Transcendental submanifolds of projective space

W. Kucharz*

Abstract

Given integers m and c satisfying m — 2 > ¢ > 2, we explicitly construct a nonsin-
gular m-dimensional algebraic subset of P *¢(IR) that is not isotopic to the set of real
points of any nonsingular complex algebraic subset of P™*¢(C) defined over R. First
examples of such a type were obtained by Akbulut and King in a more complicated

and nonconstructive way, and only for certain large integers m and c.
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1 Introduction

Denote by P"(R) and P"(C) real and complex projective n-spaces. We regard P"(R)
as a subset of P*(C). A smooth (of class C*°) submanifold M of P*(R) is said to be of
algebraic type if it is isotopic in P™(R) to the set of real points of a nonsingular complex
algebraic subset of P"(C) defined over R; otherwise M is said to be transcendental. It is
not at all obvious that transcendental submanifolds exist. However, Akbulut and King [2]
proved the existence of transcendental submanifolds M of P"(R) which can even be realized
as nonsingular algebraic subsets of P"(R). Their examples are obtained in a nonconstructive

way, by a method which requires both m = dim M and n —m to be large integers satisfying
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2m —n > 2. In the present paper we explicitly construct such examples, assuming only
n—m > 2 and 2m —n > 2. Moreover, we verify that M is a transcendental submanifold of
P"(R) using only the Barth-Larsen theorem [6, Corollalry 6.5] and completely avoiding all

results of [1, 2]. More precisely, denote by S* the unit k-sphere,
SP={(y1, - yeer) € R 4R, = 1)
In Section 3 we prove the following:
Theorem 1.1 Let m and n be positive integers satisfyingn —m > 2 and 2m —n > 2. Let
¢ : PYR) x S™ % — P"(R)
be defined by

w1 wa s @), (Y1, Ym)) =

(234 22+ 22wy 213 LT3 OYL e OYo1 201 0),
where 0 is repeated n —m — 2 times and o = x3 + 223 + 3x3. Then:

(i) The image M = o(P?(R) x S™2) is an m-dimensional nonsingular algebraic subset of

P™(R).
(i) ¢ : P?(R) x S™2 — M s a biregular isomorphism.
(¢) M is a transcendental submanifold of P"(R).

It follows directly from Theorem 1.1 that for any integers m and c satisfying m — 2 >
¢ > 2, there is a nonsingular algebraic set M in P™*¢(R) such that dim M = m and M
is a transcendental submanifold. In particular, there are transcendental submanifolds of
arbitrary dimension m > 4. The existence of transcendental submanifolds of dimension 2 or
3 remains unsettled at this time. There are no transcendental submanifolds of dimension 1

or of codimension 1. The last assertion is a special case of the following well known fact.



Remark 1.2 Let M be a smooth m-dimensional submanifold of P*(R). If either n —m =1
or 2m + 1 < n, then there exists a smooth embedding e : M — P™(R), arbitrarily close in
the C* topology to the inclusion map M — P™(R), such that e(M) is the set of real points

of a nonsingular complex algebraic subset of P*(C) defined over R.

If n —m =1, the claim is explicitly established for example in [3, Theorem 7.1].

For the second case, consider P*(R) as a subset of P*(R), where k is a large integer. By
8], there exists a smooth embedding j : M — P*(R), arbitrarily close in the C* topology
to the inclusion map M — P*(R), such that j(M) is a nonsingular algebraic subset of P*(R).
Increasing k if necessary and making use of Hironaka’s resolution of singularities theorem
7], we may assume that the Zariski complex closure of j(M) in P*(C) is nonsingular. If
2m + 1 < n, we obtain an embedding e : M — P"(R) with the required properties by

composing j with an appropriate generic projection onto P"(R).

2 A criterion for transcendence

First we need some results related to the Picard group. Following the current custom,
we state them in the language of schemes.

