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Some remarks on
holomorphic vector bundles over non-Kahler manifolds

HonGg-JonGg KM

Abstract. We compare some moduli spaces of holomorphic structures on a given smooth
vector bundle over an arbitrary complex manifold.

If we consider an SU(2) vector bundle F over a Kahler surface S, then the moduli space
of stable holomorphic structures on E is equal to the moduli space of anti-self-dual SU(2)
connections on E if and only if 5;(S) = 0. This fact has a generalization for non-Kahler
cases (2.4), (2.6), (2.7), (3.3). A modification of vanishing theorem is stated (1.10), which
can be used to get a generalized Atiyah-Hitchin-Singer’s elliptic complex on non-Kéhler
manifolds.

From now on our basic reference is [Kob]. Let M be a compact connected complex
n-manifold with a hermitian metric g,5 (1 < g, v < n). The associated fundamental form
will be denoted by & = /=13 gupdz# A dz¥. We do not assume that @ is a Kahler form,
but we may and will assume that

(0.1) d'd"(d"1) =0

after a conformal change of the metric, if necessary [Gau]. Such a metric will be called a
Gaudochon metric.

1. Degree of bundles. For a holomorphic vector bundle £ over M, we define [Buc],
[LY] the degree of £ relative to @ by

1
deg(€) = dege (&) = / a(E,H)Ad" ! = —/ (tr K)@™,
M 2nm Jpm
where ¢;(€, h) is the first Chern form associated to a hermitian metric h on &, tr K is the
scalar curvature and K is the mean curvature [Kob]. The condition (0.1) implies that the
degree is independent of the choice of . Obviously deg(&) = deg(det £) and isomorphic
bundles have the same degree. Thus we have a group homomorphism

deg: H'(M,0*) - R.

On Kahler manifolds degree is a topological invariant, but in non-Kahler case this is no
longer true, i.e., there exists a hermitian manifold (M, ®) with a holomorphic line bundle
L such that ¢;(£) = 0 € H>(M;Z) and deg L # 0. In particular, H}(M,O) # 0 and the

isomorphism class [£] of £ generates an infinite cyclic subgroup in

Pic®(M) = {£ € H\(M,0%) | ¢1(¢) = 0 € HXA(M;Z)}.
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For example, let A be a nonzero complex number with |A| # 1. Then on the Hopf manifold
M = (C" — {0})/(z — Az), we consider the ‘metric’

/=1

3=
|22

(dz' AdZ' + -+ dz" A dZ™),

which satisfies d'd"(®""!) = 0 (and d'd"(®"~2) # 0 for n > 2. cf. (1.2)). Then it is easy
to see that the mean curvature K of the Chern connection on the holomorphic tangent
bundle 7 of M is identically equal to n — 1. Thus M is an Einstein- Hermitian manifold
and deg7 > 0. It follows (cf. (1.9)) that H'(M,QP) = 0 (1 < p < n), where QP is
the sheaf of holomorphic p-forms. Of course this can be obtained easily since there is no
isolated singularity of a holomorphic function in dim > 1.

When n = 2, Buchdahl [Buc] found a necessary and sufficient condition for degree to
be a topological invariant. In general we have the following. Let

Pic®(M)g = {£ € H'(M,0%) | ¢;(£)g = 0 € HX(M;R)}.

1.2. PROPOSITION. Consider the following statements.
(1) b3(M) =2dime HI(M, 0)
(2) deg(Pic®(M))=0
(3) deg(Pic’(M)g) = 0
(4) degree is a topological invariant.

Then (1) implies (2). (2), (3) and (4) are equivalent. If d'd"(®"~%) = 0, then (4) implies
(1).

PRrROOF: For the proof, we identify
(1.3) Pic®(M) ~ HY(M;0)/HY(M;Z) ~ Z°* /B,

where

ZO,I — {a € AO,I(M) I d"Ol:O}

and
(1.4) B={-d"g-g~ | g € C¥(M,C*)} ~C®(M,C*)/C*.
Note that B is a subgroup of Z%! containing
B = {d'f | f €C=(M,C)}.
Also we have
(1.5) B/B%' ~ HY(M; ).
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Now the deg |Pic’(M) is defined by
(1.6) degla] = —Vz‘l / (d'a — d"a) A ™!
T JMm

for [a] € Pic®(M), a € Z%*.

