ON COMPLETE QUATERNIONIC-KAHLER MANIFOLDS

by

Claude LeBrun*

Max—Planck—Institut

fiir Mathematik
Gottiried—Claren—Str. 26
5300 Bonn 3

Federal Republic of Germany

Mathematics Department
SUNY

Stony Brook, NY 117943651
USA

3
suppported in part by an NSF grant.

MPL/90-45






UBUNGEN ZUR

INFINITESIMALRECHNUNG 1T

Sommersemester S0 Hirzebruch/Skoruppa

Blatt 6 (17. Mai 90)

Hausaufgaben

10

Sei f € C*(U), U eine offene Teilmenge im R%, a € U mit grad f(a) = 0. Es sei
A= fro(a)fyy(a)~ fz,y(a)z- Zeigen Sie:

(i)  Der Punkt a ist ein lokales Maximum (Minimum) von f genau dann, wenn
A > 0und fzz(a) <0 (> 0) gilt.

(i)  Der Punkt a ist ein Sattelpunkt von f genau dann, wenn A < 0 ist.

Bestimmen Sie die kritischen Punkte der Funktion f(z,y) = cos z +siny und das Ver-
halten von f in den kritischen Punkten. Skizzieren Sie den Verlauf der Niveaukurven
der Funktion auf dem R2.

Finden Sie die kritischen Punkte der Funktion f(z,y) = y(3z% — y?) — (22 + 3?)?,
entscheiden Sie, welche davon Maxima oder Minima sind, und skizzieren Sie den

Verlauf der Niveaukurven der Funktion auf dem ganzen RZ.

Sei U eine offene, den Nullpunkt enthaltene Teilmenge des R™, und sei _f € C=(U).
Es gebe homogene Polynome p,(z;,...,z,) vom Grad v und ein k, sodal

}:I_I% [f(zla”-:mn)_(PO +P1($1;--~a$n)l+°'°+Pk($1,---a$n))]/1$ k=0

ist, wobei |z| die euklidische Norm von z = (z1,...,Z,) bezeichnet. Zeigen Sie:

F(0) ()

Pu(Tiy. . Zn) = i

fuir0<v <k
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Abstract. The moduli space of complete metrics on RD

, n22, of holonomy
Sp(n) x Sp(1)/Z,, is shown to be infinite dimensional. A similar result is obtained for com-

plete half—conformally—flat Einstein 4—manifolds.

§1. Introduction
This article is concerned with the existence of complete Riemannian metrics of special holo-

4n

nomy on R™. We therefore begin by recalling the basic notions and results concerning

holonomy groups; cf. [5] [6] [23].

Let (M,g) be a connected Riemannian m—manifold, and let x € M be a chosen base-
point. The holonomy group of (M,g,x) is the subgroup of End(TxM) consisting of those
transformations induced by parallel transport around piece—wise—smooth loops based at x;

the restricted holonomy group is similarly defined, using only loops representing

1€ rl(M,x). The latter is automatically a connected Lie group, and may be identified with
a Lie subgroup of SO(m) by choosing an orthogonal frame for T_M. Changing the base-
point and/or frame only changes this subgroup by conjugation.



Excluding Riemannian products and symmetric spaces, very few subgroups of SO(m) can
be restricted holonomy groups, as was first pointed out by Berger [4). In fact, the full list is
ag follows: SO(m), U(%—), SU(-I;—), Sp(—T—) x Sp(1)/L, (m 28), Gy (m=7), and Spin(7)
(m = 8). In all but the first two cases, the manifold must be Einstein, and must moreover
be Ricci-flat except in the case of Sp(-lil—) x Sp(l)/?l2, for which the scalar curvature is
never zero. A manifold of the latter holonomy group therefore resembles a symmetric space
to an uncomfortable degree, and it behooves_one to ask whether there are many or few
complete manifolds of this type. In the positive scalar curvature case, there are no known
non—symmetric examples, and such are even known not to exist [21] in dimension 8; more-
over, the moduli space of such metrics on a fixed manifold is a discrete space [15]; cf. [25].
In this article, it will be shown that, by contrast, the moduli space of complete metrics on
R with holonomy Sp(n) x Sp(1)/1, is infinite dimensional. (The scalar curvature of

these Einstein metrics is of course negative.)

A Riemannian manifold (M,g) of dimension 4n, n 2 2, will be called guaternjonic-Kahler
if its holonomy is (up to conjugacy) a subgroup of Sp(n)Sp(1) := Sp(n) x Sp(1)/Z,, but
not a subgroup of Sp(n). Here Sp(n) := GL(n,H) N SO(4n), where H denotes the quater-
nions, and Sp(n)Sp(l) is the subgroup of SO(4n) consisting of transformations of
R%% = H® of the form

?r———bA?q_l,

where A € Sp(n) and q € 53 C M. Such a manifold is never a Riemannian product, and so
has holonomy Sp(n)Sp(l) unless it is symmetric; in the latter case, the holonomy is a
proper subgroup of Sp(n)Sp(l1) unless the manifold is locally isometric to either
HP = Sp(n+1)/Sp(n)xS(1) or its non—compact dual Ho¥ = Sp(n,1)/Sp(n) x Sp(1).
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While we are not interested here in symmetric spaces in their own right, one can nonethe-
less learn a great deal from an intelligent examination of HP . Notice that this is not a
complex manifold; indeed, it does not even admit an almost complex structure! This may
seem confusing insofar as the tangent space of HP =~ would seem in some sense to be a
quaternionic vector space. The answer to this riddle lies in the fact that H has non—trivial
automorphisms as a division ring, exactly corresponding to the Sp(1) factor of Sp(n)Sp(1);
if you like, there is a bundle of division rings, locally modelled on H, over [H]Pn, and each

tangent space is a vector space over the corresponding non-commutative field.

One can untangle this complicated situation by passing to a 2—sphere bundle over IHIPn,
namely ¢[P2n 1 I}l[Pn, where the projection is given by the Hopf map. Not only is the
pull-back of T[H[P]1 a complex vector bundle over C1P2n +1 but t1ZIP211 +1 is itself a com-
plex manifold! It was independently discovered by Salamon [24] and Bérard—Bergery {3]

that this situation has an analogue for any quaternionic—Kahler manifold.

