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§ 1. Introduction

(1.1) The classical uniformization theory of
Riemann surfaces is an outstanding meeting place of the
classical function theory and topology. Thefe are diverse
aspects of this theory which extend in other set-ups in
different ways, cf. [8], [9], [10]). In this paper we shall
consider it in the context of "geometric structures" as de-
fined below. This is a direct generalization of the uni-
formization of Riemann surfaces via Fuchsian and Kleinian

groups.

(1.2) Let X be a topological space and G a
group of homeomorphisms of X , satisfying the"unifor-
mization condition"” (Uf : each g €G 1is uniquely deter-
mined by its action on any nonempty open subset. The

pair (X,G) is to be thought of as a model space. An

(X,G)-structure on a topological space M is given by

*) Both authors were supported by the Max-Planck-Institut
fir Mathematik, Bonn, Germany. The first author was also
partially supported by an NSF grant.
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a covering of M by open sets {Ua} and homeo-

a € A

morphisms Sa.{_:.UOL - X s.t. for all pairs «,8 1in
A with u, n UB * ¢. the mapping SOl S;1|SB(UOl n UB)

is a restriction of an element of G . For example, if

X 1is the standard sphere s™ and G is the full group
of MO6bius transformations M(n) then by Liouville's
theorem for n 2 3 an (Sn,M(nn—structure on an
n-dimensional manifold M is the same as a conformal
class of locally conformally Euclidean metrics. The case

n =2, with M(2) replaced by its identity component
M0(2) 5 PSLZ(E) , plays a central role in the uniformi-
zation theory of Riemann surfaces via the Kleinian groups.
In Gunning's terminology an (SZ,MO(ZH—structure is a

¢ P1-structure on a Riemann surface. As an another ekample
of geometric interest consider X = real (resp. complex)
projective space and G = the full group of real (resp.
complex) projective transformations.

(1.3) A nice class of (X,G)~-structures arises as
follows. Let Q be an open subset of X and T a
subgroup of G which leaves @ invariant and acts
freely and properly discontinuously there. Then ;\Q
clearly admits an (X,G)-structure. We shall call an
(X,G)-structure on M Kleinian if M =~ ;\? as described

above.

Of course X has a distinguished (X,G)-structure

4]



9y - An (X,G)-structure o on a simply connected M

is always of the form 5*00 where 6 : M —> X is a

local homeomorphism. (This is essentially a precise
formulation of the "monodromy principle".) Moreover if
Aut(M,c) denotes the automorphism group of this structure
then § determines a homomorphism p : Aut(M,o) —> G ,
and &8 1s p-equivariant i.e. for all o € Aut(M,c) and

X €M G(df‘x) = p(a)d(x) . The map 6 1is unique up to

a left-composition by an element of G , and correspondingly
p 1s unique up to a conjugation by an element of G .

If M has an (X,G)-structure o but M is not
necessarily simply connected then assuming that it has a
universal cover ﬁ we see that ﬁ has an induced (X,G)-
structure ; and the deck-transformation group A = n1(M)
is clearly a subgroup of Aut(ﬁ,;T . Let §.: M —> X be

a local homeomorphism s.t. o = &*o Then §&§ is called

0 *
a development of (M,c) . If op .: Aut(ﬁ,o) —> G 1s the

corresponding homomorphism then p|A is called the holonomy

representation of (M,o0)

It is obvious that if we are in a category where the

covering space theory ' is valid then an (X,G)-structure o

on M 1is Kieinian iff 62:’& _— 6(&) is a covering map

and p(A) = T acts freely and properly discontinuously on

5(M) . We shall say that (M,o) is almost Kleinian if only
5 :M —> &(M) is a covering map.