Now suppose (1) is true. Then Pic’(M) is a compact group and hence we get (2), which
is obviously equivalent to (4). ,

Suppose (2) is true. Let £ be a holomorphic line bundle with ¢;(£)gr = 0 € H?(M;R).
Then for any hermitian metric h on £, ¢;(£, k) is a closed real (1,1)-form and hence there

exists a § = ' + " € AV® @ A%! such that ¢;(L,h) = Agdﬂ. Then d"8 =0, ' = —p"

and
er(L,h) = L2(d B — d"F).
Thus deg(L) = deg[8"] = 0. This implies (3).
Obviously, (3) implies (2).
Finally, suppose d'd"(®"%) = 0 and (4) is true. By (1.5), for any o € Z%1

/ daAd™ ! =0.
M

Then as in [Buc], there exists a unique 8 € B%?! such that
Ad(a+B)=0
for each o € Z%!. Then by the next observation, we have d'(a + 8) = 0.
OBSERVATION. Let a € Z%! and Ad'a =0. Then d'a =0 if d'd"(®"~2) =0,

(For this observation, we do not need the assumption (0.1). This can be extended to
“flat” holomorphic hermitian vector bundles.)

Now we obtain a map
a—a+f

of Z%! into the space H°(M,dO) of d-closed holomorphic 1-forms. This map induces an
isomorphism

HOY(M) = HY(M, dO).
This implies (1) [Kod].

1.7 COROLLARY. On Kahlerian manifolds, the degree relative to any Gauduchon metric
is a topological invariant.

REMARK. The condition d'd"($"~2) = 0 implies that, for instance,

/ ca(E,h) A 2
M

is independent of the choice of A [BC]. Hence one can obtain Liibke inequality [L1] and
the lower bound for the Yang-Mills functional.

Next proposition is trivial.



1.8. PROPOSITION. If degree is a topological invariant on M and by(M) = 0, then there
are no stable bundles of tk > 1. Every holomorphic vector bundle is semi-stable and every
FEinstein-Hermitian vector bundle is a direct sum of line bundles with the same degree.

The following vanishing theorem indicates a role of degree.

1.9. VANISHING THEOREM [Kob]. Let (£,h) be an Einstein-Hermitian vector bundle
over a Hermitian manifold (M, ®). If deg(£) < 0, then £ has no holomorphic section. If
deg(€) = 0, then every section of £ is parallel.

Since every holomorphic line bundle admits an Einstein-Hermitian metric, the vanishing
theorem applies to any holomorphic line bundle. This vanishing theorem has a following
generalization.

1.10. PROPOSITION. Let (£,h) be a hermitian holomorphic vector bundle over (M, ®).
Let D = D' + D" be the Chern connection on (€, h) and u be a smooth section of €.

(1) f K <0 and AD'D"u =0, then Du = 0. If, moreover, K < 0 at some point of M,

then u = 0.
(2) If K > 0 and AD"D'u =0, then Du = 0. If, moreover, K > 0 at some point of M,
then u = 0.

PROOF: Observe that if AD'D"u =0,
V—=1Ad'd"h(u,u) = |Du|? — h(Ku,u).

Then the maximum principle of E. Hopf applies. (2) is éimilarly proved. 1

This vanishing theorem can be used to get a generalized Atiyh-Hitchin-Singer’s elliptic
complex (cf. [AHS], [K2]) for an Einstein-Hermitian connection on a hermitian manifold.

2. Holomorphic structures. Now we fix a smooth complex vector bundle E over
M of rank r. There are three important concepts on F, namely, holomorphic structures,
unitary structures and connections. The sets of these structures will be denoted by Hol( E),
Herm(E) and Con(E), respectively. Then there is a Chern map

Hol(E) x Herm(E) — Con(E).

