Transcendental submanifolds of projective space W. Kucharz^{*}

Abstract

Given integers m and c satisfying $m-2 \ge c \ge 2$, we explicitly construct a nonsingular m-dimensional algebraic subset of $\mathbb{P}^{m+c}(\mathbb{R})$ that is not isotopic to the set of real points of any nonsingular complex algebraic subset of $\mathbb{P}^{m+c}(\mathbb{C})$ defined over \mathbb{R} . First examples of such a type were obtained by Akbulut and King in a more complicated and nonconstructive way, and only for certain large integers m and c.

Mathematics Subject Classification (2000). 57R55,14P25.

Keywords. Smooth manifold, algebraic set, isotopy.

1 Introduction

Denote by $\mathbb{P}^n(\mathbb{R})$ and $\mathbb{P}^n(\mathbb{C})$ real and complex projective *n*-spaces. We regard $\mathbb{P}^n(\mathbb{R})$ as a subset of $\mathbb{P}^n(\mathbb{C})$. A smooth (of class \mathcal{C}^{∞}) submanifold M of $\mathbb{P}^n(\mathbb{R})$ is said to be of *algebraic type* if it is isotopic in $\mathbb{P}^n(\mathbb{R})$ to the set of real points of a nonsingular complex algebraic subset of $\mathbb{P}^n(\mathbb{C})$ defined over \mathbb{R} ; otherwise M is said to be *transcendental*. It is not at all obvious that transcendental submanifolds exist. However, Akbulut and King [2] proved the existence of transcendental submanifolds M of $\mathbb{P}^n(\mathbb{R})$ which can even be realized as nonsingular algebraic subsets of $\mathbb{P}^n(\mathbb{R})$. Their examples are obtained in a nonconstructive way, by a method which requires both $m = \dim M$ and n - m to be large integers satisfying

^{*}The paper was completed at the Max-Planck-Institut für Mathematik in Bonn, whose support and hospitality are gratefully acknowledged.

 $2m - n \ge 2$. In the present paper we explicitly construct such examples, assuming only $n - m \ge 2$ and $2m - n \ge 2$. Moreover, we verify that M is a transcendental submanifold of $\mathbb{P}^n(\mathbb{R})$ using only the Barth-Larsen theorem [6, Corollalry 6.5] and completely avoiding all results of [1, 2]. More precisely, denote by S^k the unit k-sphere,

$$S^{k} = \{(y_{1}, \dots, y_{k+1}) \in \mathbb{R}^{k+1} \mid y_{1}^{2} + \dots + y_{k+1}^{2} = 1\}.$$

In Section 3 we prove the following:

Theorem 1.1 Let m and n be positive integers satisfying $n - m \ge 2$ and $2m - n \ge 2$. Let

$$\varphi: \mathbb{P}^2(\mathbb{R}) \times S^{m-2} \longrightarrow \mathbb{P}^n(\mathbb{R})$$

be defined by

$$\varphi((x_1:x_2:x_3),(y_1,\ldots,y_{m-1})) =$$

$$(x_1^2 + x_2^2 + x_3^2:x_1x_2:x_1x_3:x_2x_3:\sigma y_1:\ldots:\sigma y_{m-1}:0:\ldots:0),$$

where 0 is repeated n - m - 2 times and $\sigma = x_1^2 + 2x_2^2 + 3x_3^2$. Then:

- (i) The image M = φ(P²(ℝ) × S^{m-2}) is an m-dimensional nonsingular algebraic subset of Pⁿ(ℝ).
- (ii) $\varphi: \mathbb{P}^2(\mathbb{R}) \times S^{m-2} \longrightarrow M$ is a biregular isomorphism.
- (c) M is a transcendental submanifold of $\mathbb{P}^n(\mathbb{R})$.

It follows directly from Theorem 1.1 that for any integers m and c satisfying $m-2 \ge c \ge 2$, there is a nonsingular algebraic set M in $\mathbb{P}^{m+c}(\mathbb{R})$ such that dim M = m and M is a transcendental submanifold. In particular, there are transcendental submanifolds of arbitrary dimension $m \ge 4$. The existence of transcendental submanifolds of dimension 2 or 3 remains unsettled at this time. There are no transcendental submanifolds of dimension 1 or of codimension 1. The last assertion is a special case of the following well known fact.