(1.4) A problem of basic geometric interest is to find

criteria for an (X,G)-structure to be Kleinian or almost



Kleinian. For the case of ¢P1-structures, cf. (1.1),
Gunning provided a nice criterion, cf. [9] theorem 7,
and (1.5) below. This was proved by another method by
Kra [12]. Both proofs use facts special to Riemann sur-
faces. In this paper we shall re-examine this theorem in
the context of general geometric structures. In § 2 and
3 we develop the notions of limit sets and domains of
properneés for an arbitrary subgroup T £ G acting on

X and prove the following general

(1.4.1) Uniformization theorem Let M be a compact space

with an (X,8)-structure with § ﬁ —> X a development
map, p m1(M) —> G the holonomy representation and
r = imp . Let NO be the union of those components of the

domain of normality of T which intersect imé§ . Then
- 1 . )
6'6 T(NO) =8 (N > Ny 1is a covering map.
(1.5) This theorem combined with a theorem of Fried

(5] implies a direct extension of Gunning's theorem, cf.

©(5.3). A compact manifold with a M&bius structure such that

the development map is not surjective is almost Kleinian.

Conversely of course, except for the manifolds conformal to
the spherical space-forms, an almost Kleinian manifold with
a Mobius structure has development onto a proper subset of

s,

Here is another quite different criterion, cf. (5.4}.

A compact manifold with a Mobius structure so that the

domain of properness of its holonomy group is connected




and has finitely generated m is almost Kleinian. If

may be remarked that in the proofs of Gunning or Kra the
domain of properness plays no direct role.

In [13] it was proved that a connected sum of manifolds
with Mobius structures admits a MObius structure. A con-
venient source of Kleinian examples is a partial refinement

of this statement, cf. (5.6). A connected sum of Kleinian

manifolds with a MBbius structure admits a Kleinian M&bius

struéﬁure. This is an analogue on the "space"-level of the
famous Klein-Maskit "combination theorems" cf. [17] which

are statements on the "group"-level. This result has been

known for some time, cf. Goldman [6] § 5, but no proof is

print.

Perhaps it should be pointed out that not every mani-
fqld with a MObius structure is Kleinian or even almost
Kleinian. There are some very interesting examples illu-
strating various phenomena, cf. (5.7). Moreover the above-
mentioned results are valid in a much greater generality as
pointed out in (5.8). In fact the "ideal boundary" of an
arbitrary connected, simply connected, complete Riemannian
manifold of curvature s-a<0 admits many features of the
n

standard conformal geometry of S

The hypothesis of compactness of the space with a

geometric structure in Gunning's theorem and also in the
theorems proved here is admittedly adhoc. It excludes some

geometrically interesting cases, e.g. the noncompact hyper-



bolic manifolds with finite volume. It is easy to see that
the statements of_the theorems are no longer valid if com-
pactness is simply dropped. However in replacing compact-
ness by appropriate hypotheses on development, limit sets
etc. would bring forth the "geometry" in a more transparent
way. This entails some entirely new ideas which so far we
have only partially carried out. We shall present these
extensions in a subsequent publication.

We wish to thank P. Pansu for explaining to us his
ideas on a "coarse conformal geometry", cf. [19]. This

significantly extended the validity of our results.



§ 2. Wandering points, twins, and polars

(2.1) The study of dynamics of the holonomy group is
an lmportant part of the study of a geometric structure.
With this in view we shall develop appropriate notions in
a sufficiently general set-up, which were motivated by the
notions of the limit set and the domain of discontinuity of
a Kleinian group in the classical theory. This discussion
also extends that in [14] § 1.

(2.2) Let X be a locally compact, Hausdorff space
which has a countable base for topology, and which is
locally simply connected, and locally path-connected. Let
G be a closed group of homeomorphisms of X with respect
to the compact-open topology. The pair (X,G) is to be
thought of as "a model space" in the sense described in
(1.2). For pairs of spaces X,Y 1let ((X,Y) denote the
space of continuous functions from X to 'Y again equipped

with the compact-open topology. For A < X let
(2.2.1) G|, = {g]l,lg € G}

cohsidered as a subset of C(A,X) . Let A denote the

closure of A in X and

(2.2.2) G(a) = U gA
g e G



A point x € X 1is said to be a recurrent point of

the G-orbit of A if for every neighborhood V of x

the subset {g € G|gA n V # @} has a noncompact closure

in G . We set
(2.2.3) G(A)' = the set of recurrent points of A .

