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ABSTRACT. We find a representative set of left ceIls of the affine Weyl group Wa of
type 04 as weIl a.s its left cell graphs by applying an nlgorithm. This algorithm was
designed in my previous paper [20]. It is reformulated and improved in more efficient
form here. These representatives of left cells are presented as the vertices of so called
essential graphs so that the generalized T-invariants of left cells of Wa are actually
described explicitly, the latter almost characterize the left cells of W a . Some comments
and conjectures are proposed on cells of affine Weyl groups, mostly for the case of type
Cl, l ~ 2.

Since it was designed in [20], an algorithm of finding a representative set of 1eft

cells ( an l.c.r. set for brevity) of a certain Coxeter group (W, S) has been applied

extensively to Weyl groups and affine Weyl groups (see [14], [20], [21], [24] and [25]).

In thc present paper, we shall reformulate and improve this algorithm so that it can

be performed more efficiently. We introduce three processes A, Band C instead of

only two processes A and B in the a1gorithm, by which Olle can avoid the complicated

calculation of Kazhdan-Lusztig polynomials to a great extent. On the other hand, we

introduce two important concepts: an essential graph and a left cell graph associated

to an element of W. The left cell graphs exhibit thc generalized r-invariants für all
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2 Jian-yi Shi

the left cells of W. The essential graphs can do more, which provide an 1.c.r. set of

W in addition. Note that to an element of W: thc associated essential graph does

not always exist in general. Fortunitely, such an obscurity does not oceur in the case

of the affine Weyl group Wa U54 ) of type C4 . By the results of Lusztig and Bedard

(see [10], [1]), this is still the case for the affine Weyl groups Wa (C2) and Wa (C3 ).

Moreover, by combining with the results of Lusztig and Bedard (see §6.), we shall

see that for k = 2,3,4, all the left cells of Wa(Ck) not in the lowest two-sided cell

(this can be checked easily from the alcove form of any of their elements) can be

characterized only by their generalized r-invariants. Since the left cells of any affine

Weyl group in the lowest two-sided cell are characterized by their sign types (see [17],

[18] for the definition of a sign type and for this result), a11 the left cells of Wa(Ck ),

k = 2,3,4, are deseribed completely. I expeet that these phenomena should be in

common for all the affine Weyl groups Wa(Cl ), I! ~ 2.

Some more comments and conjectures are proposed on cells of affine Weyl groups,

mostly for the ease of type Cl, i ~ 2. This includes the combinatorial description of

the Lusztig map relating the twO-sided ceils of W a ((5l ) to the unipotent conjugaey

classes of the corresponding algebraic group, and the group-theoretical interpretation

for the number of left cells in some twO-sided cells of some affine Weyl groups Wa ,

wmeh involves both Lusztig map and Bala-Carter correspondence among twO-sided

ceils of an affine Weyl group, unipotent conjugaey classes of the eorresponding alge

braic group G and the G-classes of pairs (L, Pu), where L is a Levi subgroup of G,

PL' is a distinguished parabolic subgroup of semisimple part L' of L.

The arrangement of the paper is as follows. In section 1, we collect" some results

on the cells of a Coxeter group, in partieular of an affine Weyl group and even of the

group Wa (C4 ). We reformulate and improve the algorithm of finding an 1.e.r. set in

section 2. Then in section 3, we introduce some results and terminologies needed in

performing the algorithm. Sections 4 and 5 are specially coneerning the affine Weyl

group W a (C4 ). We obtain an I.c.r. set as weIl as all thc left cell graphs for the group
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Wa (C4 ) in section 4 and Inake same comments on the possible generalization of some

properties of left cells of Wa (04 ) to the more general groups W a ((Sl), l 2 2, in section

5. Finally, we put an appendix in §6, where we list all the left cell graphs and state

some known results for thc affine Weyl groups Wa ((]2) and Wa (03 ).

§1. Same results on cells.

1.1 Let W = (W, S) be a Coxeter group with S its Coxeter generator set. Let S

be the Bruhat order on W. For W E W, we denote by l(w) the length of w. Let

A = Z(u] be the ring of polynomials in an indeterminate 'lJ, with integer coefficients.

For each ordered pair y, w E W, there exists a unique polynomial Py,w E A, called

a Kazhdan-Lusztig polynomial, which satisfies the conditions: Py,w = 0 if y 1:. w,

Pw,w = 1, and degPy,w :::; (1/2)(l(w) -l(y) - 1) if y < w. For y < w in W, let

J.L(w, y) = J.L(y, w) be the coefficient of u(1/2)(l(w)-l(y)-1) in Py,w. We denote y-w

if J.L (y, w) -I O.

Checking the relation y-w for y, w E W usually involves very complicated com

putation of Kazhdan-Lusztig polynomials. But it becomes easy in some special case:

if x, y E W satisfy y < x and l(y) = l(x) - 1, then we have v-x. Another result

concerning this relation will be stated in Proposition 3.3.

1.2 The preorders S, S, :::; and the associatecl equivalence relations rv,rv, rv on W
L R LR L R LR

are defined as in [8]. The equivalence classes of W with respect to rv ( resp. rv, rv )
L R LR

are called left cells ( resp. right cells, two-sided cells ).

1.3 An affine Weyl group Wa is a Coxeter grOllp which can be realized geometrically

as follows. Let G be a connected, adjoint reductive algebraic group over C. We fix

a maximal torus T of G. Let X be the grOllp of characters T --+ C and let <P c X

be the set of roots with 6. = {a1, . . . ,al} a choice 0 f simple root system. Then

E = X ®z IR is a euc1idean space with an inner product ( , ) such that the Weyl

group (Wo, So) of G with respect to T acts naturally on E and preserves its inner

product, where So is the set of simple reflections Si corresponding to the simple roots

0i, 1 Si:::; e. We denote by N the group of all translations T).. (,\ E X) on E: T)..
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sends x to x + A,. Then the semidirect product Wa = Wo P< N is called an affine

Weyl group. Let K be the dual of the type of G. Then we define the type of Wa by

K. Sometimes we denote Wa by Wa(K) to indicate its type K. There is a canonical

homomorphism from W a to Wo: w Ho W.

Let -ao be the highest short root in cI>. We define So = 80:0 T-eta' where Sao is

the reflection corresponding to aO' Then the generator set of W a can be taken as

S = So U {So}.

1.4 The alcove form of an element w E Wa is, by definition, a cI>-tuple (k(w, a))aEcI>

over Z subject to the following conditions.

(a) k(w, -a) = -k(w, a) for any a E <Pi

(b) k(e, a) = 0 for any a E <P, where e is the identity element of W a ;

(c) If w' = WSi ( 0 ~ i ~ f ), then

k(w', a) = k(w, (a)si) + E(a, i)

with

€(a,i) = {~l
if a -I- ±a",. 11

if a = aii

if a = -ai,

where Si = Si if 1 ~ i ~ f, and So = soo ( see [16, Proposition 4.2] ).

