A *K*-theoretic relative index theorem

.

•

•

.

Ulrich Bunke

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

MPI / 92-55

.

A K-theoretic relative index theorem

Ulrich Bunke*

July 22, 1992

Abstract

We prove a relative index theorem for Dirac operators with C^* -coefficients.

Contents

1	Introduction	1
2	Commutator estimates	3
3	The relative index theorem	5
4	Invertibility at infinity	7
5	An application	10

1 Introduction

Let $D: C^{\infty}(M, E) \to C^{\infty}(M, E)$ be a generalized Dirac operator acting on sections of a \mathbb{Z}_2 -graded bundle E over a complete Riemannian manifold. If 0 is not in the essential spectrum of D then the index

ind $D = \dim \ker D^+ - \dim \ker D^-$

is well defined. 0 is not in the essential spectrum if e.g. D is positive at infinity, i.e. there is a constant c > 0 and a compact set $K \subset M$ such that $r_{|M\setminus K} \ge c$ where $r := D^2 - \Delta$ is the endomorphism occuring in the Weizenboeck formula.

The original version of the relative index theorem due to Gromov/Lawson [8] computes $ind D_1 - ind D_2$ for two Dirac operators which are positive at infinity and which coincide outside of compact sets, i.e. D_i live on manifolds M_i , i = 1, 2 and there are open cocompact sets $U_i \subset M_i$ with smooth boundary such that $D_{1|U_1} \cong D_{2|U_2}$ and $r_{i|U_i} \ge c > 0$. Let $M^{\sharp} := M_1 \setminus U_1 \cup_{\partial U} M_2 \setminus U_2$ and glue the bundles using the odd morphism given by Clifford multiplication with the unit normal vector at ∂U with grading induced from $E_{M_1 \setminus U_1}$. Let D^{\sharp} be the associated Dirac operator.

^{*}Max Planck Institut für Mathematik, Gottfried Claren Str. 26, W-5300 Bonn 3

1 INTRODUCTION

Theorem 1.1 (Gromov/Lawson)

ind
$$D_1 - ind D_2 = ind D^{\bullet}$$

Another way to look upon this theorem is as follows. Consider $M = M_1 \cup M_2$ and the opposite grading of the Clifford bundle over M_2 . Let D be the Dirac operator over M. Obviously ind $D = ind D_1 - ind D_2$. We can now cut M at $\partial U_1 \cup \partial U_2$ and glue together again using the diffeomorphism interchanging the two boundary components obtaining \tilde{M} together with a new Clifford bundle and a Dirac operator \tilde{D} . In fact $\tilde{M} = M^{\sharp} \cup (U_1 \cup_{\partial U} U_2)$ and \tilde{D} is invertible over $U_1 \cup_{\partial U} U_2$ (here we assume for simplicity a product collar at ∂U_i in order to glue smoothly). Hence $ind \tilde{D} = ind D^{\sharp}$. The relative index theorem states that cutting and glueing as decribed above does not change the index:

$$ind D = ind \tilde{D}.$$

There are several generalizations of the relative index theorem [7], [5], [6], [1], [2], [4].

The aim of this paper is to give a K-theoretic variant of this theorem which applies also for operators acting on C^* -Hilbert-bundles over the base field k, which is **R** or **C**. Such opertors have been considered first by Miščenko/Fomenko [9]. Let M be a complete Riemannian manifold and A be a \mathbb{Z}_2 -graded C^* -algebra. A C^* -Clifford bundle S is a bundle of projective finitely generated graded A- C^* -right-Hilbert modules together with a metric connection and a Clifford multiplication satifying Leibnitz rule and compatibility with the scalar products of the fibres. We think the tangent vectors and the connection acting from the left. Let D be the associated Dirac operator. We define Sobolev spaces H^l , $l \ge 0$ using scalar products defined with D as usual (see [9]). In fact the H^l are A- C^* -right-Hilbert modules. We have $D \in B(H^1, H^0)$. Our basic assumption is

Assumption 1 There is a $S \in K(H^0)$ such that D + S is invertible and $S \in B(H^0, H^1)$, $DS \in K(H^0)$, $SD \in K(H^1)$.

Note that K stands for compact operators between A-C*-right-Hilbert modules (see [3], [9]). In general S fails to be odd or selfadjoint. We can now construct a Kasparov module (see [3]) representing the index of D. Let A := D + S and $F := [D(AA^*)^{-1/2}]^{odd}$ where $[]^{odd}$ is the projection onto the odd part. We have $F \in B(H^0)$ and deg F = 1. Let $C_g(M)$ be the C*-algebra generated by the bounded functions $f \in C^{\infty}(M)$ with vanishing gradient at infinity equipped with the supremum norm. There is a *-homomorphism $C_g(M) \to B(H^0)$ given by multiplication.

Proposition 1.2 (H^0, F) is a Kasparov modul over the pair of C^{*}-algebras $(C_g(M), A)$

Let us think of all structures over M be compressed in the symbol M. Then we let $[M] \in KK(C_g(M), A)$ be the class represented by (H^0, F) (in fact [M] does not depend on the choice of S since the difference of the F's for different S's is compact). Note that we work with KK-groups over the base field k. The equivalence relation used here is compact perturbation (see Blackadar [3] for details).

2 COMMUTATOR ESTIMATES

Let $N \subset M$ be a compact hypersurface cutting a normal neighbourhood U(N)in two pieces $U(N)_{\pm}$. Assume that there is a diagram

intertwining all structures. Then we can form a new manifold \tilde{M} cutting at Nand glueing together using γ and a new bundle \tilde{S} using Γ with associated Dirac operator \tilde{D} . Suppose that D and \tilde{D} satisfy Assumption 1. Then we can form $[M] \in KK(C_g(M), A)$ and $[\tilde{M}] \in KK(C_g(\tilde{M}), A)$. Restricting to constant functions we have elements $\{M\}, \{\tilde{M}\} \in KK(k, A)$. The main theorem in this paper is

Theorem 1.3 (K-theoretic relative index theorem) $\{M\} = \{\tilde{M}\}$

This theorem can be interpreted in special cases a relative index theorem for families or as equivariant relative index theorem.

