Some remarks on
holomorphic vector bundles over non-Kähler manifolds

by

Hong-Jong Kim

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

Some remarks on
 holomorphic vector bundles over non-Kähler manifolds

Hong-Jong Kim

Abstract

We compare some moduli spaces of holomorphic structures on a given smooth vector bundle over an arbitrary complex manifold.

If we consider an $\operatorname{SU}(2)$ vector bundle E over a Kähler surface S, then the moduli space of stable holomorphic structures on E is equal to the moduli space of anti-self-dual $\mathrm{SU}(2)$ connections on E if and only if $b_{1}(S)=0$. This fact has a generalization for non-Kähler cases (2.4), (2.6), (2.7), (3.3). A modification of vanishing theorem is stated (1.10), which can be used to get a generalized Atiyah-Hitchin-Singer's elliptic complex on non-Kähler manifolds.

From now on our basic reference is [Kob]. Let M be a compact connected complex n-manifold with a hermitian metric $g_{\mu \bar{\nu}}(1 \leq \mu, \nu \leq n)$. The associated fundamental form will be denoted by $\Phi=\sqrt{-1} \sum g_{\mu \bar{\nu}} d z^{\mu} \wedge d \bar{z}^{\nu}$. We do not assume that Φ is a Kähler form, but we may and will assume that

$$
\begin{equation*}
d^{\prime} d^{\prime \prime}\left(\Phi^{n-1}\right)=0 \tag{0.1}
\end{equation*}
$$

after a conformal change of the metric, if necessary [Gau]. Such a metric will be called a Gaudochon metric.

1. Degree of bundles. For a holomorphic vector bundle \mathcal{E} over M, we define [Buc], [LY] the degree of \mathcal{E} relative to Φ by

$$
\operatorname{deg}(\mathcal{E})=\operatorname{deg}_{\Phi}(\mathcal{E})=\int_{M} c_{1}(\mathcal{E}, h) \wedge \Phi^{n-1}=\frac{1}{2 n \pi} \int_{M}(\operatorname{tr} K) \Phi^{n}
$$

where $c_{1}(\mathcal{E}, h)$ is the first Chern form associated to a hermitian metric h on $\mathcal{E}, \operatorname{tr} K$ is the scalar curvature and K is the mean curvature [Kob]. The condition (0.1) implies that the degree is independent of the choice of h. Obviously $\operatorname{deg}(\mathcal{E})=\operatorname{deg}(\operatorname{det} \mathcal{E})$ and isomorphic bundles have the same degree. Thus we have a group homomorphism

$$
\operatorname{deg}: H^{1}\left(M, \mathcal{O}^{\times}\right) \rightarrow \mathbb{R}
$$

On Kähler manifolds degree is a topological invariant, but in non-Kähler case this is no longer true, i.e., there exists a hermitian manifold (M, Φ) with a holomorphic line bundle \mathcal{L} such that $c_{1}(\mathcal{L})=0 \in H^{2}(M ; \mathbb{Z})$ and $\operatorname{deg} \mathcal{L} \neq 0$. In particular, $H^{1}(M, \mathcal{O}) \neq 0$ and the isomorphism class $[\mathcal{L}]$ of \mathcal{L} generates an infinite cyclic subgroup in

$$
\operatorname{Pic}^{0}(M)=\left\{\ell \in H^{1}\left(M, \mathcal{O}^{\times}\right) \mid c_{1}(\ell)=0 \in H^{2}(M ; \mathbb{Z})\right\}
$$

This work was done while the author was visiting the Max-Planck-Institut für Mathematik. He likes to thank the institute for the financial support and the hospitality.