Remark 1.2 Let M be a smooth m-dimensional submanifold of $\mathbb{P}^n(\mathbb{R})$. If either n - m = 1or $2m + 1 \leq n$, then there exists a smooth embedding $e : M \longrightarrow \mathbb{P}^n(\mathbb{R})$, arbitrarily close in the \mathcal{C}^{∞} topology to the inclusion map $M \hookrightarrow \mathbb{P}^n(\mathbb{R})$, such that e(M) is the set of real points of a nonsingular complex algebraic subset of $\mathbb{P}^n(\mathbb{C})$ defined over \mathbb{R} .

If n - m = 1, the claim is explicitly established for example in [3, Theorem 7.1].

For the second case, consider $\mathbb{P}^n(\mathbb{R})$ as a subset of $\mathbb{P}^k(\mathbb{R})$, where k is a large integer. By [8], there exists a smooth embedding $j: M \longrightarrow \mathbb{P}^k(\mathbb{R})$, arbitrarily close in the \mathcal{C}^∞ topology to the inclusion map $M \hookrightarrow \mathbb{P}^k(\mathbb{R})$, such that j(M) is a nonsingular algebraic subset of $\mathbb{P}^k(\mathbb{R})$. Increasing k if necessary and making use of Hironaka's resolution of singularities theorem [7], we may assume that the Zariski complex closure of j(M) in $\mathbb{P}^k(\mathbb{C})$ is nonsingular. If $2m + 1 \leq n$, we obtain an embedding $e: M \longrightarrow \mathbb{P}^n(\mathbb{R})$ with the required properties by composing j with an appropriate generic projection onto $\mathbb{P}^n(\mathbb{R})$.

2 A criterion for transcendence

First we need some results related to the Picard group. Following the current custom, we state them in the language of schemes.

Let V be a smooth projective scheme over \mathbb{R} . Assume that the set $V(\mathbb{R})$ of \mathbb{R} -rational points of V is nonempty. We regard $V(\mathbb{R})$ as a compact smooth manifold. Every invertible sheaf \mathcal{L} on V determines a real line bundle on $V(\mathbb{R})$, denoted $\mathcal{L}(\mathbb{R})$. The correspondence which assigns to each invertible sheaf \mathcal{L} on V the first Stiefel-Whitney class $w_1(\mathcal{L}(\mathbb{R}))$ of $\mathcal{L}(\mathbb{R})$ gives rise to a canonical homomorphism

$$w_1 : \operatorname{Pic}(V) \longrightarrow H^1(V(\mathbb{R}), \mathbb{Z}/2),$$

defined on the Picard group Pic(V) of isomorphism classes of invertible sheaves on V. We set

$$H^1_{\text{alg}}(V(\mathbb{R}), \mathbb{Z}/2) = w_1(\operatorname{Pic}(V)).$$

It will be convenient to recall another description of $\operatorname{Pic}(V)$. Consider the scheme $V_{\mathbb{C}} = V \times_{\mathbb{R}} \mathbb{C}$ over \mathbb{C} and its Picard group $\operatorname{Pic}(V_{\mathbb{C}})$. The Galois group $G = \operatorname{Gal}(\mathbb{C}/\mathbb{R})$ of \mathbb{C} over \mathbb{R} acts on $\operatorname{Pic}(V_{\mathbb{C}})$. We denote by $\operatorname{Pic}(V_{\mathbb{C}})^G$ the subgroup of $\operatorname{Pic}(V_{\mathbb{C}})$ consisting of the elements fixed by G. Given an invertible sheaf \mathcal{L} on V, we write $\mathcal{L}_{\mathbb{C}}$ for the corresponding sheaf on $V_{\mathbb{C}}$. The correspondence $\mathcal{L} \longrightarrow \mathcal{L}_{\mathbb{C}}$ defines a canonical group homomorphism

$$\alpha : \operatorname{Pic}(V) \longrightarrow \operatorname{Pic}(V_{\mathbb{C}})^G$$

It follows from the general theory of descent [4] that α is an isomorphism (a simple treatment of the case under consideration can also be found in [5]).

As usual, we set $\mathbb{P}^n_{\mathbb{R}} = \operatorname{Proj}(\mathbb{R}[T_0, \ldots, T_n])$ and identify $\mathbb{P}^n_{\mathbb{R}}(\mathbb{R})$ with $\mathbb{P}^n(\mathbb{R})$. Thus if V is a subscheme of $\mathbb{P}^n_{\mathbb{R}}$, then $V(\mathbb{R})$ is a subset of $\mathbb{P}^n(\mathbb{R})$.