The group GL(E) of smooth bundle automorphisms of E acts naturally on these spaces
and the Chern map is equivariant. The Chern map is naturel in the sense that for any
vector bundle p(F) associated to E, the diagram

Hol(E) x Herm(E) —— Con(E)

! !

Hol(p(E)) x Herm(p(E)) —— Con(p(E))
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commutes equivariantly. We consider only the case p(E) = det E, since we have a complete

understanding in that situation. A different point of view is considered in [New], [OV],
[L2].

From now on we will assume that Hol(E) # 0. Then there is a commutative diagram

de
Hol(E) ——— Hol(det E)

(2.1) l l

M(E) ——s M(det E)

where M(E) = Hol(E)/ GL(E), which we may call the moduli space of holomorphic struc-
tures on E. We identify ([Gri], [AHS], [AB], [Qui], [Kob], [K2]) a holomorphic structure
with the corresponding Cauchy-Riemann operator D" : A°(E) — A%Y(E), D" o D" = 0.
They form a subset of an affine space, of which the model space is A%!(End E). Thus
Hol(E) and hence M(E) is canonically equipped with a smooth topology [Pal]. Note that
there is a simple transitive action of the group Pic’(M) on M(det E) and hence M(det E)
is (noncanonically) isomorphic to PicO(M ). The surjective map

(2.2) det : Hol(E) — Hol(det E)

is a trivial fiber bundle. Once a holomorphic structure or equivalently a Cauchy-Riemann
operator D" is chosen, a trivialization of Hol(E) over Hol(det E) is given by

Hol(E) ~ Hol(det E) x {8 € A>*(End E) : tr 8 = 0,D"(B) + B o 8 = 0}.
The fiber of (2.2) at £ € Hol(det E) is denoted by
Hol(E, L) = {€ € Hol(E) | det& = L},

and

M(E, L) := Hol(E, £)/ SL(E),

where

SL(E) = {g € GL(E) | detg = 1}.
The fiber bundle

(2.3) M(E) - M(det E)

becomes trivial after it is divided by a finite group (2.4). The group Pic’(M) also acts on
M(E), by tensoring, and the induced action on M(E) of the r-torsion subgroup

T:=T,={£€Pic®(M) | re =0}

5



commutes with the projection M(E) — M(det E). Note that T is a finite group isomor-
phic to (Z/rZ)*, where b is the first Betti number of M Although the stabilizers in T
are not simply described, we have

2.4. PROPOSITION. M(E)/T is isomorphic to the product M(det E) x (M(E)/Pic’(M))
as spaces over M(det E).

PROOF: Probably, the proof using the Cauchy-Riemnann operators might be more clear.
But here is the direct proof. The isomorphism M(E)/T — M(det E) x (M(E)/Pic’(M))
is given by

[g]T — [det 8] X [S]Pico(M)'

Obviously this is a well-defined continuous map. To see the injectivity, suppose
[det &1] % [E1]pico(ary = [det £] X [Ex]pico(ar)-

Then [det £;] = [det &) and [&1]pico(ar) = [E2]pico(m)- Thus there exists a [£] € PicO(M)
such that & ® £ ~ &. Then det& @ L™ ~ det&. Thus L™ ~ O, i.e., [L£] € T. Hence
(&1 = [&]r

For the surjectivity, let [£] x [£1] € M(det E) x M(E) be given. Then

[C] = [det &] + ¢

for some unique £ € Pic’(M). Since Pic’(M) is a divisible group, there exists a £; such
that £ = rf;. Locally, this £; can be chosen continuously. Then we put [£] = [&1] ® 4.
Then [€]r € M(E)/T is independent of the choice of £; and [€]T maps to [L] X [E1]picoary-
This establishes the isomorphism. |

2.5. LEMMA. The followings are equivalent.
(1) by(M) =0
(2) C°(M,C*) is a divisible group
(3) C°°(M,C*) is connected.
(4) C=(M,C*)/C* is a divisible group
(5) C°(M,C*)/C* is connected.
(6) Pic’(M) has no torsion
(7) Pic®(M) ~ HY(M, 0O).
Moreover these imply that PicO(M ) acts freely on M(E).