For example, let λ be a nonzero complex number with $|\lambda| \neq 1$. Then on the Hopf manifold $M=\left(\mathbb{C}^{n}-\{0\}\right) /(z \mapsto \lambda z)$, we consider the 'metric'

$$
\Phi=\frac{\sqrt{-1}}{|z|^{2}}\left(d z^{1} \wedge d \bar{z}^{1}+\cdots+d z^{n} \wedge d \bar{z}^{n}\right)
$$

which satisfies $d^{\prime} d^{\prime \prime}\left(\Phi^{n-1}\right)=0$ (and $d^{\prime} d^{\prime \prime}\left(\Phi^{n-2}\right) \neq 0$ for $n>2$. cf. (1.2)). Then it is easy to see that the mean curvature K of the Chern connection on the holomorphic tangent bundle \mathcal{T} of M is identically equal to $n-1$. Thus M is an Einstein-Hermitian manifold and $\operatorname{deg} \mathcal{T}>0$. It follows (cf. (1.9)) that $H^{0}\left(M, \Omega^{p}\right)=0(1 \leq p \leq n)$, where Ω^{p} is the sheaf of holomorphic p-forms. Of course this can be obtained easily since there is no isolated singularity of a holomorphic function in $\operatorname{dim}>1$.

When $n=2$, Buchdahl [Buc] found a necessary and sufficient condition for degree to be a topological invariant. In general we have the following. Let

$$
\operatorname{Pic}^{0}(M)_{\mathbb{R}}=\left\{\ell \in H^{1}\left(M, \mathcal{O}^{\times}\right) \mid c_{1}(\ell)_{\mathbb{R}}=0 \in H^{2}(M ; \mathbb{R})\right\} .
$$

1.2. Proposition. Consider the following statements.
(1) $b_{1}(M)=2 \operatorname{dim}_{\mathbb{C}} H^{1}(M, \mathcal{O})$
(2) $\operatorname{deg}\left(\operatorname{Pic}^{0}(M)\right)=0$
(3) $\operatorname{deg}\left(\operatorname{Pic}^{0}(M)_{\mathbb{R}}\right)=0$
(4) degree is a topological invariant.

Then (1) implies (2). (2), (3) and (4) are equivalent. If $d^{\prime} d^{\prime \prime}\left(\Phi^{n-2}\right)=0$, then (4) implies (1).

Proof: For the proof, we identify

$$
\begin{equation*}
\operatorname{Pic}^{0}(M) \simeq H^{1}(M ; \mathcal{O}) / H^{1}(M ; \mathbb{Z}) \simeq Z^{0,1} / B, \tag{1.3}
\end{equation*}
$$

where

$$
Z^{0,1}=\left\{\alpha \in A^{0,1}(M) \mid d^{\prime \prime} \alpha=0\right\}
$$

and

$$
\begin{equation*}
B=\left\{-d^{\prime \prime} g \cdot g^{-1} \mid g \in \mathcal{C}^{\infty}\left(M, \mathbb{C}^{\times}\right)\right\} \simeq \mathcal{C}^{\infty}\left(M, \mathbb{C}^{\times}\right) / \mathbb{C}^{\times} \tag{1.4}
\end{equation*}
$$

Note that B is a subgroup of $Z^{0,1}$ containing

$$
B^{0,1}=\left\{d^{\prime \prime} f \mid f \in \mathcal{C}^{\infty}(M, \mathbb{C})\right\}
$$

Also we have

$$
\begin{equation*}
B / B^{0,1} \simeq H^{1}(M ; \mathbb{Z}) \tag{1.5}
\end{equation*}
$$

Now the $\operatorname{deg} \mid \operatorname{Pic}^{0}(M)$ is defined by

$$
\begin{equation*}
\operatorname{deg}[\alpha]=\frac{\sqrt{-1}}{2 \pi} \int_{M}\left(d^{\prime} \alpha-d^{\prime \prime} \bar{\alpha}\right) \wedge \Phi^{n-1} \tag{1.6}
\end{equation*}
$$

for $[\alpha] \in \operatorname{Pic}^{0}(M), \alpha \in Z^{0,1}$.
Now suppose (1) is true. Then $\operatorname{Pic}^{0}(M)$ is a compact group and hence we get (2), which is obviously equivalent to (4).

