)d(y1,y2)u € Ga (z € Qa,y1,y2 € Qf,u €
UsUs), we put a(g) = |y1y; |a. For g € Ga, 2z € KX, ® € S'(Vy x Q) and s € C, set

(8.1) Hg.z®s) = S a(e) 2 3 R 1u(2)d((x), 1),

’YGBQ\GQ e K ,teQX*
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where B is the group of upper triangular matrices in G. It is easily seen that (g, z) — I(g, z; ®; s)
is left Gg x K*-invariant, and that I(g, az; ®;s) = I(ag, z; ®; s) for o € Q. Set

_ k/2 k
Q(f. & 1. 92 ) = |det (g7 "g2) | / / F(9)| N(2) det g /2
QFKX\K) JzLGo\Ga

§7(2)1(g, 2 5; R(1, g1, g2) ®o)dgd™ 2.
Choose n € V such that V = «(K) 4+ «(K)n and «(z)n = ne(z?) for z € K.

PRrOPOSITION 8.1 ([W], pages 197-198). (i) The series (8.1) is absolutely convergent if
Re(s) is sufficiently large. For (g,z) € Ga x K and ® € §'(Va x Q)), s — I(g,z; ®;s)

is continued to a meromorphic function of s on C, and holomorphic at s =1/2.

(ii) We have

L(w;1)I(g, 2 ®;1/2) = / > (R(g,1,0(2)®) (u(x) + (2721 ) m, )d" 21,
Q};(KX\K&( z,ye K, teQX*

(iii) For fized g1,g92 € Ga, s — Q(f,&;91,92;5) is continued to a meromorphic function of s on
C, and holomorphic at s = 1/2. We have

Q(f?gaglaQZ) = L(w, 1)Q(f’£7917927 1/2)

(iv) We have

k/2

Q(f,& g1,92;5) = |det(g 'g2)] / / Wi(9)| N(2)™" det gly/?
Ri\Kg ZANA\GA

¢(z7)alg)* ™" R(g, g1, 92)Po(e(2), N(2)~1) dgd” 2.

8.3

We henceforth assume that f € Si(IV, x) is a primitive form. By Theorem 6.1, we have

Lf(g1,92) = (=20 fn(g1)fn(g2) (91,92 € Ga),
where fn(g9) = x (det g)f(gwn) and wy = [~ w&p). It follows that
(8:2) [P(£,69) = (-20)7"Q(f, & gwy', gwy')
for g € Go. By Proposition 8.1 (iii), we obtain the following.

PROPOSITION 8.2. For a primitive form f € Si(N,x), we have

P(f.&9)° = (—20) "L(w; 1)Q(f. & gwy', gwy's 1/2).
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8.4

Let W, (v < 00) be as in Proposition 3.5. By Proposition 8.1 (iv), we obtain
Q(f,69.9:5) = [[ ©Wo.&190,905) (9= (g0)v € Ga),
v

where

Qv(angv;gvagvSE) = / / Wv(gl)a(gl)s_1/2|N(Z)_1 det gl|ﬁ/255(2_1)
U\K;( Z’qu\Gv

R(d, vy 90) P00 ((2), N(2)~1)dg'd* z,

where C, = {1} if v < 00 and Cop = R7.

9 Proof of Theorem 1.1 (ii)

9.1

In this section, we assume that S1(£) = S5 (£, &) = 0. Note that 51:,_1(1'[19))\];Ir = —1ifp|M~'N,p|D
and oy (§) = 0. For each place v of Q, we write Q(s) for Q,(Wy, & 91,0, 91,05 5), Where

d(m=»() 1) if v=p<oo,p [N,
910 = (gowy')y = d(m—r(©+1 l)wgp) if v=p < o0,p|N,

90,00 if v = o0.
In this section, we prove the following results:

PROPOSITION 9.1. Suppose that p fN. Then we have

@p(s) = Lp(faf_l;s) X \D|11)/2p—%(§) {i

PROPOSITION 9.2. Suppose that p|N. Then we have
Qp(s) = Lp(f,67"58) x [D]/2p~ O Ly (w; 1)V, (s),
where Y, (s) is given by

1 - ffl(Hp))\;rpsfl/Q if ap(€) =0 and p ramifies in K/Q,
Yo(s) = 4 Lp(w; 1)~ if ap(§) =0 and p splits in K/Q,

1 otherwise.