To see this, let (M4n,g) be a quaternionic—Kahler manifold, and let F — M denote the
principal Sp(n)Sp(1)-bundle generated by parallel transport of an arbitrary orthonormal
frame. Then setting Z := F/(Sp(n)U(1)) yields a 2-sphere bundle x:Z — M, and each

element y of Z corresponds to an orthogonal complex structure
X 2_ _ =
Jy :T,M—TM, ‘]y = -1, g(Jyv,Jyw) = g(v,w),

on M; here x = x(y) and v,w€ T M. Let D CTZ denote the horizontal subspace with
respect to the Levi—Civita connection of g. Since =« . Dy — T, M isan isomorphism of
real vector spaces, we can lift J:'r to be an endomorphism ( "I)y : Dy — Dy,
( jl)?, = —1, 8o that D C TZ becomes a complex vector bundle, with *1 defined to be

scalar multiplication by ¢~I. On the other hand, the fibers of # are oriented metric
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2—spheres, a.nd s0 may be considered as Riemann surfaces; thus the vertical tangent space
V =ker z, also carries an endomorphism #,:V —V with ( j2)2 = —1. We may thus
define an almost~complex structure f on TZ=D®V by 4= # © 4, Remarkably,
this almost—complex structure is agutomatically integrable; i.e. Z has C—valued charts
such that _#  becomes identically equal to the usual almost complex structure
¢+, 7¢2 ] Gefined by scalar multiplication by i = ¢~I . Moreover, the distri-
bution D C TZ becomes a holomorphic sub—bundle of the tangent bundle, and the projec-
tion TZ — TZ/D becomes a holomorphic line—bundle—valued 1-form € € F(Z,QI(L)),

where L := TZ/D, which satisfies

B4 (d0)"" #0,

such a 1—form is called a complex contact structure, and in particular gives an isomor-
phism L®(n+1) = K_l, where K = n2n+l ig the canonical line bundle. Finally, the map
o:Z—1Z, given by Jy — —Jy and corresponding to the antipodal map on each metric

2—sphere r_l(x), is an anti—holomorphic involution (cr2 = 1) without fixed points.

QOur definition of a quatermionic—Kahler manifold explicitly excluded the 4—dimensional
case n = 1. Indeed, since SO(4) = Sp(1)Sp(1), nothing interesting can generally be said
about Riemannian 4—manifolds with this holonomy group. But one could instead ask under
what conditions the almost complex manifold Z constructed above is a complex contact
manifold. The answer, discovered by Richard Ward [26], is that one should require that g
be Einstein with non—zero scalar curvature and that the conformal curvature W should be
self—dual: W = xW, where * is the Hodge star operator, here acting on a bundle-valued
2—form. (This development historically predated and motivated the work of Salamon and
Bérard—-Bergery, and in turn built on Penrose’s analysis {19] of the Ricci—flat case; cf. [1].)
We shall therefore define a quaternionic—Kahler 4—manifold to be a half—conformally flat
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Einstein 4—manifold with non—zero scalar curvature. (Here an orientable Riemannian

manifold is called half—conformally—flat if there is an orientation with respect to which the

conformal curvature W satisfies W = xW.)

The real power of the twistor space stems from the fact that the Salamon correspondence is
invertible [16] [18] [2]. Namely, given a complex contact manifold (Z,8) of dimension
2n + 1, together with an anti—holomorphic involution ¢:Z —17Z, let M be the set of
genus 0 compact complex curves C CZ which are invariant under o, have normal
bundle isomorphic to [0(1-)]“’2“, where ¢(1) is the divisor of a point in CP,, and are
transverse to the distribution D = ker 8. In general, of course, this set is empty, but if it is
not, it is a real—analytic 4—manifold. Moreover, it naturally carries a pseudo—Riemannian
metric of holonomy Sp(n—¢,£)Sp(1) for some 0< £ € n. Finally, if Z is the twistor
space of a quaternionic-Kihler manifold M’, then M’ is naturally isometric to one con-
nected component M. Conversely, the germ of the geometry at a point x € M determines

the germ of Z along the corresponding curve C, up to biholomorphism.

In this paper will exploit this invertibility to construct an infinite—dimensional space of de-
formations of Ho¥ = Sp(n,1)/Sp(n)xSp(1) through complete quaternionic—Ké&hler me-
trics. We do this by first recognizing the twistor space Z of IHJa’n as an open set of
CIP211 +1 We then deform an open neighborhood 7 of the closure of this set in such a way
as to preserve both the complex contact structure and the involution o: Z — 2 by cover-
ing 7 with three open sets' U,,U,U, such that a(Ul) = U,, m(Ua) =U,, and
Uy n U, = ¢; we generate our deformations by replacing the identity map on U, N U3
with an arbitrary complex contact transformation, while on U, n U3 replacing the identi-
ty with the same contact transformation conjugated by o. For small deformations of this

type, we are then able to produce a complete quaterionic—Kahler manifold as one connec-

ted component of the g—invariant rational curves transverse to the contact distribution.
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§2. Preliminaries

We begin our work with a careful description of the twistor correspondence for the
non—compact symmetric space MHo¥ = 5p(n,1)/Sp(n)xSp(1), hereafter referred to as
quaternionic hyperbolic gpace. If we define (right) quaternionic projective n—space by
WP _ = (W1 - {0})/~, where

(qllq2)' "’Qn_*_l) i (qlq’q2Q!' "an+1(1)

for all ¢ € & — {0}, we may notice that left multiplication by
Sp(m,1) := 0(4h,k) N GL(n+1H) acts transitively on the subset

n

2
Y Magl? < llag o112,
{=1

with isotropy sub—group Sp(n) x Sp(1). We may therefore identify HH ~with

k

2 2
@ 7 = oyl | 3 Bl <logal
=1

whereas the latter may be realized as the open ball
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n
B4 = {(ag9,) € H* | 2 ||qt|]2 < 1} via the inclusion
£=1
[HnC——;IH]P11 : (ql""’qn) — [ql,...,qn,l]. The metric i8 uniquely determined by the re-

quirement that it be Sp(n,1) invariant, since Sp(n) x Sp(1) acts irreducibly on the tan-

gent space of HP 'I*l' at [0,...,0,1], namely by the canonical representation of Sp(n)Sp(1)
on M

The naturality of the twistor correspondence allows one to lift the isometry group Sp(n,1)
of H¥ , toacton the twistor space Z by holomorphic maps; thus Z is just

Sp(n,1)/Sp(n) x U(1} equipped with an invariant complex structure.

