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Hi r'Ubruch/ Skoru ppa

1. Sei f E C2 (U), U eine offene Teilmenge im R2, a E U mit grad f(a) = O. Es sei
ß = Jx,x(a)fy,y(a) - Jx,y(a)2. Zeigen Sie:

(i) Der Punkt a ist ein lokales Maximum (Minimum) von f genau dann, wenn
ß > 0 und fx,x(a) < 0 (> 0) gilt.

(ii) Der Punkt a ist ein Sattelpunkt von f genau dann, wenn ß < 0 ist.

2. Bestimmen Sie die kritischen Punkte der Funktion f(x,y) = cosx+siny und das Ver­
halten von f in den kritischen Punkten. Skizzieren Sie den Verlauf der Niveaukurven
der Funktion auf dem R2.

3. Finden Sie die kritischen Ptmkte der Funktion f(x, y) = y(3x2 - y2) - (x 2 + y2)2,
entscheiden Sie, welche davon Maxima oder Minima sind, und skizzieren Sie den
Verlauf der Niveaukurven der Funktion auf dem ganzen R2.

4. Sei U eine offene, den Nullpunkt enthaltene Teilmenge des Rn, und sei f E COO(U).
Es gebe homogene Polynome PII( xl, ... ,xn ) vom Grad v und ein k, sodaß

ist, wobei lxI die euklidische Norm von x = (Xl, ... ,xn ) bezeichnet. Zeigen Sie:

für 0 :s v :s k.
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Abstract. The moduli space of complete metries on 1R4n , n ~ 2, of holonomy

Sp(n) )( Sp(1)/1l
2

is shown to be infinite dimensional. A similar result is obtained far com­

plete half-conformally-fiat Einstein 4-manifolds.

§1. Introduction

This article ia concerned with the existence of complete Riemannian metries of special halo­

nomy on 1R4n. We therelore begin by reca1ling the basic notions and results concerning

holonomy groupsj cf. [5] [6] [23].

Let (M,g) be a connected Riemannian m-manifold, and let x E M be a chosen base­

point. The holonomy grQ!!I! of (M,g,x) is the subgroup of End(TxM) consisting of those

transformations induced by parallel transport around piece-wise-smooth loops based at Xj

the restricted holonomy grouD is similarly defined, using only loops representing

1 E %"1(M,x). The latter is automatically a connected Lie group, and may be identified with

a Lie subgroup of SO(m) by choosing an orthogonal frame for TxM. Changing the base­

point and/or frame only changes this subgroup by conjugation.
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Excluding Riemannian produets and symmetrie spaces, very few subgroups of SO(m) ean

be restrieted holonomy groups, as was first pointed out by Berger [4]. In fact, the fulllist is

as follows: SO(m), U(~), SU(~), Sp(!{-) )( Sp(1)/1l2 (m ~ 8), G2 (m = 7), and Spin(7)

(m = 8). In all but the first two cases, the manifold must be Einstein, and roust moreover

be Rieci-flat exeept in the ease of SP(T)( Sp(1)/1l2, for which the scalar eurvature is

~ zero. A manifold of the latter holonomy group therefore resembles asymmetrie spaee

to an uneomfortable degree, and it behooves one to ask whether there are many or few

complete manifolds of this type. In the positive acalar curvature case, there are no known

non-symmetrie examples, and such are even known not to exist [21] in dimension 8; more­

over, the moduli space of such metries on a fixed manifold is a discrete spaee [15]; cf. [25].

In this article, it will be shown that, by contrast, the moduli space of eomplete metries on

1R4n with holonomy Sp(n)( Sp(1)/1l2 is infinite dimensional. (The scalar curvature of

these Einstein metries ia of course negative.)

A Riemannian manifold (M,g) of dimension 4n, n ~ 2, will be called guaternionic-Kähler

if its holonomy ia (up to eonjugaey) a subgroup of Sp(n)Sp(1) := Sp(n) )( Sp(1)/1l2J but

not a subgroup of Sp(n). Here Sp(n):= GL(n)H) nSO(4n), where IH denotes' the quater­

mons, and Sp(n)Sp(l) is the subgroup of SO(4n) consisting of transformations of

1R4n = IHn of the form

-+ -+ -1v t----+ A vq ,

where A E Sp(n) and q E S3 C[H. Such a manifold ia never a Riemannian product, and so

has holonomy Sp(n)Sp(1) unlesa it is symmetrie; in the latter case, the holonomy is a

proper subgroup of Sp(n)Sp(1) unless the manifold is loeally isometrie to either

(HIpn = Sp(n+l)/Sp(n)(S(1) or ita non-eompact dual lHeNn = Sp(n,1)/Sp(n) )( Spei).
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While we are not interested here in symmetrie spaces in their own right, one can nonethe­

less leam a great deal from an intelligent examination of (Hpn. Notice that this is not a

complex manifold; indeed, it does not even admit an almost complex structure! This may

seem confusing insofar as the tangent spaee of D-IPn would seem in some sense to be a

quatemionie vector space. The answer to this riddle lies in the faet that IH has non-trivial

automorphisms a.s a division ring, exactly corresponding to the Sp(l) factor of Sp(n)Sp(l);

if you like, there is a bundle of division rings, loca.lly modelled on 0-1, over IHIPn' and each

tangent space is a vector space over the corresponding non-eommutative field.

One can untangle this eomplicated situation by passing to a 2-sphere bundle over IHIP I
n

namely (lP2n+1 ---i !HIPn' where the projection is gjven by the Hopf map. Not only is the

pull-back of TlHlPn a complex vector bundle over GJP2n+1' but G:!P2n+ 1 is itself a com­

plex manifold! It was independently discovered by Salamon [24] and Berard-Bergery [3]

that this situation has an analcgue for any quaternionic-Kähler manifold.