Suppose (2) is true. Let \mathcal{L} be a holomorphic line bundle with $c_{1}(\mathcal{L})_{\mathbb{R}}=0 \in H^{2}(M ; \mathbb{R})$. Then for any hermitian metric h on $\mathcal{L}, c_{1}(\mathcal{L}, h)$ is a closed real (1,1)-form and hence there exists a $\beta=\beta^{\prime}+\beta^{\prime \prime} \in A^{1,0} \oplus A^{0,1}$ such that $c_{1}(\mathcal{L}, h)=\frac{\sqrt{-1}}{2 \pi} d \beta$. Then $d^{\prime \prime} \beta=0, \beta^{\prime}=-\overline{\beta^{\prime \prime}}$ and

$$
c_{1}(\mathcal{L}, h)=\frac{\sqrt{-1}}{2 \pi}\left(d^{\prime} \beta^{\prime \prime}-d^{\prime \prime} \overline{\beta^{\prime \prime}}\right)
$$

Thus $\operatorname{deg}(\mathcal{L})=\operatorname{deg}\left[\beta^{\prime \prime}\right]=0$. This implies (3).
Obviously, (3) implies (2).
Finally, suppose $d^{\prime} d^{\prime \prime}\left(\Phi^{n-2}\right)=0$ and (4) is true. By (1.5), for any $\alpha \in Z^{0,1}$

$$
\int_{M} d^{\prime} \alpha \wedge \Phi^{n-1}=0
$$

Then as in [Buc], there exists a unique $\beta \in B^{0,1}$ such that

$$
\Lambda d^{\prime}(\alpha+\beta)=0
$$

for each $\alpha \in Z^{0,1}$. Then by the next observation, we have $d^{\prime}(\alpha+\beta)=0$.
Observation. Let $\alpha \in Z^{0,1}$ and $\Lambda d^{\prime} \alpha=0$. Then $d^{\prime} \alpha=0$ if $d^{\prime} d^{\prime \prime}\left(\Phi^{n-2}\right)=0$.
(For this observation, we do not need the assumption (0.1). This can be extended to "flat" holomorphic hermitian vector bundles.)

Now we obtain a map

$$
\alpha \mapsto \overline{\alpha+\beta}
$$

of $Z^{0,1}$ into the space $H^{0}(M, d \mathcal{O})$ of d-closed holomorphic 1-forms. This map induces an isomorphism

$$
H^{0,1}(M) \simeq H^{0}(M, d \mathcal{O})
$$

This implies (1) [Kod].
1.7 Corollary. On Kählerian manifolds, the degree relative to any Gauduchon metric is a topological invariant.

Remark. The condition $d^{\prime} d^{\prime \prime}\left(\Phi^{n-2}\right)=0$ implies that, for instance,

$$
\int_{M} c_{2}(\mathcal{E}, h) \wedge \Phi^{n-2}
$$

is independent of the choice of $h[\mathbf{B C}]$. Hence one can obtain Lübke inequality [L1] and the lower bound for the Yang-Mills functional.

Next proposition is trivial.
1.8. Proposition. If degree is a topological invariant on M and $b_{2}(M)=0$, then there are no stable bundles of rk >1. Every holomorphic vector bundle is semi-stable and every Einstein-Hermitian vector bundle is a direct sum of line bundles with the same degree.

The following vanishing theorem indicates a role of degree.
1.9. Vanishing Theorem [Kob]. Let (\mathcal{E}, h) be an Einstein-Hermitian vector bundle over a Hermitian manifold (M, Φ). If $\operatorname{deg}(\mathcal{E})<0$, then \mathcal{E} has no holomorphic section. If $\operatorname{deg}(\mathcal{E})=0$, then every section of \mathcal{E} is parallel.