By condition (a), we can also denote the alcove form of w E Wa by a <p+-tuple

(k(w, a))oE~+'

1.5 Condition 1.4, (c) actually defines a set of operators {Si I 0 ~ i ~ i} on the

alcove forms of elements of Wa :

These operators could be described graphically. For example, assurne that Wa has

type Cl, f 2: 2, and that thc indices of simple roots Ck'i are compatible with the

following Dynkin diagram:

01"----0-- .. ·----o~---(c:x::===~;-o

1 2 l-2 i-I l
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A root a = L:~=1 aiai will be denoted in the form (a1' a2, ' , . ,al)' Let l = 4. We

arrange the entries of a 1>+-tupie (ko)OE~+ in the following way.

(1.5.1)

k( 1,1,1 ,0)

k(l, 1 ,0,0) k(o, 1, 1 ,0)

k( 1,0,0,0) k(O,l ,0,0) k(O,O,l ,0)

k{1,l,l,l) k(O,l,l,l) k(O,O,l,l) k(O,O,O,l)

k(l,2,2,2) k(O,1,2,2) k(O,O,1,2)

k(1,1,2,2) k(O,1,1,2)

k(l,l ,1 ,2)

Then the actions of Si, 0 :S i :S 4, on a <1>+-tupie

a
b c

d e /
w = 9 h j

k l m
n p

q

are listed as in the following table.

8 So 81 82 83 S4

-q c ... b q
-0 '" e a d / a e '" p

-k '" ... -&-1 b '" b --e-1 c '" c -/-1 ... '" m
WS -g+1 '" '" '" h 9 '" '" '" i h '" * * j i '" ... '" -j-1

-d • ... '" n .' n ... p ... p '" '" '" /
-b ... l q k m q l ... c

-a p '" n a

where the entries in the * positions remain unchanged,

1.6 For w, w' E W a , we say that w' is a lejt extension of w if i(w') = l(w)+l(w'w- l ).

Then the following results on the alcove form (k(w, a))aE~ of an element w E Wa

are known.

Proposition [16, Propositions 4,1, 4.3]. (1) f(w) = L:oE~+ Ik(w, a)I, where the

notation lxi stands for the absolute value 0/ x,.

(2) R(w) = {Si I k(w,ai) < O},
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(3) w' is a lejt extension ofw i/and only i/the inequalities k(w', o:)k(w, 0:) ~ 0 and

Ik(w', 0:)1 ~ Ik(w,o:)1 hold tor any 0: E <1>.

1.7 Lusztig defined a function a: Wa ---+ N which satisfies the following properties:

(1) a(z) ::; v = 1cI>1/2, for any z E Wa , where <I> is the root system associated to Wa

as in 1.3;

(2) x ::; y ===} a(x) ~ a(y). In particular, x I"V y ==:} a(x) = a(y). So we may define
LR LR

the a-value a(r) on a ( left, right or two-sided ) cell r of Wa by a(x) for any x E r.

(3) a(x) = a(y) and x ::; y ( resp. x ::; y ) => :/; I"V y ( resp. x I"V y ).
L R L R

(4) For auy proper subset I of S, let WI be the langest element in the subgroup W1

of W a generated by I. Then a(w[) = i(WI).

The above properties of function a were shown by Lusztig in his papers [10J, [11J.

Now we state some more properties of trus function, the first two of wmch are simple

consequences of properties (2), (3) and (4).

Let W(i) = {w E W a Ia(w) = i} for any non-negative integer i. Then by (2), W(i)

is a union of some twO-sided cells of Wa •

To each element x E Wa , we associate two subsets of S as below.

.c(x)={sESlsx<x} and R(X)={SESlxs<x}.

(5) If W( i) contains an element of the form W I for some I eS, then {w E W( i)

R(w) = I} forms a single 1eft cell of Wa .

(6) By the notation x = y . z (x, y, z E Wa ), we mean x = yz and i(x) = i(y) + l(z).

In this case, we have x ::; z, x::; y and hence a(x) 2: a(y), a(z). In 'particular, if
L R

I = R(x) ( resp. I = L:(x) ), then a(x) 2: l(WI)'

(7) W(i) is a single two-sided cell of W a if i E {O, 1, v}. As sets, W(i) (i = 0,1, v) can

be described as below. W(O) = {e}, e, the identity ~lement of W. W(l) consists of

all the non-identity elements of Wa each of which has a unique reduced expression

(see [9]). W(v) consists of all the elements of W a which have no zero entry in their
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alcove forms (see 1.4). ~V(v) can also be described to be the lowest two~sided cell of

W a with respect to the partial order ::; (see [17], [18]).
LR

(8) CaU an element 8 E S special, if the subgroup of W a generated by S \ {s} 18

isomorphie to Wo. Thu8 the element So is always special. When Wa i8 of type

Cl, the element 8l is the unique special elelnent in S other than 80. It is known

that for any two-sided cell 0 f. {e} of Wa and any special elelnent 8 E 8, the set

Ys = {w E n I n(w) = {s}} is non-empty and is a single left ccU of Wa (see [13]).

1.8 Let G and Wa be as in 1.3. Then the following result of Lusztig is important to

OUT purpose.

Theorem [12, Theorem 4.8]. There exists a bijection U H c(u) from the set 0/

unipotent conjugacy classes in G to the set 0/ two-sided cells in W a . This bijection

satisfies the equation a(c(u)) = dirn ~u, where u is any element in u, and dirn 23u is

the dimension 0/ the variety 0/ Borel subgroups 0/ G containing 11,.

1.9 Let Wa = Wa (C4 ). Then according to the knowledge of the unipotent classes of

the complex simple algebraic group of type B4 , we see [rom Theorem 1.8 that in Wa ,

the set W(i) is non-empty if and only if i E A = {O, 1,2,3,4,5,6,8,9,10, 16}. More

precisely, W(i) is a single two-sided cell of W a if i E {O, 1,2,5,6,8,9,10, 16}, and is a

union of two two-sided cells of Wa if i E {3,4}.

§2. The algorithm in finding an l.c.r. set.

Here and later, the notation Wa always stands for an affine Weyl group with 8 its

Coxeter generator set. One of the main purposes of thc present paper is to describe

the left cells of the affine Weyl group Wa of type C4 by finding its l.c.r. set. We need

an algorithm to do so, which was constructed in my paper [20] and is 'applicable to

certain family of crystallographic groups including all the Weyl groups and all the

affine Weyl groups. In this section, we shall recall SOIne results of [20]. In particu

lar, we shall reformulate the algorithm in more suitable form, where the concerned

Coxeter group is always assumed to be Wa . Some COlnments on the algorithm are

new.
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2.1 Ta each element x E Wa , we associate a. set E(x) of all left cells r of W a

satisfying the condition that there is some elelnent 11 E r with v-X, R(y) %R(x)

and a(y) = a(x).