Te see this, let (M4n,g) be a quaternienic-Kähler manifold, and let F ---t M denote the

principal Sp(n)Sp(l)-bundle generated by parallel transport of an arbitrary erthonormal

frame. Then setting Z:= F/(Sp(n)U(l)) yields a 2--fiphere bundle 1:: Z -+ M, and each

element y of Z corresponds to an orthogonal complex structure

J : T M ---t T M,
Y x x

2J = -1,
Y

g(J v,J w) = g(v,w),y y

on M; here x = 'I"(y) and v,w E TxM. Let D (TZ denote the horiwntal subspace with

respect to the Levi-eivita connection of g. Since '1"*: D ---i T M ia an isomorphism cfy x

real vector spaces, we can lift Jy to be an endomorphism (J1)y: Dy -+ Dy'

(Jl); = -1, so that D CTZ becomes a. complex vector bundle, with ~l defined to be

scalar multiplication by ..;=I. On the ether hand, the fibers cf 1: are oriented metric
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2--ßpheres, and so may be considered aB Riemann surfaces; thus the vertical tangent space

V = ker 1"* also carriea an endomorphiam el2 : V ---+ V with (el2)2 = -1. We may thus

define an almoat-romplex structure eI on TZ = D fi V by eI = eil Ei el2· RemarkabIy I

this almost-eomplex structure is automatica.lly integrabIej Le. Z has (-valued charts

such that tf becomes identically equal to the usua! almost complex structure

T(2n+l ---+ T(2n+l defined by scalar multiplication by i = .p. . Moreover, the distri-

bution D CTZ becomes a holomotphic sub-bundle of the tangent bundle, and the projec­

tion TZ --+ TZ/D becomes a holomorphic line-bundle-valued I-form 8 E r(Z,n1(L)),

where L:= TZ/D, which satisfies

B A (d8) An '* 0;

such a 1-form ia called a comolex contact atructure, and in particular gives an isomor­

phism L~(n+l) = K-I , where K = n2n+ 1 ia the canonicalline bundle. Finally, the map

(1 : Z ---+ Z, given by J ~ -J and correaponding to the antipodal map on each metricy y

2--ßphere r -I(x), is an anti-holomorphic involution ((12 = 1) without fixed points.

Our definition of a quatermionic-Kähler manifold explicitly excluded the 4-dimensional

case n = 1. Indeed, since SO(4) = Sp(I)Sp(l), nothing interesting can generally be said

about Riemannian 4-manifolds with this holonomy group. But one could instead ask under

what conditions the almost complex manifold Z constructed above is a complex contact

manifold. The answer, discovered by Richard Ward [26), is that one should require that g

be Einstein with non-zero scalar curvature and that the conformal curvature W should be

self~ual: W = *W, where * ia the Hodge star operator, here acting on a bundle-valued

2-form. (This development historically predated and motivated the work of Salamon and

Berard-Bergery, and in turn buHt on Penrose's analysis [19] of the Ricci-flat case; cf. [1].)

We shall therefore define a quaternionic-Kähler 4-manifold to be a half-eonformally flat
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Einstein 4-manifold with non-zero scalar curvature. (Here an orientable Rlemannian

manifold is called half=eonformally-flat if there is an orientation with respect to which the

conformal curvature W satisfies W = *w.)

The real power of the twistor space sterns from the fact that the Salamon correspondence is

invertible [16] [18] [2]. Namely, given a complex contact manifold (Z,8) of dimension

2n + 1, together with an anti-holomorphic involution 17: Z --+ Z, let M be the set of

genus 0 compaet complex curves C ( Z which are invariant under 17, have normal

bundle isomorphic to [O(l)]ED2n, where 0(1) is the divisor of a point in (!Pp and are

transverse to the distribution D = ker 8. In general, of course, this set is empty, but if it is

not, it is a real-analytic 4-manifold. Moreover, it naturally carries a pseudo-Riemannian

metric of holonomy Sp(n-l,l)Sp(1) for same 0 5 l ~ n. Finally, if Z ia the twistor

space of a quaternionic-Kähler manifold M', then M' is naturally isometric to one con­

nected component M. Conversely, the germ of the geometry at a point x EMdetermines

the germ of Z along the corresponding curve C, up to biholomorphism.

In this paper will exploit this invertibility to construct an infinite-dimensional space oI de­

formations of lHo\' = Sp(n,1)/Sp(n)(Sp(1) through complete quaternionie-Kähler me-n .

tries. We do this by first recognizing the twistor space Z of IH dIn as an open set of

(IP2n+ 1· We then deform an open neighborhood ~ of the closure of this set in such a way

as to preserve both the complex contact structure and the involution 17: ~ --+ ~ by cover­

ing ~ with three open sets Up U2,Ug such that u(U1) = U2' u(Ug) = Ug, and

U1 nU2 = ~; we generate our deformations by replacing the identity map on U1 nU3

with an arbitrary camplex contact transformation, while on U2 nUs replacing the identi­

ty with the same contact transformation conjugated by u. For small deformations of this

type, we are then able to produce a complete quaterionic-Kähler manifold aB one connee­

ted component of the u-invariant rational curves transverse to the contaet distribution.
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§2. Preliminaries

We begin our work with a careful description of the twistor correspondence for the

non-eompaet symmetrie space IH Rn =Sp(n,l)/Sp(n))(Sp(l), hereafter referred to as

guaternionic hyperbolic ~. H we define (right) quaternionic projective n-space by

[HIp n = (IHn+1- {O} )/N, where

for all q E H - {O}, we may notice that left multiplication by

Sp(n,l) := O(4h,k) nGL(n+l,IH) acts transitivelyon the subset

n

1: IIqtll2 < Ilqn+1112 ,
l=1

with isotropy sub--group Sp(n) )( Sp(I). We may therefore identify lHeRn with

k

IH[P ~ = {[ql'···,qn+l] I l IIql ll2 < II Qn+111 2
},

l=1

whereas the latter may be realized as the open ball
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n

B
4n

= {(ql'···,qn) EGf I l IIqtll2 < l} via the indusion

l=l
IJ-f C-..t IHIPn : (ql'· .. ,qn)~ [ql'···,qn,1]. The metric ia uniquely determined by the re-

quirement that it be Sp(n,l) invariant, since Sp(n) x Sp(1) acts irreducibly on the tan­

gent 8pace of !HIP ~ at [0, ... ,0,1], namely by the canonical representation of Sp(n)Sp(l)

on Gf.

