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Preface

The present volume contains the abstracts of the lectures held on the inter-
national conference

“Partial Differential Equations”
06.—-11. September 1992,

organized by the Max-Planck-Arbeitsgruppe “Partielle Differentialgleichun-
gen und Komplexe Analysis” at the department of mathematics of the Pots-
dam University. The conference was also supported by the Potsdam Uni-
versity and the Sonderforschungsbereich 288 “Geometry and Quantum Phy-
sics” in Berlin. The Max-Planck research group is a result of a restructuring
of mathematics of the former Karl-Weierstrass-Institute of Mathematics in
Berlin, Bereich “Reine Mathematik”, who organized in the past a series of
conferences (Ludwigsfelde, 1976; Reinhardsbrunn, 1985; Holzhau, 1988; Brei-
tenbrunn, 1990; Lambrecht 1991) in the same spirit as the one in Potsdam,
namely to bring together specialists in analysis, mathematical physics and
geometry and to point out interactions and common aspects in the recent
development of these fields.
The interested reader can use the enclosed address list to contact the

authors.

Potsdam, 30. November 1992

M. Demuth B.-W. Schulze
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MATHEMATICAL FUNCTIONAL INTEGRATION METHODS IN
PARTIAL DIFFERENTIAL EQUATIONS, SOME NEW
DEVELOPMENTS

S. Albeverio (Ruhr-Universitit Bochum)

We briefly discuss two topics, namely oscillatory integrals in infinite dimensions, on one
hand, and probabilistic integrals and stochastic p.d.e., on the other hand.

1. Oscillatory integrals in infinite dimensions and applications to quantum
mechanics versus classical mechanics

We briefly recall how one can define oscillatory integrals on Hilbert spaces in such a way
that a method of stationary phase holds for them, with applications to the study of so-
lutions of Schrédinger equation.The study of such oscillatory integrals was initiated by
K. Ito and continued by several mathematicians, see e.g. [1). They are linear continuous
functionals sharing many properties of integrals in the sense of measure theory (except for
full o-additivity). Recently the method of stationary phase for them, initiated in the 70’s
by R. Heegh-Krohn, J. Rezende and myself, has been advanced to an effective handling
0%, degenerate cases as well, see [1]-[2]. Explicit asymptotic expansions in powers of the
small relevant parameter h are obtained, with control on remainders and leading terms
exhibiting negative powers of the form A™*, with g a positive rational number (Coxeter
number) associated with unfolding of the phase. In applications to Schrédinger equation,
with potentials V of the form a quadratic term plus a (bounded) nonlinearity, the initial

condition can be of the form ef‘bgo(z/),go smooth)(h Planck’s constant) or of the é-form
(fundamental solutions). The expansions are around classical orbits. We also discuss sin-
gularities and an explicit asymptotic expansion in h for the “Schrédinger theta function”
O(t) = Tr e~ #*Hn = 5 e~ M(X (R): eigenvalues of the Hamiltonian H} = —-}‘2—2A +V

in L2(IR?,dz)), in terms of classical periodic orbits (the leading term gives a mathema-
tical realization of “Gutzwiller’s trace formula”, of importance in the study of “classical
chaos” versus “quantum chaos”). These results obtained recently [2] extend previous
ones in [3]. We also point out applications of infinite dimensional oscillatory integrals to
the computation of topological invariants from a Chern-Simons (topological) field model
(mathematical realization, in the abelian case, of a conjecture of Atiyah-Witten) [4].

2. Probabilistic integrals and stochastic p.d.e., with applications to classical
fields versus quantum fields

We mention briefly how probabilistic techniques permit to handle, at least partly, si-
milar problems for quantum fields associated with classical fields like the one given
by a non linear Klein-Gordon equation. We show in particular how the quantized so-
lution ¢ of such an equation, first with “regularized nonlinearity”, can be given as
o(t,y) = e*Fup(0, y)e~Hu with(t,y) =z € R x IR* the space time point. Here ©(0,y)
is the (generalized) random field X (0,y;0), with X(z;7),7 € R, a diffusion (generalized
random field) associated with the classical Dirichlet form (on S(R%))} [ Vu 7 vdug in

‘L*(ug), pe being a certain probability measure on S(IR?) (characterized by the action
functional associated with the classical field). g is the invariant measure for the pro-
cess T — X(.;7) and —H,, is the generator associated with the classical Dirichlet form
3 Jvuvdp in L2(p) (u is supported in S(R*")). X(.;7) solves a parabolic stochastic
p.d.e. These results, initiated in the mid 70’s by R. Heegh-Krohn and myself, have been



greatly advanced recently, see [5] and M. Rdckner’s lecture at this conference. For d < 2
and special nonlinearities the regularization can be removed maintaining non triviality.
@ is tEen a relativistic (local) field (over d-dimensional space-time). X(z;0) is a Markov
field, homogenous (i.e. invariant in the probabilistic sense) with respect to the Euclidean
groulp over IR®.To handle the case d = 4 an alternative construction has been developed,
involving solving stochastic p.d.e. with non gaussian noise, see [6]. We also mention a
recent strong result on essential self-adjointness of generators of classical infinite dimensio-
nal Dirichlet forms [7]. Somewhat similar methods can be used for hyperbolic stochastic
p.d.e. obtained by adding a space-time noise to non linear Klein-Gordon equations [8].
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EXPANSION IN EIGENVECTORS OF MULTIPARAMETER SPECTRAL
DIFFERENTIAL PROBLEMS

Yu. M. Berezansky (Institute of Mathematics, Ukrainian Acad. Sci., Kiev)

The multiparameter spectral problem for two ordinary differential operators L;, L; has the
form:

(Li,z190)(z1,22) = (Aibu(zt) + Aebiz(z1))(z1, T2)
(L2, z29)(z1,22) = (Arba(z2) + Aebaa{z2))(z1, 22)

Here b;, are fixed functions, ¢ is an eigenfunction and A = (A, Az) is an eigenvalue. Thus
the last two equations are connected only by means of the two spectral parameters A;, Aj..
The talk contains some theorems about expansions in this type of eigenfunction for general:
n—parameter self-adjoint spectral problems. The results include operators with continuous:
spectrum and general elliptic partial differential operators, they are published in [1]-{3].

