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Einstein-Weyl structures on complex

manifolds

Liviu Ornea and Misha Verbitsky1

Abstract

A Hermitian Einstein-Weyl manifold is a complex manifold
admitting a Ricci-flat Kähler covering M̃ , with the deck
transform acting on M̃ by homotheties. We show that a
Hermitian Einstein-Weyl structure on a compact complex
manifold is unique, if it exists. This result is a confor-
mal analogue of Calabi’s theorem stating the uniqueness
of Calabi-Yau metrics in a given Kähler class.
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1 Introduction

E. Calabi ([C]) has shown that a compact manifold of Kähler type with
vanishing first Chern class can admit at most one Kähler-Einstein metric in
a given Kähler class (see [B] for details and implications of this extremely
influential work).

In this note, we generalize this result to conformal setting. Recall that a
locally conformally Kähler (LCK) manifold is a complex manifold admitting

a Kähler covering M̃ , with the deck transform acting on M̃ by holomorphic
homotheties. If M̃ is, in addition, Ricci-flat, M is called Hermitian Einstein-
Weyl, or locally conformally Kähler Einstein-Weyl.1

1Misha Verbitsky is an EPSRC advanced fellow supported by EPSRC grant
GR/R77773/01.
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1Normally, one defines Hermitian Einstein-Weyl differently, and then this definition

becomes a theorem; see Claim 3.2.
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Since the deck transform group acts on M̃ conformally, the LCK-struc-
ture defines a conformal class of Hermitian metrics on M . A metric in this
class is called an LCK-metric. In the literature, the distinction between
“LCK-metrics” and “LCK-structures” is often ignored.

We give an introduction to LCK-geometry in Section 2, and explain the
properties of Einstein-Weyl structures in Section 3.

Theorem 1.1. Let (M,J) be a compact complex manifold. Then it admits
at most one Einstein-Weyl locally conformally Kähler structure, up to a
constant multiplier.

We prove Theorem 1.1 in Section 4.

Remark 1.2. For a Calabi-Yau manifold, the metric is uniquely determined
by the complex structure and the Kähler class in cohomology. In a conformal
setting, the Einstein-Weyl LCK-structure is defined uniquely. This happens
because a relevant cohomology group is H2(M,L), where L is the weight
bundle of the conformal structure (see Definition 2.2). It is easy to show
that all cohomology of the local system L vanish, cf. [L, Remark 6.4].

The compatibility between a complex structure and a Weyl structure
naturally leads to the LCK-condition. This was observed by I. Vaisman
(see also [PPS]). Moreover, as shown by P. Gauduchon ([G]), a compact
Einstein-Weyl locally conformally Kähler manifold is necessarily Vaisman
(see Theorem 3.4). Then Theorem 1.1 is translated into the uniqueness of
an Einstein-Weyl Vaisman metric on a given compact complex manifold.

The Vaisman manifolds are intimately related to Sasakian geometry (see
e.g. [OV1]). Given a Sasakian manifold X, the product S1×X has a natural
Vaisman structure. Conversely, any Vaisman manifold admits a canonical
Riemannian submersion to S1, with fibers which are isometric and equipped
with a natural Sasakian structure.

Under this correspondence, the Einstein-Weyl Vaisman manifolds corre-
spond to Sasaki-Einstein manifolds. The Sasaki-Einstein manifolds recently
became a focus of much research, due to a number of new and unexpected
examples constructed by string physicists (see [MSY], [CLPP], [GMSW1],
[GMSW2], and the references therein). For a physicist, Sasaki-Einstein man-
ifolds are interesting because of AdS/CFT correspondence in string theory.
From the mathematical point of view, these examples are as mysterious as
the Mirror Symmetry conjecture 15 years ago.

2



Einstein-Weyl structures on Vaisman manifolds L. Ornea and M. Verbitsky, June 6, 2006

The Sasakian manifolds, being transverse Kähler2, can be studied by
the means of algebraic geometry. One might hope to obtain and study the
Sasaki-Einstein metrics by the same kind of procedures as used to study
the Kähler-Einstein metrics in algebraic geometry. However, this analogy
is not perfect. In particular, it is possible to show that the Sasaki-Einstein
structures on CR-manifolds are not unique. We shall address this problem
in a forthcoming paper.