Then the following result is known

Theorem [20, Theorem 2.1]. If x rv y in Wal then R(x) = R(y) and ~(x) = E(y).
L

2.2 Say a set E of left cells of W a to be represented by CL set K c Wa if ~ is the set

of allieft cells r of Wa with rn K =1= 0. K is called a representative set for ~, if K

represents E with IK n rl = 1 for any r E E, where the notation lXI stands for the

cardinality of the set X.

The algorithm is based on the following result which is a consequence of Theorem

2.1.

Theorem [20, Theorem 3.1]. Let n be a two-sided cell of W a . Then a non-empty

subset K c n is a representative set 0/ lejt cells ( an 1. c. r. set for short) 0/ W a in n
if K satisfies the Jollowing conditions.

(1) X f"7.J Y for any x =1= y in K;
L

(2) /f an element y E W a satisfies that there is same element x E K with v-x,
R(y) %R(x) and a(y) = a(x), then y rv Z for some z E K .

L

2.3 To each element x E W a , we denote by M(x) thc set of all elements y such that

there are a sequence of elements Xo = X, Xl, ... , X r = Y in Wa with some r ~ 0,

where for every i, 1 ::; i ::; r, the conditions xi!l Xi E S and n(Xi-l)~R(xd are

satisfied.

2.4 A subset K c W a is said to be distinguished if [( #- 0 and x f"7.J y for any x =1= y
L

in K.

2.5 By (8, 2.3fj, we know that the relations v-X and R(y) %R(x) hold if and only

if one of the following cases occurs.

(a) V-lx E S and R(Y)~R(x)i

(b) y = x· s for some sES with 'R(y) ~ 'R(x);
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(c) y < x, y-x and R(y) ~ n(x).

According to this fact, we design the following thrce processes on a non-empty set

Pe Wa .

(A) Find a largest possible subset Q from the set U jV1(x) with Q distinguished.
xEP

(B) To each x E P, find elements y E Wa such that V-lx E S, n(y) ~ n(x) and

a (y) = a(x), add these elements y on the set P to fornl a set P' and then take a

largest possible subset Q from P' with Q distinguished.

(C) To each x E P, find elements y E Wa such that 11 < x, y-x, n(y) ~ n(x) and

a(y) = a(x), add these elements y on the set P to form a set P' and then take a

largest possible subset Q from P' with Q distinguished.

Note that Processes (B) and (C) put together are amount to Process (B) defined

in (20].

2.6 A subset P of W a is called A-saturated ( resp. B-saturated, resp. C-saturated),

if Process (A) (resp. (B), resp. (C) ) on P can't produce any element z satisfying

z r,t.J x for a11 x E P.
L

Clearly, a set of the form UM(x) for any K C }Va is always A-saturated.
. xEK

It follows from Theoreln 2.2 that an l.c.r. set of W a in a two-sided cell n is exactly

a distinguished subset of n which is A-, B- and C-saturated. So to get such a set,

we may use the following

2.7 ALGORITHM [20,3.3].

(1) Find a non-empty subset P of n ( Usually we take P to be distinguished for

avoiding unnecessary complication whenever it is possible );

(2) Perform Processes (A), (B) and (C) alternatelyon P until the resülting distin

guished .set can't be further enlarged by these processes.

Remark 2.8 (1) An l.c.r. set of W a in a two-sided cell obtained by the above

algorithm is contained in some right cell.

(2) In general, Process (A) is easier to be performed than Processes (B) and (C).

The only part of Process (A) which may cause some difficulty is to find a largest
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distinguished subset in the set U M(x). On the other hand, Process (B) is easier
xEP

to be performed than Process (C). In addition of the difficulty of finding a largest

distinguished subset in a given set, the only other difficulty which may oceur in

Process (B) is to check whether or not the condition a(y) = a(x) holds. Process

(C) is usually quite diffieult to be performed, in particular when the lengths of the

elements x E P are getting larger. This is because checking the relation y-x may

involve very complicated eomputation of Kazhdan-Lusztig polynornials. To avoid

such kind of troubles to a great extent, we shaH give the first priority to Proeess

(A) and the second priority to Process (B) in applying Algorithm 2.7. In other

words, in applying Algorithm 2.7, we always first perform Process (A)j Proeess (B)

is performed only when Process (A) alone can not make any further progress; finally

Process (C) is performed when no progress ean be made only by Processes (A) aod

(B).

(3) To be simplified, Process (C) can be performed in the following way. To an

element x E P, find the set B(x) of aH elements y with y < x, l(x) ~ l(y)( mod 2),

R{y) i R{x) and L{y) 2 .c{x). Then find the set So{x) of aU elements y in Sex)

such that a{y) = a(x) aod y I')GJ z for any z E P. If So{x) =1= 0, then find a maximal
L

distinguished set SI(X) eonsisting of all elements y E So{x) with y-x and add it to

the set P.

The advantage of the above procedure is that we can reduce the calculation of

Kazhdan-Lusztig polynomials to a great extent. Combining this with the eonvention

of the priority in applying Algorithm 2.7, sometimes we ean even avoid the calculation

of any non-trivial Kazhdan·Lusztig polynomials entirely in practice. The set So{x)

is empirically always empty in the present case as weH as in all the other cases so far

we have dealt with [14], [20], [21], [23], [24], [25]. One luight think that Process (C)

is absolutely redundant aod should be removed from the algorithm. Eut I eau't rule

it out in general.

§3. Some results and terminologies needed in performing Algorithm 2.7.
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In applying Algorithm 2.7, we need some results which will be provided in the

subsequent discussion. From 1.7, (3) and Theorem 2.1: we have the following result

on a set M(x).

Proposition 3.1. (1) For any x E W a , the Bet M(x) is wholely contained in some

right cell of Wa ·

(2) If x t'V y in Wa , then M(x) and M(y) represent the same set of left cells of W a .
L

3.2 In a Coxeter system (W, S), a sequence of elements of the form

....
rn-I terms

(3.2.1) ys, yst, Y5ts,
"

is called an {5, t}-string ( or just call it astring) if s, t E Sand y E W satisfy the

conditions that the order o(st) of the product st is m and R(y) n {5, t} = 0.