Clearly this set is a closed G-invariant set. We also

set
(2.2.4) Z(a) = {g € G|gA N A * @}

(2.3) A point x € X 1s said to be wandering (with respect
to G ) if it has a compact neighborhood Ux such that

Z(U) 1is compact. We set
(2.3.1) Ly = the set of non-wandering points.

(2.4) Let p : X —> d\g be the orbit-space projection
so(that d\x has a quotient topology. We say that

x,y € X are twins (with respect to G ) if p(x),ply)
have no disjoint neighborhoods. This means that for

every neighborhood U of x and V of y there exists
g € G such that guU N Vv + @ . Let

(2.4.1) <(x) = the set of twins of x .

[t



Clearly y € t(x) iff x € t(y) , and i(x) 1is a closed

G-invariant subset.

(2.5) We say that y € X 1is a polar of x € X if y is

a recurrent point of every neighborhood of x . Write

(2.5.1) P(x) = the set of polars of x .

Clearly P(x) is a closed G-invariant set and P(x) < ti{x) .

{2.6) Proposition Let (X,G) be as above and x € X .

Then a) 1(x) =n G(U) , P(x) = n G(U)' , where U
U U

runs over neighborhoods of x ,
b) G(x) < t(x) ,

) a(x)’ € Ly 0 P(x) ,

d}) If x 1is a wandering point then 1(x) = G(x) U
P(x) , and moreover P(x) # G{(x)})' if -x is a
recurrent point of a compact subset of X - L

0

Proof. The parts a), b) are clear from definitions. In

c) it is again clear from a) that G(x}' < P(x) . We now
show Gi(x)' § LO . Let y € G(x)' so there exist 95 € G
such that g¥ —> Y . and 9, is a divergent sequence in

G . Let V be any neighborhocd of y . So whenever

1 vVnvs#@ . It is clear

gpXr gmx € V we see that 959
that Z(V) 1is not compact. Since this holds for every

neighborhood of y .it follows that y € Lg -
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Now we prove d). It follows from a) and b) that for
any x we have 1(x) 2 G(x) U P(x) . Now assume x to
be a wandering point and vy € t(x) . If y € G(x)  then
y € G{x) or y € G(x)' and G(x)' < P(x) so y € G(x)
U P(x) . Suppose y ¢ G(x) . Then since x is a wande-
ring point we see that for small neighborhoods V of x
we have y € G(V) . But by a) we see that y € P(x)

This proves the first part of d). Now suppose that x is

a recurrent point of a compact subset K of X-L Let

0
Un be a decreasing sequence of neighborhoods of x

converging to x . There exist 9, € G and kn € K so

that g *k €U , or k € gn—1Un . Let X, be a

n n 0
cluster point of kn . it is clear that ko € P(x) N K .
But ko ¢ G(x)' since otherwise by c) ko would belong
to L0 , but we chose K to lie in X-LO . This

finishes the proof.
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§ 3. Limit sets, properness - and normality - domains

(3.1) Let (X,G) be as in (2.2). We shall use the

notations in § 2. We now assume

(U1) If for a non-empty open subset V of X
and 9919, € G we have g1|v = 92|V then
g1=gz°

(U2) For a non-empty open subset V of X if

G| has a cluster point g, in C(V,X)

v
so that 99 is injective then there exists

g € G such that g|v = 9y

These assumptions of course hold for Mdbius or pro-
jective structures or for the geometric structures defined
by an integrable G-structure of finite type, cf. [13] § 2.
The assumption ;(U1) is the same as the assumption (U)
of [13] § 1.