The naturality of the twistor correspondence allows one to lift the isometry group Sp(n,l)

of IH tRn to act on the twistor space Z by holomorphic maps; thus Z is just

Sp(n,l)/Sp(n) x U(1) equipped with an invariant complex structure.

Now by identifying (20+2 with IHn+1 via

we have an embedding

GL(n+l,IH) C-...-.+ GL(2n+2,{)

given by left multiplicationj thus Sp(n,1) now acts on G:IP20+1" Moreover, it acts

transitivelyon

with isotropy subgroup Sp(n) x U(l).
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Moreover) if we identify then tangent space of

[)-In m( = (2n+l via inhomogeneous coordinates

at [0,0)... ,1,0] with

we notice that the isotropy representation ia

But tbis action is complex linear with respect to only two complex structUIes, namely the

standard one on T(IP2n+l and its complex conjugate, since the complex span of a vector

in [)-In m( now coincides with the fixed-point set of its isotropy in Sp(n)( V(l), and a

complex structure commuting with tbis action is necessarily in the orthogonal group be­

cause Sp(n) )( U(l) acta transitivelyon the unH spheres of [)-In and (.

It follows that the twistor space Z of IH J'In may be biholomorphically identified with

G:1P!n+l' Moreover, the twistor projection J": OP!n+l --+ D-lIP~ just becomes

while the real structure

u:Z--+Z
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just becomes right multiplication ~~ ~j] by jj explicitly, it ia the map

u: G:!P2n+1 ---1 G:1P2n+ 1 given by [Zl'Z2""'Z2n+l'Z2n+2]~ [--Z2'Zl""'-Z2n+2'Z2n+l]'

Notice that the structures discussed so rar precisely coincide with the restrictions of those

of o-w to the open ball [Hp+ (IHIP . This &mounts to the observation that IHd/ and
n n n n

D-IIPn are paraconformally eguivalent in the terminology of Bailey and Eastwood [2].

It ie the complex contact form of the twistor space that distinguishes between our two

distinct metries which are related in this fashion. Again, by naturality, we seek a contact

strueture on Z = (IP!n+ 1 which is invariantunder the action of Sp(n,1). Such a form

may be constructed as folIows: let w denote the complex symplectic form

which may be rewritten as

i ..I- ;";\ ...........
W\u,vJ = <u,vJ> ,

where <,> denotes the pseudo-Hermitian inner product

2n

( 1: dzl0 dil) - (dz2n+ 1 ~ di2n+l + dZ2n+ 2 ~ dz2n+2),
l=l

and so ia invariant under the action of

Sp(n,l) = GL(n+l,lH) nU(2n,2).
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We then let 8 E r((1P2+ I ,nl (2)) denote the line-bundle valued I-form given by

where p: (2n+2 - {TI} --+ (IP2n+1 ia the eanonical projection ti 1----+ [ti], and where

TI,O --+ (2n+2 ia identified with (2n+2 in the obvious mannerj this defines a
u

line-bundle-valued I-fonn precisely because w(lt,ti) always vanishes, and it takes its

values in the Chem-clasa-2line bundle 0(2) because

for all A E( - {O}. The invarianee of fJ) implies that this I-form is also invariant under

the action of Sp(n,I). Since we have already notice that the isotropy representation acts on

{Hk x ( by

there is only one invariant complex hyperplane in the tangent space of (lP!n+l' and this

must therefore coincide with the annihilator of the above I-fonn 8. We conclude that 8

is the eomplex eontact form on Z associated with thc symmetrie space metrie on IH d{ ..
n

To summarize, we have proved thc following:

Lemma. The twistor space of fI-IeNn = lHP; is gjvcn by

2n 2n+2

G:lPtn+I = {[zl,· .. ,z2n+2] 1 l Iz112 < l 1z112}.
l=I l=2n+1
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The realstructure is given by

ufZl'Z2n+lJ"'JZ2n+l'Z2n+2] = [--Z2,zlJ···,-i2n+ 2,z2n+I]'

and the contact form is given by

n

8 = [ 1: (z2l-1dz2l- Z2 tb2 i-I)] - (z2n+ldz2n+2 - z2n+2dz2n+l)'
i=1

§3 Deforming the Twistor Space

Let a E IR+ be any positive real number J and let n denote the 4n - ball

IIqI l12 +...+ IIqnl12 < (1 +a)l lqn+1112

in !HIPn; this is then an open neighborhood of the closure of [Ho"{n C lHUln' which in our

model is given by the unit ball B C[HD C(Hpn' Let ~ denote the inverse image of ~ via

the Hopf map:

For any 1 > ( > 8 > 0, this is covered by the three open sets

VI = ~ n{I z2n+1 12 < f Iz2n+2 12},
V 2 = ~ n{lz2n+212 < f Iz2n+112

}

and Vs = ~ n{~I z2n+2 12 > Iz2n+1 12 > 81 z2n+2 12}J
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and this cover of course satisfies U1 nU2 nU3 = ;. Moreover, the real structure u be­

comes an anti-holomorphic identification of U1 with U2, whereas it acts on U3 as an

anti-holomorphic involution.