It is easily seen that astring is wholely contained in some right cell of W. For

any x E W , we can re-define M(x) to be the minimal set containing X, subject

to the requirement: any string (regarded a.s a set) lneeting M(x) fiUSt be wholely

contained in M(x). Suppose that we are given two {s, t}-strings Xl, x2, ... , Xm-l

and Yb Y2, ... 1 Ym-l with o(st) = m. We denote the integers !J.(Xil Yj) (see 1.1) by

aij for 1 ~ i, j ::; m - 1. Then it is known that

Proposition 3.3[10, 10.4]. In the above setup, the following assertions hold.

(a) H'hen m = 3, we have aI2 = a2b an = a22i

(b) Mlhen m = 4, we have a12 = a21 = a23 = a32, an

We have the following result corresponding to this.

Proposition 3.4 [20, Proposition 4.6]. Keep the setup of 3.2.

(1) If m == 3, then

(a) Xl t'V YI <==> X2 t'V Y2;
L L

(b) Xl t'V Y2 {:::::} X2 t'V YI'
L L
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(2) 1/ m = 4, then
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(a)

(h)

(c)

(d)

Xl r"V Y2 <==> X2 r"V YI <==> X2 r"V Y3 {=::::} X3 r"V Y2 j
L L L L

Xl r"V YI <==> X3 r"V Y3;
L L

Xl r"V YI3 <==> X3 r"V YI'
L L l

X2 r"V Y2 <==> either Xl r"V YI or Xl r"V Y3
L L L

3.5 Two elements X, y E W a form a primitive pair, if there exist two sequences of

elements Xo = X, Xl, ... ,Xr and Yo = Y, YI, ... ,Yr in Wa such that the following

eonditioTIS are satisfied.

(a) Xi-Vi for all i, 0 :::; i :::; r.

(h) For every i, 1 :::; i :::; r 1 there exist some Si, ti E S such that Xi-I, Xi (and also

Yi-l, Yi)) are two neighboring terms in some {Si, ti} -string.

(e) Either n(x) %n(y) and n(Yr) %R(xr), or n(y) %n(x) and n(xr) et R(Yr)

hold.

In this case, we have x r"V y by Proposition 3.1.
R

Assume that X, x' (and also Y, V') are two neighboring terms in same {s, t}- string

with x-y and that at least one of x, Y is a terminal term of the {s, t}-string con

taining it. Then by Proposition 3.3, we have x'-y'. In particular, it is always the

case when o(st) = 3. Thus, if in (b), we have in addition that at least one of Xi, Yi

is a terminal term of the {Si, ti}-string containing it for any i, 0 :::; i < r, then we

can replace condition (a) by the following weaker one in the definition of a primitive

pan;

(a') Xo-Ya.

3.6 In the present paper, by a graph 001, it always means that a set M of vertices

together with a set of edges, where each edge is a two-elements subset of M, and

each vertex is labelIed by a subset of S.

Let 9Jl and 9)1' be two graphs with their vertex sets M and M'. They are said

to be isomorphie (note that we call it quasi-isomorphie in [20] owing to the different

definition of a graph), written 9Jt ~ 9Jt/, if there exists a bijective map TJ from the set
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M to the set M' satisfying the following conditions.

13

(1) Thc labelling of w is the same as that of 1J(w) for any w E NI.

(2) For w, Z E M, {w, z} is an edge of 9J1 if and only if {7](W), 7](z)} is an edge

ofOO1'.

This is an equivalence relation on graphs.

3.7 We define a gmph 9Jt(x) associated to an element x E Wa as follows. Its vertex

set is M(x). Its edge set consists of all two-eleluents subsets {y, z} c M(x) with y, Z

two neighboring terms of astring. Each vertex y E J\f(x) is labelled by the set R(y).

Note that unlike the definition given in [20], we do not label the edges of a graph

here. Clearly, for any x E Wal the graph 9Jt(x) is always connected.

A left cell graph associated to an element x E Wa , written 9J1L(X), is by definition

a graph, whose vertex set ML(x) consists of allieft cells r of Wa with rn M(x) #- 0.

Two vertices r, r ' E ML(x) are joined by an edge, if there are two elements x E

M(x) n rand x' E M(x) n r' such that {x, x'} is an edge of 9Jl(x). Each vertex r
of 9J1L(X) is labelled by the common labelling of elements of M(x) n r (This makes

sense by [8, Proposition 2.4]). Clearly, the graph 9JlL (x) is always connected.

3.8 A subgraph 9J1 of 9Jt(x) (x E W a ) is said to be essential, if there exists an

isomorphism 7] from 9J1 to 9J1L (x) such that each vertex y of 9J1 is contained in the

left cell 7](y).

It is easily seen that when a subgraph 9J1 of 9J1(x) is essential, its vertex set mllSt

be distinguished. In particular, the graph 9J1(x) itself is essential if and only if its

vertex set M(x) is distinguished. But it should be careful that in general there does

not always exist a subgraph of 9Jt(x) which is essential (Some counter-examples could

be found in the twO-:sided cell W(3) of the affine Weyl group W a (.D4 ) and in W(1) of

Wa(Al ), .e > 1). However, we shall see that for any x E Wa(l]4), there always exists

same essential subgraph of 9J1(x) containing x as its vertex.

3.9 By a path in graph 9J1(x), we mean a sequence of vertices zo, Zl, ... , Zt in M(x)

such that {Zi-l, Zi} is an edge of 9J1(x) for any i, 1 ::; i ::; t. Two elements X, x' E Wa
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have the same generalized i-invariant, if for any path Zo = x, ZI,' .. , Zt in graph

9J1(x) , there is a path Zo = x', z~, ... , zi in 9n(x' ) with R(zi) = R(zd for every i,

o~ i ~ t, and if the salne eondition holds when interehanging the roles of x with x'.

3.10 It may happen that for two elements x, y E vVn with x 'i:' y, the graphs 9J1(x)

and 9J1(y) are not isomorphie (take x = 80 and y = 8180 in W a «74 ) for example).

But we have the following result.

Proposition. (a) The elements in the same left cell 0/ W a have the same generalized

i-invariant.

(b) // x f",.J y in W a J then the left cell graphs 9J1L (x) and 9JtL (y) are isomorphic.
L

The assertion (a) is well-known (see [20, Proposition 4.2]). Then (b) follows from

Theorem 2.1 and Proposition 3.1 readily.

The above result allows us to talk about the generalized i-invariant of a left cell

of Wa , which is by definition the generalized i-invariant of any element in this left

cell.

3.11 We state some well-known results coneerning the Bruhat order of a Coxeter

system (W, S) wmch will be useful in performing Proeess (C) on a set.

(a) Let y ~ w in W. Then for any redueed form w = 81S2 ... Sr with Si E S, there

is a subsequence i 1 , i 2 , ... 1 i t of 1,2, .. " T such that y = Si l Si'J ... Si t is a reduced

expression of y.