Since every holomorphic line bundle admits an Einstein-Hermitian metric, the vanishing theorem applies to any holomorphic line bundle. This vanishing theorem has a following generalization.
1.10. Proposition. Let (\mathcal{E}, h) be a hermitian holomorphic vector bundle over (M, Φ). Let $D=D^{\prime}+D^{\prime \prime}$ be the Chern connection on (\mathcal{E}, h) and u be a smooth section of \mathcal{E}.
(1) If $K \leq 0$ and $\Lambda D^{\prime} D^{\prime \prime} u=0$, then $D u=0$. If, moreover, $K<0$ at some point of M, then $u=0$.
(2) If $K \geq 0$ and $\Lambda D^{\prime \prime} D^{\prime} u=0$, then $D u=0$. If, moreover, $K>0$ at some point of M, then $u=0$.

Proof: Observe that if $\Lambda D^{\prime} D^{\prime \prime} u=0$,

$$
\sqrt{-1} \Lambda d^{\prime} d^{\prime \prime} h(u, u)=|D u|^{2}-h(K u, u) .
$$

Then the maximum principle of E. Hopf applies. (2) is similarly proved.
This vanishing theorem can be used to get a generalized Atiyh-Hitchin-Singer's elliptic complex (cf. [AHS], [K2]) for an Einstein-Hermitian connection on a hermitian manifold.
2. Holomorphic structures. Now we fix a smooth complex vector bundle E over M of rank r. There are three important concepts on E, namely, holomorphic structures, unitary structures and connections. The sets of these structures will be denoted by $\operatorname{Hol}(E)$, $\operatorname{Herm}(E)$ and $\operatorname{Con}(E)$, respectively. Then there is a Chern map

$$
\operatorname{Hol}(E) \times \operatorname{Herm}(E) \rightarrow \operatorname{Con}(E)
$$

The group GL (E) of smooth bundle automorphisms of E acts naturally on these spaces and the Chern map is equivariant. The Chern map is natural in the sense that for any vector bundle $\rho(E)$ associated to E, the diagram

commutes equivariantly. We consider only the case $\rho(E)=\operatorname{det} E$, since we have a complete understanding in that situation. A different point of view is considered in [New], [OV], [L2].

From now on we will assume that $\operatorname{Hol}(E) \neq \emptyset$. Then there is a commutative diagram

where $\mathcal{M}(E)=\operatorname{Hol}(E) / \mathrm{GL}(E)$, which we may call the moduli space of holomorphic structures on E. We identify ([Gri], [AHS], [AB], [Qui], [Kob], [K2]) a holomorphic structure with the corresponding Cauchy-Riemann operator $D^{\prime \prime}: A^{0}(E) \rightarrow A^{0,1}(E), D^{\prime \prime} \circ D^{\prime \prime}=0$. They form a subset of an affine space, of which the model space is $A^{0,1}(E n d E)$. Thus $\operatorname{Hol}(E)$ and hence $\mathcal{M}(E)$ is canonically equipped with a smooth topology [Pal$]$. Note that there is a simple transitive action of the group $\operatorname{Pic}^{0}(M)$ on $\mathcal{M}(\operatorname{det} E)$ and hence $\mathcal{M}(\operatorname{det} E)$ is (noncanonically) isomorphic to $\operatorname{Pic}^{0}(M)$. The surjective map

$$
\begin{equation*}
\operatorname{det}: \operatorname{Hol}(E) \rightarrow \operatorname{Hol}(\operatorname{det} E) \tag{2.2}
\end{equation*}
$$

is a trivial fiber bundle. Once a holomorphic structure or equivalently a Cauchy-Riemann operator $D^{\prime \prime}$ is chosen, a trivialization of $\operatorname{Hol}(E)$ over $\operatorname{Hol}(\operatorname{det} E)$ is given by

$$
\operatorname{Hol}(E) \simeq \operatorname{Hol}(\operatorname{det} E) \times\left\{\beta \in A^{0,1}(\operatorname{End} E): \operatorname{tr} \beta=0, D^{\prime \prime}(\beta)+\beta \circ \beta=0\right\}
$$

