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Every proper smooth action of a Lie group is equivalent to areal
analytic action: A contribution to Hilbert's fifth problem

Sören Dlman

In this paper we prove that if a Lie group G acts on a smooth manifold M by a proper

and smooth action then there exists a real analytic structure ß on M, compatible with the

given smooth structure on M, such that the action of G on Mp is real analytic. By smooth

we here mean Coo, but we could as weIl considers the er case, r ~ 1, and the result still

holds by essentially the same proof.

We shall now discuss Hilberts fifth problem [6], following the discussion in Montgomery­

Zippin [14, Section 2.15]. We quote from [14, p. 70]: "Let us now considers the following

questions, the second and third of which are asked by Hilbert:

If a locally compact group G acts effectively on a manifold M (locally-euclidean space)

then

1. is G necessarily locally euclidean,
2. if the group G is locally euclidean, is it a Lie group in some appropriate coordinates.

3. If G is a Lie group, can coordinates be chosen in G and M so that the transforming

functions are analytic?

The answer to 2. which can be asked, of course, without mentioning transformation

groups, is yes and was first solved by the contents of two papers one by Gleason [4]. the

other by Montgomery and Zippin [13]."

At the time of the appearance of the book [14] by Montgomery and Zippin the answer
to 1. was unknown, except in some special cases, and as far as I know the answer to 1. is

still an open question. in any case there has not appeared in print any paper containing a

complete solution of 1..

Conceming 3. Montgomery and Zippin give the following discussion. "The answer 10

3. is no. For example a group of reals can act on R2 by having fixed x 2 + y2 ~ 1 and

slowly rotating the rest of R2. This can not be analytic since if it where the existence of an

open set of fixed points would imply that all points were fixed. The answer 10 3. is no even

if G is compact as was first shown by Bing [2] by an example of the cyclic group of order

two acting on R3 in a way that could not be differentiable."

More recently it has been shown that the answer to 3. is no also in the case of actions

of connected compact Lie groups. For example there exists a compact smoothable 12­
dimensional manifold M 12 which admits an effective, continuous SI -action, but which

admits no nontrivial smooth SI -action in any differentiable structure, see Bredon [3, Corollary

6.9.6]. Here one can use the powerful theorem of Atiyah and Hirzebruch [1], which says that if

a compact connected oriented smooth manifold M, of dimension 4m and with w2(M) = 0,

admits a non-trivial smooth action of SI, then A(M) = O.



Dur theorem shows that the answer to 3. is yes if the action of G on M is proper and
smooth. Tbe example given by Montgomery and Zippin with the group of reals acting in R2
can be chosen to be smooth, but it is not a proper action.

The fact that every smooth manifold has a compatible real analytic structure was first
proved by Whitney in [17]. It is also known that if two real analytic manifolds are smoothly

diffeomorphic then they are also real analytically diffeomorphic. The proof of this fact requires
the use of Grauert's imbedding theorem [5], which says that every real analytic manifold has
areal analytic imbedding in some euclidean space. In fact it is known that if M and N are
real analytic manifolds then CW(M, N) is dense in cr(M, N), 0 ::; r ::; 00, see e.g. the
discussion in [7, Section 2.5]. (Here the function spaces Cr(M, N) and CW(M, N) have

the Whitney topology, i.e., the strong topology.)

In the case of smooth manifolds with symmetries there are earlier known results about
raising the differentiability in the case when the group of symmetries is a compact Lie group,
see Palais [16] and Matumoto-Shiota [12]. Palais proves in [16] that every er, 1 ::; r < 00,

action of a compact Lie group on a compact manifold is er -equivalent to a c=o action.
Matumoto and Shiota use essentially the same method as Palais and their Theorem 1.3 gives
the result that every er, 1 ::; r ::; 00, action on a er manifold is er -equivalent to a CW
action, i.e., a real analytic action, on a CW manifold. Matumoto and Shiota also show that

if M and N are two real analytic H -manifolds, where H is a compact Lie group, such
that the number of H -isotropy types occuring in M and N is finite, then they are real
analytically H -diffeomorphic if they are Cl H ~diffeomorphic, see Theorem 1.2 is [12].

In the case of proper actions of a non-compact Lie group G, the question whether the

obtained proper real analytic G -manifold Mß is unique up to a real analytic G -equivariant
diffeomorphism is a very intriguing question. We are only able to prove that the G -manifold

Mß is unique up to a semi-analytic G -equivariant smooth diffeomorphism. (fhis result is
however good enough for some applications that we have in mind.)

Tbe main result of this paper implies that we can use the subanalytic equivariant
triangulation theorem for proper real analytic G -manifolds, proved in [8], also in the case of

proper smooth actions. In this context our uniqueness result, Theorem 2.1, is also sufficiently
strong.