Let V' be a smooth projective scheme over R. Assume that the set V(R) of R-rational
points of V' is nonempty. We regard V(R) as a compact smooth manifold. Every invertible
sheaf £ on V determines a real line bundle on V(R), denoted £(R). The correspondence
which assigns to each invertible sheaf £ on V' the first Stiefel-Whitney class wq(L(R)) of

L(R) gives rise to a canonical homomorphism
wy : Pic(V) — HY(V(R),Z/2),

defined on the Picard group Pic(V') of isomorphism classes of invertible sheaves on V. We
set

Hl

alg

(V(R), Z/2) = wi(Pic(V)).



It will be convenient to recall another description of Pic(V'). Consider the scheme V¢ =
V xg C over C and its Picard group Pic(V¢). The Galois group G' = Gal(C/R) of C over R
acts on Pic(V¢). We denote by Pic(Ve)Y the subgroup of Pic(V¢) consisting of the elements
fixed by G. Given an invertible sheaf £ on V| we write L¢ for the corresponding sheaf on

V. The correspondence £ — L¢ defines a canonical group homomorphism
a : Pic(V) — Pic(V¢)%.

It follows from the general theory of descent [4] that « is an isomorphism (a simple treatment
of the case under consideration can also be found in [5]).

As usual, we set P = Proj(R[Ty,...,T,]) and identify PE(R) with P"(R). Thus if V' is
a subscheme of Pg, then V(R) is a subset of P"(R).

Proposition 2.1 Let 'V be a closed smooth m-dimensional subscheme of Pg. If 2m—mn > 2,
then
Hl

alg

(V(R),Z/2) =i*(H'(P"(R), Z/2)),
where i : V(R) < P"(R) is the inclusion map.

Proof. Let j:V — P} and jc : Vo — P¢ = Pg xg C be the inclusion morphisms. By the

Barth-Larsen theorem [6, Corollary 6.5], the induced homomorphism
Jj& : Pic(P¢) — Pic(Ve)
is an isomorphism. Since j¢ is G-equivariant, the restriction
j& : Pic(PR)¥ — Pic(Ve)®
is an isomorphism. We have the following commutative diagram:

Pic(P2)¢  —  Pic(Vg)¢

H'(P"(R),Z/2) —— H'(V(R),Z/2)



Since the homomorphisms o are isomorphisms and H'(P™(R),Z/2) = H,,(P*(R),Z/2), it

follows that
Hl

alg

(V(R),Z/2) =i*(H'(P"(R), Z/2)),

as required. O

Note that a smooth submanifold of P"(R) is of algebraic type if and only if it is isotopic
in P*"(R) to V(R) for some closed smooth subscheme V' of PE. Hence Proposition 2.1 yields

the following criterion for transcendence.

Proposition 2.2 Let M be a compact smooth m-dimensional submanifold of P™"(R). As-

sume that the inclusion map e : M — P™(R) induces a trivial homomorphism
e*: H'(P"(R),Z/2) — H'(M,Z/2),

that is, e* = 0. If M is nonorientable and 2m — n > 2, then M is a transcendental

submanifold of P™*(R).

Proof. Suppose to the contrary that M is of algebraic type. Let V be a closed smooth
subscheme of P§ with V(R) isotopic to M in P*(R). Then the homomorphism

it HY(P"(R),Z/2) — HY(V(R),Z/2),

induced by the inclusion map i : V/(R) < P™(R), is trivial. Since dim V' = m and 2m—n > 2,
Proposition 2.1 implies

Hl

alg(V(R)7 Z/Q) =0.
On the other hand, the first Stiefel-Whitney class w;(V(R)) of V(R) is nonzero, V(R) being
a nonorientable manifold. Moreover, wy(V(R)) = w;(C(R)), where K is the canonical in-

vertible sheaf of V', and hence, w;(V(R)) is in H}

aig(V(R),Z/2). In view of this contradiction,

the proof is complete. O



3 Transcendental submanifolds

We begin with some preliminary observations. Identify R™ with its image under the map
R™ — P*(R), (x1,...,2,) — (L:xqy ... xy);

thus R™ C P"(R). An algebraic subset X of R™ is said to be projectively closed if X is also
an algebraic subset of P"(R). One readily checks that X is projectively closed if and only if

it can be defined by a real polynomial equation
flzy,...,x,) =0,
where the homogeneous form of top degree in f vanishes only at 0 in R".
Lemma 3.1 Let X be an algebraic subset of RF contained in the open half-space
H={(z1,...,1) € R*| 2}, > 0}.
Then the map v : X x S* — R¥* defined by