Now by identifying €222 with H2t! via

(211205 s2on 4 1%9n 1 o) ¥ (2 +iZgssZgp L 1 HiZgp 4 o)

we have an embedding
GL(n+1,H) & GL(2n+2,C)

given by left multiplication; thus Sp(n,1) now acts on CP,, . |- Moreover, it acts

+
transitively on

2n
+ _ 2 2 2
Y1 = {2y 2gegny 1 ogn ol | ) 1241° < |20 1%+ [29g,91 %)
(=1

with isotropy subgroup Sp(n) x U(1).
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Moreover, if we identify then tangent space of dZ[P'; at [0,0,...,1,0] with

n+1
Hoc=c2H inhomogeneous coordinates

(29 + J2gyZgp_g + Hgps€) = [212g-295 1 11,
we notice that the isotropy representation is
(Sp(n) x U() x (W © €) — H @ ¢
((A2),7,0) — (A 710720),

But this action is complex linear with respect to only two complex structures, namely the
standard one on Tﬂ:IPzI1 +1 and its complex conjugate, since the complex span of a vector
in H*® C now coincides with the fixed—point set of its isotropy in Sp(n) x U(1), and a
complex structure commuting with this action is necessarily in the orthogonal group be—-

cause Sp(n) x U(1) acts transitively on the unit spheres of H* and C.

It follows that the twistor space Z of [HJa’n may be biholomorphically identified with

+

+ : ot :
cP Moreover, the twistor projection = : CP 2041

+ .
2041’ — HP  just becomes

(215291 1Z9p 4 11%0n 0l = (21 FFg0e-sZgp 1 HiZgp 4 o],

while the real structure

c:7—7
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just becomes right multiplication [v]—— [Vj] by j; explicitly, it is the map

o: d:ll’2n_*_1 —_— cIP2n+1 given by [zl’ZZ’“"z2n+1’z2n+2] — [—22’21""’—22n+2’z2n+1]‘

Notice that the structures discussed so far precisely coincide with the restrictions of those
of IHIPn to the open ball [HP'I*I' C IH[Pn. This amounts to the observation that [Ha"a’n and

HP_~are paraconformally equivalent in the terminology of Bailey and Eastwood [2].

It is the complex contact form of the twistor space that distinguishes between our two
distinct metrics which are related in this fashion. Again, by naturality, we seek a contact

_ ep+
structure on Z = C[P2n+

may be constructed as follows: let w denote the complex symplectic form

) Which is invariant under the action of Sp(n,1). Such a form

w=dz; Adzy + ... +dzg, 4 Adzy —dzy g A dzy o,

which may be rewritten as
w(T¥) = <U,Vj>,
where <,> denotes the pseudo—Hermitian inner product

2n

() dz,®dzy)—(dzy, ) ®dzy  \ +dog, @ dTy ),
t=1

and so i8 invariant under the action of

Sp(n,1) = GL(n+1,H) N U(2n,2).
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We thenlet B € I‘(dZIP2 +1,91(2)) denote the line—bundle valued 1-form given by

B(p, (") = (@),

where p: ¢20+2_ {0} — o, 41 18 the canonical projection u —— [u], and where
T111’0—4¢2n+2 is identified with C2n+2 in the obvious manner; this defines a
line—bundle—valued 1-form precisely because «(U,u) always vanishes, and it takes its
values in the Chern—class—2 line bundle ¢(2) because

for all A € € — {0}. The invariance of w implies that this 1—form is also invariant under

the action of Sp(n,1). Since we have already notice that the isotropy representation acts on

IHk x C by
(¥,0) — (AT A7L2720),

there is only one invariant complex hyperplane in the tangent space of cpt and this

2n+1?
must therefore coincide with the annihilator of the above 1-form €. We conclude that B

is the complex contact form on Z associated with the symmetric space metric on EHJ&’B. .
To summarize, we have proved the following:

Lemma. The twistor space of Ho¥_ = IHP'; is given by

2n 2n+2

+ 2 2
Wy nt1 = {lzgr1zgp 4ol 2 lzgl” < 2 2,417}
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The real structure is given by

o121 %9041 Pon 4 1%2042) = P2 oy 2Pan g 1)
and the contact form is given by

n

8= lli (2941429 g = 29 29 4 3] = (29 4 1d%0p 4 o =29, | 9d%9; 1 4)-
=1

§3 Deforming the Twigtor Space

Let a €RT be any positive real number, and let 8 denote the 4n — ball

llagI? +..+ llagl? < (¢ + a)llag 4 I

in [Han; this is then an open neighborhood of the closure of [HJb’n C IHan, which in our
model is given by the unit ball B C H" C lHan. Let 7 denote the inverse image of B via
the Hopf map:

2 2 2 2
A {[z),Zgn ol € Py | |2y ] "tz |7 < (142)([ 290 | “ + |29, 91 )}
Forany 1> € > 6 > 0, this is covered by the three open sets

U1=20{|z

2 2
U2=2ﬂ{|22n+2| <e|z2n+1| }
and Uy =20 {5z

2 2
ant1l” < € 129n40l°)

2 2 2
ant2l” > |Zang1l™ > 61290 01"}
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and this cover of course satisfies Ul Nn U2 n U3 = ¢. Moreover, the real structure ¢ be-
comes an anti—holomorphic identification of U1 with U2, whereas it acts on U3 as an

anti-holomorphic involution.