The fiber of (2.2) at $\mathcal{L} \in \operatorname{Hol}(\operatorname{det} E)$ is denoted by

$$
\operatorname{Hol}(E, \mathcal{L})=\{\mathcal{E} \in \operatorname{Hol}(E) \mid \operatorname{det} \mathcal{E}=\mathcal{L}\}
$$

and

$$
\mathcal{M}(E, \mathcal{L}):=\operatorname{Hol}(E, \mathcal{L}) / \operatorname{SL}(E)
$$

where

$$
\mathrm{SL}(E)=\{g \in \mathrm{GL}(E) \mid \operatorname{det} g=1\} .
$$

The fiber bundle

$$
\begin{equation*}
\mathcal{M}(E) \rightarrow \mathcal{M}(\operatorname{det} E) \tag{2.3}
\end{equation*}
$$

becomes trivial after it is divided by a finite group (2.4). The group $\operatorname{Pic}^{0}(M)$ also acts on $\mathcal{M}(E)$, by tensoring, and the induced action on $\mathcal{M}(E)$ of the r-torsion subgroup

$$
T:=T_{r}=\left\{\ell \in \operatorname{Pic}^{0}(M) \mid r \ell=0\right\}
$$

commutes with the projection $\mathcal{M}(E) \rightarrow \mathcal{M}(\operatorname{det} E)$. Note that T is a finite group isomorphic to $(\mathbb{Z} / r \mathbb{Z})^{b_{1}}$, where b_{1} is the first Betti number of M. Although the stabilizers in T are not simply described, we have
2.4. Proposition. $\mathcal{M}(E) / T$ is isomorphic to the product $\mathcal{M}(\operatorname{det} E) \times\left(\mathcal{M}(E) / \operatorname{Pic}^{0}(M)\right)$ as spaces over $\mathcal{M}(\operatorname{det} E)$.

Proof: Probably, the proof using the Cauchy-Riemnann operators might be more clear. But here is the direct proof. The isomorphism $\mathcal{M}(E) / T \rightarrow \mathcal{M}(\operatorname{det} E) \times\left(\mathcal{M}(E) / \operatorname{Pic}^{0}(M)\right)$ is given by

$$
[\mathcal{E}]_{T} \mapsto[\operatorname{det} \mathcal{E}] \times[\mathcal{E}]_{\mathrm{Pic}^{0}(M)}
$$

Obviously this is a well-defined continuous map. To see the injectivity, suppose

$$
\left[\operatorname{det} \mathcal{E}_{1}\right] \times\left[\mathcal{E}_{1}\right]_{\mathrm{Pic}^{0}(M)}=\left[\operatorname{det} \mathcal{E}_{2}\right] \times\left[\mathcal{E}_{2}\right]_{\mathrm{Pic}^{0}(M)} .
$$

Then $\left[\operatorname{det} \mathcal{E}_{1}\right]=\left[\operatorname{det} \mathcal{E}_{2}\right]$ and $\left[\mathcal{E}_{1}\right]_{\operatorname{Pic}^{0}(M)}=\left[\mathcal{E}_{2}\right]_{\mathrm{Pic}^{0}(M)}$. Thus there exists a $[\mathcal{L}] \in \operatorname{Pic}^{0}(M)$ such that $\mathcal{E}_{1} \otimes \mathcal{L} \simeq \mathcal{E}_{2}$. Then $\operatorname{det} \mathcal{E}_{1} \otimes \mathcal{L}^{r} \simeq \operatorname{det} \mathcal{E}_{2}$. Thus $\mathcal{L}^{r} \simeq \mathcal{O}$, i.e., $[\mathcal{L}] \in T$. Hence $\left[\mathcal{E}_{1}\right]_{T}=\left[\mathcal{E}_{2}\right]_{T}$.