On an open neighborhood of 01 n03' let f be any holomorphic section of the contact line

bundle 0(2) = K-1/(n+l); e.g. we may take

where F is an arbitrary holomorphic function on the ball

1'1 12 + ... + I '2n 1
2 < (1 + 2a)(1 + 2E"). We then associate to such an f the unique

holomorphic vector field Vf such that

(1)

(2)

8(Vf) = f; and

$V 8 IX 8.
I

Here 8 again represents the holomorphic contact form on G:IP2n+1 given by

n

8 = [ 1: (zU-ldzU - ZUdZ2l_1)] - (zn+1dzn+2 - z2n+2dz2n+1) .
l=1

In fact, if we trivialize (J (2) aver U1 nU3 by introducing the affine chart zn+ 2 = 1, the

contact structure is represented by the I-form

n

fJ = dz2n+1 + l (z2l_1dz2l- z2ldz2l-1) ,
l=1
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and Vf ia given explicitly by the formula

n

V1=; i m2l-tSn - SI) &;: + \z,bn+1 + 121- 1) a~2f]
l=1

For t E IR sufficiently small, we can then define

this ia automatically a biholomorphism preserving the contact structure. There is also an

analogons biholomorphism

where Vf is the holomorphie contact vector field induced by tT*fj thus

and

Notice that our notation is defined sueh that t f : U1 nUa---i ([P2n+1 is actually well­

defined for all f in a. neighborhood of the origin in the spa.ce of holomorphie funetions on

any fixed span neighborhood of 01 nÜa with respect to the uniform topology. By

shrinking this neighborhood, we may assume that t~Ul nUa)n~~U2 nUa) = t/J.
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Given an f for which t f is defined aB above, we will now define a new complex contact

manifold. Roughly speaking, we wish to glue U1 of Ua via t f , and U2 to Ua via ~f.

To make this precise, let us start by defining

where

and

Ul 3 x IV Y E Ua {=} xe Ul nUa,Y = t~x);

U2 3 x IV YE U3 F} x E U2 nU3,y = ~~x).

This fails to be a complex manifold only because it need not be Hausdorff.

We remedy this by the following procedure: let E denote the real hypersurlace

2 f+O 2
I z2n+l l =~ I z2n+2 1 ,and let w: 1ft -+ QJP2n+l denote exp (Re(Vr)), where 'lt

is some open set containing 01 (l 02. Let ~ = W-1(E), which will be closed and connected

in ~ provided that f is assumed to be small. Then ~ divides ~ into two regions, since

it is an oriented closed, connected hypersurface in an orientable manifoldj assuming that f

is sufficiently small, one of these regions, which we will call t:tl' is contained in U1. We

similarly define fj2' so that er(fj1) = fj2· Finally, let fj3 denote the subset of ~ giyen

by

t!"oJ t!"oJ t!"oJ

Then the image of U1 11U2 11 U3 in ~f ia a topological manifold-with-boundary) and

its interior ~f is the (Hausdorff) complex manifold which we will call the "deformation of

~ associated with f'1) provided that fis, of course, sufficiently small.
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We now remark that ~f comes equipped with a complex contact structure and an anti-ho­

lomorphic involution uf: ~f --+ ~f The former is just obtained by restricting the contact

structure from (lP2n+1 to U1'U2, and U3, and remembering that our transition func­

tions I f and 9f preserve the annihilator distribution D = 8 1 C T(IP2n+l of B, so that

these induced structures on Ul'U2, and U3 agree on overlaps. The involution uf is de­

fined to be 0': U1 --+ U2 on Ul' 0': U2 --+ U1 on U2, and 0': U3 ---J U3 on U3i since

rif = 'fU' this defines a consistent map on all of ~f In the next section, we will use these

structures to create a quaternionic-Kähler manifold aasociated with ~f'

§4. The AssQciated 4n-Manifolds

For each sufficiently smaIl holomorphic section f of the contact line bundle

0(2) = K-1/(n+l) on any fixed region ?i) U1 nU
3

in OP2n+l ' we have produced a

complex manifold ~f Moreover, if we consider the family ~tf' t E (-~,1+~), we obtain a

real-analytic family of complex manifolds which displays ~f as adeformation of

~ C (1P2n+ 1. Moreover, each element of the family comes equipped with a real structure

O"tf : ~tf ---J ~tf' and a complex contact structure

8 Er(~ n1(K-1/ n+1))tf tf' .

Now ~ C (lP2n+ 12 ia foliated by complex projective lines (IP1 which are invariant nnder

0' : ~ --+ ~; moreover, the family of all complex projective lines forms a complex manifold

of dimension 4n. Because the normal bundle N o~ such a line is given by

[0(1)]$2n ---J (1P1' and so satisfies H1((IPl,N) = 0, Kodaira's stability theorem [12]

implies that there is a complete 4n-dimensional complex family of compact complex cnrves
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in ~tf to t small. (Kodaira's theorem is stated for complex analytic families, but our

real-analytic family can eaaily be extended to a holomorphic one by analytic continuation.)

Moreover, the given curves are deformations of the complex projective line, and so are

themselves (!Pis. Finally, the normal bundles of these curves are deformations of

N = [O(l)]fD2n; since H1(0P1,N GD N*) = 0, an open set (in the analytic Zariski topology)

of these curves have normal bundle N = [O(l)]fD2n. Since N is generated by its sections,

these curves fill out an open set in each ~tf

Let .Attf denote the family of all compact genus zero curves Cx in ~tf of normal bundle

N = [0 (1)]ED4n. On each ~tf' we have a real strueture utf : ~tf ---i ~tf' and this induces an

anti-holomorphic involution Ptf:.At tf ---i .Attf' sending a rational curve C (~tf to

ut:r<C). Let ~tf denote the fixed-point set of Ptf By Kodaira's theorem [12] (see also [7],

[22]), .Attf ia a 4n-manifold for amall t, and :&'ttf ia a real-analytic 4n-manifold which

sits in .J(tf as a real slice. Note that :&ttf ia non-empty for small t because it is not

empty when t = O.

The union of the :&'ttf' t E IR, naturally forms a real-analytic (4n+l)-manifold ~1Rf' and

~lRf comes equipped with a real-analytic submersion :&l1Rf~ IR onto same interval about

O. Since D-Ic1In (:&10 has a precompact neighborhood diffeomorphic to ~4n, there is an

open neighborhood ICIlRf of D-I eRn in :&:lIRe which is diffeomorphic to 1R4n )( I, where I is

some open interval about 0 E IR, in such a manner that the projection 1R4n )( I --+ I is just

the function t.