One may hope to approach the classification of Sasaki-Einstein structures
using the Einstein-Weyl geometry.

2 Vaisman manifolds

We first review the necessary notions of locally conformally Kähler geometry.
See [DO], [OV1], [OV2], [OV3], [Ve] for details and examples.

Let (M,J, g) be a complex Hermitian manifold of complex dimension n.
Denote by ω its fundamental two-form ω(X,Y ) = g(X, JY ).

Definition 2.1. A Hermitian metric g on (M,J) is locally conformally

Kähler (LCK for short) if
dω = θ ∧ ω.

for a closed 1-form θ.

Clearly, for any function f : M −→ R
>0, fω is also an LCK-metric. A

conformal class of LCK-metrics is called an LCK-structure.

The form θ is called the Lee form of the LCK-metric, and the dual
vector field θ] is called the Lee field.

The one-form θ can be interpreted as a (flat) connection one-form in
the bundle of densities of weight 1, usually denoted L. This is the real line
bundle associated to the representation

A 7→| det(A) |
1
2n , A ∈ GL(2n,R)

Definition 2.2. The bundle L, equipped with a connection ∇0 +θ, is called
the weight bundle of a locally conformally Kähler structure. One

2This viewpoint was systematically developed in the work of C.P. Boyer, K. Galicki
and collaborators. See e.g. [BG].
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could consider the form ω as a closed, positive (1, 1)-form, taking values in
L2.

Remark 2.3. Passing to a covering, we may assume that the flat bundle L
is trivial. Then ω can be considered as a closed, positive (1, 1)-form taking
values in a trivial vector bundle, that is, a Kähler form. Therefore, any
LCK-manifold admits a covering M̃ which is Kähler. The deck transform
acts on M̃ by homotheties. This property can be used as a definition of
LCK-structures (see Section 1).

Definition 2.4. A Vaisman manifold is an LCK manifold whose Lee form
is parallel with respect to the Levi-Civita connection of g.

Definition 2.5. Let (C, g, ω) be a Kähler manifold. Assume that ρ is a free,
proper action of R

>0 on C, and g and ω are homogeneous of weight 2:

Liev ω = 2ω, Liev g = 2g,

where v is the tangent vector field of ρ. The quotient C/ρ is called a

Sasakian manifold. If N = C/ρ is given, C is called the Kähler cone of

N . As a Riemannian manifold, C is identified with the Riemannian cone

of (N, gN ), C(N) = (N × R
>0, t2gN + dt2).

The Sasakian manifolds are discussed in [BG], in great detail.

The following characterization of compact Vaisman manifolds is known
(see [OV1]):

Remark 2.6. A compact complex manifold (M,J) is Vaisman if it admits

a Kähler covering (M̃, J, h) → (M,J) such that:

• The monodromy group Γ ∼= Z acts on M̃ by holomorphic homotheties
with respect to h (this means that (M,J) is equipped with an LCK-
structure).

• (M̃, J, h) is isomorphic to a Kähler cone over a compact Sasakian man-
ifold S. Moreover, there exists a Sasakian automorphism ϕ and a
positive number q > 1 such that Γ is isomorphic to the cyclic group
generated by (x, t) 7→ (ϕ(x), tq).
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Remark 2.7. In these assumptions, denote by θ] the vector field t d
dt

on

M̃ = (S × R
>0, gSt

2 + dt2). Chose the metric g = gS + dt2 on M = M̃/Γ.
Clearly, θ] descends to a Lee field on M , denoted by the same letter. Then
J(θ]) is tangent to the fibers of the natural projection M̃ −→ R

>0, hence
belongs to TS. This vector field is called the Reeb field of the Sasakian
manifold S. Clearly, the orbits of J(θ]) on M̃ are precompact (contained in
a compact set).

Remark 2.8. It will be important for us to note that the Kähler metric h
on the covering M̃ = C(S) = S×R

>0 has a global Kähler potential ψ, which
is expressed as ψ(x, t) = t2. The metric ψ−1 · h projects on N into the LCK
metric g. Moreover, ψ =| θ |2, the norm being taken with respect to the lift
of g.

On a Vaisman manifold, the Lee field θ] is Killing, parallel and holomor-
phic. One easily proves that Lθ]ω = 2ω.