For the surjectivity, let $[\mathcal{L}] \times\left[\mathcal{E}_{1}\right] \in \mathcal{M}(\operatorname{det} E) \times \mathcal{M}(E)$ be given. Then

$$
[\mathcal{L}]=\left[\operatorname{det} \mathcal{E}_{1}\right]+\ell
$$

for some unique $\ell \in \operatorname{Pic}^{0}(M)$. Since $\operatorname{Pic}^{0}(M)$ is a divisible group, there exists a ℓ_{1} such that $\ell=r \ell_{1}$. Locally, this ℓ_{1} can be chosen continuously. Then we put $[\mathcal{E}]=\left[\mathcal{E}_{1}\right] \otimes \ell_{1}$. Then $[\mathcal{E}]_{T} \in \mathcal{M}(E) / T$ is independent of the choice of ℓ_{1} and $[\mathcal{E}]_{T}$ maps to $[\mathcal{L}] \times\left[\mathcal{E}_{1}\right]_{\mathrm{Pic}^{0}(M)}$. This establishes the isomorphism.
2.5. Lemma. The followings are equivalent.
(1) $b_{1}(M)=0$
(2) $\mathcal{C}^{\infty}\left(M, \mathbb{C}^{\times}\right)$is a divisible group
(3) $\mathcal{C}^{\infty}\left(M, \mathbb{C}^{\times}\right)$is connected.
(4) $\mathcal{C}^{\infty}\left(M, \mathbb{C}^{\times}\right) / \mathbb{C}^{\times}$is a divisible group
(5) $\mathcal{C}^{\infty}\left(M, \mathbb{C}^{\times}\right) / \mathbb{C}^{\times}$is connected.
(6) $\operatorname{Pic}^{0}(M)$ has no torsion
(7) $\operatorname{Pic}^{0}(M) \simeq H^{1}(M, \mathcal{O})$.

Moreover these imply that $\operatorname{Pic}^{0}(M)$ acts freely on $\mathcal{M}(E)$.

Now we get (cf. [K3], [OV] [L2])
2.6. Corollary. (1) If $b_{1}=0$, then $\mathcal{M}(E, \mathcal{L}) \simeq \mathcal{M}(E) / \operatorname{Pic}^{0}(M)$ for any $\mathcal{L} \in \operatorname{Hol}(\operatorname{det} E)$.
(2) If $H^{1}(M, \mathcal{O})=0$, then $\mathcal{M}(E, \mathcal{L}) \simeq \mathcal{M}(E)$ for any $\mathcal{L} \in \operatorname{Hol}(\operatorname{det} E)$.

Proof: (1) Since $b_{1}=0, T=0$ and hence by $(2.4) \mathcal{M}(E) \simeq \mathcal{M}(\operatorname{det} E) \times\left(\mathcal{M}(E) / \operatorname{Pic}^{0}(M)\right)$ as spaces over $\mathcal{M}(\operatorname{det} E)$. In particular, the fiber $\mathcal{M}(E)_{[\mathcal{L}]}$ of $\mathcal{M}(E) \rightarrow \mathcal{M}(\operatorname{det} E)$ at
$[\mathcal{L}] \in \mathcal{M}(\operatorname{det} E)$ is isomorphic to $\mathcal{M}(E) / \operatorname{Pic}^{0}(M)$. Thus it suffices to show that $\mathcal{M}(E)_{[\mathcal{L}]} \simeq$ $\mathcal{M}(E, \mathcal{L})$. From the commutative diagram (2.1), we have an injection

$$
\mathcal{M}(E, \mathcal{L}) \rightarrow \mathcal{M}(E)_{[\mathcal{L}]}
$$

To see the surjectivity of this map, let $\left[D^{\prime \prime}\right] \in \mathcal{M}(E)$ and $\left[\operatorname{det} D^{\prime \prime}\right]=[\mathcal{L}]$ (i.e., $\left[D^{\prime \prime}\right] \in$ $\left.\mathcal{M}(E)_{[\mathcal{L}]}\right)$. Then $\operatorname{det} D^{\prime \prime}=\mathcal{L}-\beta_{1}$ for some $\beta_{1} \in B \simeq \mathcal{C}^{\infty}\left(M, \mathbb{C}^{\times}\right) / \mathbb{C}^{\times}$(cf. (1.4)). Since B is divisible, $\beta_{1}=r \beta$ for some (unique) $\beta \in B$. Now