References
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PROBLEMS IN PERTUBATION SPECTRAL THEORY RELATED TO THE
PERIODIC SCHRODINGER OPERATOR

M. Sh. Birman (Dep. of Math. Physics, University St. Petersburg)

In L*([R?), d > 1, the operator Hy = —div(a grad) + p(z) is considered with a : R? — R?,
0 < a = const; p(z+n) = p(z), n € Z°. For a perturbed operator one takes H = Hy + q(z)
where the impurity potential g(z) has the asymptotics

q(z) ~b(0) |z |?, 6=z|z|7", p>1, (1)

as | z |— oo. Under these conditions there is a unitary scattering matrix S = S(E) for the

pair Ho, H with S — I compact. Eiienva.lues of S(E) can be written in the form eF2ibm
0<6t< 7+ The scattering phases 67;( E) tend to zero as m — co. The problem is to find-

asymptotics of §f as m — oo. The analogous problem for p(z) = 0 was solved in [1}. In
the same paper a generalization is given for an unperturbed operator of the form F(—iV)
ia.nd for H = F(—iV) + q where the condition (1) is satisfied. In {1] it is shown that in the
atter case

-1
Jlim mY67 =gy, v = ZTI (2)

There is an explicit expression for gs+ (see [1]) as integrals over the surface

G(E) = {k € R* : F(k) = E}. Here one supposes that the surface G(E) does not contain
critical points, VF(k) # 0.
In the present paper it 1s shown that for the periodic Schrodinger operator the asymptotics
52) are valid too, and the problem may be reduced to the one considered in [1]. {et Ei(k),
=1,2,... be branches of a band function for the periodic operator. Suppose that there are
no critical points on G(E) = {k : Ej(k) = E} for some I. Then (2) is valid for the scattering
phases with the same g4 as in [1] for F(k) = E;(k). If the equation qulc) = FE is solvable for
several !, then the phases decompose into series and every series has the asymptotics of the
form (2). Thus, the expression for g4 contains only the periodic operator band function.

References
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A C"-ALGEBRA PROOF OF THE MOURRE ESTIMATE FOR N-BODY
HAMILTONIANS

A. Boutet de Monvel ( Université Paris VII)

We have proposed to consider the problem of “generalized non-relativistic N-body theory”
from another point of view. It is clear that almost all Hamiltonians describing intere-
sting physical models have a “many-channel structure”. This always happens when the
system has a “subsystem structure”, or has several channels, and this 1s the case for
most models of solid state physics, nuclear theory and quantum field theory. So the
first problem is to give a precise mathematical meaning to the concept “many-channel
Hamiltonians”. For the case of system with a finite number of degrees ot freedom, my pro-
posal is to define this class of operators by the property to be affiliated to a C*-algebra

which has a special structure. It is graded with respect to a finite partially ordered
set £ . I have shown that a large part of the usual non-relativistic N-body theory
can be developed for Hamiltonians affiliated to graded C*-algebras: Weinberg-von Win-
ter equation, and HVZ theorem are very natural in this context; the same thing hap-
pens with the Mourre theory if the action of the group of automorphisms induced by
the conjugate operator is compatible with the grading. We describe the essential spec-

trum (relative to the natural maximal ideal).
We showed that for any L-graded C*-algebra C the application

€358 — (Pe(S))p=2 € C

is a * -homomorphism of C onto a C* -subalgebra of C with kernel equal to Césup L£). In
particular the quotient map is an isometric *-homomorphism of the quotient C* -algebra

C/C(sup L) onto a C*-subalgebra of C, which provides a canonical C*-embedding

C/C(sup L) — C = @ Ck.

|E|=2

Using the fact that the spectrum of an element (Sg)ig=2 of C is equal
to the union of the spectra of its components Sg , we immediately get a
new and very neat proof of the HVZ theorem:

C*O’ess(E) = U O’(HE),
|Ei|=2

Also if {W;} . is a Co-group of automorphisms of C compatible with the grading
(W;C(E) C C(E) for each E € L,7 € R), and if H is a self-adjoint operator affilia-
ted to C of class C}(A) then each Hg is of class C}(A), formally we have W, = e*r.
Define py relative to the x -ideal C(sup £). Then we have :

AH = min H
P IE!=2P E



The last point, and probably the most important one, is that an obvious generalization
can be made to the case wf":en fermionic degrees of freedom are present . In fact CCR
(or Weyl) algebra could be replaced by the CAR (or Clifford) algebra, or more generally
one may consider a supersymmetric situation (a Z; - graded symplectic space and the
Weyl-Clifford algebra constructed over it). Finally, we give a new proof of the Mourre
estimate, which does not involve any geometric object (such as the partition of unity in
the configuration space).

Also I showed the interactions may depend on the intercluster momentum and may be
very singular (even hard-core). For this operator we describe the essential spectrum, the
absence at singularly continuous spectrum and an optimal form of the limiting absorption
principle.
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ASYMPTOTICS OF A PERTURBED HARMONIC OSCILLATOR

L. Boutet de Monvel (Université de Paris VI)

This is a résumé of a work [BBL] with Anne Boutet de Monvel-Berthier and Gilles Lebeau.
We consider a perturbed harmonic oscillator H = Ho + V(z) on R", with Ho = }(-A +
q(z)) a harmonic oscillator (q a real > 0 quadratic form, e.g. ¢ = Y_(};z;)%,A; > 0),
and V a smooth function with bounded imaginary part. It is immediate that H and Hy
have the same domain in L?, so their eigenvalues have the same order of magnitude, and

the traces T'r e'tHo Tr e*H are well defined as distributions . The distribution T'r ei*ffo
is easy to compute ( it is the sum of a geometric series) and its singularities are located
at the lengths of closed integral curves of the Hamiltonian field 3 ¢;8/0z; — A;0/0¢;.

By comparison to a more classical situation one expects the singularities of T'r e to be
located at the same points. ‘
In the “classical” setting [Ch], [\DG], Hy is replaced by a 1st order elliptic pseudodifferential
operator A on a compact manifold, and the perturbation H by A+ R with R a lower degree
real operator. If the perturbation R is miltfenough (e.g. R€ OPS™ with m+6 < 1/2),
and R has bounded imaginary part) the “classical pseudodifferential calculus™ gives the
answer: we have Tr e = T'r e*flo P where P is a pseudodifferential operator in a good
Hérmander class [Hol], whose symbol can be calculated by pseudodifferential calculus
g:ra.nsfer equations of the WBK method).

ere an adequate pseudodifferential calculus for the harmonic oscillator is the Bernstein
calculus, in which one assigns the weight 1/2 to both z; and 3/0z;, so that Ho appears as

an elliptic operator of degree 1. For this calculus the relevant symbol spaces are the S7
(symbols of degree m and irregularity &; a(z,¢) € S (IR*") if for any (z€) derivation index
a we have [0 a| < (1 + 2% + £2)m+(é=1/3)lal There is a notion of elliptic operator (e.g.
H, is elliptic of degree 1, § = 0), of Sobolev spaces (HS = (H)~5L?, H* is the Schwartz
space of rapidly decreasing functions), and of wavefront sets and microlocalisation; in

fact the whole situation is microlocally isomorphic to the classical one (cf [B]). For the

perturbed harmonic oscillator H = Hy + V(z), even in the simplest case where V is
periodic, we are outside of the case where the pseudodifferential or WKB calculus can
work (the irregularity § is > 1/2 and the asymptotic expansions one would like to construct

diverge). Following Beals [B] we introduce modified spaces of symbols 3°7: an operator
A belongs to OP Y7 if it is of degree m, ie. continuous H* — H*~™, all s, and if for any
Q1,---Qk € OPS[I) (“classical” of degree 1) the k-th bracket [Qx,...[@:, A]...] (which is the
substitute for a k-th derivative) is of degree < m + k§.