Recall from [To] the notion of transverse geometry:

Definition 2.9. Consider a manifold endowed with a foliation F with tan-
gent bundle F and normal bundle Q. A differential, or Riemannian, form
α on X is basic (or transverse) if Xcα = 0 and LieXα = 0 for every
X ∈ F . A transverse geometry of F is a geometry defined locally on the
leaf space of F . A Kähler transverse structure on (M,F) is a complex
Hermitian structure on Q defined by a pair gF , ωF of transverse forms, in
such a way that the induced almost complex structure defined locally on the
leaf space M/F is integrable and Kähler.

Example 2.10: Let (M,J, ω) be a Vaisman manifold, θ] its Lee field. Con-
sider the holomorphic foliation F , generated by θ] and Jθ]. The form
ω − θ ∧ Jθ is transverse Kähler. Hence the Vaisman manifolds provide
examples of transverse Kähler foliations ([Va], [Ts1]). Similarly, a Sasakian
manifold has a transverse Kähler geometry associated to the foliation gen-
erated by the Reeb field.

A compact complex manifold of Vaisman type can have many Vaisman
structures, still the Lee field is unique up to homothety:

Proposition 2.11. If g1, g2 are Vaisman metrics on the same compact
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manifold (M,J), then θ
]g1
1 = cθ

]g2
2 , for some real constant c.

Proof. The result was proven by Tsukada in [Ts2]. Here we include an
alternative proof. Recall from [Ve] that for a Vaisman structure (g, J), the
two-form

η := ω − θ ∧ Jθ

is exact and positive, with the null-space generated by 〈θ], Jθ]〉. It is the
transverse Kähler form of (M,F) (see Example 2.10). Let g1, g2 be Vais-

man metrics, ω1, ω2 the corresponding Hermitian forms, θi and θ]
i the corre-

sponding Lee forms and Lee fields. Consider the (1, 1)-forms η1, η2, defined
as above,

ηi := ωi − θi ∧ Jθi.

Unless their null-spaces coincide, the sum η1 + η2 is strictly positive. Then
∫

M

(η1 + η2)
dim M > 0.

This is impossible, because ηi are exact. We obtained that the 2-dimensional
bundles generated by θ]

i , Jθ
]
i are equal:

〈θ]
1, Jθ

]
1〉 = 〈θ]

2, Jθ
]
2〉

This implies that θ]
1, considered as a vector in T 1,0(M), is proportional to

θ]
2 over C.

θ]
1 = aθ]

2 + bJθ]
2, a, b ∈ R. (2.1)

Since θ]
i is holomorphic, the proportionality coefficient is constant.

To finish the proof of Proposition 2.11, it remains to show that this
proportionality coefficient is real. Here we use Remark 2.7: the orbits of
Jθ]

1 should be pre-compact. From (2.1) we obtain

Jθ]
1 = aJθ]

2 − bθ]
2.

But aJθ]
2 − bθ]

2 acts on the metric by a homothety, with a coefficient which
is proportional to e−b. Therefore, an orbit of this vector field is contained
in a compact set if and only if b = 0.

Remark 2.12. Let LC = L⊗R C be the complexification of the weight bun-
dle of the Vaisman manifold (M,J, g). The Lee form then is the connection
form of the standard Hermitian connection in LC, and one can prove (see
[Ve]) that its curvature can be identified with the above form η = ω−θ∧Jθ,
hence it is exact.
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3 Einstein-Weyl LCK manifolds

Einstein-Weyl structures are defined and studied for their own, see e.g. [CP].
Here we specialize the definitions to LCK structures.

The Levi-Civita connection ∇g of g is not the best tool to study the
conformal properties of an LCK manifold. Instead, the Weyl connection

defined by

∇ = ∇g −
1

2
{θ ⊗ Id+ Id⊗ θ + g ⊗ θ]}

is torsion-free and satisfies ∇g = θ ⊗ g.
The Ricci tensor of the Weyl connection is not symmetric. Hence, to

obtain the analogue of the Einstein condition one gives:

Definition 3.1. An LCK-manifold is Einstein-Weyl if the symmetric part
of the Ricci tensor of the Weyl connection is proportional to the metric. An
Einstein-Weyl LCK-manifold is also called Hermitian Einstein-Weyl.