We will henceforth refer to any rational curve C in a complex (2n+l)-manifold Z as a

twistor line if it has normal bundle N = [O(1)]fD2n. If Z ia equipped with areal structure

(J' : Z ---i Z, we will call a u-invariant twistor line a real twistor line. For instance, we have

defined ICItf in the above discussion aB an open subset oI the real twistor lines in ~tf' The

twistor line corresponding to x E .Attf will be denoted by Cx ( ~tf
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We will now need a. technicallemma.

Proposition 1. Let (Z,B) be a complex contaet manifold of dimension 2n+I, and assume

that the space .At of twistor lines in Z is non~mpty. Then the set r!I of twistor lines

tangent to the eontaet distribution D = Sol ia a (possibly empty) non-ßingular closed

complex hypersurlace in "".

Proo{. There ia a double fibration

relating Z and .At j here p: ~ ---+.At is a ((pl-bundle, while the map q: ~ ---+ Z ia a

holomorphie submersion onto an open subset of Z, and ia injective on every fiber of p.

(Indeed, ~ = {(x,y) E ~ EB Z I y E Cx}') Now the eontact form 8 is al-form with

values in some (n+l)--Bt root K-1/(n+l) of the anti-eanonical bundle. Hut the restrie­

tion of K-1 to any twister line is isomorphie (by the adjunction fermula) to

Tl?1 ~ A2nN ~ 0(2) ~ [O(l)]@2n = O(2n+2),

so that the restrietion ef K-1/(n+l) to any twister line must be isomorphie to 0(2). Let

n~ denote n~/p*n~, Le. the vertieal eotangent bundle ef p. Then the restrietion of q*8

to the fiOOrs of p is a section of n~ ~ q*K-1/{n+l) over '8. But on each fiber of p,

n~ ~ q*K-1{n+l) ~ 0; thus $:= p~{n~ ~ q*K-1/{n+l)) is a holomorphic line bundle,

and q*8 pushes down as a seetion
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Notice that r!/ is by definition the zero locua of ~.

To prove the proposition, it therefore suffiees to show that d~ +0 when ~ = O. To do

this, let Cx be a twistor line tangent to D = 1I.L; let NO C N be the image of D in the

normal bundle:

Let u Er(C ,N) be a holomorphie seetion of the normal bundle whieh vanishes at some
x

y E C , but which has the property that u I (y) EN ~ T*C ia not in (NO) ~ T*C; this isx y y y

possible because [tJ(l)]E92n is very ample. Let f: IP I ~ Y--+ Z be a family of curves with

f[1P 1 x {O}1= Cx ' such tha.t [*I '=0] = u, where r is a. sma.ll disk a.round 0 E 0: a.nd

the variable , is used for elements of 1': (This is possible because the family of twistor

lines is complete in the sense of Kodaira; u just corresponda to an element of the tangent

space Tx.At .) Choose any Ioeal coordinate 1] on IP1 so that the point y E Z corresponds

to ((,1]) = (0,0), and choose any Ioeal trivialization near y of K-1/(n+l), so that 8 is

represented by a holomorphic I-form ". Then

But, by construction, U = [f*~l vanishes a.t y, wherea.s lJ~<d,u> does not. Thus the

left-hand aide, which represents the derivative of ä at our chosen point x of ~ = 0 in

the direction of u Er(C ,tJ(N)) = T ~,ia non-zero.x x

Q.E.D.
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Corollary. Let M denote the set of real twistor lines in a complex contact (2n+1)-mani­

fold Z with anti-holomorphic involution tr: Z~ Z preserving the real structure. Then

the set 8 of real twistor lines tangent to the contact distribution D = 8.1. is a smooth da­

sed hypersurface.

Proof. 8 is a real slice of the previously analyzed set #.

Q.E.D.

We now notice that the above lemma ia valid with auxiliary parameters, since the proof

goes through without change. Thua the aubset SIR! (ICIlRf of reallines tangent to the con­

taet distributions of the complex manifolds ~tf is a smooth, closed hypersurface trans­

verse to the fibers of MlRf~ IR. Moreover, Sor is just the sphere

S4n-1 = 8(D-Ißn) ( D-IIPn' By replacing ~lRf ~ 1R4n
x I with a smaller neighborhood of

D-Ißn (aay a ball in 1R4n times some smaller interval) we can therefore arrange that each

fiber of the projeetion tllRf~ I meets SIRf in a diffeomorphic copy 8tf of 84n- 1. In­

deed, we only need to choose our neighborhood so that the map SlRf~ I is proper.

Now the generalized Jordan curve theorem guarantees that ICrtf is separated into two

components by Stfi moreover, the bounded component Mtf is easily seen to be diffeomor­

phie to 1R4n by lifting the vector field ~ on IR to tllRf ---t I in such a way that its flow

preserves SIRI'

Ta conclude, we have associated to each "sufficiently small" f a manifold Mf diffeomor­

phie to !Rn, defined as a certain set of real twistor lines in ~f In the next section, we will

show that Mf carries a natural complete quaternionic-Kähler metric.
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§5. The Deformed Metric

We will now produce a complete quaterionic Kähler metric on the manifold Mf defined in

the last section. This metric is the output of the following machine:

Theorem 1. Let ~ be a complex contact manifold with an anti-holomorphic involution

which preserves the contact structure. Let :&t be the space of real twistor lines in Z, and

let M be a connected component of the subset of real twistor lines which are transverse to

the contact distribution. Assume that M (:&t is pre-<:ompact, and that the pseudo­

Riemannian quaterionic-Kähler metric g on M defined by the inverse Salamon construc­

tion [16] (see also [18], [3]) has Riemannian signature. Then (M,g) is a complete

Quaternionic-Kähler manifold.