On an open neighborhood of U1 nu 3 let f be any holomorphic section of the contact line
bundle 2(2) = kY (n+1); e.g. we may take

3
21 Zon ] Zon+2

f(z z 1y 7 )
2n+2 2n+27 “2n+1

1""'Z2n+1) =F [

where F is an arbitrary holomorphic function on the ball

2
[ ¢
holomorphic vector field Vf such that

+...+ |C2n|2 < (1 + 2a)(1 + 2¢). We then associate to such an { the unique

(1)  B8(Vp) =1 and
(2) .S,’VfB x B.

Here © again represents the holomorphic contact form on dZ[Pm1 +1 given by

n

8= [2: (29 19294 — 29 447 5—1)] ~ (19249 ~ 2o 428290 9) -
=1

In fact, if we trivialize 0(2) over U, N Uy by introducing the affine chart z _, =1, the

n+2
contact structure is represented by the 1-form

n

d=dzy 1t 32 (2941429 p =29 4829, _4)
=1
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and Vf is given explicitly by the formula

1 d d
Vi=g ) [(223—1f2n+1 Y. gy, ¥ (2o ¢fons1 + f201) L2y t]
{=1

n
1 )
+({+g 52 (G pa%0p-1 —To4%94) Fogry’
=1

For t € R sufficiently small, we can then define

(= exp(t Re Vf) : Uy n U3 — C1P2n+1 ;
this is automatically a biholomorphism preserving the contact structure. There is also an

analogous biholomorphism

$tf: exp(t Re Vf) Uy N Uy — Py 1y

where Vf is the holomorphic contact vector field induced by cr*f; thus

Re Vf = o, Re Vg,
and
Qtf” =0 gtf .

Notice that our notation is defined such that $.: U, N U, — CP is actually well-

2n+1
defined for all f in a neighborhood of the origin in the space of holomorphic functions on
any fixed span neighborhood of U1 n U3 with respect to the uniform topology. By

shrinking this neighborhood, we may assume that @{U, N Ugz) N ${(U2 NU,) = ¢
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Given an f for which (Ibf i8 defined as above, we will now define a new complex contact
manifold. Roughly speaking, we wish to glue U, of U3 via if , and U, to U3 via a;f.
To make this precise, let us start by defining

b= (U} 11 Uy 11 Ug)/»

where

U13x~yEU3(=)xEUan3,y= Qf(x);
and U23x~yEU3(=)xEU20U3,y=$f(x).

This fails to be a complex manifold only because it need not be Hausdorff.

We remedy this by the following procedure: let ¥ denote the real hypersurface

_€+4 | 2n+2| and let ¥: %—vtﬂ’zn+1 denote exp (Re(Vf)), where %

2n+l|
is some open set containing U, T U,. Let $= lIl—l(Z), which will be closed and connected
in B provided that f is assumed to be small. Then & divides Z into two regions, since
it is an oriented closed, connected hypersurface in an orientable manifold; assuming that f
is sufficiently small, one of these regions, which we will call Ul’ is contained in U;. We
similarly define Uz, so that m(Ul) = U2. Finally, let ﬁ3 denote the subset of % given

by

2n+2

2 2 2
o135 |7an42l” > 129p 11" > =5
Then the image of I_Il 11 I_J2 1l [_13 in Zf is a topological manifold—with—boundary, and
its interior 21. is the (Hausdorff) complex manifold which we will call the "deformation of

? associated with ", provided that f is, of course, sufficiently small.
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We now remark that 2f comes equipped with a complex contact structure and an anti-ho-
lomorphic involution oy Zf-—’ Zf The former is just obtained by restricting the contact
structure from QIIP211 41 t0 U0y, and U3, and remembering that our transition func-

tions & and ¥; preserve the annihilator distribution D = @' C TCP of B, so that

2n+1
these induced structures on UI’UZ’ and U3 agree on overlaps. The involution oy is de-
fined to be ¢ Ul——rU2 on Ul’ o U2—-;U1 on U2, and o: U3—->U3 on U3; since
crt?E'f = 3fa, this defines a consistent map on all of Zf In the next section, we will use these

structures to create a quaternionic—Ké&hler manifold associated with gf .

§4. The Associated 4n—Manifolds

For each sufficiently small holomorphic section f of the contact line bundle

0(2) = k~1/(n+1) o any fixed region #J U NU, in CP we have produced a

2n+1"
complex manifold Zf Moreover, if we consider the family th, t€ (—Ae',l+?), we obtain a
real—analytic family of complex manifolds which displays Zf a8 a deformation of
%c C[F‘2 a1’ Moreover, each element of the family comes equipped with a real structure
LE th — th, and a complex contact structure

1, ~1/n+1

B, € D%, K/ 2HY)).

Now ZC Q'JP2 0412 is foliated by complex projective lines dZ[P1 which are invariant under
o : 7 — %; moreover, the family of all complex projective lines forms a complex manifold
of dimension 4n. Because the normal bundle N of such a line is given by
[(7(1)]6211 — CP,, and so satisfies Hl(ClPl,N) =0, Kodaira’s stability theorem [12]

implies that there is a complete 4n—dimensional complex family of compact complex curves
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in th to t small. (Kodaira’s theorem is stated for complex analytic families, but our
real-analytic family can easily be extended to a holomorphic one by analytic continuation.)
Moreover, the given curves are deformations of the complex projective lire, and so are
themselves dlEPis. Finally, the normal bundles of these curves are deformations of
N= [0(1)]6211; since HI(CIPI,N ® N*) = 0, an open set (in the analytic Zariski topology)
of these curves have normal bundle N = [0(1)]6211. Since N is generated by its sections,

these curves fill out an open set in each th

Let A, denote the family of all compact genus zero curves Cx in th of normal bundle
N= [0(1)]9411_ On each th, we have a real structure o,: th-—; th, and this induces an
anti-holomorphic involution Pigt Kip— Aip sending a rational curve C(C th to
A {C). Let Mtf denote the fixed—point set of Py By Kodaira’s theorem [12] (see also [7],
[22]), #,; is a 4n—manifold for small t, and Mtf is a real—analytic 4n—manifold which
sits in A if 382 real slice. Note that Mtf is non-empty for small t because it is not

empty when t = 0.