(b) Suppose J = J2(w) for w E W. Then there is same x E W with w = WJ'X and

l(w) = l(wJ) + l(x).

Now let w E W be with J = .c(w). By (b), we can find a reduced expression w =

S1S2 ... Sr, Si E S, with WJ = 81 S 2 ... 8t, where t = l(wJ)' Denote Wj = 8182' .. 8j

for t ~ j ::; T. Let Pj be the set of all elements y with y ~ Wj and .c(y) ~ J. Then

Pt = {WJ}' Suppose that the set Pk has been found for t ~ k < T. Then by (a), we

have
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This provides a recurrence procedure to find all the elements y with y < wand

.c(y) ;2 .c(w) for any given w E W.

§4. l.c.r. sets and left cell graphs in two-sided cells of Wa {C4 ).

4.1 We shall apply Algorithm 2.7 to find an l.c.I. set, together with the corresponding

left cell graphs, in each two-sided cell 0 of vVn = Wa (C:'4)' Let us first choose the

starting sets P of the algorithm. From the nature of the algorithm, it is preferred

(but not necessary) to choose the elements x of the fonn w I, I eS, for the set P

w henever it is possible. Let Pi be the set of all the elements of W( i) of the form wI.

Then we have the following table.

2 Pi 1. Pi
0 {e} 6 { W123}

1 {SO,Sl,S2,S3,S4} 8 { W0134}

2 {W02, W03, W04, W13, W14, W24} 9 { 10012, W234}

3 {W024' W12, W23} 10 { W0124, W0234}

4 {W023, W124, WOI, W34} 16 {W0123' 'W1234}

5 {W013, W014, W034, W134}

Each set W(i) (i E {O, I, 2,5,6,8,9,10, 16}) consists of a single two-sided cello For

such a set W(i)' we shall take Pi as the starting set of the algorithm. The set W(3)

(resp. W(4») contains two two-sided cells. We shall take a one-element subset of Pi

as the starting set of the algorithm.

For any z E W a , we denote by O(z) (resp. r(z)) the two-sided cell (resp. the left

cell) of Wa containing Z.

4.2 The case W(O) is trivial and so we shall always assurne i > °for W(i)"' In applying

the algorithm, we shall first deal with the two-sided ccll W(16)l then W{10) , W(9)l W(8) ,

W(6) , W(5)' 0(W023), W(4) \ 0(W023), 0(W12), W(3) \ 0(W12), W(2) and W(l) in turn,

where X \ Y = {x E X I x f/:. Y} for any sets ~Y 1 Y ... The reason for taking such an

order is to make it easier in performing Processes (B) and (C), in particular in the

determination of the a-values of the elements occurring in the intermediate steps of
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Let 1j; be the automorphism of W a (C4 ) which sends Si to S4-i for 0 ::; i ~ 4. Then

it is clear that 1j; stabilizes the sets W(i)' i 2: 0: and induces a permutation on the set

of left (resp. right, resp. two-sided) cells of W a in each W(i)'

We shall use the notation i for the simple refiection Si (0 ~ i ~ 4) in the subsequent

discussion.

4.3 W(16) is the lowest two-sided eell of W a . It is known that an element of Wa

is in W(16) if and only if its alcove form has no zero entry (see 1.7,(7) ) . It is also

known that there are totally IWol left eells of W a in VV(I6) each of which is associated

to a sign type (see [18, Theorem 1.1 and Corollary 1.2J). Let x = 3210123 . WOI24

and y = 1234321 . W0234. Then we see from their alcove forms that the elements

X, y, W0123 and W1234 are all in the set W(I6)' The graphs 9Jt(x), 9Jt(y), 9Jl(WOI23)

and 9Jl(WI234) are isomorphie to those in Fig.s 16, 17, 18 and 19, respectively (

Fig.s mentioned here and later will be displayed at the end of this section). The

vertiees x, y, W0123, WI234 are labelled by 101241, 102341, 101231, 112341 respectively in the

corresponding graphs. We see that the sign types associating to the elements. of the

union M = M(x) U M(y) U M(WOI23) U M(WI234) are all different. This implies that

the above four graphs are all essential and that M is an l.c.r. set of W(I6) by the fact

IMI = IWol = 384.

4.4 W(10) is a single two-sided cell of Wa . The graph 9Jt(WOI24) is isomorphie to that

in Fig. 16, which is essential by Proposition 3.10. The element W0234 does not belong

to any left cell of Wa in M L (w024) sinee there is uo vertex of 9Jl(WOI24) labelled by

102341. By the fact 1j; (Wo 124) = W0234, we see that the graph 9Jl(W0234) is·essential (see

Fig. 17.). The left cell set M L (Wo 124) is disjoint to !vIL (W0234) again by Proposition

3.10. By applying Algorithm 2.7, we see that the union M(WOI24) U M(W0234) is A-,

B- and C-saturated and hence forms an l.c.r. set of the two-sided cell W(IO)'

4.5 W(n) is a single two-sided cell of Wa . There are two vertices of 9Jt(WOI2) labelled

by 10121 (resp. @]). This fact, together with 1.7, (5),(8) and Propositions 3.4, 3.10,
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implies that the graph 9Jt(W012) is not essential and that the left eell graph 9JtL(W012)

8hould be that in Fig. 14 with the vertex r (Wo 12) labelled by 10121. Since there is

no vertex of 9J'tL (W012) labelIed by 12341, the element W234 does !lot belong to any

left eell of Wa in M L (Wo 12) . Sinee 11' (Wo 12) = W234 l we see that the left eell graph

9J1L (W234) should be displayed as in Fig. 15 with r(W234) the vertex labelled by 12341.

Hy applying Algorithm 2.7, we ean show that the union M L (w012) UML (W234) is the

left eell set of Wa in the two-sided eell W(9).