In the case of properly discontinuous actions of a discrete group (i.e., the case of a 0­

dimensional Lie group G ) the results of this paper where already given in [9], where we

also announced Theorem 1.1 and 1.2 of this paper.

This paper was written during my visit to the Max-Planck-Institut für Mathematik, 26.11.­

18.12.1992. I wish to thank the Max-Planck-Institut für Mathematik, and its director Professor

F. Hirzebruch for the invitation and for providing both inspiring and excellent working
conditions.

o. Preliminaries

Let G be a locally compact group acting on a locally compact space X. Recall that

the action is said to be proper if {g E GIgA nA#- cP} is a compact subset of G for every

compact subset A of X. This is also equivalent to the fact that G x X -t X X X, (9, X) t-+
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(gx, x), is a proper map. In particular each isotropy subgroup Gx , x E X, is a compact
subgroup of G. When G is a discrete group a proper action is the same thing as the classical

notion of a properly discontinuous action. From now on G will denote an arbitrary Lie group.

If M and N are smooth manifolds we denote by COO(M, N) the set of all smooth maps

from M to N, and we give COO(M, N) the Whitney topology, i.e., the strong topology. H

M and N are real analytic manifolds, then CW(M, N) denotes the set of aIl real analytic

maps from M to N, and CW(M, N) has the induced topology from COO(M, N).
,>

Now let H be a compact Lie group and let M and N be smooth [real analytic] H-
manifo1ds. Then we denote by CH(M,N) [Cn(M,N)] the set of all H -equivariant

smooth [real analytic] maps from M to N.

As we already mentioned in the introduction, it is a well-known and deep result that if M
and N are real ana1ytic manifolds then CW(M, N) is dense in COO(M, N). We shall use the

following equivariant version of this result, due to Matumoto and Shiota [12, Theorem 1.2].

Theorem 01. Let H be a compact Lie group. and let M and N be real analytic H -manijolds
and assume that the number 0/ the orbit types occurring in N is finite. Then C'H(M, N) is

dense in Cll(M, N).

o
We shall also use the lemma given below. See [7, Lemma 2.2.8] for a somewhat less

general fOffilulation of the same result.

Lemma 0.2. Suppose that M and N are snwoth manijolds and that 6 E COO(M, N). Let

U and V be open subsets 0/ M and N, respectively, such that 6(U) C V. Then there exists
an open neighborhood N 0/61U in COO(U, V) with thefoliowing property: lfwe/or each
1] E N c COO(U, V) define

E(1]):M-tN

10 be the extension 0/ 1] : U -t V given by

E( ~) = { ~i:i: : ~ ~ - U,

then we have that E (1]) E Coo (M, N), and the map

E : N -t COO(M, N)

is continuous. (Observe that E(6IU) = 6 .)

o
In the following G denotes an arbitrary Lie group. Let M be a proper smooth G­

manifold, and let x E M and denote H = Gx. A smooth H -invariant submanifold S of

M is a said to be a smooth slice at x in M if GS is open in M and the map

(1) ~ : G x H S -t GS, [9, x] 1-+ 9x

is a smooth G -equivariant diffeomorphism onto GS. The existence of a smooth slice at

each point of a proper smooth G -manifo1d was proved by Koszul [11], see also Palais [15,

Proposition 2.2.2].
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In the case when M is a proper real analytic G -manifolQ ~d, in addition 10 the above,
S is a real analytic submanifold and i in (1) is areal analytic G-equivariant äiffeomorphism

onto GS, then we say that S is areal analytic slice at x in M. The fact that there exists areal

analytic slice at each point of a proper real analytic manifold was proved by Kankaanrinta

[10, Theorem 2.5].

Suppose that S is a smooth [real analytic] slice at x in the proPer smooth [real analytic]
G -manifold M. Let U be an H -invariant open neighborho<X1 of eH in G/ H such that

there is areal analytic cross section

(2) er : U --+ G,

of "7f' : G --+ G/ H, with the property that er is an H -equivariant map in the sense that

(3) u(hu) = ha(u)h-1
, for all h E Hand u E U

(That is, a is H -equivariant when the action of H on G is given by conjugation;
H x G --+ G, (h, g) ~ hgh- 1 • ) It is a well-knowo standard fact that such U and a exist

It now follows that

(4) ;: U x S --+ er(U)S = W, (u,x) ~ a(u)x

is a smooth [real analytic] H -equivariant diffeomorphism ooto W, and W is an H -invariant
open neighborhood of S in M. We call W a product neighborhood of S in M, and we
say that I in (4) is a presentation of W.