The union of the M, t € R, naturally forms a real—analytic (4n+1)-manifold fp, and
MlRf comes equipped with a real—analytic submersion MIRfL’ R onto some interval about

4n

0. Since M7 n C MO has a precompact neighborhood diffeomorphic to R™, there is an

open neighborhood ¥ip, of Mo¥_ in My, which is diffeomorphic to R*™ x I, where 1 is

|R4n

some open interval about 0 € R, in such a manner that the projection x ] —1T is just

the function t.

We will henceforth refer to any rational curve C in a complex (2n+1)—manifold Z as a
twistor line if it has normal bundle N = [0(1)]9211. If Z is equipped with a real structure
o:Z — Z, we will call a s—invariant twistor line a real twistor line. For instance, we have
defined IOItf in the above discussion as an open subset of the real twistor lines in th. The
twistor line corresponding to x € J; will be denoted by C, CZ,¢
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We will now need a technical lemma.

Proposition 1. Let (Z,8) be a complex contact manifold of dimension 2n+1, and assume
that the space 4 of twistor lines in Z is non—empty. Then the set ¢ of twistor lines
tangent to the contact distribution D =B8' is a (possibly empty) non—singular closed

complex hypersurface in 4.
Proof. There is a double fibration

€

AT

Z A

relating Z and A; here p: ¥ — KA isa ﬂPl—bundle, while themap q: ¥ —Z isa
holomorphic submersion onto an open subset of Z, and is injective on every fiber of p.
(Indeed, ¢ ={(x,;y)€ A ®Z|y€C }.) Now the contact form B is a 1-form with

—1/(n+1)

values in some (n+1)—st root K of the anti—canonical bundle. But the restric-

tion of K1 to any twistor line is isomorphic (by the adjunction formula) to
TP, ® AZ2N & 0(2)  [0(1)%% = o(2n+2),

so that the restriction of g H/(nt1) to any twistor line must be isomorphic to ¢(2). Let
nll) denote ﬂ(lz/p*ﬂ i{p i.e. the vertical cotangent bundle of p. Then the restriction of q*B
to the fibers of p is a section of nle q*K_ll (n+1) over #. But on each fiber of p,
QII) ® q*K"l(n'H) ~ g thus &= pg(nll) @ q*K_l/ (n+1)) is a holomorphic line bundle,

and q*B pushes down as a section

i



B ET(A,.2)
Notice that ¢ is by definition the zero locus of 8.

To prove the proposition, it therefore suffices to show that dé #0 when B =0. To do
this, let C_ be a twistor line tangent to D = &*;let Ny CN be theimageof D in the
normal bundle:

N, :=D/TC_.

Let u€ l"(Cx,N) be a holomorphic section of the normal bundle which vanishes at some
y€ Cx’ but which has the property that u’(y) € Ny ® T;C is not in (NO) ® T;C; this is

possible because [0(1)]e2n

is very ample. Let {:P, ® ¥—7 bea family of curves with
f[P, x {0}] = C,, such that [3{4 C=0] = u, where ¥ is a small disk around 0 € € and
the variable ¢ is used for elements of . (This is possible because the family of twistor
lines is complete in the sense of Kodaira; u just corresponds to an element of the tangent
space T x./l{ .) Choose any local coordinate % on IP1 so that the point y € Z corresponds

n+1)

to (¢,n) = (0,0), and choose any local trivialization near y of K_I/ ( , 60 that O is

represented by a holomorphic 1—form 4. Then

a%f* 19,7,§> = 4 19)(7%3%’) + ?gd* 0,3%

0, &8 i d

But, by construction, u = [f " 8] vanishes at y, whereas -ag<1?,u> does not. Thus the
left—hand side, which represents the derivative of 8 at our chosen point x of B=0 in
the direction of u € I'(C_,(N)) = T, 4, is non—zero.

Q.E.D.
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Corollary. Let M denote the set of real twistor lines in a complex contact (2n+1)—mani-
fold Z with anti-holomorphic involution &:Z — Z preserving the real structure. Then
the set S of real twistor lines tangent to the contact distribution D = B* is a smooth clo-

sed hypersurface.

Proof. S is a real slice of the previously analyzed set <.

Q.E.D.

We now notice that the above lemma is valid with auxiliary parameters, since the proof
goes through without change. Thus the subset Sp.C IOIin of real lines tangent to the con-
tact distributions of the complex manifolds Z,‘f is a smooth, closed hypersurface trans-
verse to the fibers of MIRfL' R. Moreover, SOf is just the sphere
sin-1 6% ) CHP . By replacing IOI[R{":’ R® x I with a smaller neighborhood of
H¥ (say a ball in R*® times some smaller interval) we can therefore arrange that each

4n—1. I

fiber of the projection IOIIRf——»I meets SlRf in a diffeomorphic copy Stf of § n-

deed, we only need to choose our neighborhood so that the map SIRf — I is proper.

Now the generalized Jordan curve theorem guarantees that ﬁtf is separated into two
components by Stf; moreover, the bounded component Mt £ is easily seen to be diffeomor-
phic to Rin by lifting the vector field H% on R to IOImf——»I in such a way that its flow

preserves SIRf‘

To conclude, we have associated to each "sufficiently small" { a manifold Mf diffeomor-
phic to [Rn, defined as a certain set of real twistor lines in Zf In the next section, we will

show that Mf carries a natural complete quaternionic—Kahler metric.
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§5. The Deformed Metric

We will now produce a complete quaterionic Kéhler metric on the manifold M, defined in

the last section. This metric is the output of the following machine:

Theorem 1. Let 7 be a complex contact manifold with an anti—holomorphic involution
which preserves the contact structure. Let M be the space of real twistor lines in Z, and
let M be a connected component of the subset of real twistor lines which are transverse to
the contact distribution. Assume that M C M is pre—compact, and that the pseudo-
Riemannian quaterionic—K&hler metric g on M defined by the inverse Salamon construc-
tion [16] (see also [18], [3]) has Riemannian signature. Then (M,g) is a complete

Quaternionic—Kahler manifold.