Proof. Let S be the boundary of M in :&t. (By proposition 1, S (!CI is a smooth hyper­

surface. ) We need to show that the limit point in :&t of a Cauchy sequence in (M,g) is

never an element of S. For this, it suffices to show that, every sequence {x.} in M that
J

converges to a point x
m

of S has divergent distance !rom any given point XoE M.

Let us now recall the construction of the pseudo-Riemannian quaternionic-Kähler metric

given in [16]. Let ')( be the space of all (complex) twistor lines in ~,and let .At denote

the open subset consisting of these lines which are transverse to the contact distribution

D = B.L ( T~. We may define two vector bundles E --. ~ and H --. :It as follows. Let

x E :Jt correspond to the twistor line C C~ with normal bundle N , and let L --+ ~x x
denote the contact line bundle K-1/(n+l). Suppose, if necessary by restricting to a neigh-

borhood of a twistor line, that L admits a square-root L1/ 2 = K-1/ 2(n+l). Then

and

H = r(C L1/ 2)x x'
E = r(e L-1/ 2

G!D N ) .
X X' X
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Since L-1/2 Gi) N
x

ia a trivial bundle on C
x
~ IPl' we have

E Gi) H = r(C ,N ) = T .At .x x x x x

We now define a complex-Riemannian metric g on .At by defining symplectic forms

wE and wH on the above bundles E,H --t .At ( .Jf , and then setting

2 * 2 * 2 *9 = wE ~ wH Er(A E ~ A H ) Cr(O T .At). Namely, for x E .At, the normal bundle

Nx is canonically identified with the restrietion D IC of the contact distribution to Cx'
x

and d8 E r(L ~ A2D*) = r(A2(L1/2 ~ D*)). We may therefore define

On the other hand, Hx = r(Cx,L1/2) carries the Wronskian

W : A2r (C L1/2) --+ r(C 0 1 0 L)
x' x' Cx

U A V 1---+ U Gi) dv - v S du j

but the restriction of the contact form 8 to C ,where x E .At, automatically yields anx

iomorphism

8-1 : r(C ,OC1 Gi) L) ----+ 4:x x x

which sends 81 C to 1. We may then set
x
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The resulting complex-Riemannian metric g:= wE e wH then [Ll has holonomy

C Sp(n,G:) GD Sp(I,G:)/1l2. Ita restrietion g to the real slice M C.At therefore is a pseudo­

Riemannian metric with holonomy CSp(n-l,l) x Sp(I)/1l2 for same integer 0 ~ l ~ n.

Let us now restate the above construction in a way more sui ted to boundary considera­

tions. First of all, we have a well-defined line-bundle-valued holomorphic 3-form

N

and we may exploit this by restriction to Cx' x E A; to define

where, as in Proposition 1,

namely, we define

Secondly, we define ~H E r( .At, .:t e A2H*) to be the Wronskian W:
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Finally, let U8 recall that, as in Proposition 1, the restriction of 8 to each twistor like Cx

yields a section ~ Er(.At,.t) with a simple zero along the set rI/ ( .Ai of twisto! likes

tangent to D. If we now define

A A A ,f'J .:l 2 * 2 * (,f'J.:l 2 * ,f'Jg := wE ~ wH E r(.M ,.r e A E e A H ) (r .M ,.r ~ A T .M),

A
we then observe that g is related to the previously described complex Riemannian metric

on .At (.Ai by

a = ~2 e g.

It therefore follows that g times any function which vanishes along rI/ to order two ex­

tends holomorphically across ctI, and that the conformal class of g thus extends across dI'

A A
in a suitable sense. However, the rank of g actually drops at rI/; while wH is

everywhere non-degenerate, ~E only has rank 2 at rI/ (its two non-zero directions

being given by 8 E N* 0 L and TCx _I d8 E06 0 (D/TCx)* 0 L), so that a has
x

rank 4 along rt/, as opposed to rank 4n everywhere else.

On the real slice Ei c .At, we may trivialize the line bundle $. Thus, for any defining

function Q of S c .Ai, the quaternionic-Kähler metric g has the property that a2g ex­

tends real-analytically across S as a tensor field g whose rank at S is 4.

Let us consider, for amoment, the image of g in the cotangent space T*Et along S. Dur

isomorphism T.At = E e H reduce the structure group of Ei to GL(n,IH) x Sp(1)/1l2.

Since the non-degenerate directions of a are given by a subspace of E tensor all of H, we

conclude that this rank 4 subspace ia the t1 quaternionic span" of same direction with res-
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pect to the Sp(1) factor. In factor it must exactly be the quaterionic span of the conormal

bundle of S (Ei because ~E is non-zero in the direction of 8 along rtI, and our proof

(Prop. 1) that ~ has non-zero derivative along dI exact1y showed that an element cf

r(C ,N ) = r(C ,N 0 L-1/ 2) ~ r(C ,L1/ 2) of the form v ~ JJ ia transverse to c!/,x x x x x

whenever v E f(C ,N ~ L-1/2) = E and JJ E r(C ,L1/2) = H are such that
x x x x x

v _I 8 E f(Cx,L1/2) and JJ have their zeros at different places: in other words, contrac-

tion with B gives a map E --+ H when x E dI, and projection from T ~ to the nor-x x x

mal bundle of dI' ( .Ai is given by the composition

It follows that g strict1y dominates some constant multiple of dcr2 near any point of

S ( n. By compactness, there is some constant k such that ~ dominates kda2 on all of

M ( .Ai ,since g is positive definite on M and therefore also dominates some multiple

2
of da

2
near any point of the interior M ( M. Thus g > k~ on all of M. The distance

a

between two points x,x' E M therefore always exceeds k lIog a(x) -log a(x') I. Since

a = 0 at S, it follows that the g-distance between a given point XoE M and a sequence

of points x. in M converging to x E S must diverge, 80 that such a sequence x· is ne-
J CD J

ver Cauchy with respect to g.

Q.E.D.