It is always possible, both in the smooth and real analytic case, to find euclidean slices.
We say that a smooth [real analytic] slice S at x in M is euclidean if there exists a smooth
[real analytic] H -equivariant diffeomorphism

(5)

with a(O) = x. Here Rn(p) denotes an orthogonal representation space for H. In this case

(6) er : G xH Rn(p) --+ GS, [g, a] ~ go:(a)

is a smooth [real analytic] G -equivariant diffeomorphism onto the tube GS. Furthennore

(7) fJ : U x Rn(p) --+ u(U)S = W, (u,a) ~ a(u)a(a)

is a smooth [real analytic] H -equivaraint diffeomorphism onto W. In this case, when S is

an euclidean slice, we can moreover find a product neighborho<X1 W of S in M such

that the number of H -isotropy types occurring in W is finite. This follows from the

fact that we can choose the H -invariant open neighborhood U of eH in G/ H to be
real analytically and H -equivaraintly diffeomorphic to an orthogonal representation space

Rk(w) for H. Then there exists a smooth [real analytic] H -equivariant diffeomorphism
from Rk(w) X Rn(p) = Rk+n(w ffi p) onto W, and hence the number of H -isotropy types

occurring in W is finite.

Tbe following lemma will be used in the proof of Theorem 1.1, and this lemma is also
crucial for the proof of Theorem 2.1.
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Lemma 0.3. Let M be a proper smooth G -manifold, and let x E M and denate Gz = H. lf
S is a snwoth slice at x in M there exists a product neighborhood W 0/ S in M such that

the following holds. There is an open neighborhood M 0/ i : S ~ W in Coo(S, W) such
that if j E M n CH(S, W) then j : S -t W is a smooth H -equivariant closed imbedding

0/ Sinto W, and S' = j(S) is a smooth slice in M and GS' = es.
In the case when S is an euclidean slice we can moreover suppose that the number

of H -isotropy types occurring in W is finite, and we can also fonnulate the lemma in the

following fonn.

Suppose that 0' : R(n)(p) -+ SeM is a presentation 0/ a smooth euclidean slice S
in M. Then there exists a product neighborhood W 0/ S in M such that the number 0/
H isotropy types occurring in W is finite and such that the /ollowing holds. There is an open

neighborhood M 0/ 0' in Cn(Rn(p), W) such that if 0" E M then 0" : Rn(p) -+ W is a
snwoth H -equivariant closed imbedding 0/ Rn (p) into W, and S' = 0" (Rn (p)) is a snwoth

slice in M and es' = es.
o

Seetion 1.

Theorem 1.1. Let M be a snwoth manifold on which a Lie group G acts by a proper and
snwoth action. Then there exists areal analytic structure ß on M, compatible with the given
smooth structure, such that the action 0/ G on Mp is real analytic.

Proof: We define B to be the family consisting of all pairs (B, ß), where B is a non-empty
open G -invariant subset of M and ß is a real analytic structure on B, compatible with the

smooth structure on B, such that the action of G on Bß is real analytic.

Let us first note that B is a non~mpty family. This is seen as folIows. Let Xo E M and

denote Gxo = K. By the smooth slice theorem (see Koszul [11], or Palais [15, Proposition

2.2.2]) there exists a smooth slice So at Xo in M. Furthermore we may suppose that So is

such that there exists a smooth K -equivariant diffeomorphism

(I) I. -,0 :R «(j) ~ So c M,

where RI. ((j) denotes an orthogonal representation space for K, and ')'0 (0) = xo. (We call

,0 a presentation of So. ) The map

(2)

is a smooth G -equivariant diffeomorphism onto the open e -invariant subset Bo = GSo
of M. Now G x H Rk «(j) is areal analytic G -manifold, and we give Ba the real analytic

structure ßo induced from G x H Rk ((j) through 70. Since the action of G on G x K RI; ((j )
is real analytic it follows that the action of G on (Ba) Po is real analytic. Since 10 in (2) is a

smooth diffeomorphism it follows that the real analytic structure ßo on Ba is compatible with

the smooth structure on Ba. Thus (Ba, ßo) E B, and we have shown that B is non-ernpty.

. We define an order in B by setting

5



if and only if:

i) BI C B2
ii) The real analytic structure ßI on BI is tbe one induced from the real analytic

structure ß2 on B2, Le., ß] = ß21B1.

Now suppose that T is a tower in B, Le., if (BI, ßd, (B2, ß2) E T then either

(BI, ß]) ::; (B2, ß2) or (B2, ß2) ::; (BI, ßl)' Let 7i denole the family of all B occurring

as the first coordinale of a pair in T, and let 12 be the family of all ß occurring as the

second coordinate of a pair in T. With this notation we have that

B*= UB
Be7i

is a non-empty open G -invariant subset of M, and it is also immediate that

ß*= Uß
ßeh

is a real analytic structure on B* such that the action of e on Bp• is real analytic and ß*
is compatible with the smooth structure on B*. Thus (B*, ß*) E Band

(B, ß) ::; (B*, ß*), for all (B, ß) E T,

Le., (B*, ß*) is an upper bound for T. Thus we have by Zorn's maximality principle that

there exists a maximal element (B, ß) in B. We claim that B = M.