Proof. Let S be the boundary of M in M. (By proposition 1, S C M is a smooth hyper-
surface.) We need to show that the limit point in M of a Cauchy sequence in (M,g) is
never an element of S. For this, it suffices to show that, every sequence {xj} in M that

converges to a point x_ of S has divergent distance from any given point x, € M.
(1} & g 0

Let us now recall the construction of the pseudo—Riemannian quaternionic—Kahler metric
given in [16]. Let 2% be the space of all (complex) twistor lines in 2, and let 4 denote
the open subset consisting of these lines which are transverse to the contact distribution
D = 8* C T2. We may define two vector bundles E— ¥ and H — ¥ as follows. Let
x € 4 correspond to the twistor line C.C ? with normal bundle N.,and let L— j/
denote the contact line bundle K_l/ (n+1). Suppose, if necessary by restricting to a neigh-
borhood of a twistor line, that L. admits a square—root Ll/2 = K-l/2(n+1). Then

_ 1/2
H =I(C,L /)
_ -1/2
and E =T(C, L ®N,).
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Since L_ll2 ® N, is a trivial bundle on Cx o [Pl, we have

E,®H =T(C_N)=T A

X

We now define a complex—Riemannian metric g on 4 by defining symplectic forms
wp and wg on the above bundles E,.H — 4 C A, and then setting
§ = wg ® wy € I(A’E* @ A%H*) C I(O®T* 4). Namely, for x € 4, the normal bundle

N, is canonically identified with the restriction D| C of the contact distribution to C_,
x

and d8 € I(L @ A%D*) = P(A2(L}/2 @ D*)). We may therefore define
2 1/2 * 2%
vgl, = d8 € A7r(C_LY/2 @ N*) = A%E¥ .
On the other hand, H_= I‘(Cx,Lll 2) carries the Wronskian

w: a%r(c 1% —r(c nl er)
X

uAv—iu®@dv—v®du;

but the restriction of the contact form 8 to Cx, where x € 4, automatically yields an

iomorphism

-1 1
i 1‘((3}{,9Cx ®L)— ¢

which sends 8|~ to 1. We may then set
X

-l
wH.—Bx oW.
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The resulting complex—Riemannian metric g := wp ® wy then [L]) has holonomy
C Sp(n,C) @ Sp(1,C)/L,. Its restriction g to the real slice M C 4 therefore is a pseudo-

Riemannian metric with holonomy C Sp(n—¢,£) x Sp(1)/I, for some integer 0 < £ < n.

Let us now restate the above construction in a way more suited to boundary considera-

tions. First of all, we have a well-defined line—bundle—valued holomorphic 3—form
ardeernier?),

and we may exploit this by restriction to Cx’ x € A to define
by € T(% 2 A%EY),

where, as in Proposition 1,
L= I‘(Cx,ﬂéx ®L);

namely, we define

bl =0 AdBE 1“(cx,n(1jx e AN} e12) = I‘(cx,nclJx e1)® AZr(c, N* o 11/?)
Secondly, we define &gy € (A", 2 ® A°H*) to be the Wronskian W:

A 9 112 1
bl = W:alrc Lt/ (e 0l er).

X
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Finally, let us recall that, as in Proposition 1, the restriction of 8 to each twistor like Cx
yields a section B € I( A, %) with a simple zero along the set o C A of twistor likes

tangent to D. If we now define
§:= by @by er( A, £ @A%E* @ A’H*) C (A", £ @ A°T* ),

we then observe that ﬁ is related to the previously described complex Riemannian metric

on £C A by
ﬁ =62®g.

It therefore follows that g times any function which vanishes along o to order two ex-
tends holomorphically across <, and that the conformal class of g thus extends across o
in a suitable sense. However, the rank of 8 actually drops at ¢; while Z‘JH is
everywhere non-degenerate, be only has rank 2 at ¢ (its two non—zero directions

being given by BEN*®L and TC__|dB €05 ®(D/TC )" ®L), so that § has
X

rank 4 along ¢, as opposed to rank 4n everywhere else.

On the real slice M C A, we may trivialize the line bundle .7, Thus, for any defining
function a of § C A, the quaternionic—K3&hler metric g has the property that a2g ex-

tends real—analytically across S as a tensor field g whose rank at S is 4.

Let us consider, for a moment, the image of ﬁ in the cotangent space T along S. Our
isomorphism T .4 = E®H reduce the structure group of M to GL(nH) x Sp(1)/1,.
Since the non-degenerate directions of § are given by a subspace of E tensor all of H, we

conclude that this rank 4 subspace is the "quaternionic span" of some direction with res-
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pect to the Sp(1) factor. In factor it must exactly be the quaterionic span of the conormal
bundle of S C M because &E is non—zero in the direction of B along o, and our proof
(Prop. 1) that ® has non—zero derivative along o exactly showed that an element of
I(C,N,) =T(CN, ® L /2 @r(C_LY/2) of the form v ®y is transverse to 7,
whenever v ET(C_N 8L Y% =E  and wer(C LY%)=H_ are such that
v_| B¢ l"(Cx,LI/ 2) and u have their zeros at different places: in other words, contrac-
tion with O gives a map Ex — Hx when x € ¢/, and projection from Tx'.vl{ to the nor-
mal bundle of o C A is given by the composition
£ en 84,5 on A, 4%H

It follows that é strictly dominates some constant multiple of da® near any point of
S C M. By compactness, there is some constant k such that ﬁ dominates kda® on all of

MC A , since g is positive definite on M and therefore also dominates some multiple

2
of de® near any point of the interior M C M. Thus g > k d_a2_ on all of M. The distance
a

between two points x,x” € M therefore always exceeds k|log a(x) —log a(x’)|. Since
a=0 at S, it follows that the g—distance between a given point X, € M and a sequence
of points X; in M converging to x €5 must diverge, 80 that such a sequence x ; is ne-
ver Cauchy with respect to g.

Q.E.D.

Corollary. For f small, the twistor construction gives a complete quaternionic—Kahler me-

tric on each of the manifolds M, produced in the last section.
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Proof. It suffices to check that the metric is positive—definite. But this pseudo—Riemannian
metric is obtained by deforming the symmetric—space metric on Ho¥_through pseudo-
Riemannian metrics. But such a deformation leaves the signature of the metric unchanged.