We again look at the scattering operator P = e'Hoe*H P satisfies the differential equation

% = iV,P with V; = 7oV *He  (P(0) = Id)

Using this one can show easily by functional calculus that P belongs to OP 37, if V(x) €
S% with y+ 6 < 1(y >0, § > 1/2) and V has a bounded imaginary part (this does not
cover all cases where V is o(z?) but at least covers the case where V and its derivatives
are not too large at oo, in particular when they are all bounded, e.g. V periodic). In that
case P is a microlocal operator, as any operator in a class OP 57 s<1, so the distribution

kernels of e'tHo and e = etHo P have the same wavefront. It then follows that for the



trace distributions we have WF(Tre'tH) ¢ WF(Tre*f°) since these traces are integrals of
restrictions to the diagonal, and this enters neatly in the usual wavefront calculus, (taking
into account the modified Bernstein-type definition of WF in the space directions).

Thus we have proved that the singular set of the distribution T e*¥ is still contained in
the set of lengths of closed orbits of the Hamiltonian field, as in the unperturbed case,
although the usual asymptotics do not apply (note however that this method only gives an
inclusion and does not give a precise description of the singularities or their asymptotics,
as it is possible in the c assica? case).
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ON CONSTRUCTIONS MAKING DIRAC OPERATORS INVERTIBLE AT INFINITY

Ulrich Bunke (MPI fir Mathematik, Bonn)

Let M be the compactification of a complete Riemannian manifold by the Higson—

corona. There is a long exact sequence of K-theory leading to the diagram
g V4
K} (oM r
K'(0M) 9 K3(M)

J
o O wim

K°(OM)

!

8 K%(OM)
‘V
Z

Here K7} is the finite K-theory, r is the relative index pairing and s is the spectral flow

pa,iring. r and g are constructed using a graded Dirac operator on M while S and u are
defined using an ungraded one. u and g are defined by the index of certain Callias type
operators.

Another construction employs a real C'I,,R—equiva.riant Dirac operator D over a complete
Riemannian open manifold. Let f : M — S*' k < nand f € C(M)Q R n
C®(M)® R* be a lift of f. We form A = D + ef. Assume that 0 € IR* is regular
for f and N := f~1(0). Then

[ker A] = Q‘(N) € Koﬂ_k(R)

If N is compact and open, a%N) # 0, then there is no metric on N x R* with uniform
positive scalar curvature at infinity quasiisometric to the product metric. This generalizes
theorems of M. Lesch and J. Roe. '
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A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION

P.Collet, J.-P. Eckmann, H. Epstein and J. Stubbe ( Université de Genéve)

We prove new bounds on the Kuramoto-Sivashinsky equation

OU(x,t) + 02U (=, t) + 82U (z,t) + U(z,t)8:U(z,t) = 0.

The interest in this equation is based on its relation as a phase equation for hydrodynamic
problems. We consider it on a bounded interval [—%, %] with periodic boundary conditions.

Since the ‘original equation’ is for the integral, H(z,t) = [ dy U(y, t), we always require
a

%
[dzU(z,t) = 0.
%

In 1985, Nicolaenko, Scheurer and Temam (Physica D16, 155-183) showed that if the initial

data are in £?, and are antisymmetric with respect to the origin, then the evolution leaves

them in £?, forever, and there is a global attracting set in £* whose diameter is bounded
where the bound depends on the size L of the system.

By extending their method we obtain a more stringent bound and we drop the requirement
of antisymmetry.

The following bound holds for all periodic solutions with initial data in £2:

A
2
lim sup [ dz U*(z,t) < const - L%,

t—00
-%
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ON TRANSPORT AND SPECTRAL PROPERTIES FOR THE
SCHRODINGER EQUATION WITH STRONGLY FLUCTUATING
POTENTIALS

J.M. Combes ( Université de Toulon)

The connections between long-time behaviour of solutions for the Schrédinger equations
and spectral properties of the time evolution operator are revisited. Interest in this
discussion is motivated by recent investigations of quantum models occuring in solid state
physics which exhibit unusual spectra (e.g. dense point, Cantor set) and unusual dynamics
e.g. diffusive or subdiffusive. It is argued that in such situations the usual description of
such connections in terms of the RAGE theorem or it’s refinements is not well adapted
due to the non-stability of the orthogonal decomposition associated to the components
of the spectral family; this non-stability manifests itself in particular for perturbations
which are local and thus should not affect the transport properties of the system.

Recent work by I. Guarneri [BBL), T. Geisel et al. Lgh show that the generalized dimen-
sion of the spectral measure is deeply related to the long-time behaviour of correlation
functions. We present their results in the light of Strichartz’ analysis of Fourier asympto-
tics of fractal measures [DG]. Guarneri’s lower bounds for lattice dynamics are extended

to IR? ; these bounds read:

1 T
-—/ < Py, |22 > dt > ¢ T/
T Jo

where « is the dimension of the spectral measure associated to 1o and 3, is the solution
at time ¢ of the Schrédinger equation with the initial value .

These bounds are confronted to conditions obtained by P. Hislop and the author un-
der which fluctuating potentials exhibit absence of diffusion or of absolutely continuous
spectrum. In this latter case these conditions generalize results of Simon-Spencer to con-
tinuous systems in any dimension: they imply in turn absence of diffusion only for d < 2
in agreement with Guarneri’s lower bounds.
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QUANTITATIVE SEMICLASSICAL ERROR ESTIMATES BETWEEN
SCHRODINGER AND DIRICHLET SEMIGROUPS

M. Demuth ( Max-Planck-Arbeitsgruppe, Universitat Potsdam)
F. Jeske ( Universitit Bochum) :

W. Kirsch ( Universitdt Bochum)

I. McGillivray (SFB 288, Technische Universitat Berlin)

We consider Schrédinger operators A2Hy + W, Hy = —A, in L?(IR?). The potential is
given in the form W = V 4+ U, where V is supposed to be in Kato’s class. U is a positive

potential barrier, i.e. we assume there is a region I in IR? such that U(z) > U, z € T,

where Up is a (large) positive value. T' can be unbounded so that N-particle situations or
periodic potentials used in solid state physics are included.