4.6 W(B) is a single two-sided eell of W a . The graph 9J1(W0134) is isomorphie to that

in Fig. 13, whieh is essential by Proposition 3.13. It ean be shown by applying

Algorithm 2.7 that the set M(W0134) forms an l.e.r. set of W(B)'

4.7 W(6) is a single twO-sided eell of Wa . Thc graph 9J1(W123) is infinite. By 1.7,

(5),(8), we see that the set {w E M(W123) 1 R(w) = J} (J = {o}, {4} or {123}) is

eontained in some left eell of Wa . On the other hand, let x = W123 . 012024. Then the

graph 9J't(W123) eontains the following subgraph.

where the vertex labelled by 10141 is the element x. Let y = X20 and w = X· 21. Then

y and ware two vertices of this subgraph, both labelIed by 11241. We 'claim y I'"V W.
L

For, we have 210 . W = 12010 . y, denote this element by z. Then z is a eommon left

extension of wand y (see 1.6). Let Xl = 210' W123. Then we see that z E M(Xl) and

XII E M(W123)' This implies z E W(6)' Henee by 1.7,(3), we have y I'"V Z I'"V w. From
. L L

these facts and by Proposition 3.4, we see that the left eell graph 9'JtL (W123) should

be that in Fig. 12. Applying Algorithm 2.7, we see that ML(W123) is the left eell set
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of Wa in the two-sided cell W(6)'

4.8 W(5) is a single two-sided eell of W a . The graph m(WOI3) is infinite. By 1.7,(5),

we know that the set {w E M (Wo13) I n (w) = J} is contained in some 1eft eell

of Wa for J = {O,I,S}, {O,I,4}, {O,3,4} or {I,3,4}. By Propositions 3.4 and 3.10,

this fact tells us that the left cell graph 9J1L (Wo 13) should be that in Fig. 10. Since

7P(WOI3) = W134, we see that the left cell graph 9J1L(W134) should be that in Fig.

11. The sets M L (wOI3) and M L (WI34) are disjoint by Proposition 3.10. Byapplying

Algorithm 2.7, we see that ML (wOI3) U M L (WI34) is the left cell set of Wa in the

two-sided cell W(5)'

4.9 There are two two-sided cells in W(4)'

(a) First consider the two-sided eell n(W023) . The graph 9Jt(W023) is isomorphie

to that in Fig. 6, which is essential by Proposition 3.10. Let y = W023 . 12, Yo = Y . 4.

Then y E M(W023), and {y, yo} is a primitive pair (see 3.5). So Yo f"V W023' But we
R

have R(yo) = {t,2,4}. This implies Yo f"V W124 by 1.7,(5). Henee W124 E O(W023)'
L

Since 7/J(W023) = W124, it implies frorn the above results that the graph VJt(WI24)

is essential (see Fig. 7). It is seen easily by Proposition 3.10 that the left cell set

M L (w023) is disjoint to M L (WI24)' By applying Algorithm 2.7, we see that the union

M = M(WI24) U M(W023) is A-, B- and C-saturated. So M farIns an l.e.r. set of the

two-sided eell 0 (W023) .

(b) We have WOI, W34 ~ O(W023) since there is no vertex of 9J1(W023) and VJ1(WI24)

labelIed by @Il or [E]. This implies O(WOI) = W(4) \ O(W023) and W34 E n(W01)' The

graphs VJ1(WOI) and 9Jt(W34) are isolllorphic to those in Fig.s 8, 9, respeetively. By

Proposition 3.10, we see that these two graphs are both essential and· that the left

cell set M L (wOl) is disjoint to M L (W34)' By applying Algorithm 2.7, we see that the

set M(WOl) U M(W34) forms an l.c.r. set of the two-sidcd cell O(wod.

4.10 There are two two-sided cells in W(3)'

(a) F irst consider the two-sided cell n(w 12) . The graph 9Jt(W 12) is essential by

Proposition 3.10 (see Fig. 4). By applying Algorithm 2.7, we see that the set M(WI2)
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farms an l.c.r. set of O(W12)'

(b) vVe have W024 ~ O(W12) since no vertex of the graph 9J1(W12) is labelled by

1024 1. So O(W024) = W(3) \ O(W12)' The graph 9Jt(W024) is essential by Proposition

3.10 (see Fig. 5). The set M(W024) forms an l.c.r. set of the two-sided cell n(W024)

by applying AIgorithm 2.7.

4.11 By 1.7,(5) and Propositions 3.4, 3.10, we see that the graph 9J1(W02) is not

essential and that the left cell graph 9J1L (W02) is displayed as in Fig. 3. We have by

applying Algorithm 2.7 that the set ML(woz) is the left eell set of Wa in the two-sided

cell W(2)'

4.12 The graph 9J1(so) is infinite. The Ieft cell graph 9JtL(SO) can be obtained easily

fram meso) by 1.7, (5) (see Fig.2.).

4.13 We have got all the Ieft eell graphs of the two-sided ceIls W(i)' i E {l, 2,5,6, 9}.

By a elose observation of tbe reIated graphs, we see that for any Ieft cell graph

mL(x) of W(i) (i E {l, 2,5,6, 9}), there exists some subgraph of the corresponding

graph 9J1(x) which is isomorphie to 9J1L (x) and contains x as its vertex. Therefore we

have obtained an l.c.r. set for any of these two-sided cells of Wa . On the other hand,

we have got an l.c.r. set for each remaining two-sided cell of Wa which is presented

as the vertex set of certain essential graphs of the fOrIn 9J1(x). Thus we have actually

got an l.c.r. set and the left cell graphs for any two-sided cell of W a .

4.14 The following are all the left cell graphs of Wa (C4 ) obtained in the present

section.

~ ~
dJ----0--dJ

Fig. 1. Fig. 2. Fig. 3.
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Fig. 4. Fig. 5.

Fig. 6. Fig. 7.

Fig. 8. Fig. 9.
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~---dJl
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Fig. 10. Fig. 11.

Fig. 12.
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Fig. 13.
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Fig. 14.

Fig. 15. 9J1 L (W234)
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Fig. 16.
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Fig. 17.
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Fig. 18.
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Fig. 19.

§5. Some comments.

In this section, we shall make some observations and comments on· the left cells

of W a ((7k ), k = 2,3,4 by the results we have got so far. Based on these, we shall

further consider the possible generalization to the more general affine Weyl groups.

5.1 Let us start with recalling some concepts and known results. A partition of l E N

is by definition a sequence of integers Al ~ A2 2:: ... ~ Ar > 0 with 2:;=1 .Ai = i. We

shall not distinguish between two such sequences which differ only by astring of zeros
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at the end. Let A2l+1 be the set of all partitions of 2f. + 1. Let A = (Al, A2'" . 1 Ar),

J1. = (J1.1' J.L2, ... ,J1.t) be in A2l+1 . We say that /-L is dual to A if for any i ~ 1, J.Li is

the number of parts Aj, 1 ::; j ::; r, with Aj 2: i. We say that A dominates /-L, written

A 2: /-L, if ~:=I Ai 2: ~:=I /-Li for any k 2: 1. This defines a partial order, called the

natural order, on the set A2l+ I . Let A2l+1 be the set of all partitions in A2l+ I each

of whose even parts occurs with even multiplicity. Let G(Bl ) be the complex adjoint

algebraic group of type Bil l 2:: 2. Then it is well known that the unipotent conjugacy

classes of G(Bt ) are parametrized by elements of A2l+1 such that iE U>" u/1 are two

unipotent classes oE G(Bt) parametrized by A, fL, respectively, then u>. ~ u/1 if and

only if A ::; J.L, where u/1 is the closure of u/1 in the variety oE unipotent elements of

G(Bt) (see [2, Chapter 13]).