Corollary. For f small, the twistor eonstruetion gives a complete quaternionie-Kähler me­

trie on each of the manifolds Mf produced in the last section.
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Proof. It suffices to check that the metric is positive-definite. But tbis pseudo-Riemannian

metric is obtained by deforming the symmetric-space metric on (H J'{n through pseudo­

Riemannian metrics. Hut such adeformation leaves the signature of the metric unchanged.

Q.E.D.

It remains to show that our construction aetually produces metnes on the various mani­

folds Mf wbich are geometrically: distinct. This will be our task in the next section.

§6. The Kodaira-Spencer Obstruction

In the previous section, we demonstrated that each of the complex manifolds ~f' where f

is any sufficiently small holomorphic section of the contact line bundle L on a neighbor­

hood tU of U1 nU3 C (IP2n+1 ' gives rise to a complete quaternionic-Kähler manifold

Mf In tbis section we will show that tbis implies that the moduli spaee of complete quater­

niomie-Kähler metries on 1R4n is infinite dimensional. (In order to keep the discussion as

simple as possible, let UB agree that the latter just means Itnot finite dimensional".)

Associated with any I-parameter family Zt of eomplex manifolds ia the Kodaira-Speneer

obstruetion to the triviality of the family. (For a family of eompaet manifolds to be loeally

trivial, it ia necessary and sufficient for the obstruetion to vanish [13] i in the non-compaet

ease, it is merely necessary.) Tbis obstruction is an element of H1(Zt,TZ
t
) for each t, and

may eoncretely be caleulated in terms of Cech cohomology aB follows:

if Zt ean be construeted by first covering Zo with open sets U0' and then replacing the

identity map Ua nUß --+ Ußn u0 with a transition funetion iI arJ.t) , where t aß de­

pends smoothly on t and satisfies t alO) = id, t orJ.t) = [tßa(t)]-I, and

t orJ.t)tß1(t)t 10:(t) = id, then the assignment of the vector field
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d
Vaß = Qf t arJ.t) It=O

to the set Uan Uß gives a Cech I-eocycle with values in O(TZO). The dass

ia the Kodaira-Spencer obatruction for t = o. Similarly,

[VoJt)) = [tpo a1 t oJ EH
1
(Zt,iJ(TZt )) is the Kodaira-Spencer obstruction for other

values of t.

When Zt is a complex contact manifold, there is a refined version of this invariant. Indee­

d, if our identification of regions Ua of Zo with regions of Zt is done in such a manner

as to preserve the contact structure, then the vector fields Vaß will satisfy

$y 8 a: 8,
aß

and are therefore completely characterized by the sections faß := B(Yaß) of the contact

line-bundle L = K-I /(n+l). Thus we get a contact version of the Kodaira-Spencer ob­

struction defined by [fo~ E H1(Zt,tJ(Lt )). Since the exact sequence

canonically splits aB a sequence of groups (although not as a sequence of o-modules!) our

descent from HI( O(TZ)) to HI ( O(L)) does not lose any information.
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We would now like to mea.sure the non-triviality of our deformationB ~tf by using this

conta.ct Kodaira-Spencer obstruction. On the other hand, the cohomology group

H1(~,0(L)) "looks rather complicated (at least at first sight). We will get around this prob­

lem by restricting the Kodaira-Spencer class to the fourth infinitesimal neighborhoods [10]

of twistor lines.

Let us set up the necessary infinitesimal-neighborhood ma.chinery. If Cx ( ~ ( (lP2n+1 is

a projective line, let .J( 0 (.IP denote the ideal of holomorphic functions vanishing on
2n+1

Cx' For each non-negative integer m, let 17(m)(L) := I7(L)/ [.rn+1 · I7(L)]. There is

then a natural restrietion map

for any value of ID. Moreover, there are exact sequences

of sheaves on Cx. Writing the normal bundle Nx aB Ex €O 0(1), where Ex ~ (2n is ag­

ain defined by r(C,Nx €O 0(-1)), this sequence becomes

Thus n1
(Cx,l7(m)(L» = 0 if m $ 3, whereas n1(cx,I7(4)(L» = e4

Ex. The latter iso­

morphism is, moreover, canonical, provided that C is transverse to the contact structure,x

so that 81 C provides a basis for
x
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By construction, the contact Kodaira-Spencer obstruction of the family ~tf at

~o = ~ ( (lP2n+l is given by the cocycle

(This is a Cech cocycle for the cover {Ul'U2'U3} precisely because U1 nU3 and

U2 nU3 are the only non--empty overlapsj Le. the cocycle condition f12 + S3 + f31 = 0

on U1 nU2 nU3 is vacuous.) Let us calculate the image of this cocycle in

1H (Cx,O(4)(L)).

To da this, notice that the canonical isomorphism

H
1
(Cx' (7(4)(L)) = H

1
(CxAL) 0 e4N~) ~ e4E~ is given by taking the fourth normal

derivatives of a Cech representative. The answer can therefore be calculated by a

Penrose-type contour integral [9] [20].

Namely, Cx nUj is a Stein cover for Cx ~ G:lPr Choose a closed curve 11 in

Cx nU1 nU3, a closed curve 72 in Cx nU2 nU3,as folIows:
--~----

, ,-

,--- "-

11l i

UI[

U, ~2

u,[
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Then the isomorphism

may be explicitly reallzed by

[(g13,g23)]-"'"~ f g138 +~ f g238 ,

11 12

where gjk E r(cx nUj nUk, 0(-2)), since tbis expression vanishes when g13 = h1 - h3,

g23 = h2 - h3 for some h j E r(Cx nUj , 0(-2)), but does not vanish for some (g13,g23)'

(Again , we assume that Cx is transverse to the contact structure.)

Thus, if f is any fnnction on a neighborhood of U1 nU3, the contact Kodaira-Spencer

obstruction of the family is detected by the contonr integral

where A, ... ,D range over 1,... ,2n. Here f is considered as a fnnction of homogeneity 2

on (2n+2, and

If we assume that Cx is a re.aJ. twistor line, we .may take 12 = 0";1 and obtain



where

WABCn(x) = Jr f
71
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[ 3 f 0 + r; "D eJ
D Oz· • • 8z

87,. • • • •~

(
AI A2 A2n+l A2n+2) (-2 -1 -2n+2 -2n+l)z ,z ,... ,z ,z = -z ,z ,... ,-z ,z .