Let ∇ be a Weyl connection on an LCK-manifold. One can see that ∇
is the covariant derivative associated to the connection one-form θ in the
weight bundle L. Since θ is closed, we can take a covering M̃ of M , with
θ = df , for some function f on M̃ . The Weyl connection becomes the Levi-
Civita connection for the metric e−fg on M̃ . Since ∇(e−fg) = ∇(J) = 0,
e−fg is a Kähler metric. This way one obtains a Kähler covering of an
LCK-manifold, starting from a Weyl connection. The converse construction
is also clear: The Levi-Civita connection on a Kähler covering M̃ of an
LCK-manifold M is independent from homotheties, hence descends to M ,
and satisfies the conditions for Weyl connection.

This gives the following claim.

Claim 3.2. Let ∇ be a Weyl connection on a complex Hermitian manifold.
Then ∇ satisfies the Einstein-Weyl condition if and only if ∇ is Ricci-flat
on the Kähler covering of M .

Remark 3.3. Claim 3.2 also follows from Proposition 3.5 (below). Indeed,
a trivialization of the weight bundle LC induces a trivialization of canonical
class K = L−n

C
.
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From a deep result of Gauduchon in [G], it follows that:

Theorem 3.4. Let (M,J, g) be a compact Einstein-Weyl LCK manifold.
Then the Ricci tensor of the Weyl connection vanishes identically and the
Lee form is parallel. In particular, (M,J, g) is Vaisman.

From Theorem 3.4, we obtain that all Kähler coverings of an Einstein-
Weyl LCK-manifold are Ricci-flat. This property can be used as a definition
of Einstein-Weyl LCK-manifolds.

The locally conformally Kähler Einstein-Weyl structures can be expres-
sed in terms of the complexified weight bundle.

Proposition 3.5. ([Ve, Proposition 5.6]) Let M be an Einstein-Weyl LCK-
manifold, K its canonical class, LC its weight bundle. Consider K, LC as
Hermitian holomorphic bundles, with the metrics induced from M . Then
Ln

C
∼= K−1.

Let (M,J, g) be an Einstein-Weyl Vaisman LCK-manifold, and M̃ its
Kähler covering, which trivialises L. From Proposition 3.5, it is clear that
M̃ has trivial canonical class. Let Ω be a section of canonical class of M̃
which is equivariant under the monodromy action. Such a section is unique
up to a constant. Indeed, if Ω1, Ω2 are two equivariant sections of canonical
class, the quotient Ω1

Ω2
is a holomorphic function on M̃ which is invariant

under monodromy, hence descends to a global holomorphic function on M .
Therefore Ω1

Ω2
= const. Rescaling Ω such that |Ω| = 1, we obtain

Ω ∧ Ω =
1

n! 2n
ωn,

where n = dimCM . In particular, given two Einstein-Weyl structures ω1

and ω2, we always have ωn
1 = λωn

2 , where λ is a positive constant. After
rescaling, we may also assume that

detω1 = detω2, (3.1)

where detωi = ωn
i , n = dimC M .
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4 Uniqueness of Einstein-Weyl structures

In this Section, we prove Theorem 1.1. Clearly, Theorem 1.1 follows from
(3.1) combined with the following proposition.

Proposition 4.1. Let (M,J) be a compact complex manifold admitting
two Vaisman metrics ω1 and ω2, such that detω1 = detω2. Then ω1 = ω2.

Proof: We start with the following claim, which is implied by Tsukada’s
theorem (Proposition 2.11).

Claim 4.2. In these assumptions, denote the corresponding Lee fields by
θ]
i , i = 1, 2. Then

θ]
1 = θ]

2.

Proof: By Proposition 2.11, θ]
1 = cθ]

2. Denote by ω̃i the Kähler forms on

M̃ corresponding to ωi. By construction, Lie
θ

]
i
ωi = 2ωi, where Lie denotes

the Lie derivative. Therefore,

Lie
θ

]
i
ωn

i = 2nωn
i

Using (3.1), we obtain that

2nωn
1 = Lie

θ
]
1

ωn
1 = cLie

θ
]
2

ωn
1 = 2ncωn

1

Therefore, c = 1. We proved Claim 4.2.