PRroOPOSITION 9.3. We have

Quols) = (~20)(4m) ~CHH=3/2D(s 4 & — 1/2).
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We first prove Theorem 1.1 (ii) assuming the above results. We have
Q(f,& gowy', gowy'; ) = [[ Qu(s)
v

= L(f,6%5) DI 7V2A€) 7 (—20)" (4m) M0 (s + & — 1/2)

x L(w;2s)™" [ Lo(w; 1) T] (Zp(ws; 1) Lp(w; 28)Yp(s)) -
PN, plA(§) pIN

Observe that
2 if ap(§) = 0 and p ramifies in K/Q,
Yp(1/2) = ¢ Ly(w; 1)72 if ap(€) = 0 and p splits in K/Q,

1 otherwise.

Then, by Proposition 8.2, we obtain

IP(f,&90)1* = (—20) "L(w; 1) Q(f, & gown', gowy's 1/2)
= (4m)" 7Pk — 1)1 D724 22O TT Lp(ws 1) x L(£,€711/2),
plA(€)

which completes the proof of Theorem 1.1 (ii).

9.2 Proof of Proposition 9.1

In this and the next subsections, we often suppress the subscript p from the notation. We write F'
and K for Q, and K, respectively. Let Or and Ok be the integer rings of F' and K, respectively.
We denote by 7, and 7}, the characteristic functions of 7"Op and 7" O}, respectively. We write
simply « for a(§) if there is no fear of confusion.

We suppose that p J/N. Recall that go = d(7~%, 1) and W (d(a",1)) = (7 =31 /(t1 —ta),
where t1,to € C satisfy t; +to = p~Ix(m)A and tity = p~lx(7). We also recall that ® is the
characteristic function of M>(Op) x Oj. Then we have

Qs)
- / W(d(a, 1) N(=) " a2 (a2 (=)
Kx JFx
R(d(a, 1), go, g0)Po(t(2), N(2) 1)) |a| " 'd*ad* z

= /KX . W(d(a,1))| N(Z)_1a|k/2’a|5_1/2fo(2_1)@0(g61L(z)g0, N(z)~la))d*ad*z

= /. WdING), D)E7 (= HIN() 2 po(to(2))d” =,

where g is the characteristic function of M>(OF) and

x T N(0)y

J— _1 =
to(z) = 99 L(2)go = ( —m % x+Tr(f)y

> (z =z + 0y).
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Suppose that K/F is inert. Note that vol(O)) = |D|*/2 = 1. Then
=Y W (dan)é(m) "p 2T T, (8),

where

Jn(§) = &7 (2o (m™10(2))d* 2.

Ok
If « =0, we have J,(§) =1 for n > 0 and hence

o ) et 1 t2n+1 _ t%n-l—l
Q(s) = 2(5_ (m)p~2eth)” T
n=0

(1+X( —25 2 —2s+1)

:w

1:1

= Ly(w;28) ' Ly(f, €715 5).

Suppose that a > 0. Since O = (Of 4+ 00p) U (pr + 005), Jn(§) is equal to

1
1—p2 {/(;; on §(x + 0y)To—n(y)dydx + /pp 0 §(z + ey)Ta—n(y)dydx} )

where dz and dy are normalized such that vol(Op) = 1. We have

1 / / 1
§m+9ydydx:/ E(1 4 0y)dy
1_p72 ;; TOp ( ) 1+p*1 T Op ( )
1+p1

Jo(§) =

= Lyp(w; 1)p @

For n > a, we have

Jn(§) = /(’)X &(z)d*z =0,

since £ is nontrivial on O. For 0 < n < «, we have

1 1
Jn(&) = / / &(x + Oy)dydx = / E1+6y)dy=0
( ) 1— p—2 O;ﬁ O ( ) 1 +p_1 OO ( )

by Lemma 2.2. It follows that Qp(s) = p~*Lp(w; 1), which completes the proof of Proposition

9.1 in the inert case. The proofs in the other cases are similar (though more complicated) and

omitted.