Suppose the contrary and assume that B S M. If B is closed in M then we could find an

open G -invariant tuhe Bo = GSo, as in the beginning of the proof. such that Bo n B = rP

and Bo has areal analytic structure ßo, which is compatible with smooth structure on

Bo, and the action of G on (Bo)ßo is real analytic. Then (B U Bo,ßU ßo) E B and

(B, ß) < (B U Bo,ß U ßo), which contradicts the fact that (B, ß) is a maximal element in

B. Thus Bisnot elosed in M, and we have that B - B =I- </;>.

Choose x E B - B, and denole ex = H. Let S be a smooth euelidean slice at x in
M, and let

be a smooth H -equivariant diffeomorphism with 0'(0) = x. Here Rn(p) denotes an

orthogonal representation space for H. Let W be an H -invariant product neighborhood

of S in W, such that the number of H -isotropy types occuring in W is finite and such

that Lemma 0.3 holds for W. We let

TJ : U x Rn(p) -+ u(U)S = W

be a smooth H -equivariant diffeomorphism, where u : U -+ G is a real analytic H­
equivariant cross section as in (2) and (3) in Seetion O.

Since x E B - B and es is an open neighborhood of x in M it follows that

B n es =I- q;. Since G(B n S) = B n es it follows that B n S =I- 4>. Thus B n S is

a non-empty open H -invariant subset of S, and hence
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is a non-empty open H -invariant subset of Rn(p). (We may note that 0 E U - U. ) We

also have that

Since U is an open subset of Rn(p) it has areal analytic structure induced from Rn, and
since the action of H on Rn (p) is linear it follows that the action of H on U is real analytic.

We shall construct a smooth slice Si at x in M, with Si C W, and a smooth H­
equivariant diffeomorphism

ß : Rn(p) --t 5'

with ß(O) = x, such that ß-1(B'n 5') = U and

ßl : U --t Bp n5' C-....+ Bp nw

is a real analytic map into Bß n W. Here Bß n W is an open subset of tbe real analytic
manifold Bß and hence Bß n W has the induced real analytic structure from Bß. Since
the action of G on Bp is real analytic, and W is H -invariant, it follows that the action

of H on Bß n W is real analytic.

By Lemma 0.2 there exists an open neighborhood N of 0'1 : U --t B n W in
COO(U, B n W) such that we obtain a continuous map

(3)

by defining E(Jl) : Rn(p) --t M, for each Jl E N, by

E( )() {Jl(x), for every x E U
Jl X = a(x), forevery xERn(p)-U

Since E(aIU) = 0 and E is continuous thereexists an open neighborhood NI of alU in N
such that E(N1 ) C M. Since ,lU E CH(U, Bß n W) and the number of H -isotropy types
occurring in Bß n W is finite, there exists by Theorem 0.1, an Jl E No n CH(U, Bß n W).
It follows directly from the above definition of E(p) that

is H -equivariant. Hence

ß E M n Cn(Rn(p), M),

and by applying Lemma 0.3 we have that

is a smooth H -equivariant closed imbedding such that ß(Rn (p)) = 5' a slice at x in M,
and es' = es. Furthermore

ßIU = Jl : U --t Bp n W C Bp
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is real analytic.

No

(4)

is a smooth G -equivariant diffeomorphism onto GS, and

(5)

is areal analytic G -equivariant diffeomorphism onto Bß n es.
. Let us denote BI = es and give BI the real analYtic structure ßI it obtains from

G x H Rn (p ) through ß. Then the action of G on BI is real analytic, and since /3 in
(4) is a diffeomorphism it follows that ßI is compatible with the smooth structure on BI.
Since the map ,BI in (5) is a real analytic G -equivariant diffeomorphism onto the open
subset B n BI of Bß it follows that the real analytic structure on B n BI induced from

(BI)ßl equals the real analytic structure on B nBI induced from Bß. Hence it follows that
(B U BI, ß U ßl) E B, hut this contradiets the maximality of (B, ß). Thus B = M.

o

Seetion 2.

Using methods that are essentially the same as the ones we used in the proof of Theorem
1.1 we are able to prove Theorem 1.2 below. In this case we need to use slice theorem in
the real analytie ease, see Kankaanrinta [10, Theorem 2.5].

Theorem 2.1. Let M and N be proper real analytic G ·manrfolds, and suppose that there
exists a smooth G -difjeomorphism f : M -t N. Then there exists a semi-analytic and
snwoth G -diffeomorphism f* : M -t N.

o
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