Thus, if we choose

for F((1""'(2n) a holomorphic function in a ball of radius >(I+E) and take 11 to be

1 1
2 E+6 1 12 b'z1 =~ z2 ' we 0 taJn

2n
. 2 [04F a4y]

WABCD(x) = (1 - l IzJ I) A D + AA AD
. 8z ••• 8z 8z· • · 8z
J=1

for x =(ql ,... ,qn) = (zl ,... ,~2n) in the unit ball. In particular, the space of functions F

depending only on the even-numbered variables (z2,z4, ... ,z2n), defined on a ball of radius

> (l+f) in (n, and vanishing to order 3 at the origin, injects into Hl(~,O(L)).

We will now see that the geometry of the associated quaternionic-Kähler manifolds Mtf

is coorespondingly altered. To do this, let UB ask whether the third infinitesimal neighbor­

hood of a twistor line in Z can be isomorphie to the third infinitesimal neighborhood of a

"nearby" twistor line in ~tf' Such an infinitesimal neighborhood defines an element of
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1H ((lPpAUi( 0 (3)))' where 0(3) ia the structure sheaf of the third infinitesimal neighbor-

hood of (!PIe (JP2n+l' and one can show [8] that this torsor is given by

as follows from the fact that there are central extensions

Der( 0 (m)' P / p+l) >--+ Aut( 0 (rn)) -+-+ Aut( 0 (rn-I))'

essentially by a non-linear version of the Iong-exact sequence associated with a ahort exact

sequence. (Here the automorphism of 0 (m) associated with a derivation

v E Der(17(m)'P/ pH) ~ 17(T{JP2nH QlI @mN*), m ~ 1, ia juat 1 + v.) On the other

hand, if our line (IP1 C (lP2n+I is transverse to the standard eontaet distribution, we

have an injective linear map

gotten by identifyjng the normal bundle N with D, and remembering that

d8 : D --+ D* 0 0(2) is an isomorphism. This results in an injection

H1
(4:!Pl' 17(4)(2)) C-.+ H1

(4:!P1'Aut( 17(3)))' 0 4E* C-.+ E QlI 0 3E*, which ia none other than

the restrietion of the splitting HI(Z,O(2)) --+ H1(Z,O(TZ)) to an infinitesimal

neighborhood of (lP1. The upshot is that our deformations ~tf effectively defonn the

third infinitesimal neighborhoods Qf twistor lines as F ranges over the given space of holo­

morphie functions. But since the Ioeal geometry of Mtf near x determines the biholomor­

phism type of the germ of Cx C ~tf' it follows that the deformations Mtf are all distinct

as F ranges over the holomorphic functions in a ball in (n whieh vanish to order 3 at
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0; Le. we have given an infinite dimensional effective deformation of the quaterniomic­

Kähler manifold IH d{n through quaterniomic-Kähler manifolds. Since the isometry group

of IHdI ia of course finite dimensional, we have proved the Main Theorem:
n

Theorem. The moduli space of complete quaternionic-Kähler metrics on 1R4n is infinite

dimensional.

Remark. Our proof shows that WAßcn measures a (paraconformally invariant) change in

the geometry. In fact, ignoring the factor of (1- E I~ 1
2), which may be viewed as

corresponding to a paraconformal weight, q, actually corresponds to the t~erivativeof

the piece of the curvature tensor which lives in

§7 Concluding Remarks

While we have focused on the higher dimensional case and the associated holonomy prob­

lem, our theorem shows that the space of complete self~ual Einstein metrics on 1R4 is in­

finite dimensional. In fact, the proof gives more - namely, there is an infinite dimensional

space of conformal metrics on S3 which bound complete 8elf~ual Einstein metrics on the

4-ball, in the sense that the conformal structure is smooth up to the boundary, making it

into a conformal infinity. Let us point out the relationship between this and earlier results.

First off, the present author [14] proved some time ago that any real-analytic conformal

metric on a 3-manifold ia locally the conformally infinity of a unique self-dual Einstein
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4-manifold. Pedersen [7] then produced an explicit I-parameter family of (left invariant)

conformal metrica on S3 which bound complete metrics on the 4-ball.

By contrast, Graham and Lee [11] have recently proved (by the inverse function theorem)

that any conformal metric on Sm-l sufficiently cl~ to the standard one is the conformal

infinity of a complete Einstein metric on the ball. It is therefore natural to ask which con­

formal metrics on S3 bound a complete se1f-dual EiDBtein metric.

An analogons problem arises when one examines the Dirichlet problem on the 2-dimen­

sional disko Any smooth complex-valued function on the cirele is the boundary value of a

harmonie function on the disk, but only a subclass, those of "positive frequency", are the

boundary values of holomorphic functions, whereas a complementary set of (tlnegative fre­

queney") funetions are boundary values of anti-holomorphic funetions.

Let us define a eonformal metrie [h] on S3 to be of positive frequeney if it is the con­

formal infinity of a eomplete self-dual Einstein metrie on the 4-ball; and similarly define it

to be of negative freguency if it is the conformal infinity of an anti-tie1f-dual Einsteio me­

tric. The following then seems most natural:

Positive Freguency Conjeeture: Any eonformal metrie [h] on S3 which is sufficiently oea!

the standard eonIormal metric hO eau be expressed in the form

2 *h = a tp (hO + h+ + h~ ,

where tp: S3 --. S3 ia a diffeomorphism, a is a non-zero function, h+ and h_ are

traee-free symmetrie tensor fields, and hO+ h+ is of positive frequeney, while hO+ h_

is of negative frequency.
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Such a result would then seem to provide a natural polarization far quantum gravity, at

least on the level af scattering theory.
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