$$
\left[D^{\prime \prime}+\beta 1_{E}\right]=\left[D^{\prime \prime}\right]
$$

and $\operatorname{det}\left(D^{\prime \prime}+\beta 1_{E}\right)=\operatorname{det} D^{\prime \prime}+\operatorname{tr}\left(\beta 1_{E}\right)=\mathcal{L}$. This establishes a homeomorphism.
(2) follows from (1).
2.7. Remarks. (1) If we consider stable structures ([Buc], [LY]), then we have propositions similar to (2.4) and (2.6) with $\mathcal{M}^{s}(E):=\operatorname{Hol}^{s}(E) / \mathrm{GL}(E)$ and $\mathcal{M}^{s}(E, \mathcal{L}):=$ $\operatorname{Hol}^{s}(E, \mathcal{L}) / \operatorname{SL}(E)$.
(2) If the $\operatorname{map} \mathcal{M}(E, \mathcal{L}) \hookrightarrow \mathcal{M}(E)$ is surjective, then obviously $\operatorname{Pic}^{0}(M)=0$, i.e., $H^{1}(M, \mathcal{O})=0$.
3. Einstein-Hermitian connections. From now on we fix a unitary structure h on E. The space of irreducible Einstein h-connections on E is denoted by $\mathcal{C}^{s}(E)$ and

$$
\mathcal{N}^{s}(E):=\mathcal{C}^{s}(E) / \mathrm{U}(E)
$$

where $\mathrm{U}(E)$ is the group of smooth isometries of (E, h). We assume that $\mathcal{C}^{s}(E) \neq \emptyset$. Then as in the previous section we have the following commutative diagram.

The map $\operatorname{det}: \mathcal{C}^{s}(E) \rightarrow \mathcal{C}^{s}(\operatorname{det} E)$ is a trivial fibration. Once a point $D \in \mathcal{C}^{s}(E)$ is chosen, the trivialization is given by

$$
\mathcal{C}^{s}(E) \simeq \mathcal{C}^{s}(\operatorname{det} E) \times\left\{A \in A^{1}(u E) \mid D^{\prime \prime}\left(A^{\prime \prime}\right)+A^{\prime \prime} \circ A^{\prime \prime}=0, \Lambda(D(A)+A \circ A)=0\right\}
$$

where $u E$ is the real vector bundle of skew-hermitian endomorphisms of (E, h). We put for $\nabla \in \mathcal{C}^{s}(\operatorname{det} E)$,

$$
\mathcal{C}^{s}(E, \nabla)=\left\{D \in \mathcal{C}^{s}(E) \mid \operatorname{det} D=\nabla\right\}
$$

and

$$
\mathcal{N}^{s}(E, \nabla)=\mathcal{C}^{s}(E, \nabla) / \mathrm{SU}(E)
$$

where $\operatorname{SU}(E)=\mathrm{U}(E) \cap \mathrm{SL}(E)$. Then
(3.1) $\mathcal{N}^{s}(E) \simeq \mathcal{M}^{s}(E)([\mathbf{L Y}])$ and hence $\mathcal{M}^{s}(E)$ is an open subset of $\mathcal{M}(E)([\mathrm{K} 1]$, cf. [Kob]).
(3.2) Let \mathcal{L} be the holomorphic structure on $\operatorname{det} E \operatorname{defined}$ by $\nabla \in \mathcal{C}^{s}(\operatorname{det} E)$. Then $\mathcal{N}^{s}(E, \nabla) \simeq \mathcal{M}^{s}(E, \mathcal{L})$ and hence $\mathcal{M}^{s}(E, \mathcal{L})$ is an open subset of $\mathcal{M}(E, \mathcal{L})$.
(3.3) When $r=n=2, \mathcal{M}^{s}(E)$ is the ordinary moduli space $\mathcal{M}\left(c_{1}, c_{2}\right)$ considered in algebraic geometry and $\mathcal{N}^{s}(E, d)$ is, if $c_{1}(E)=0$ and $\nabla=d$, the moduli space of anti-self-dual $S U(2)$-connections. These two spaces are equal if and only if $H^{1}(M, \mathcal{O})=0$ (cf. (2.6) and (2.7)).