Proposition 2.1 Let V be a closed smooth m-dimensional subscheme of $\mathbb{P}^n_{\mathbb{R}}$. If $2m - n \ge 2$, then

$$H^1_{\text{alg}}(V(\mathbb{R}), \mathbb{Z}/2) = i^*(H^1(\mathbb{P}^n(\mathbb{R}), \mathbb{Z}/2)),$$

where $i: V(\mathbb{R}) \hookrightarrow \mathbb{P}^n(\mathbb{R})$ is the inclusion map.

Proof. Let $j: V \hookrightarrow \mathbb{P}^n_{\mathbb{R}}$ and $j_{\mathbb{C}}: V_{\mathbb{C}} \hookrightarrow \mathbb{P}^n_{\mathbb{C}} = \mathbb{P}^n_{\mathbb{R}} \times_{\mathbb{R}} \mathbb{C}$ be the inclusion morphisms. By the Barth-Larsen theorem [6, Corollary 6.5], the induced homomorphism

$$j^*_{\mathbb{C}} : \operatorname{Pic}(\mathbb{P}^n_{\mathbb{C}}) \longrightarrow \operatorname{Pic}(V_{\mathbb{C}})$$

is an isomorphism. Since $j^*_{\mathbb{C}}$ is *G*-equivariant, the restriction

$$j^*_{\mathbb{C}} : \operatorname{Pic}(\mathbb{P}^n_{\mathbb{C}})^G \longrightarrow \operatorname{Pic}(V_{\mathbb{C}})^G$$

is an isomorphism. We have the following commutative diagram:

Since the homomorphisms α are isomorphisms and $H^1(\mathbb{P}^n(\mathbb{R}), \mathbb{Z}/2) = H^1_{alg}(\mathbb{P}^n(\mathbb{R}), \mathbb{Z}/2)$, it follows that

$$H^1_{\text{alg}}(V(\mathbb{R}), \mathbb{Z}/2) = i^*(H^1(\mathbb{P}^n(\mathbb{R}), \mathbb{Z}/2)),$$

as required.

Note that a smooth submanifold of $\mathbb{P}^n(\mathbb{R})$ is of algebraic type if and only if it is isotopic in $\mathbb{P}^n(\mathbb{R})$ to $V(\mathbb{R})$ for some closed smooth subscheme V of $\mathbb{P}^n_{\mathbb{R}}$. Hence Proposition 2.1 yields the following criterion for transcendence.

Proposition 2.2 Let M be a compact smooth m-dimensional submanifold of $\mathbb{P}^n(\mathbb{R})$. Assume that the inclusion map $e: M \hookrightarrow \mathbb{P}^n(\mathbb{R})$ induces a trivial homomorphism

$$e^*: H^1(\mathbb{P}^n(\mathbb{R}), \mathbb{Z}/2) \longrightarrow H^1(M, \mathbb{Z}/2),$$

that is, $e^* = 0$. If M is nonorientable and $2m - n \ge 2$, then M is a transcendental submanifold of $\mathbb{P}^n(\mathbb{R})$.

Proof. Suppose to the contrary that M is of algebraic type. Let V be a closed smooth subscheme of $\mathbb{P}^n_{\mathbb{R}}$ with $V(\mathbb{R})$ isotopic to M in $\mathbb{P}^n(\mathbb{R})$. Then the homomorphism

$$i^*: H^1(\mathbb{P}^n(\mathbb{R}), \mathbb{Z}/2) \longrightarrow H^1(V(\mathbb{R}), \mathbb{Z}/2),$$

induced by the inclusion map $i: V(\mathbb{R}) \hookrightarrow \mathbb{P}^n(\mathbb{R})$, is trivial. Since dim V = m and $2m - n \ge 2$, Proposition 2.1 implies

$$H^1_{\text{alg}}(V(\mathbb{R}), \mathbb{Z}/2) = 0.$$

On the other hand, the first Stiefel-Whitney class $w_1(V(\mathbb{R}))$ of $V(\mathbb{R})$ is nonzero, $V(\mathbb{R})$ being a nonorientable manifold. Moreover, $w_1(V(\mathbb{R})) = w_1(\mathcal{K}(\mathbb{R}))$, where \mathcal{K} is the canonical invertible sheaf of V, and hence, $w_1(V(\mathbb{R}))$ is in $H^1_{alg}(V(\mathbb{R}), \mathbb{Z}/2)$. In view of this contradiction, the proof is complete.