5.2 For A E A9l let u>. be the corresponding unipotent conjugacy dass of G(B4 ). Let

0>. = c(u.x) be the two-sided cell of W a = Wa (C4 ) associated to u,\ under the Lusztig

map in Theorem 1.8. ·We denote by n,\ the number oE left cells of W a contained in O.x,

and by A(A) = C(u)jC(u)O the component group of the centralizer of an element

u E U,\, the latter makes sense since it is independent of the choice oE u up to

isomorphism. Then by the result oE §4 and by Theorem 1.8, we have the following

table.

A n,\ 0,\ A(A) A n,\ 0,\ A(A)
(9) 1 W(ü) 1 (3~1~) 56 W(5) 82

(71 2
) 5 W(n 82 (32 2 12 ) 72 WeB) 82

(531) 11 W(2) s~ (24 1) 96 WeB) 1
(522 ) 24 O(WI2) 1 (31 ti) 144 W(9) 82

(421) 16 O(W024) 1 (22 15 ) 192 W(10) 1
(51 4

) 32 O(wod 82 (1~) 384 WOB) 1
(3;j) 32 O(W023) 1

Here the notation (32212) (for example) in the table stands for a partition with five

parts 3,2,2,1,1. Thus the total number of left cells in Wa (C4 ) is 1065.

5.3 Let G be a simple algebraic group oE adjoint type aver C. According to Bala

Carter Theorem, there is a bijective map between unipotent conjugacy classes oE
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G and G-c1asses of pairs (L, Pu), where L is a Levi subgroup of G and PL' 1S a

distinguished parabolic subgroup of the semisinlple part L' of L. The unipotent c1ass

corresponding to the pair (L, PLI) contains the dense orbit of Pu on its unipotent

radical (see [2, Theorem 5.9.6]).

For"\ E A2l+1, let (L, PLI) be the pair associated to the unipotent conjugacy class

u,\ of G(Bt ) and let WL be the Weyl group of L'. Then from the existing datum, we

assert that for any ,,\ E A2l+1 with.e = 2,3,4 or a(O.\) ::; 4, the number n.\ of left cells

of Wa(Ct ) in the two-sided cell 0,\ is equal to IWol/IWLI if and only if A(A) is trivial

(see 5.2, §6 and [9], [3], [4], [14]). In fact, the parts of any A E A2l+1 can be listed in

the following way: al, 0'1, 0'2, Ct2, ... , a r , O'r, 2ß1 + 1, 2ß2 + 1, ... , 2ßt + 1 with

Ctl 2: Ct2 2: ... 2: Ctr > 0 and ßl > ß2 > ... > ßt 2: O. In the associated pair (L, Pu)

to U,\, we know that L' (and hence W L) has type An1-1 + ... + A Or -1 + BI: ßi +[t/2],

where [t/2] is the largest integer not exceeding t/2. We know that the group A(A) is

trivial if and only if A has exactly one distinct odd part (see [2, Chapter 13]). Thus

the above assertion can be checked easily from the existing datum. I conjecture that

this result holds also for any two-sided cell 0 f Wa (Cl), l 2: 2.

Again by the existing datum, we observe that the analogous result also holds for

the affine Weyl groups of types Äl (l 2: 1), 133 , 134 , F4 and for all the two-sided cells

n of the affine Weyl groups of type Bt (l 2: 2) with a(n) ::; 4. But it is false for the

affine Weyl groups of types Dl (l 2: 4), E7 , Ea (see [15], [7], [25], [23], [3], [14], [5],

[6], [21]).

5.4 It has been shown in [22] that the Lusztig map U --+ c(u) from the set of

unipotent conjugacy c1asses of G(Bk ) (k = 2,3,4) to the set of two-sided ceils of

Wa(Ck) is order-preserving: u ~ u' if and only if c(u) ::; c(u') (see 1.8, the tables in
LR -

5.2 and in §6). For a two-sided cell n of W a , let T(O) be the set of all subsets I of S

such that I = .c(w) for some wEn. Then we have the following fact in the groups

Wa(Ck ) (k = 2,3,4): two two-sided cells 0, n' i= {e} satisfy the relation 0 ::; n'
LR

if and only if T(O) ~ T(O'). I conjecture that this result holds in any affine Weyl
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group. We can say even more for the groups Wa(Ck ), k = 2,3,4. Let us introduce

some more notations.

Let S = {so, Sb'" ,se} be the Coxeter generator set of the group Wa(Ce) whose

indices are compatible with the corresponding extended Dynkin diagram ( wmch is

obtained from the Dynkin diagram in 1.5 by adding one more node labelled by 0 to

the diagram which joins the node labelled by 1 by a double arrowed edge). For any

J c S, a decomposition J = J1 U J2 U ... U Jt is called standard, if the following

conditions are satisfied.

(a) Each Ji , 1 ::; i ::; t, is not empty and the corresponding Dynkin subdiagram is

connected.

(b) For any pair i, j, 1 ::; i < j ::; t, we have Ji nJj = 0and the Dynkin subdiagram

corresponding to Ji n Jj is not connected.

(c) IJ1 1 ~ IJ2 1 ~ ... ~ IJtl.
where we stipulate that a standard decomposition of an ~mpty set is the trivial one.

Now assume that J = J 1 U J 2 U ... U J t is a standard decomposition of a proper

subset J C S. For any i with Ji n {so, Si} = 0, we are given two equal integers

ail = ai2 = IJil + 1. On the other hand, suppose Jj n {so, Si} =1= 0 for some j. Then

we are given an integer aj equal to 2lJjl+l if Jkn{so, se} = 0 for any k < j, and equal

to 21Jj l if otherwise. We denote by ((J) the dual partition of (Al, A2,' .. ,Ar) E A2l+1,

where the sequence Ab A2, ... ,Ar is obtained by arranging all the numbers aib ai2,

aj, Vi, j, in decreasing order, and adding some parts l's at the end whenever it is

necessary. In this way, we define a map ( from the ::let of all proper subsets of S to

the set A2l+1. It can be shown that for any subset K of A2l+b there e~ists a unique

element of A2l+1 dominated by all the elements in K and heing maximum with this

property. Then the following result can be checked directly from the existing datum.

Proposition. Let 0 be a two-sided cell 0/ the group W a ((7k) 1 k = 2, 3, 4. Let A(0)

be the unique maximal element of A2k+l dominated by all the elements in the set

((T(O)) C A2k+1 . Then the partition A(O) parametrizes the 1J.nipotent cZass 0/ the
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algebraic group G 0/ type Bk corresponding to nunder the Lusztig map.