@D((ifb cee 7xk)7 (yla s 7?/(-}-1)) = (:Ela ey Tp—1, TRY1, - - - 7xkyf+l)

is an algebraic embedding, that is, the image Y = (X x S*) is an algebraic subset of RF*
and v : X x S* =Y is a bireqular isomorphism. Moreover, if X is projectively closed in R¥,

then Y is projectively closed in R¥+,

Proof. Let

fu,v) =0
be a real polynomial equation defining X, where u = (z1,...,2x_1) and v = z. Since
(1) X CH,

the subset Y of R¥** is defined by the equation

(2) fu,p) =0,



where
p = (a} +$Z+1 +- +xi+€>%'

We will now show that (2) can be replaced by a polynomial equationin 1, ..., Tgx_1, T, . . ., Trie-

To this end we write

(3) f(u,v) = g(u,v*) + vh(u,v?),

where g and h are real polynomials in (u,v). Then (2) is equivalent to
(4) g(u, p*) + ph(u, p*) = 0,

and in view of (1) also to

(5) (9(u, p*)* = p*(h(u, p*))* = 0,

which is a polynomial equation, as required. Consequently, Y is an algebraic subset of R¥*¢.

It is clear that 1 is injective and 6 : Y — X,

T Li+e
6(1‘1,...,$k_1,$k,...,$k+£) = <Z’1,...,I’k_1,—,...,—) )
p p
is the inverse of ¢ : X — Y. By (4),
_g(a:l,...,xk_l,xijL---—l—xﬁM)
h(x1,. .. Tp—r, 25+ + a7 ,)
for (z1,...,2k_1, %k, ..., Trye) in Y, and hence 0 is a regular map. Thus ¢ : X — Y is a

biregular isomorphism.
Assume now that X is projectively closed in R¥. We may also assume that the homo-
geneous form of top degree in f, denoted F, vanishes only at 0 in R¥. It follows that the

highest power of zy = v in F(z1,...,x) is even, and hence (3) implies
(6) F(u,v) = G(u,v?),

where G is the homogeneous form of top degree in g. Thus (G(u, p?))? is the homogeneous
form of top degree in equation (5). Since F' vanishes only at 0 in R¥, it follows from (6) that

(G(u, p*))? vanishes only at 0 in R¥*¢, and hence Y is projectively closed in R¥**. O
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Lemma 3.2 The map g : P?(C) — P*4(C),
g((z1 10 w3)) = (2] + 25 + 75 - 129 1 X173 : ToTs 1 X5 + 205 + 373)
is an algebraic embedding. In particular, the restriction f : P2(R) — P4(R) of g is an

algebraic embedding.

Proof.  One readily checks that ¢ is injective. Moreover, the (complex) differential of g at
each point of P?(C) is of rank 2. It follows that g is an algebraic embedding, and hence f is

an algebraic embedding. O

Proof of Theorem 1.1. Let f:P?(R) — P*(R) be the algebraic embedding of Lemma 3.2.
Note that the image X = f(P?(R)) is a projectively closed algebraic subset of R* C P4(R),

contained in the open half-space
{(ur, up, us, ug) € R* |uy > 0}

Let
Wi X x S RAMFM2) — Rt - prt2(R)

be the algebraic embedding of Lemma 3.1 (with k = 4 and ¢ = m—2). Note that ¢ (X x S™?)
is projectively closed in R™2 and hence is an algebraic subset of P™*2(RR).

Clearly, if i : S™ 2 — S™2 is the identity map, then
fxi:P*R)x S % — X x §™2
is a biregular isomorphism. Denoting by j : P"™™%(R) — P"(R) the standard embedding,
J(wo:eioiUma2)) = (Vo : .. i Upya:0:...:0),

we obtain
p=jovol(fxi),
which implies that ¢ is an algebraic embedding. In other words, conditions (i) and (ii) are

satisfied. Moreover, M C R™ C P"(R). Since M is nonorientable and 2m —n > 2, condition

(iii) follows from Proposition 2.2. O
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