	-	
L		
L		

3 Transcendental submanifolds

We begin with some preliminary observations. Identify \mathbb{R}^n with its image under the map

$$\mathbb{R}^n \to \mathbb{P}^n(\mathbb{R}), (x_1, \dots, x_n) \to (1:x_1:\dots:x_n)$$

thus $\mathbb{R}^n \subset \mathbb{P}^n(\mathbb{R})$. An algebraic subset X of \mathbb{R}^n is said to be *projectively closed* if X is also an algebraic subset of $\mathbb{P}^n(\mathbb{R})$. One readily checks that X is projectively closed if and only if it can be defined by a real polynomial equation

$$f(x_1,\ldots,x_n)=0,$$

where the homogeneous form of top degree in f vanishes only at 0 in \mathbb{R}^n .

Lemma 3.1 Let X be an algebraic subset of \mathbb{R}^k contained in the open half-space

$$H = \{ (x_1, \dots, x_k) \in \mathbb{R}^k \, | \, x_k > 0 \}.$$

Then the map $\psi: X \times S^{\ell} \to \mathbb{R}^{k+\ell}$ defined by

$$\psi((x_1,\ldots,x_k),(y_1,\ldots,y_{\ell+1})) = (x_1,\ldots,x_{k-1},x_ky_1,\ldots,x_ky_{\ell+1})$$

is an algebraic embedding, that is, the image $Y = \psi(X \times S^{\ell})$ is an algebraic subset of $\mathbb{R}^{k+\ell}$ and $\psi: X \times S^{\ell} \to Y$ is a biregular isomorphism. Moreover, if X is projectively closed in \mathbb{R}^{k} , then Y is projectively closed in $\mathbb{R}^{k+\ell}$.

Proof. Let

$$f(u,v) = 0$$

be a real polynomial equation defining X, where $u = (x_1, \ldots, x_{k-1})$ and $v = x_k$. Since

$$(1) X \subset H,$$

the subset Y of $\mathbb{R}^{k+\ell}$ is defined by the equation

$$f(u,\rho) = 0,$$

where

$$\rho = (x_k^2 + x_{k+1}^2 + \dots + x_{k+\ell}^2)^{\frac{1}{2}}$$

We will now show that (2) can be replaced by a polynomial equation in $x_1, \ldots, x_{k-1}, x_k, \ldots, x_{k+\ell}$. To this end we write

(3)
$$f(u,v) = g(u,v^2) + vh(u,v^2)$$

where g and h are real polynomials in (u, v). Then (2) is equivalent to

(4)
$$g(u, \rho^2) + \rho h(u, \rho^2) = 0,$$

and in view of (1) also to

(5)
$$(g(u,\rho^2))^2 - \rho^2 (h(u,\rho^2))^2 = 0,$$

which is a polynomial equation, as required. Consequently, Y is an algebraic subset of $\mathbb{R}^{k+\ell}$.

It is clear that ψ is injective and $\theta: Y \to X$,

$$\theta(x_1,\ldots,x_{k-1},x_k,\ldots,x_{k+\ell}) = \left(x_1,\ldots,x_{k-1},\frac{x_k}{\rho},\ldots,\frac{x_{k+\ell}}{\rho}\right),\,$$

is the inverse of $\psi: X \to Y$. By (4),

$$\rho = -\frac{g(x_1, \dots, x_{k-1}, x_k^2 + \dots + x_{k+\ell}^2)}{h(x_1, \dots, x_{k-1}, x_k^2 + \dots + x_{k+\ell}^2)}$$

for $(x_1, \ldots, x_{k-1}, x_k, \ldots, x_{k+\ell})$ in Y, and hence θ is a regular map. Thus $\psi : X \to Y$ is a biregular isomorphism.