The Schrédinger semigroup exp{—th? (Ho+ 37V + 77U)} is compared with the Dirichlet
semigroup, the generator of which, denoted by (A% Ho+V) R\ is the Friedrichs extension
of h*Hy + V restricted to L*(IR*\T')N dom (Ho+ V) . It models the system with infinitely

large Us.
We give a quantitative estimate for the norm resolvent difference of the form

I (Ho+ 75V + 35U + )" = (Ho + 35V) pep + 32) 7" IS ¢ d(R),

if & is small. The value of d(h) depends on the size of I'. If 9I' is uniformly Lipschitz

continuous and satisfies a cone condition then d(h) < A%, 0 < a < 1. The power «
depends on the geometry of 3T'. This dependence is given. In the simplest case, where T’

is the halfspace, d(k) = h3. The general case and details are formulated in [1].
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A TRACE FORMULA FOR SCHRODINGER OPERATORS AND QUANTIZATION
ON SYMPLECTIC MANIFOLDS

B.V. Fedosov (Institute of Physics and Technology, Moscow)

For a(z) € C&(R*) and H(z,h) ~ Ho(z) + hHy(z) + ... not depending on z at oo with
real leading term Ho(z), consider an expression

ft,h) = tr & e"¥Y,

where &, H are Weyl pseudo-differential operators, corresponding to the symbols a, H. By
a trace formula we mean an asymptotic expansion of f when A — 0 and ¢ > 0 is fixed.

THEOREM: Let ¢(z,t) be a hamiltonian flow in R*™ corresponding to Hy(z), M° be the.
set of fized points of .

1. If supp aN M® =0 then f = O(h*)
2. If supp an\ M°® is a finite set of non—degenerate fized points, then

o~ E(Ho(a)4hH ()
f= ,ezn:au Vdet(1-¢'(z.1)) (=) + O(h)-

A similar theorem is proved in more general ‘global’ situations, when R*" is replaced by a
symplectic manifold f ,w), admitting the quantization procedure.

As a consequence a theorem of Atiyah—Bott—Lefschetz type is obtained. Another interesting.
example is the Weyl character formula for classical groups.
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HEAT CONTENT ASYMPTOTICS
P.B. Gilkey (University of Oregon)

Let M be a compact Riemannian manifold with smooth boundary M and let D be a
second order operator on the space of smooth sections to a smooth vector boundle V. If

fr € C®(V) and f, € C®(V*), we define

BUh, 12, D,B)O) = [P fi- fo

M

where we impose suitable boundary conditions B to define the heat operator Dj. For
example, if D = Ag is the scalar Laplacian, if B is Dirichlet boundary conditions, and if
fi = f2 = 1, then [ represents the total heat energy content of M with initial constant
temperature and Dirichlet boundary conditions.

As t — 07, there is an asymptotic series

/B ~ iﬁn(fl:f?aDss)t%

n=0

where the 8, are locally computable. We compute $, for n < 4 for Dirichlet, for n < 6 for
Neumann, and for n < 3 for mixed boundary conditions. This is joint work with M. Van
den Berg and S. Desjardins.
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LONG RANGE SCATTERING FOR THE NON- LINEAR
SCHRODINGER (NLS) AND HARTREE EQUATION

J. Ginibre (Université de Paris Sud)
(in collaboration with T. Ozawa)

We study the theory of scattering and more precisely the problem of the existence of
modified wave operators (W.0.) for the NLS equation

10u = —(1/2)Au + Aul/'u
and for the Hartree equation
i0u = —(1/2)Au + A(|z| ™ * |u|*)u

in space-time R"*! in the Coulomb-like limiting case p — 1 = 2/n (resp. vy = 1). In
the same way as for the linear Schrodinger equation, the ordinary wave operators are
expected to exist if the interaction decreases sufficiently fast at infinity in space, namely
for p—1 > 2/n (resp. ¥ > 1). They are proved not to exist in the opposite case
p—1 < 2/n (resp. ¥ £ 1). In that case one should define modified W.O. by replacing the
free dynamics by a moditied asymptotic dynamics in their definition. The present lecture
is devoted to that problem in the Coulomb-like limiting case p — 1 = 2/n (resp. y = 1).
We propose severalp modified asymptotic dynamics inspired by the linear case and taking
advantage of the special commutation properties of the free Sci;rc")dinger group. We reduce
the existence proof of the modified W.O. to solving an integral equation for the Cauchy
roblem with infinite initial time. We solve that equation %ry a contraction method for
arge times and a standard continuation to finite times, thereby proving the existence of
modified W.0. defined on a dense set (in L?) of suitably small asymptotic states, for the
NLS equation with p — 1 = 2/n in dimension 1 £ n < 3 and for the Hartree equation
with 4 = 1 in dimension n > 2. The modified W.O. satisfy the standard intertwining
property.
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FRECHET ALGEBRAS IN THE PSEUDODIFFERENTIAL ANALYSIS
AND AN APPLICATION TO THE PROPAGATION OF SINGULARITIES

B. Gramsch (Fachbereich Mathematik, Universitit Mainz)

For a theory of analytic Fredholm functions in algebras of pseudo-differentialoperators and
of operators on singular spaces it is convenient to consider, following order reduction, unital

=
symmetric Fréchet algebras A continuously embedded in a  C -algebra B with the

properties: [) A N B! =al (spectral invariance); 1) A is a countable projective limit of
Banach algebras (cf. Operator Th. vot. 57, Birkhiiuser 1992, 71 - 98, and the literature
there). The properties [ and {1 are invariant with respect to countable intersections in B.
“This leads to the possibility of localizations of 1) and II) on singular spaces. E. Schrohe
(Hab.-Thesis, Mainz 91/92) and K. Lorentz (Thesis, Mainz 91/92) made substantial

=
contributions to this program on ‘W -algebras. The properties I and II help to overcome
problems conceming the non linear functional analysis for the implicit function theorem in
Fréchet spaces arising for Fredhoim functions and the Oka principle (cf. e.g. Gromov 1989,
Leiterer 1990). Now we can prove using only [ and II for the set M of semi-Fredholm
operators with kernel dimension v<=» in A