Now we get (cf. [K3], [OV] [L2])

2.6. COROLLARY. (1) Ifb; = 0, then M(E, L) ~ M(E)/Pic’(M) for any L € Hol(det E).
(2) If HY(M,0) = 0, then M(E, L) ~ M(E) for any L € Hol(det E). ‘

PROOF: (1) Sincebd; = 0, T = 0 and hence by (2.4) M(E) ~ M(det E)x(M(E)/Pic’(M))

as spaces over M(det E). In particular, the fiber M(E)z of M(E) — M(det E) at
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[£] € M(det E) is isomorphic to M(E)/Pic’(M). Thus it suffices to show that M(E)z ~
M(E,L). From the commutative diagram (2.1), we have an injection

M(E, L) — M(E)g.

To see the surjectivity of this map, let [D"] € M(E) and [det D"] = [£] (i.e., [D"] €
M(E)(z))- Then det D" = £ — B, for some B; € B ~C*®(M,C*)/C* (cf. (1.4)). Since B
is divisible, #; = rB for some (unique) f € B. Now

(D" + B15] = [D']

and det(D" 4+ B1g) = det D" + tr(B81g) = L. This establishes a homeomorphism.
(2) follows from (1). il

2.7. REMARKS. (1) If we consider stable structures ([Buc], [LY]), then we have propo-
sitions similar to (2.4) and (2.6) with M*(E) := Hol’(E)/GL(E) and M*(E,L) :=
Hol®’(E, L)/ SL(E).

(2) If the map M(E,L) — M(E) is surjective, then obviously Pic’(M) = 0, i.e.,
HY(M,0)=0.

3. Einstein-Hermitian connections. From now on we fix a unitary structure i on
E. The space of irreducible Einstein h-connections on E is denoted by C°(E) and

N*(E) :=C*(E)/ U(E),

where U(E) is the group of smooth isometries of (E, h). We assume that C*(E) # (. Then

as in the previous section we have the following commutative diagram.

CH(E) —=, C*(detE)
N3(E) —— N*(detE)

The map det : C*(E) — C*(det E) is a trivial fibration. Once a point D € C*(E) is chosen,
the trivialization is given by

C*(E)~C*(det E) x {A € A'(uE) | D"(A")+ A" 0 A" =0, A(D(A) + Ao A) = 0},

where uE is the real vector bundle of skew-hermitian endomorphisms of (E, k). We put
for V € C°(det E),
C(E,V)={D €C*(E)| det D =V}

and

N(E, V) =C°(E,V)/SU(E),
where SU(E) = U(E) N SL(E). Then



(3.1) N¥(E) ~ M?*(E) ([LY]) and hence M*(E) is an open subset of M(E) ([K1], f.
[Kob)).

(3.2) Let £ be the holomorphic structure on det E defined by V € C®(det E). Then
N*(E, V)~ M*(E, L) and hence M*(E, L) is an open subset of M(E, L).

(3.3) When r = n = 2, M*(E) is the ordinary moduli space M(cy,cz) considered in
algebraic geometry and N*(E,d) is, if ¢;(E) = 0 and V = d, the moduli space of anti-
self-dual SU(2)-connections. These two spaces are equal if and only if H*(M,0) =0 (cf.
(2.6) and (2.7)).

(3.4) I
M(E) = {[€] € M*(E) | H*(M, sI€) = 0}

and

M3(EB, L) = {[€] € M*(E, £) | HX(M,sIE) = 0}

then M3(E) (resp. MI(E,L)) is a Kéhler manifold and the tangent space at [€] is iso-
morphic to H(M,End€) (resp. H'(M,slE)) (cf. [K2], [Kob]), where si€ is the bundle

of trace-free endomorphisms of £.
I am very grateful to C. Okonek for various comments and many valuable discussions.
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