(3.2) We say that G acts locally properly on X if

every .point x € X 1s a wandering point. More stringently,
G 1is said to act properly on X if for every compact

subset K € X , we have Z(K) compact. The set

(3.2.1) the set of wandering points = X-L is

0
called the domain of local properness of G . The set Ly

loc

is called the 0-limit set of G . Now let
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(3.2.2) L, = {x € X|x 1is a recurrent point of a
compact subset of Qloc} . This set is called the

1-limit set of G , and

(3.2.3) A L. UL

is called simply the limit set of G . Correspondingly
{(3.2.4) Q@ =X - 1L

is called the domain of properness of G . The proof of

the following proposition may be left to the reader.

Proposition G acts locally properly on Qloc and

properly on Q . Moreover is the largest open

loc
subset of X on which G acts locally properly.
It should be remarked that in general § need
not be a maximal domain on which G acts properly.
In fact it may happen that Q can be extended to

more than one maximal open subsets of X on which G

acts properly, cf. [14], § 1.

(3.3) A point x € X is called a point of normality

(with respect to G ) if it has a neighborhood Ux
such that G|U is a relatively compact subset in

X
C(U_,X) . Then
X

(3.3.1) N = the set of points of normality
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is called the normality domain of G .

{3.4) Theorem N cQ

Proof Let. x € N . We first show that x 1is wandering.

There exists a neighborhood U, of x so that G{U ~ is
X
relatively compact in C(UX,X) . We claim that Z(Ux) is

a relatively compact subset of G . Let = € Z(Ux) .

Passing to a subsequence we may assume that gnlU and
X
9, 1|U converge to g, and h, respectively in
X
C(UX,X) . By the continuity of the composition and the
~1

fact that 9 © 94 ° 1 we see that 99 and h are

0

injective. So by the hypothesis (U,) , cf. (3.1} we
J 2

have elements g,h € G such that g|U = g, and
X
h|U =h, . So Z(U,) 1is relatively compact in G
x

So x is wandering. Thus N N L, = g . Now suppose

that we have a sequence g_ € G so that’ gn{Ux —> g,

in C(UX,X) . In particular g, ¥ —> gy X =y , say.
Moreover since g, converges to 99 uniformly

on a compact subset of U, we see that for every

neighborhood Uy of y there is a neighborhood

v, c U, so that g (V) < U, for n sufficiently

large. It follows that n(Gan)' = y , where Vx runs

\Y
b ¢

over all neighborhoods of x . In the notation of § 2
we see that the polar set P(x) of x coincides with

G(x){ . So by (2.6), part 4d), x ¢ L1 . So NN L1 =g,
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and hence N < Q
g.e.d.

(3.5) Remark In general N # Q@ . It is easy to construct
examples when X 1is non-compact. But in general N # Q
even when X is compact. Here is an example in dimension
3. Consider the group of projective transformations of
R P3 generated by

g : (Xrlefw) —> (ZXI4YIZIW)

h : (x,y,2,w) —> (X,y,z2+w, W)}

where (x,y,z,w) are the homogeneous coordinates in

R P3 . Here g fixes the line X : x 0 = y pointwise

whereas h fixes the hyperplane =7 : w = 0  pointwise.

It is easy to see that all points in R P3 - {xUn} are

wandering. So LO = 2 U v . The recurrent points of any

3

compact set in R P~ - L are easily seen to lie in L0

=9=RP3-

0

So L, <Ly . Hence A =21 U and . Q4.

{x U v} . However looking at the restriction of {g> on
the line u : y = 0 = z we see that the line yu doces

not lie in the normality domain N . So N c @ .
+
(3.6) Remark We have defined the notions of @ 80, N

etc. with respect to a closed subgroup of the group of
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homeomorphisms of X . If G is not closed - as indeed
may happen when G = the image of the holonomy of an
geometric. structure - we.define @ etc. of G to

loc
be that of G .
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§ 4. A uniformization theorem

(4.1) Let (X,G) be a model space satisfying the

conditions of (2.2) and the assumptions (U1) and (U2)

of (3.1). Let M be a topologiéal space with an (X,G)-
structure, p : ﬁ —> M the universal covering projection
with deck-transformation group A = w1(M) p 8 ﬁ —> X

a development map and p : A —> G a corresponding

holonomy representation. Set QM =im § and T = im p

Let NO be the union of the components of the domain of
normality of T which have a non-empty intersection with

Qy - We shall use these notations throughout this section.