1y F(QM)) = m (€S2, M) (Oka),
where Q is a Stein manifold, ¥ the space of holomorphic and ¥ the space of
continuous mappings, 7, denotes the set of connected components. The notion of a locally

A-rational homogeneous space is very useful to treat special submanifolds of Fréchet spaces
(cf. Math. Ann. 269 (1984) 27-71). Many open problems arise for the Oka principle
connected to Fréchet spaces and Fréchet-Lie groups (e.g. boundary behavior; without I or
II). For connections to the meromorphic inversion and the division problems for operator
valued distributions see Gramsch, Kaballo, Integr. Eq. Op. Th. 12 (1989). For a "non
commutative” approach to Hormander's resuit on the propagation of singularities we use
ideas of Helton (1977) and also of Cordes (1968, 1986) and M. Taylor (1976). Let X be a
Banach space with dense inclusions E C X C F for the locally convex vector spaces E
and F. Let A be a subalgebra of ZAX) N HAE)N XF) with unit e =Id and B the
norm closure of A in A(X); let 7 : B —— B/l be the homomorphism for the closed
two-sided ideal I of B. With respect to the duality of the Banach spaces (B/I) and B/
we detine the set M of extreme points

I ;= extr {,u EMBAY : Julls1,u(e)s= 1}



and relati\?e to A, ECXCF and [ the generalized wave front WF(u) for u € F with
Ju ={aEA:auEE}

WF(u)::{mEDJ‘t:;m,Mu:v:O}

where M, denotes the norm closure. of :r(Ju) in B/I and <-,-> the dual pairing of

(B/) and B/I. Instead of M we may consider the weak closure of U
If the parameterized family a, of isometric automorphisms of B/I has the left ideal M,

as an invariant set, a, (M ) CM_, then with m € WF(u) the generalized bicharacteristic

strip t — a;(m) is contained in WF(u) for the dual automorphisms Ot't : (B — (BTY
of . For an appropriate unbounded operator T on X, T : D(T) — X we have in
some cases the following realization of e«  with a strongly continuous group e(t) =
exp(itT) on E, X and F. For u€ DF(T) and [e(t)u] = i e(t)T u we obtain-
e(-t)a e(t)u € E under the assumption Tu€E anda € L If we assume

at(n'(b)) = (e(-t)hbe(t)),bEB or A,

we obtain for the singularity m € WF(u) and for Tu€E
t — o (m) € WF(u)

corresponding to the dual tamily a, . The idea is that (in view of order reduction) the

elements T of the "Lie algebra” of the group G C .Z(X)~I n .2’(E)'1 n .«."(F)-1 for which

G3gr— g'l a g generates an automorphism of A, qualify with T u € E for the above
procedure. Using with the properties | and [l appropriate specializations on compact
manifolds one is in well known situations.
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ON A GEOMETRIC CRITERION FOR THE UNIFORM PARABOLIC HARNACK
INEQUALITY ON A COMPLETE RIEMANNIAN MANIFOLD

A.Grigor'yan (Universitat Bielefeld)

Let M be a smooth connected non-compact complete n-dimensional Riemannian manifold,
n > 2. Let A denote the Laplace-Beltrami operator on M, Bg(z) the geodesic ball of radius
R centered at the point z € M.

THEOREM 1 Suppose that the following conditions (a) and (b) are satisfied for some posi-
tive constants A, a, N:

(a) for any ball Bp(z)
Vol Bm(:z:) £ A Vol BR(J:);
(b) Poincaré inequality:
for any ball Byg(z) and any function f € C*(Bnr(z))
T VP2 & [ (F~ 53
B r(z) Br(z)
where f = 4 f and all integrals are taken against the Riemannian volume. Then the uni-
Bg(z)
form Harnack inequality for the heat equation is valid, in particular for any positive solution
u(z,t) of the heat equation uy — Au = 0 defined in a cylinder Co = Bp(zo) x (0, R?)

supu < Pinfu
Ca G

where Cy = Bg(zo) X (3R* RY), C, = Bg(zo) x (1R* 1R?) and P = P(A,q,N).
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TUNNELING EFFECT FOR THE KLEIN-GORDON EQUATION

B. Helffer (Ecole Normale Supérieure, Paris)

This is a report on work in (frogress with B. Paresse.
We consider the Klein—-Gordon equation

VI-RA+V
on L}(R"), with A > 0. We assume lim V = -1

jel—o0
| D°V|< Cs , Ya€ I

V(' —z,) = V(z,z,)

and that V has two non-degenerate minima (min V < —1). Then we prove that the splitting
between the two smallest eigenvalues AKX, AKC satisfies

AEG(h) — \KG(h) = 0,(e”F+F); Ve >0

where Sp is the Agmon distance between the two minima for the Agmon-metric associated:
to the potential

WKG = (1 — (1 + minV = V))?),.
Moreover we get identity in the case where for example

V<l+dmnV.

The question of identity is open when this inequality is not satisfied (see however results by

R. Carmona, W. Masters and B. Simon). One problem is the singularity of { — /1 + £2

at the points where £2 = —1.
The comparison with corresponding results for the Dirac operator obtained by X. P. Wang
appears to be very interesting.
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REMARKS ON HOLMGREN’S UNIQUENESS THEOREM

L. Hormander (University of Lund)

1. Holmgren’s uniqueness theorem can be regarded as the combination of a microlocal
non-characteristic analyticity theorem and the fact that for any distribution (or hyper-
function) u

(1) N(suppu) C WF(u).

Recall (see [1, Chap. 8, 9]) that if F is a closed subset of a C? manifold X, then the
exterior conormal set N.(F) C T*(X)\ 0 is defined as the set of all (z°,£°) such that
z? € F and there exists a real valued function f € C*(X) with df(z®) = £° # 0 and

(2) f(z) € f(z°) whenz e FNU,

for some open neighborhood U of z°. We write N(F) = {(z, ££);(z,£) € N(F)}. A
stronger result than (1) is due to Kashiwara: If (z°,£%) € N.(suppu), then

(3) (2% &) e WF4(u) = (29,6 +1€°) € WF4(u) forallte R with £ +t£° # 0.

It can be further improved by taking curvature properties into account. If F is a closed set
and (z°,£%) € N.(F), then the set G0 ¢ of all f € C?(X) such that f(z°) =0, f'(z°) = £°,
and (2) holds for some open neighborhood U of z°, depending on f, is a convex set. For
fo € Go g0 the invariantly defined set

(4) Qzoe0 = {(f = f0)"("); f € Gao 0}

is a convex set in the symmetric tensor product S*(T% (X)) consisting of quadratic forms
on T;o(X), and it has a closed convex asymptotic cone @xo,so independent of the choice of
fo, containing all negative semidefinite forms. The positive semidefinite forms of maximal
rank in ()0 ¢o have the same radical, and the annihilator o(z?,£%) in T7, contains £° and
—£%. It is independent of £° when £° is in the relative interior of {£;(z%,&) € N,(F)},
and we define Neg(F);0o = 0(z%,£%) then. A proof of an eztension of (1) to arbitrary
(2°,€%) € Neg(suppu) was outlined; it can also be used to extend (3) similarly.