Assume now that X is projectively closed in \mathbb{R}^k . We may also assume that the homogeneous form of top degree in f, denoted F, vanishes only at 0 in \mathbb{R}^k . It follows that the highest power of $x_k = v$ in $F(x_1, \ldots, x_k)$ is even, and hence (3) implies

(6)
$$F(u,v) = G(u,v^2),$$

where G is the homogeneous form of top degree in g. Thus $(G(u, \rho^2))^2$ is the homogeneous form of top degree in equation (5). Since F vanishes only at 0 in \mathbb{R}^k , it follows from (6) that $(G(u, \rho^2))^2$ vanishes only at 0 in $\mathbb{R}^{k+\ell}$, and hence Y is projectively closed in $\mathbb{R}^{k+\ell}$. \Box **Lemma 3.2** The map $g: \mathbb{P}^2(\mathbb{C}) \longrightarrow \mathbb{P}^4(\mathbb{C})$,

$$g((x_1:x_2:x_3)) = (x_1^2 + x_2^2 + x_3^2: x_1x_2: x_1x_3: x_2x_3: x_1^2 + 2x_2^2 + 3x_3^2)$$

is an algebraic embedding. In particular, the restriction $f : \mathbb{P}^2(\mathbb{R}) \longrightarrow \mathbb{P}^4(\mathbb{R})$ of g is an algebraic embedding.

Proof. One readily checks that g is injective. Moreover, the (complex) differential of g at each point of $\mathbb{P}^2(\mathbb{C})$ is of rank 2. It follows that g is an algebraic embedding, and hence f is an algebraic embedding.

Proof of Theorem 1.1. Let $f : \mathbb{P}^2(\mathbb{R}) \longrightarrow \mathbb{P}^4(\mathbb{R})$ be the algebraic embedding of Lemma 3.2. Note that the image $X = f(\mathbb{P}^2(\mathbb{R}))$ is a projectively closed algebraic subset of $\mathbb{R}^4 \subset \mathbb{P}^4(\mathbb{R})$, contained in the open half-space

$$\{(u_1, u_2, u_3, u_4) \in \mathbb{R}^4 \mid u_4 > 0\}$$

Let

$$\psi: X \times S^{m-2} \longrightarrow \mathbb{R}^{4+(m-2)} = \mathbb{R}^{m+2} \subset \mathbb{P}^{m+2}(\mathbb{R})$$

be the algebraic embedding of Lemma 3.1 (with k = 4 and $\ell = m-2$). Note that $\psi(X \times S^{m-2})$ is projectively closed in \mathbb{R}^{m+2} , and hence is an algebraic subset of $\mathbb{P}^{m+2}(\mathbb{R})$.

Clearly, if $i: S^{m-2} \longrightarrow S^{m-2}$ is the identity map, then

$$f \times i : \mathbb{P}^2(\mathbb{R}) \times S^{m-2} \longrightarrow X \times S^{m-2}$$

is a biregular isomorphism. Denoting by $j: \mathbb{P}^{m+2}(\mathbb{R}) \longrightarrow \mathbb{P}^n(\mathbb{R})$ the standard embedding,

$$j((v_0:\ldots:v_{m+2})) = (v_0:\ldots:v_{m+2}:0:\ldots:0),$$

we obtain

$$\varphi = j \circ \psi \circ (f \times i),$$

which implies that φ is an algebraic embedding. In other words, conditions (i) and (ii) are satisfied. Moreover, $M \subset \mathbb{R}^n \subseteq \mathbb{P}^n(\mathbb{R})$. Since M is nonorientable and $2m - n \ge 2$, condition (iii) follows from Proposition 2.2.

References

- [1] S. Akbulut and H. King, Transcendental submanifolds of \mathbb{R}^n , Comment. Math. Helv. **68**(1993), 308-318.
- [2] S. Akbulut and H. King, Transcendental submanifolds of \mathbb{RP}^n , Comment. Math. Helv. **80**(2005), 427-432.
- J. Bochnak, M. Buchner and W. Kucharz, Vector bundles over real algebraic varieties, K-Theory 3(1989), 271-298. Erratum, K-Theory 4(1990), 103.
- [4] A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algebrique, I - VI, Seminaire Bourbaki, Eposés 190, 195, 212, 221, 232, 236, 1959-62.
- [5] J. van Hamel, Algebraic cycles and topology of real algebraic varieties. Dissertation, Vrije Universiteit Amsterdam. CWI Tract. 129, Stichting Mathematisch Centrum, Centrum voor Wiscunde en informatica, Amsterdam, 2000.
- [6] R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, Proc. Sympos. Pure Math 29(1975), 129-164.
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79(1964), 109-203.
- [8] H. King, Approximating submanifolds of real projective space by varieties, Topology 15(1976), 81-85.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

and

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-0001, U.S.A.

E-mail address: kucharz@math.unm.edu