(4.2) Theorem Suppose M 1is a compact space with

-1

an (X,G)-structure. Let N = & (N Then

o) -

6|ﬁ : N —> N, is a covering map.

Proof Since ¢ . is a local homeomorphism it suffices to

show that 5|& has a path-lifting property. Fix a point

Yo in im 8|3 , and a path 8 : [0,1] —> N, with
B(0) = Yo - Let ;O be a point in ﬁ with 6(;0) =Ygy v
and ; a maximal 1ift of B beginning at ;0 . By way

of contradiction assume that B8 does not lift entirely.

Then shrinking the domain of B8 if necessary and

~

reparametrizing we may assume that o 1is defined on
[0,1) . We will show that o has a continuous extension

-~

at 1, and so indeed o 1s not maximal., Let
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a =p 0; : [0,1) —> M be the projected path in M .
Since M 1is compact we may choose an increasing sequence

tn € [0,1) so that tn ——> 1 and X, = a(tn) —> z,

Let ;0 €M be a point lying over 2g o and ;n = ;(tn)

- ~ -

Then there exist g_ € A so that z_ = g_ X —> 2
n n n ‘n 0
Notice that since NO is T-invariant, we have N
A-invariant, so Z. € N . Write p(gn) =Y, ¢+ Y, T G(Xn) '
W, = 6(zn), Wy = 6(20) , and note that
/'
Y, —> ¥, and
.< woo= 8(z) = 8(g x) =y 6(x) = yy —>
6(20) = Wy
\
Let G be a neighborhood of 'ib and V of W, SO that
6]% : V —> V 1s a homeomorphism.
Now choose a compact neighborhood UY of Yo SO
0
that P|U is a relatively compact subset of C(Uy + X)
Yo 0
For n sufficiently large B([tn,1]) c Uy and by passing
. 0

to a subsequence i1f necessary we may assume that

Y, T> Vg € C(Uy ,X) . Since this convergence is uniform
0

we have for n sufficiently large, yn(B([tn,1])) cVv.

n

Hence the path Yn°B|[t 4] has a lift. This lift would
n' ~

coincide with g oo on [tn,1) . It is now clear that «

itself has a continuation at 1, and the proof is finished.

g.e.d.
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§ 5. Applications to conformal geometry

(5.1) We consider the model space (Sn, M(n)) . An
important feature of this structure, called the Mdbius

structure, is contained in the following proposition

Proposition Let G be a subgroup of M(n) , and con-

sider the limit sets etc. w.r.t. G . Then

A= L0 = L1 , and Qloc =0 =N
Proof If 290 = @ there is nothing to prove. Otherwise,
let x € Qloc and Ux a small round ball around x
contained in Qloc . Let = be a discrete sequence in

G . By passing to a subsequence we may assume that

X —>9y , so that y € L Also, since @ is

g loc

0

G-invariant, we may assume that all gn(Ux) are pairwise

n

disjoint. It is then obvious that in the spherical metric
the radius of the round balls gn(Ux) goes to zero. So

indeed g tends to a constant map c in C(uU_,X)
n[U v bYs
X
We have shown that G[U has a compact closure in
X
C(u,,X) . So x € N . Since we always have N <2 <o,

cf. § 4, 1t follows that Qloc =0 =N .
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(5.2) Remark It is easy to see that A as in (5.1)

can be identified with the limit set as defined in the
classical situation, cf. {1}, [7]1. In fact in that case

A may be identified with G(x)' for any x € s" ,
except in the easily analyzed case whén A = {2 points} ,
each fixed by G and 'x coincides with one of the fixed
points. This may be proved in our set-up by a slight

extension of the argument in (5.1), - and in fact the

argument applies to any group of gquasi-conformal trans-

formations, cf. also (5.8) below. In the following we
shall use the well-known properties of the limit set

as described e.g. in [7].