2. Counterexamples show that the conclusion of Holmgren’s uniqueness theorem is
in general false for differential operators with C®°, non-analytic coefficients. However,



Robbiano [3] proved recently a related uniqueness theorem for wave equations 8%u/dt? —
A(z, D;)u = 0 with coefficients independent of ¢. In [2} we have proved a more precise and
general version of this result which shows that for solutions u of second order hyperbolic
equations invariant under the flow along a timelike vector field 8 the normal set N(suppu)
is located between the characteristic surface and a dilation of it in a fixed ratio K €
[1,+/27/23] along the annihilator of §. It is not known if this is true with K = 1 which
would mean that the conclusion of Holmgren’s theorem is valid for such operators.
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THE INTERBAND LIGHT ABSORPTION COEFFICIENT FOR
HEAVILY DOPED SEMICONDUCTORS

W. Kirsch (Universitat Bochum)
(joint work with L. Pastur and B. Koruzhenko, Kharkov, Ukraine)

We define and investigate the interband light absorption coefficient (ILAC) for semicon-
ductors with random impurities. The semiconductor is described in a two-band model by
two Schrodinger operators H*¥ = —A 4 Wiy, where Vi is a random (ergodic) potential.
The interband light absorption coefficient a(A) measures the amount of light of a given
energy A that can be absorbed by the semiconductor per unit volume. It 1s defined as a
thermodynamic limit of a function of operators H¥ restricted to bounded domains of R®.
This function involves both the eigenvalues and the eigenfunctions of the restricted opera-
tors. The Laplace transform of the limit a()A) can be expressed through certain (double)

Wiener integrals. This expression is used to investigate the asymptotic behaviour of the
ILAC for large or small energies.
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SOME PRODUCT FORMULAS WITH ERROR ESTIMATES
S.T. Kuroda ( Gakushuin University of Tokyo)

This research is motivated by a study of explicit methods in numerical analysis for compu-
ting the solution exp(—ttH )u of the Schrodinger equation. In general terms the method
may be formulated as exp(—itH)u = V(t/n)"u + R.(t)u, where V() is a small time
approximation of exp(—itH) and R,(t)u is an error term.

When H = A + B, the usefulness of the Lie-Trotter approximation V;(t) = exp(—itA)
exp(—itB) or its symmetrized form V(t) = exp(—itA/2)exp(—itB)exp(—itA/2) is em-
phasized by several authors. Provided that A and B are bounded, the order of error is
R.(t) = O(1/n) for V; and = O(1/n?) for V;.

In this talk the following two questions are discussed.

(1) Are there any product formulas of symmetrized type which give an error of higher

order? As an answer a (unique) Q(1/n*) formula is explicitly computed. The
formula contains seven exponential factors.

(2) How to estimate the error, knowing the order of error? In the case of bounded gene-
rators A, B, estimates in the operator norm are easily obtained. In the unbounded
case the order of error depends on how “regular” the initial vector u is. The “re-
gularity” is expressed by the condition that u belongs to the domain of a fractional
power of A+ B.
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THE TIME-ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF INITIAL
VALUE PROBLEMS IN ELéASTICITY FOR MEDIA WITH CUBIC
YMMETRY

R. Leis ( Universitat Bonn)

Considerable progress has been made proving the existence of global in time smooth
solutions for nonlinear wave equations and small data during recent years. To do so, on
the one hand one uses local existence theorems for the nonlinear equation, and on the
other hand estimates on the spreading of the solutions of the linearized equation. The idea
then is to combine both, choose the data small enough such that the linear solution lives
long enough until the linear spreading effect takes over and finally prevents the solution
from exploding.

Little work has been done for equations with underlying anisotropic media. Therefore
estimates of this kind for solutions to linear equations of elasticity and media with cubic
symmetry are presented in the lecture. The free space problem can be completely discus-
sedbwhereas idn case of exterior boundary value problems an additional damping term has
to be inserted.
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RADIATION CONDITIONS FOR ELLIPTIC PROBLEMS IN DOMAINS
WITH NON-SMOOTH BOUNDARY

B.A. Plamenevsky ( Inst. of Telecommunications, St. Petersburg)

The present talk is a survey of a number of papers by S.A. Nazarov and B.A. Plamenevsky.
Correct statements of elliptic boundary value prob],ems involving radiation conditions on
singularities of boundary are discussed. One introduces the notions of outgoing and inco-
ming waves.(In the classical situation where the Sommerfeld and Mandelstam principles
are applicable, these notions agree with definitions adopted in those principles). Such a
classification of waves allows one to give a statement of the problem with natural radia-
tion conditions and establish its solvability. The motivation of such considerations is the
intention to develop a rigorous theory of the “threshold effect” and the Wood anomalies
in the elasticity theory.
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THE SPHERICALLY SYMMETRIC VLASOV-EINSTEIN SYSTEM

G. Rein (Universitat Minchen)
(joint work with A.D. Rendal)

Consider a large ensemble of mass points interacting by a selfconsistent gravitational field,
e.g. the stars in a galaxy. Such a system is usuall cKescribed by a distribution function
on phase space, satisfying a continuity equation, the Vlasov equation, coupled to a field
. equation for the gravitational field. In the Newtonian setting this leads to the Vlasov-
Poisson system. The relativistic analogue is the Vlasov-Einstein system where gravity is
described by Einstein’s field equation of general relativity. We have the following results
on this system:

Global existence of solutions of the spherically symmetric Vlasov-Einstein system with
small initial data (to appear in Commun. in N{atg. Phys.),

The Newtonian limit of the spherically symmetric Vlasov-Einstein system (to appear in
Commun. in Math. Phys.), .

Smooth static solutions of the spherically symmetric Vlasov-Einstein system (to appear
in Ann. d’ Inst. H. Poincaré, Phys. Theor.).
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DIRICHLET FORMS, ANALYTIC CONTRACTION SEMIGROUPS, AND
CORRESPONDING MARKOV PROCESSES

M. Réckner (Universitat Bonn)

In the first part of the talk an overview of the general theory of (non-symmetric) Dirichlet
forms on general state spaces was given. In particular, the corresponding semigroups (7}):>0,
(T?)t>0, resolvents (Ga)a>o, (Ga)aso and generators L, L were characterized. Subsequently,
an a.na.iytic characterization of the class of Dirichlet forms which are associated wi(t?h pairs
of right continuous strong Markov processes was presented. Finally, examples on finite and
infinite dimensional state spaces were described.