Q.E.D.

It remains to show that our construction actually produces metrics on the various mani-

folds M, which are geometrically distinct. This will be our task in the next section.

§6. The Kodaira—Spencer Obstruction

In the previous section, we demonstrated that each of the complex manifolds Zf, where f
is any sufficiently small holomorphic section of the contact line bundle L on a neighbor-

hood % of U, n Uqa c P gives rise to a complete quaternionic—K&hler manifold

2n+1°
Mf In this section we will show that this implies that the moduli space of complete quater-
niomic—Kihler metrics on R*® is infinite dimensional. (In order to keep the discussion as

simple as possible, let us agree that the latter just means "not finite dimensional".)

Associated with any 1—parameter family Zt of complex manifolds is the Kodaira—Spencer
obstruction to the triviality of the family. (For a family of compact manifolds to be locally
trivial, it is necessary and sufficient for the obstruction to vanish [13]; in the non—compact
case, it i8 merely necessary.) This obstruction is an element of Hl(Zt,TZt) for each t, and
may concretely be calculated in terms of Cech cohomology as follows:

if Zt can be constructed by first covering Z0 with open sets U o and then replacing the
identity map Ua nu g U 3 N U, with a transition function Qa ﬂ(t), where ¢ o de-
pends smoothly on t and satisfies & ﬂ(O) =id, ¢ ﬂ(t) =% 8 a(t)]_l, and

¢, ﬂ(t)Q ) 7(t)') y o(t) = id, then the assignment of the vector field
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V .=-3% (1)
af ~ dt aﬂ( t=0

totheset U _NTU 8 gives a Cech 1—cocycle with values in ﬂ(TZO). The class

Vgl = HY(Z,,0(TZ,))

is the Kodaira—Spencer obstruction for t = 0. Similarly,
\4 a ﬂ(t)] =[$ Ba H% ¢, ,6] € Hl(Zt,o(TZt)) is the Kodaira—Spencer obstruction for other

values of t.

When Zt is a complex contact manifold, there is a refined version of this invariant. Indee-
d, if our identification of regions U a of Z, with regions of Z, is done in such 2 manner

as to preserve the contact structure, then the vector fields Va 8 will satisfy

Zyy BuB,

and are therefore completely characterized by the sections f ap = B(Va ,B) of the contact
line—bundle L = K—ll (n+1)_ Thus we get a contact version of the Kodaira—Spencer ob-

struction defined by [f, ﬁ] € Hl(Zt,a(Lt)). Since the exact sequence
0— 0(D,) — 0(TZ,) — (L) — 0

canonically splits as a sequence of groups (although not as a sequence of &-modules!) our

descent from Hl(O(TZ)) to Hl( J(L)) does not lose any information.
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We would now like to measure the non—triviality of our deformations th by using this
contact Kodaira—Spencer obstruction. On the other hand, the cohomology group
Hl(z,d(L)) looks rather complicated (at least at first sight). We will get around this prob-
lem by restricting the Kodaira—Spencer class to the fourth infinitesimal neighborhoods [10]

of twistor lines.

Let us set up the necessary infinitesimal-neighborhood machinery. If C_C 2c Py, 41 18

a projective line, let JC ¢ denote the ideal of holomorphic functions vanishing on
WPon+1 s
n

C,- For each non—negative integer m, let d(m)(L) = 0(L)/[Jm+1 - O(L)]. There is

then a natural restriction map
B'(%,0(L)) — B'(C,, O (L)
for any value of m. Moreover, there are exact sequences
0— o(L®e™NY) — Gm)(T) = Oy gy(L) — 0

of sheaves on C_. Writing the normal bundle N_ as E_® J(1), where E_v ¢ i ag-
ain defined by I'(C,N_ @ (1)), this sequence becomes

0 — 0(2-m) ® @™E_— O(m)(L) = O (gyq)(L) — 0.
1 . 1 4 :
Thus H (Cx,o(m)(L)) =0 if m <3, whereas H (Cx,0(4)(L)) = ®°E_. The latter iso-

morphism is, moreover, canonical, provided that Cx is transverse to the contact structure,

so that B~ provides a basis for
x



—28 —

BY(c_0'(2)) = (B'(c . o(-2))* .

By construction, the contact Kodaira—Spencer obstruction of the family th at

ZO =%2cC CfP2n +1 is given by the cocycle

f4=1€ (U, N U, 0(L)),
s = 0" £ € T(Uy N Uy, 0(L)). - |

(This is a Cech cocycle for the cover {Ul’Uz’Us} precisely because U, n U, and
U, n U3 are the only non—empty overlaps; i.e. the cocycle condition f12 + f23 + f31 =0
on U; NU,NTU, is vacuous.) Let us calculate the image of this cocycle in

B'(C,, 0(4(L)).

To do this, notice that the canonical isomorphism

1 1 4. % 4% . .
H (Cx,0(4)(L)) =H(C_,4L)®@°N_ )~ O°E_ is given by taking the fourth normal
derivatives of a Cech representative. The answer can therefore be calculated by a

Penrose—type contour integral [9] [20].

Namely, anUj is a Stein cover for C_oCP,. Choose a closed curve 7, in

C,NU,; NUgya closed curve 7, in cx.n U, N U, as follows:

~ A
N AN
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Then the isomorphism
BY(C,,0(-2)) = ¢

may be explicitly realized by

1 !
[(3131823)] T { 8138 +50 { 8239 )
" 72
where Bix eT(c n Uj N U, 0(-2)), since this expression vanishes when g 4 =h; —h,,
Bgg = hy —h, for some h.i er(c,n Uj, 0(-2)), but does not vanish for some (g;4,895)-

(Again , we assume that C_ is transverse to the contact structure.)

Thus, if { is any function on a neighborhood of U, n Us, the contact Kodaira—Spencer

obstruction of the family is detected by the contour integral

4 ' 4 %
1 a f 1 /] f
wABCD(X)=ETI§ A.B.C DB+2m§ aAi’..azD El’
8z 62" 2" B z

L4} 79

where A,..,D range over 1,...,2n. Here f is considered as a function of homogeneity 2

on ¢2n+2, and

% e = = - -
(o 0(21’22""’z2n+1’z2n+2) = f(—zz,zl,...,—z2n+2,z2n+1).