(5.3) The following is a direct extension of Gunning's

theorem 7 in [9].

Theorem Let M be a compact manifold with a MSbius
iy n .

structure, § : M —> s its development.

p AN n1(M) ——> M(n) the corresponding holonomy,

and T = p(A) . Let © be the domain of properness of

I' . Suppose ¢ 1is not surjective. Then ¢ 1is a

covering onto the unique component of @ which inter-

sects /im 6 . In particular M 1is almost Kleinian.

Proof Write im &= QM . Then BQM is T-invariant. If

3y = {a point} then regarding this point as « , T

may be considered as a group of similarity transformations

in EB" = s"-{»} . In this case the result follows from
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a remarkable theorem of D. Fried [5] (which in fact
asserts that M" has a finite covering which is con-
formal to a flat space-form or else to a Hopf manifold.)
Now suppose that aQM contains at least two points.
Then as is well-known 3y 2 A . So o, S @ . Since

Qp is connected it is contained in exactly one com-
ponent QO of @ . Since by (5.1) @ = N it follows
from the uniformization theorem (4.1) that & 1is a

covering onto 90 .

(5.4) We now prove another criterion for a Mdbius structure

to be Kleinian or almost Kleinian.

Theorem Let Mn,d,p,G,Q be as in (5.2), except that in-
stead of an assumption about & , we now assume that @
is connected and ﬂ1(ﬂ) finitely generated. Then M 1is
almost Kleinian. In particular if n1(ﬂ) = e , then M

is Kleinian.
Proof Let 2y = imdé . If 2y + 8" then the result follows
n

by (5.2). So suppose if possible that Qy = s .

Case 1 Assume n1n = e , By {(5.1) we know 2 = N ,

and if N =67'(a) , by (4.1) 6|y :Nw~a@ . But A and
hence G-T(A) have no interior, and ¢ : ﬁ — s is

a local homeomorphism. Under these conditions it is an
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easy point-set-topological fact that & itself is a

homeomorphism, and in fact M is conformal to a
spherical space-form.

Case 2 Assume n1Q # 1 , but is finitely generated.

Let N =6 1(2), L = 6 (A) . By (4.1) 6|ﬁ-":~b—1 —> Q

is a covering .Let- y € A be an attracting fixed point
of an element g € I . Let x € M be such that 6(;)=y '

-~

and 6 a neighborhood of x and U a neighborhood of

y so that SJG is a homeomorphism of 6 onto U .

Since w1(9) is assumed to be finitely generated there
is a compact subset A ¢ @ which carries w,(Q) . More-

over for n sufficiently large gn(A) cU-~-A . SO

U~ A& carries w,(Q) . But $|j _ ; is a homeomorphism.
So the inclusion map U - A —> @ which is surjective
on =, lifts to N . It follows that alﬁ must be a

homeomorphism. But then again as in case 1 it would

follow that ¢§ itself is a homeomorphism, and

Ry = @ = s” . To summarize: if we assume n1(Q) + e

but finitely generated we must have Qy * s" and so

by (5.2) M must be almost Kleinian. g.e.d.

(5.5) Remark In case a compact manifold M" with a

M&bius structure is not almost Kleinian the development

map exhibits a rather quaint behavior reminiscent of

the behavior of the holomorphic map near an essential

singularity. More precisely in the above notation assume
n

that M 1is not almost Kleinian, so QM = 5 and
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suppose A has more than 2 points so it is a perfect set.
et p: M—> M be the covering projéction and

TA) . (Notice that § A is a closed subset

L = p(é-
invariant under the deck-transformation group so L is

a closed subset of M )

Assertion For any open subset U such that

UNL %+ @ we have th-1U) = st .

Proof Indeed let V = 6(p 'U) and T = p(A) .
Clearly V 1is T'-invariant and contains a small disk D
which contains a repelling fixed point of a hyperbolic
element g € T . So V contains U (gnD) = s" - {y}
where y 1is the attracting fixedn;;int of g . But D
also contains a repelling fixed point of a hyperbolic
element 9, € T such that 94 does not fix y . It

is now clear that Vv = s” . g.e.d.