Return to the proof of Proposition 4.1. Consider a form

ηi := ωi − θi ∧ Jθi. (4.1)

This is a positive, exact (1, 1)-form on M , which can be interpreted as a
curvature of the weight bundle (see the proof of Proposition 2.11). First of
all, we deduce from η1 = η2 the statement of Proposition 4.1.

Lemma 4.3. In the assumptions of Proposition 4.1, assume that η1 = η2,
where ηi are (1, 1)-forms defined in (4.1). Then ω1 = ω2.

Proof. As follows from (4.1), to prove ω1 = ω2 it suffices to show θ1 = θ2.

Let M̃ be the Kähler Z-covering of M , which is a cone over a compact
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Sasakian manifold, and ϕ1, ϕ2 the corresponding Kähler potentials, obtained
as in Remark 2.8. It is easy to see that θi = d log ϕi and ηi = dcθi ([Ve]).
Therefore,

η1 − η2 = dcd log

(
ϕ1

ϕ2

)
(4.2)

The functions ϕi are automorphic under the deck transform action on M̃ ,
with the same factors of monodromy. Therefore, their quotient ϕ1

ϕ2
is well

defined on M . By (4.2), 0 = η1 − η2 = dcd log
(

ϕ1

ϕ2

)
, hence ψ := log ϕ1

ϕ2
is

pluriharmonic on a compact complex manifold M . Therefore ψ is constant.
This gives θ1 − θ2 = dψ = 0. Lemma 4.3 is proven.

Return to the proof of Proposition 4.1. Note that ηi are transverse
Kähler forms. Since

det ηi = (θ] ∧ Jθ])cdetωi,

it follows that
det η1 = det η2.

Let ρ be a transverse form, defined as ρ =
∑

k+l=n−2 η
k
1 ∧ ηl

2. Then

(η1 − η2) ∧ ρ = 0. (4.3)

As ηi are both positive, ρ is strictly positive, transversal (n− 2, n− 2)-
form. It is well known that on a complex manifold X, any positive (dimX−
1,dimX−1)-form is an (dimX−1)-st power of a Hermitian form. Therefore,
there exists a transverse form α such that ρ = αn−2. Then (4.3) gives

(η1 − η2) ∧ α
n−2 = 0.

From (4.2), we obtain

η1 − η2 = ddcψ,

where ψ := log
(

ϕ1

ϕ2

)
is a smooth, transversal function on M .

We now associate to α a second-order differential operator D acting on
transverse C∞ functions, which is defined as follows. For any transverse
function f , ddcf ∧ αn−2 is a transverse top (n − 1, n − 1) form, and hence
there exists a unique transverse function g such that ddcf ∧αn−2 = g ·αn−1.
We define

D(f) = g, where ddcf ∧ αn−2 = g · αn−1.
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In other words,

D(f) =
ddcf ∧ αn−2

αn−1
.

From the definition, we have D(ψ) = 0. Obviously D has positive symbol on
the ring of transverse functions, identified locally with functions on a space
of leaves of F .1 This allows us to apply the generalized maximum principle:

Proposition 4.4. ([PW]) Let D be a second order differential operator on
R

n with positive symbol, satisfying D(const.) = 0, and let f ∈ kerD be
a function in its kernel. Assume that f has a local maximum. Then f is
constant.

Return to the proof of Theorem 1.1. Recall that from (4.2), we have

η1 − η2 = dcd log (ψ) , ψ ∈ kerD.

To show that η1 = η2 it is enough to prove that the kernel of D contains
only constant functions. As follows from the generalized maximum princi-
ple, a function in kerD which has a local maximum is necessarily constant.
Since M is compact, any continuous function on M must have a maximum.
Therefore, ψ ∈ kerD is constant, and η1 − η2 = ddcψ = 0. The proof of
Theorem 1.1 is finished.

All locally conformal Kähler structures underlying a locally conformally
hyperkähler structure on a compact hypercomplex manifold are necessarily
Einstein-Weyl. This gives

Corollary 4.5. Let (M, I1, I2, I3) be a compact hypercomplex manifold.
Then it can admit at most one locally conformally hyperkähler structure.

Acknowledgements: This note originated from discussions at the Max
Planck Institute in Bonn whose support is gratefully acknowledged. The
second author is grateful to Semyon Alesker, who explained to him the
generalized maximum principle.

1In fact, the symbol of D is equal to the symmetric, positive definite 2-form associated
with α.
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