If we assume that Cx is a real twistor line, we may take To=107 and obtain



| 4 4
_ 1 a*f . T
wABCD(x)_ﬁ{§ [ Y K D H]
S g
N
where
(21'32,".’22]1'*'1’%211'{'2) = _'2-2"2-1’".,__2211"'2’2211'*'1) )
Thus, if we choose
( ) 2 “on zgn+2
(z,,...,2 = F[ yeee ]
I intl Zon+2 " %2n+2 ) “2n+1

for F((;,.-,{y,) @ holomorphic function in a ball of radius >(1+¢€) and take 71 to be

12,12 = €30 |22, we obtain

2n

. 4 4
2 d'F °F
¥ (x)=(1- 2| [ + ]
ABCD jzl | | &AO . s D 02A00 .0%D
for x =(q1,...,qn) = (zl,...,g2n) in the unit ball. In particular, the space of functions F

depending only on the even—numbered variables (z2,z4,...,z2n), defined on a ball of radius

> (1+¢€) in C", and vanishing to order 3 at the origin, injects into HI(Z,U(L)).

We will now see that the geometry of the associated quaternionic—Kahler manifolds Mtf
is coorespondingly altered. To do this, let us ask whether the third infinitesimal neighbor-
hood of a twistor line in Z can be isomorphic to the third infinitesimal neighborhood of a

"nearby" twistor line in th. Such an infinitesimal neighborhood defines an element of
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Hl(Cﬂ’l,Aut(ﬂ(3))), where 0(3) is the structure sheaf of the third infinitesimal neighbor-
hood of €P, C CP,, ., and one can show [8] that this torsor is given by

1 S | 3. %

as follows from the fact that there are central extensions
Der(0 ), ™/ A A(0 1)) — Aut(0( 1)),

essentially by a non-linear version of the long—exact sequence associated with a short exact
sequence. (Here the automorphism of 0( m) associated with a derivation
vE Der(o(m),Jm/Jm+1) © O(TCP,, | ®O™N*), m > 1,5 just 1+ v.) On the other

hand, if our line dZIP1 cap is transverse to the standard contact distribution, we

2n+1
have an injective linear map

@e)!: e*n* @ g(2) c— @%N* @D

gotten by identifying the normal bundle N with D, and remembering that
d8:D—D*e 0(2) is an isomorphism. This results in an injection

H1(€IP1,0( @) = HI(GJIPI,Aut(o(s))), ©*E* < E ® @°E*, which is none other than
the restriction of the splitting Hl(Z,0(2)) — Hl(Z,ﬁ(TZ)) to an infinitesimal
neighborhood of C[Pl. The upshot is that our deformations th effectively deform the
third infinitesimal neighborhoods of twistor lines a8 F ranges over the given space of holo-
morphic functions. But since the local geometry of M., near x determines the biholomor-
phism type of the germ of C_C th, it follows that the deformations M. are all distinct

as F ranges over the holomorphic functions in a ball in €" which vanish to order 3 at
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0; i.e. we have given an infinite dimensional effective deformation of the quaterniomic-
Kahler manifold Ho¥ I through quaterniomic—K&hler manifolds. Since the isometry group

of [Hc}?fnL is of course finite dimensional, we have proved the Main Theorem:

Theorem. The moduli space of complete quaternionic—Kahler metrics on [R4n is infinite

dimensional.

Remark. Our proof shows that ¥ ABCD Mmeasures a (paraconformally invariant) change in
the geometry. In fact, ignoring the factor of (1——E|zj|2), which may be viewed as
corresponding to a paraconformal weight, ¥ actually corresponds to the t—derivative of

the piece of the curvature tensor which lives in

(@*E*) @ (A2H*)? C (A%T*M) @ (A2T*M).

§7 Concluding Remarks

While we have focused on the higher dimensional case and the associated holonomy prob-
lem, our theorem shows that the space of complete self—dual Einstein metrics on Rr? is in-
finite dimensional. In fact, the proof gives more — namely, there is an infinite dimensional
space of conformal metrics on S3 which bound complete self—dual Einstein metrics on the
4—ball, in the sense that the conformal structure is smooth up to the boundary, making it
into a conformal infinity. Let us point out the relationship between this and earlier results.

First off, the present author [14] proved some time ago that any real-analytic conformal

metric on a 3—manifold is locally the conformally infinity of a unique self—dual Einstein
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4—manifold. Pedersen [7] then produced an explicit 1—parameter family of (left invariant)

conformal metrics on 53 which bound complete metrics on the 4—ball.

By contrast, Graham and Lee [11] have recently proved (by the inverse function theorem)

that any conformal metric on g1

sufficiently close to the standard one is the conformal
infinity of a complete Einstein metric on the ball. It is therefore natural to ask which con-

formal metrics on S3 bound a complete gelf—dual Einstein metric.

An analogous problem arises when one examines the Dirichlet problem on the 2—dimen-
sional disk. Any smooth complex—valued function on the circle is the boundary value of a
harmonic function on the disk, but only a subclass, those of "positive frequency", are the
boundary values of holomorphic functions, whereas a complementary set of ("negative fre-

quency") functions are boundary values of anti—holomorphic functions.

Let us define a conformal metric [h] on $3 1o be of positive frequency if it is the con-
formal infinity of a complete self~dual Einstein metric on the 4—~ball; and similarly define it
to be of negative frequency if it is the conformal infinity of an anti—self—dual Einstein me-

tric. The following then seems most natural:

Positive Frequency Conjecture: Any conformal metric [h] on s3 which is sufficiently near

the standard conformal metric h0 can be expressed in the form
2 %
h = a“p (h0+h++h_),
where ¢: §3 5% isa diffeomorphism, a is a non—zero function, h + and h_ are

trace-free symmetric tensor fields, and h0 +h + is of positive frequency, while h0 +h

is of negative frequency.
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Such a result would then seem to provide a natural polarization for quantum gravity, at

least on the level of scattering theory.
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