9.3 Proof of Proposition 9.2

In this subsection, we suppose that p|N. Recall that ¢g; = d(7~**! 1)w; and

o (az y) _ Jro@mm)mn(@)m(w)m) if plMIN,
0( 7t)— _ )
:ow X (@) mo(@)mo(y)m ()75 (w) T (1) if pIM.
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Put @) = R(w1,1,1)®p. A straightforward calculation shows

o (( z oy ) t) _ Jn@m@mEm ), @) if p|M N,
o GOIx(tz)my(@)mo(y)m(2)m (w)r! o (1) if p| M.

By (7.1), we have

=§:W(dn —n(s-1/2) j +ZW wn)p~ (V12 ()
where

Jn(€) Z/X |7 N(2) ™ [*267 (271 @o (11 (2), 7" N(2) "1 d "z,

Ta(€) :/Kx [N (2) P27 (2 @ (1 (2), 7 N (2) T2
and

x+Tr(0)y 7 Yy

u(z) = g; u2)g = ( —-m*N@)y =z

) (z =2+ 0y).

Assume that p|M~'N and K/F is ramified. Put

zZ w

20(X) = To(@) ()T ()70 ), $H(X) = 11 (@) () ()7 (w) (X = ( - >> |
Then we have
1@ = [ EE RN RO = [

First suppose that a = 0. We see that ¢o(11(2)) =1 for z € Og = Op +00F and ¢((11(2)) =1
for z € IOk = pp + 00, since Tr(0),N(0) € pp. This implies that

Ja(&) = D[V, Jp(€) = D2t (n>0).

We thus have

Q(S) _ ‘D’1/2 {Z(pl)\+)npn(sl/2 _|_Z )\+ 71)\+ n f(n 1)(s— 1/2)5( ) 1}

n=0
= |DI"?(1 — ¢~ ATp ) (1 — (M) 1/\+p_5 Y

= |DI"2Ly(f, €5 5)Yy(5).

Next suppose that a > 0. Then we have

DI|1/2
1O =12 [ [ oy e =Dl [ &G0y
—p " Jox Jpe PR

= |D|"/2p~e.
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Suppose that 1 < m < «. Then we have

1/2 —m
Jom (&) = ’D‘ §_ / / (x4 0y) 1dydac
oF Jp%

=) [ oy
pr "
=0
by Lemma 2.2. We also have Ja,11(£) = 0, since ¢o(11(2)) = 0 for z € P O% = pitt 4

97" O%. If m > «, we have

Jom(§) = /H?mOX ()7t 2 =0, Jomi1(€) = /H € (z)td*z =0.

2m+1o[><{
A similar argument shows that J) (§) = 0 for n > 0. We thus have
Q(s) = Jo(€) = |DI"*p*,
which completes the proof of Proposition 9.2 in the case where p|M !N and K/F is ramified.
The proofs in the other cases are similar and omitted.
9.4 Proof of Proposition 9.3

We have

s) =/ Woo(d(y, 1)y* 27322 R(d(y, 1), 9o, 90) Po,c0 (¢(2), 1)d* zd*y,
0 ct
where C! = {z € C* | 2z = 1}. Observe that, for y > 0 and z = u +iv € C!,

R(d(y’ 1)a 90, gO)CI)O,OO(L(Z)a 1) = yq)O,oo (QEIL(Z)QOy y)

= yPp oo (( —uv Z > ,y) = (22‘)k‘yzk exp(—27y).

Quls) = (-20v0l(C) [y 2 exp(—amy)d*y
0

= (—2i)F(4m) " G320 (s + |k — 1/2),

We thus have

which completes the proof of the proposition.
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