$$
\begin{equation*}
\mathcal{M}_{*}^{s}(E)=\left\{[\mathcal{E}] \in \mathcal{M}^{s}(E) \mid H^{2}(M, s l \mathcal{E})=0\right\} \tag{3.4}
\end{equation*}
$$

and

$$
\mathcal{M}_{*}^{s}(E, \mathcal{L})=\left\{[\mathcal{E}] \in \mathcal{M}^{s}(E, \mathcal{L}) \mid H^{2}(M, s l \mathcal{E})=0\right\}
$$

then $\mathcal{M}_{*}^{s}(E)\left(\right.$ resp. $\left.\mathcal{M}_{*}^{s}(E, \mathcal{L})\right)$ is a Kähler manifold and the tangent space at $[\mathcal{E}]$ is isomorphic to $H^{1}(M, \operatorname{End} \mathcal{E})\left(\right.$ resp. $H^{1}(M, s l \mathcal{E})$) (cf. [K2], [Kob]), where $s l \mathcal{E}$ is the bundle of trace-free endomorphisms of \mathcal{E}.

I am very grateful to C. Okonek for various comments and many valuable discussions.

References

[AB] Atiyah, M. F., Bott, R., The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond. A 308 (1982), 523-615.
[AHS] Atiyah, M. F., Hitchin, N. J., Singer, I. M., Self-dualitiy in four-dimensional Riemannian geometry, Proc. Roy. Soc. Lond. Ser. A 362 (1978), 425-461.
[BC] Bott, R., Chern, S.-s., Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Mathematica 114 (1965), 71-112.
[Buc] Buchdahl, N. P., Hermitian-Einstein connections and Stable Vector Bundles Over Compact Complex Surfaces, Math. Ann. 280 (1988), 625-648.
[Gau] Gauduchon, P., Le théorme de l'exentricit nulle, C. R. Acad. Sc. Paris 285 (1977), 387-390.
[Gri] Griffiths, P. A., The extension problems in complex analysis I, in "Proc. Conf. Complex Analysis, Minneapolis," Springer-Verlag, 1966.
[K1] Kim, H.-J., Curvatures and holomorphic vector bundles, Thesis, Berkeley,1985.
[K2] _, Moduli of Hermite-Einstein Vector Bundles, Math. Z. 195 (1987), 143-150.
[K3] , Reduced gauge group and the moduli space of stable bundles, J. Korean Math. Soc. 25 (1988), 259-264.
[Kob] Kobayashi, S., "Differential Geometry of Complex Vector Bundles," Publ. of the Math. Soc. of Japan 15, Iwanami Shoten and Princeton Univ. Press, Tokyo, 1987.
[Kod] Kodaira, K., On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964), 751-798.
[LY] Li, J., Yau, S. T., Hermitian-Yang-Mills connections on Non-Kähler Manifolds, in "Mathematical Aspects of String Theory," ed. S. T. Yau, World Scientific, 1987.
[L1] Lübke, M., Chernklassen von Hermite-Einstein-Vectorbündeln, Math. Ann. 260 (1982), 133-141.
[L2] __ Antiselfdual PU(2)-connections and Hermite-Einstein Bundles of rank 2, preprint, 1989.
[New] Newstead, P. E., Topological properties of some spaces of stable bundles, Topology 6 (1967), 241-262.
[OV] Okonek, C., Van de Ven, A., Г-type-invariant associated to PU(2)-bundles and the differentiable structure of Barlow's surface, Invent. Math. 95 (1989), 601-614
[Pal] Palais, R., "Foundations of Global Nonlinear Analysis," Benjamin, Reading, Mass., 1967.
[Qui] Quillen, D., Determinant of Caucy-Riemann operators on a Riemann surface, Func. Anal. and its Appl. 19 (1985), 31-34.

Keywords. moduli spaces, connections, vector bundles
1980 Mathematics subject classifications: 53C05, 53C55, 32L10

Seoul National University