In the second part of the talk a solution to the problem of ‘Dirichlet (or Markov) uniqueness’

for generalized Schrédinger operators on IR? was given. This result extends to corresponding
infinite dimensional situations.
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THE REDUCED WAVE EQUATION WITH TWO UNBOUNDED MEDIA
Yoshimi Saitd (University of Alabama, Birmingham)

Consider the self-adjoint operator H defined by

D(H) = H*(RY) c H = Ly(RV, u(z)dz),
Hu = —ﬁA,

where H?(IR") is the Sobolev space of the second order, and

1 x e Ql),
uz) = { " % € M),

p1,p2 > 0, p1 # p2 with

(ml:---va) € RN I IN > So(zlv-sz-l)}r
Q= {z=(z,...zn)€ER | zny < @(z1,...,TN-1)}

——
o
-
|
—_—
8
If

The separating surface

S={z=(z1,.,zn) € RN | zn = ¢(z1, ..., 2N-1)}

is assumed to have a ‘cone-like’ shape such that its vertex is at the origin and its axis is
the positive (or negative) zy-axis. We shall discuss the limiting absorption principle for
the operator H with emphasis on finding the appropriate boundary condition at oo (the
radiation condition) for H.
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ELLIPTIC PAIRS AND INDEX THEOREMS

J.—P. Schneiders, P. Schapira (Université Paris .Nord)

An elliptic pair (M, F ? on a complex analytic manifold X is the data of bounded complex
of coherent Dx-modules M and a bounded complex of IR—constructible sheaves F' such

that
char MNSSF C Ty X

Let X be a complexification of a real analytic manifold M and let M be a Dx-module which
represents a classical system of equations on X which is elliptic along M. Then (M, € ) is
an elliptic pair. Let X be an arbitrary complex analytic manifold and let M be a coherent
Dx-module, U an open subset of X with non characteristic boundary, F' an IR-constructible
sheaf and J a coherent Ox-module then the pairs (M, C x), (J ®o Dx,Cx), (Ox, F),
ng, Cy) are elliptic.

he extension to elliptic pairs of the classical elliptic regularity allows us to prove that
the solution complex RHomp, (M ® F,Ox) of an elliptic pair has finite dimensional co-
homology if supp M N supp F is compact and to identify its dual with the solution
complex of the dual pair. %hese results are also true in a relative situation. To any
elliptic pair (M, F') we associate by a diagonal construction a microlocal Euler class
peu(M,F) € HE,. smusse(T*X; €). The integral of this class along Tx X gives us the
index x(RHomp, (M ® F,Ox)). We can prove that u eu(Ox, F') is the characteristic cycle
of F defined by M. Kashiwara and that y eu(M, F) = p eu(M) * u eu(Ox, F). Assuming
the right Dx module M endowed with a good filtration we define the microlocal Chern
character of M to be

p ch(M) = cheparm(Orex @ 77 'gr M)Un*td(X)

s=lgrDy

and conjecture that u eu(M) = p ch*(M).
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BOUNDARY VALUE PROBLEMS ON NONCOMPACT MANIFOLDS

Elmar Schrohe (Universitat Mainz and Max-Planck-Arbeitsgruppe, Universitat Potsdam)

After earlier work by Vishik and Eskin, Boutet de Monvel’s calculus, established in 1971,
showed a new way of treating boundary value problems by pseudodifferential methods.
In particular, it gave necessary and sufficient conditions for the Fredholm property of
boundary value problems on smooth compact manifolds.

It has been an open problem to treat the noncompact case. For a large class of noncom-
pact manifolds, a solution is presented. It starts with the construction of a Boutet de
Monvel type calculus for a class of “weighted” symbols. On IR", these symbol classes were

introduced by Shubin, Parenti, and Cordes. For m = (m,;,m;) € IR? one requires that
|DED2p(2,€)| < Cap < & >™ Wl g Sma-lBl

These symbols can be transferred to manifolds with a compatible structure {Schrohe
1987).
The main results are the following:

(1) The algebra G of operators of order and type zero is a spectrally invariant Fréchet
subalgebra of L(H), H a suitable Hilbert space, i.e.

GNLH) =61
It is a ¥*-subalgebra of L(H) in the sense of Gramsch (1984).

(2) Focusing on the elements of order and type zero is no restriction since there are
order reducing operators within the calculus.

(3) There is a necessary and sufficient criterion for the Fredholm property of boundary
value problems, based on the invertibility of symbols modulo lower order symbols.

(4) There is a functional calculus for the elements of G in several complex variables.

(6) There is a Fedosov type index formula on the half-space RR}.



Abstracts of the Conference “Partial Differential Equations”,
September 6 — 11, 1992, Max-Planck-Arbeitsgruppe
“Partielle Differentialgleichungen und Komplexe Analysis”,
Fachbereich Mathematik, Universitat Potsdam

ASYMTOTICS FOR ELLIPTIC OPERATORS CLOSE TO HIGHER CORNERS

B.-W. Schulze (Max-Planck-Arbeitsgruppe, Universit”at Potsdam)

The asymptotics of solutions of elliptic equations on manifolds with a piece-wise smooth
geometry may be understood as a sort of elliptic regularity. For corners of higher orders,
understood as singular sets of stratified spaces, this type of result seems to be mnaccessible
without a systematic approach in terms of pseudo-differential operators with a sufficientl
rich s mbof;c structure. It turns out that hierarchies of leading symbols, associated wit
the “lower-dimensional skeletons”, partially being operator-valued, are the appropriate
structure for the concept of ellipticity. Tﬁe ellipticity is defined as invertibility of all
components. Parametrices follow by inverting symbols. They can be described now up to
second order corners (locally being cones with bases having conical singularities, again)
in such a precise manner that the asymptotics actually follow by applying a parametrix
from the left, using the mapping properties of operators in the calculus between weighted
Sobolev spaces with asymptotics. '?he asymptotics for second order corners contain a
cone part with double asymptotics in the two singular directions x Ry 3 (2,r), for
t — 0,7 — 0 and Mellin edge asymptotics on the one-dimensional edges, emanated from
the corners.