31

This proposition gives an explicit combinatorial description of the Lusztig map for

the groups Wa(Ck), k = 2,3,4. I conjecture that it remains valid-for all the groups

Wa(Cl ), l ~ 2.

5.5 Proposition 5.4 encourages us to propose oue more conjecture which is concerned

with the relation LR on elements of Wa(Ct). For any w E Wa = Wa«7l ), l ~ 2,

we define a set T(w) = {J C S I w = x . WJ . y, for some x, Y E Wal. Let ..\(w)

be the unique maximal element of A2l+1 dominated by all the elements in the set

«(T(w)) c AU +1'

Conjecture. Let x, y E Wa(Cl). Then x f"V y i/ and only i/ ..\(x) = ..\(y).
LR

5.6 From the left cell graphs displayed in 4.14, we see that any left cell f of Wa (C4 )

is determined uniquely by its generalized T-invariant (see 3.9) except for the cases

that there is some (and hence any) element x Ersuch that the graph 9JlL(X) is that

in Fig. 16 or 17. But in these exceptional cases, we have a(r) E {10,16}. Then the

alcove form of auy element of r could tell us the actual value a(f): it is equal to 16

if uo entry of the alcove form is zero, or 10 if otherwise (see 17, (7)), and hence the

left cell r is determiued uniquely. Therefore we have the following

Theorem. Let f be a left cell 0/ the affine Weyl group Wa (c:74 ). I/ f is not in the

lowest two-sided cell, then it is determined entirely by its generalized T-invariant.

On the other hand, i/ r is in the lowest two-sided cell, then it is determined by the

corresponding sign type.

- -
An analogons result also holds for the groups Wa (C2 ) and Wa (C3 ) (see §6.). One

might expect that this also hold for all the affine Weyl groups Wa(Cl ), l 2: 2.

5.7 By closely observing all its left cell graphs, we have the following result for the

group Wa (C4 ).

Proposition. For any w E W a «74 ) not in the lowest two-sided cell, there is avertex

v with 1= n(v) in the graph 9.Jl(w) such that e(W]) = a(w).
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This result, together with the result in 1.7, (7) concerning the lowest two-sided

cell, make it easier to deterrnine the a-value of any element of the group Wa (C4 ).

Also, by [19, Proposition 5.12], this result enables HS to find all the distinguished

involutions of Wa (C4 ) only by sucessively applying star operations on the elements

WJ, J c S (see [11], [15] for the definitions of a distinguished involution and a star

operation). It is known that the distinguished involutions play an important role

in the representation theory of Coxeter groups and Hecke algebras and that finding

these elements usually involves very complicated computation of Kazhdan-Lusztig

polynomials. By the results of Lusztig and Bedard (see §6. or [10], [1]), we see

that the above proposition remains valid if we replace the group Wa (C4 ) by Wa ((7k ),

k = 2 or 3. Thus one might further expect the validity of this result for all the groups

Wa(Ct ), l 2: 2. Unfortunately, this is not the case. By Theorem 1.8, we see that for

any l 2:: 5, there always exists some element W E Wa(Ct) such that a(w) =I l(w[) for

any I c Sand hence for such an element w, the conclusion of the above proposition

should be false.

5.8 Let 'ljJ be the unique non-trivial automorphism of the affine Weyl group Wa ((7t )

(f 2: 2) which preserves the Coxeter generator set S (see 4.2). Let 001, ')1 be two

graphs with M, N the corresponding vertex sets ( in the sense of 3.6). We say that

the graph 'J1 is opposed (resp. dua~ to 9J1, if there is a bijective map cP from the set

M to N satisfying that for any x, y E M,

(a) R(cP(x)) = S \ R(x) (resp. R(cP(x)) = 'ljJ(R(x))).

(b) {x, y} is an edge of 9Jt if and only if {cP(x), cP(y)} is an edge of ')1.

It is easily seen that if W(i) C Wa(Ct) consists of a single two-sided cell and

has ooly one left cell graph, say 9J1L, then 9J1L finst be self-dual. This is the case

for the sets W(i) C W a (C4 ) with i E· {O, 1,2,6, 8} (see Fig.s 1, 2, 3, 12, 13). The

other self-dualleft cell graphs of Wa (C4 ) are in Fig.s 4 and 5. All the remaining dis

played left cell graphs in 4.14 fall into six mutual clual pairs: {m1L(W023), 001L(W124) } ,

{9J1L(wod , 9J1L(W34)}, {9J1L(W013),9JtL(W134)}, {mtL(W012),9J'tL(W234)}, {Fig. 16,
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Fig. 17 } and {Fig. 18, Fig. 19 }.

There is no self-opposed left cell graph in W a (C4 ). But there are just two pairs of

mutual opposed left cell graphs: { Fig. 16, Fig. 19} and { Fig. 17., Fig. 18 }, where

all the left cell graphs in the lowest two-sided cell of W a (C4 ) are involved (The last

statement should hold for any affine Weyl group).

5.9 We see that the automorphism 7j; stabilizes each two-sided cell of Wa (C4 ). This

also holds for Wa (C2 ) and Wa (C3 ) (see §6.). As a consequence of the conjectures in

5.4 and 5.5, I expect that this is still the case for the groups Wa(Ct), l 2: 5.

§6. Appendix.

Here we list all the left cell graphs, and some related results due to Lusztig and

Bed~d [1], [IO] for the affine Weyl groups Wa (C2 ) and Wa (C3 ) (we omit the graph

imL (e) in each case since it is too trivial). Keep the notations as before. The indices of

the related simple reflections are compatible with the corresponding extended Dynkin

diagrams (see 1.5 and 5.4).

6.1 There are four two-sided cells in the group W a (C2 ), which are W(i) , i = 0,1,2,4.

The non-travialleft cell graphs of Wa (C2 ) are as below.

We have the following table.

~
~

~ ~
~ U

12

1 02

A n>. Ü.\ A(A) A 11>. S1.\ A(A)
(5) 1 W(O) 1 (2:l1) 4 W(2) 1

(31 2 ) 3 W(1) 82 (1 5 ) 8 W(4) 1

So there are sixteen left ceIls in Wa (C2 ) .

6.2 There are seven two-sided cells in the group Wa (C3) , whieh are W(i), 2 

0,1,2,3,4,5,9. The non-trivialleft cell graphs of Wa (C3 ) are listed as follows.
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We have the following table.

..\ n>. 0>. A(A) A n>. 0>. A(..\)
(7) 1 W(O) 1 (31 4 ) 18 W(4) 82

(51:l) 4 W(I) 82 (2~13) 24 W(5) 1
(3 2 1) 7 W(2) 82 (1 7

) 48 W(9) 1
(32:l) 12 W(3) 1

Thus the number of left cells of Wa (C3 ) is 114.
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