(5.6) We now point out a convenient construction of
Kleinian MObius structures. It is also useful in other

constructions in conformal geometry.

Theorem A connected sum of Kleinian manifolds with a

M&bius structure also admits a Kleinian Mobius structure.

Proof Let Mi = ;\gi , 1=1,2 be two Kleinian manifolds

i
with a Motbius structure so that Qi are two open connected
nonempty subsets of s™ and Fi are subgroups of M(n)

leaving Qi invariant and acting freely and properly
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discontinuously there. We shall show that the abstractly

defined free product T = P1*P2 acts freely and properly

. : ; : n
discontinuously on a certain region on @ < S

so that
r < M(n) and F\P is diffeomorphic to a connected sum

M of M1 and M

have projections Py ¢ Ai —> T, . Let ¢,

9 ¢ Indeed let Ai = n1(Mi) i=1,2 . We

ker Py

Let {vy%} be based loops in M, so that their
J

j €y
homotopy classes [Ylj] normally generate ¢. . So

Qi is a connected covering of Mi which is universal

with respect to the property that each lift of ylj is

a loop. Consider the complex

A = (M1 U M2 u I /.

where I = [0,1] and 0 1is identified with a point in
M, and 1 with a point in M, . Then w1(A) A~ A1*A2 and
we have a canonical projection £ : ﬁ1(A) —> T sO
that ¢ = ker p is normally generated by

1 2 .
{y j}j €3, U {y j}j €, Take the covering B of A

corresponding to ¢ . This is constructed out of the

lr/; | copies of a, (i.e. to say in 1«1 correspondence
2

with 1/, ) , i=1,2 and |r| copies of I . The

T,
1

copies of I may be considered as the "connecting bonds"

between the copies of 91 and those of 92

point is that (*) each copy of Q; is attached with

The main

is

|Fi| connecting bonds 1i=1,2 and no copy of @, is
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joined to a copy of 2, by two connecting bonds.

We now thicken I in A and remove the interior so as
to obtain the connected sum N of M1 and M2 by the
process described in [13] so that M has a M&bius
structure which restricts to the prescribed Mdbius

structures on parts of M,y i=1,2 which lie in M

We do the corresponding thickenings etc. in B so as

to obtain a manifold o with a Mobius structure which
covers M with the covering group T . We shall now
embed £ into S preserving the M&bius structure.
In the process of obtaining ¢ from B from each

copy of Q. in. B, |r.,| round disks are removed.
i i

We now embed one copy of Q with |F1| round disks

1

removed in SU preserving the Mdbius structure. In

each hole of this copy we can insert a copy of 92

(with |r,| holes) to which it is attached in @
In each hole of a copy of 92 we can insert a copy
of @, (with |r1|

in @ . Now the fact (*) we mentioned above implies

holes) to which it is attached

that we can continue this process to obtain a M&bius
structure - preserving embedding of Q into s . We
have also used here the existence of inversions and
the fact that all round Sn_1 in s" are equivalent
under M(n) . Now the group T acts on the image of
Q into s" preserving the M&bius structure. Since

every MObius transformation defined on a connected
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open subset of s is a restriction of an element of
M{n) , we can regard T as a subgroup of M(n) . This

finishes the proof.

g.e.d.

((5.7) It should be pointed out that the hypotheses in
(5.3) and (5.4) cannot be entirely dropped. In fact the
method of proof of (5.6) shows that a connected sum of
two compact manifolds with a Mobius structure, one of
which is almost Kleinian but non-Kleinian and the other
# SU admits a Mdbius structure with surjective develop-
ment map, SO fhis structure is non-almost Kleinian.
Another class of very interesting examples is obtained
by conformally deforming a neighborhood of a totally
geodesic hypersurface in a compact hyperbolic manifold.
For P1—structures they were noticed by Maskit [16]