The latter part corresponds to a reformulation of the edge calculus, first being given in the
operator convention from the Fourier transform, into a.%/[ellin set-up, which can similarly
be established as Mellin operator conventions in the cone theory. This also determines
the nature of corner Sobolev spaces for ¢ — 0,3 — 0. The first part of the asymptotics
contains global data in terms of points of non-bijectivity of an action globally along the
base of the corner which has conical points. Tin's is an occasion, where the aspect of
cone operator pseudo-differential algebras is necessary, also in parameter-dependent form
with the parameter in the complex Mellin plane, further holomorphic and meromorphic
families and the invertibility within that class.

Technique and results may be found in

B.-W. Schulze: Pseudo-differential operators on manifolds with singularities.
North Holland 1991,

B.-W. Schulze: The Mellin pseudo-differential calculus on manifolds with corners.
Teubner-Texte zur Mathematik vol. 131 Leipzig 1992, pp. 208-289
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MATHEMATICAL QUESTIONS OF QUANTUM MECHANICS
.M. Sigal (University of Toronto)

In my talk I reviewed some recent results and open problems in the rigorous treatment
of %ua.ntum Mechanics of many particle systems. I discussed two groups of problems:
(a) Scattering Theory and (b) Bound State Problem. In the first case I reported on new
results on the central problem of asymptotic completeness (work with A. Soffer) and in
the second case, on new results on the problem ot asymptotics of ground states of large
atoms and molecules (work with V. Ivni). Unfortunately, because of lack of time I had
to omit the discussion of the problems of non-linear perturbation of quantum systems
(paper to appear in the CMI).
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FEYNMAN-KAC SEMIGROUPS AND HARMONIC FUNCTIONS

J.A. van Casteren (University of Antwerp)

Let E be a locally compact second countable Hausdorff space and let Ky be the generator
of a Feller semigroup {exp(—tKs) :t > 0} in C(E). Suppose that there exists a Radon

measure m and a symmetric continuous function po : (0,00) X E x E — [0, 00) with the
following properties: :

(i) The identity of Chapman-Kolmogorov is valid.
(i1) It is symmetric: po(t, z,y) = po(t,y,2),t > 0,z,y € Ej

(iii) It is continuous in the sense that for all open subsets U of E and for all z € U, the
following identity is valid: limyyo [, po(t, z,y)dm(y) = 1;

(iv) 10 f <1, f€C&(E), then 0 £ [po(t,z,y)f(y)dm(y) < 1, t > 0,z € E;
(v) The semigroup {exp(—tKs):¢ > 0} is L' — L®—smoothing.

In addition let V : E — [—00,00] be a so-called Kato-Feller potential, i.e. suppose that
for every compact subset K of E the following identity is valid:

limsup ] ds / dm(y)pols, 2, 1) (V- (9) + 1k (4)Va (¥)) = 0.

t10 rep
Moreover let T' be closed subset of E, that may be considered as a singularity region

carrying an infinitely high potential barrier. Some estimates are given for the trace and
Hilbert-Schmidt norms of operator of the form

Dy (t) = exp(—t(Ko + V)) — J exp(—t(Ko + V)r)J

in terms of (generalized harmonic functions) h.4v, defined by

hasv(z) = E,(exp ( - /0 “a+ V(X(u)))du) .S < oo).

Here S is the hitting time of the singularity region I' = E\X:
S =inf{s > 0: X(s) € E\T}
and the Dirichlet semigroup {exp(—¢(Ko+ V)g) : t 2 0} is defined by

[exp(=t(Ko+V)z) fl(z) = E,(exp ( - fo t V(X(u))du) f(X@):8> t).

The following result can be proved.

Proposition. (a) If, for some a € R, the integral [ hqyv(z)'/2dm(z) is finite, then the
operators Dg(t), t > 0, are of trace class.



(b) I, for a sufficiently large, the function h,4+v belongs to L?(E, m), then the operators
Dg(t), t > 0, are Hilbert-Schmidt.

We conjecture that in assertion (a) the condition that the integral [ hqiv(z)!/2dm(z) be

finite, may be replaced with an L'-condition on A,4v. In [2] Stollmann obtains quite
similar results. However, he uses techniques from operator ideals, whereas in the proofs
we employ more straight-forward estimates. In [4] and in [3] some other closely related
results were announced. As a corollary we have the following.

Corollary. If the functions Py(S < 1) and V_(.)lnP(.)(S < 1) both belong to L*(E, m),
then there exists a € IR such that h,yv, is also a member of L2(E,m). '

References

[1] M. Demuth and J.A. van Casteren, On spectral theory for self-adjoint Feller gene-
rators, Reviews in Mathematical Physics, Vol 1, no. 4, 1989, 325-414.

[2]  P. Stollmann, Scattering at obstacles of finite capacity, University of Frankfurt,
preprint 1992,

[3]  J. van Casteren. Sur des différences de semigroupes de Feynman-Kac: une propriété
de trace, C.R. Acad. Sci. Paris, t. 314 Série I, p. 997-1002, 1992.

[4] J. van Casteren, A trace class property of singularly perturbed generalized
Schrodinger semigroups, in Proceedings of the International Symposium “Operator
Calculus and Spectraf ’i‘heory” , held at Lambrecht (Pfalz, éermany), December
8-14, 1991, p. 329-347.
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PERTURBATION OF DIRICHLET FORMS BY MEASURES
J. Voigt (Universitat Oldenburg)

The presented results were obtained jo metly with P. Stollmann.
Let X be a locally compact space, B the o-algebra of Borel sets, m a Borel-Radon measure
on X. Let h be a regular Dirichlet form m "Ly(m), H the correspondmg self-adjoint
operator.

he object is to present a class of Borel measures g such that “H + 4" can be defined, and
moreover to discuss properties of the semigroup (e=**+#);¢ > 0). The operator “H + p”
will be defined as corresponding to the form A + g, where the form  is defined as

o] = [ woda,

on a suitable domain.
1. The su:table class for obtaining a closed form A + p - and thus a self-adjoint operator -

is
= {u: B — [0,00) o — additive; cap(B) =0 = u(B) = 0}

2. In order to obtam a form h — g such that the correspondin seIf-ad oint o era.tor has
“good” properties the measure y should belong to a suitably defined “Kato class”

3. If uy € My, p_ in the “Kato class”, then {J + p4 is a closed form, with corre-

sponc{lng self—adjomt operator H,, enJoymg the following properties:

(a) (e™*»; t > 0) acts as a Co-semigroup on L,(g), for all p € [1, 00].

(b) If e“H : Ly(m) = Leo(m) for all t > 0, then the same is true for e=*fx,

(c) If (e7*H; t > 0) extends to a holomorphic semigroup on L;(m) then the same is true

for (e=*Hs; t > 0)
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