and Hejhal [11] and in a guite different context by
Faltings [4]. The non-trivial infinitesimal deformations
of the corresponding groups were noticed by Lafontaine
[15] and Millson [18]. Looking at tﬂeir development

they were named "Mickey Mouse" examples by Thurston [20],
and their geometry (and also their projective analogues)
have been beautifully explained by Goldman [6]. We remark
that similar deformations can be obtained also for

n

M" x sP by deforming a neighborhood of N1

x Sp where

M®  is a compact hyperbolic manifold and Nn_1 is a
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totally geodesic hypersurface in Mm" . Among these we
find examples of non-almost Kleinian M" whose domain
of properness is disconnected, although each component
is simply connected - thus showing that the hypothesis
of connectedness of the domain of properness in (5.4)
cannot be dropped. On the other hand a connected sum

of non-Kleinian almost Kleinian compact manifolds with
limit set =~ Sn—2 gives an example of a non-almost
Kleinian manifold with a connected domain of properness
with non—finiteiy generated Ty thus showing that the
hypothesis of finite generation of G in (5.4) also

cannot be dropped.

(5.8) Further generalizations In this section we have

formulated the theorems for the sake of simplicity only
in the case of the standard Md&bius structures. But it is
apparent from‘the proofs that the-strict "angle-preser-
ving" property is not really used in any crucial way

and so the results are valid in much more general set-ups.

In fact let Hn+1

be an (n+1)-dimensional complete,
connected, simply connected Riemannian manifold with
sectional curvatures £ - e < 0 . In a well-known
manner we can attach to it an ideal boundary En made
up of classes of asymptotic geodesic rays. Then zn

. . n+1 n .

is homeomorphic to the n-sphere and H uyj is

homeomorphic to a closed disk. Moreover the isometries

of Hn+1 are classified into elliptic, hyperbolic and
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parabolic types depending on whether there is a fixed

point in Hn+1 ;, or exactly two fixed points on zn ’

or exactly one fixed point on Xn : For p € Hn+1 the
images of round sub-spheres or disks in the unit n-sphere
in Tp(Hn+1) via the exponential map may be considered
as "round" sub-spheres or disks of J" . (Here p is

Hn+1

allowed to vary in .) This defines a kind of

"conformal geometry" in Zn , cf£. [19]. The full group

n+ ~ n
" extends to y and serves as

of isometries of H
the "Mbius group” of }" , and we may consider the
structures based on (J",G) . The boundaries of rank-1
non-compact symmetric spaces provide interesting
examples of this set-up. The proposition (5.1) is
valid for (Zn,G)—structures. As of this writing we
do not know the validity of Fried's theorem quoted in
the proof of the.theorem (5.3). Otherwise, if we assume
in (5.3) that im § misses two points then (5.3) is
valid for (zn,G)-structures. Similarly (5.4) with an
appropriate modification goes through. For the validity
of connected sums we need to assume
1) there exists g € G which leaves invariant a
tame (n-1)-sphere %7 in I® (e.g. a round
(n-1) -sphere in ") and intercharges the two

components of J® - }™1 | ang

2) G does not fix a point in zn and the fixed

points of hyperbolic isometries are dense in

I
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For example 2) holds if Hn+T covers a manifold Mn+1

of finite volume; and furthermore 1) holds if M
admits an isometry g such that §- = 1 and the
fixed point set is a totally geodesic hypersurface.
The conditions ‘1) and 2} also hold for the boundaries
of rank-1 symmetric spaces. The conditions 1) and 2)
ensure that there are inversions through sufficiently
small spheres, and moreover given any two non-empty
open sets U,V of zn there exists g € G , 'an
(n-1)-sphere J® " cu and g(J®") <V so that
there exists an inversion o through J° ) . (Then
gqcog_1 is an inversion through g zn-1) . This
suffices to perform the connected sums: of manifolds
with a (Z,G)-structure. For the case of the boundary
of the complex hyperbolic space this fact was observed
by Burns and Shnider [3]. Finally if 1) and 2) hold

then the theorem (5.6) is valid for (Z,G)—structures.
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