One of our main motivations comes from the following situation. Let $k := \mathbf{R}$, M^n be spin, E be the real Clifford bundle with fibres isomorphic to the Clifford algebra C_n and V be a flat bundle of A- C^* -right-Hilbert modules. Set $S := E \otimes V$. Assume that there is a compact set $K \subset M$ and a constant c > 0 such that for the scalar curvature s we have the estimate $s_{|M\setminus K} \ge c$. Then D is invertible at infinity, i.e. there is a $f \in C_c^{\infty}(M)$ such that $D^2 + f$ is invertible. We want to know wether D satisfies Assumption 1. In fact

Theorem 1.4 If D is invertible at infinity then D satisfies Assumption 1.

As an application we construct for any discrete group π a group homomorphism

$$R_n(\pi) \to KK_n(\mathbf{R}, C_r^*(\pi))$$

where $R_n(\pi)$ is a group of *n*-dimensional bordisms M with prescribed positive scalar curvature metric at ∂M . (see section 5 for details).

The author thanks Stefan Stolz for the very stimulating discussion.

2 Commutator estimates

Let M be a complete Riemannian manifold and S be a Clifford- C^* -bundle with associated Dirac operator D. We form the completitions H^l , $l \ge 0$, of $C_c^{\infty}(M, S)$ with respect to the norms

$$\|\phi\|_{l}^{2} = \sum_{k=0}^{l} \int_{M} \|D^{k}\phi(x)\|^{2}, \quad \phi \in C_{c}^{\infty}(M, S)$$

where the norm of the right hand side is the point wise norm coming from the A- C^* -Hilbert module structure of the fibres. Note that the H^l are A- C^* -right-Hilbert modules with scalar product

$$<\phi,\psi>_l=\sum_{k=0}^l\int_M< D^k\phi(x),D^k\psi(x)>0$$

There is an analog of Rellich's theorem

2 COMMUTATOR ESTIMATES

Proposition 2.1 (Miščenko/Fomenko,[9]) For any $f \in C_c^{\infty}(M)$ the multiplication $f: H^l \to H^k$ is compact for k < l.

D extends to an operator $D \in B(H^{l}, H^{l-1}), \forall l \in \mathbb{N}$. Suppose that D satisfies Assumption 1 and form A := D+S. Then we have $(AA^{*})^{-1/2}, (A^{*}A)^{-1/2} \in B(H^{0}, H^{1})$. Note the integral representation

$$(A^*A)^{-1/2} = \frac{2}{\pi} \int_0^\infty (A^*A + \lambda^2)^{-1} d\lambda$$

where the integral converges in $B(H^0)$. For a bounded function f we have

$$f(A^*A)A^* = A^*f(AA^*)$$

$$Af(A^*A) = f(AA^*)A.$$

Since we want to commute A and $(A^*A)^{-1/2}$ we need

Lemma 2.2 $(A^*A)^{-1/2} - (AA^*)^{-1/2} \in K(H^0, H^2)$

Proof: We have

$$(A^*A)^{-1/2} - (AA^*)^{-1/2}$$

$$= \frac{2}{\pi} \int_0^\infty ((A^*A + \lambda^2)^{-1} - (AA^* + \lambda^2)^{-1}) d\lambda$$

$$= \frac{2}{\pi} \int_0^\infty (A^*A + \lambda^2)^{-1} (AA^* - A^*A) (AA^* + \lambda^2)^{-1} d\lambda$$

$$= \frac{2}{\pi} \int_0^\infty (A^*A + \lambda^2)^{-1} (SD + DS^* + SS^* - DS - S^*D - S^*S) (AA^* + \lambda^2)^{-1} d\lambda.$$

By the following decomposition we see that every term is bounded in $B(H^0, H^2)$ by $C(1 + \lambda^2)^{-1}$ and compact:

$$H^{0} \xrightarrow{(AA^{*}+\lambda^{2})^{-1}} H^{0} \xrightarrow{SS^{*}+SS^{*}+DS^{*}+DS} H^{0} \xrightarrow{(A^{*}A+\lambda^{2})^{-1}} H^{2} \in K(H^{0}, H^{2})$$
$$H^{0} \xrightarrow{(AA^{*}+\lambda^{2})^{-1}} H^{1} \xrightarrow{SD+S^{*}D} H^{1} \xrightarrow{(A^{*}A+\lambda^{2})^{-1}} H^{2} \in K(H^{0}, H^{2})$$

Also we need a commutator estimate for $(AA^*)^{-1/2}$ with functions in $C_g(M)$.

Lemma 2.3 For $f \in C_g(M)$ we have

$$[f, (AA^*)^{-1/2}] \in K(H^0, H^1)$$

Proof: W.l.o.g we can assume that $f \in C^{\infty}(M)$ is bounded with grad $f \in C_0(M, TM)$. Using the integral representation for $(AA^*)^{-1/2}$ we have

$$[f, (AA^*)^{-1/2}] = \frac{2}{\pi} \int_0^\infty [f, (AA^* + \lambda^2)^{-1}] d\lambda$$

= $\frac{2}{\pi} \int_0^\infty (AA^* + \lambda^2)^{-1} [f, D^2 + SD + DS^* + SS^*] (AA^* + \lambda^2)^{-1} d\lambda$

Note that $[f, D^2] = -Dgrad f - grad f D$ is of first order. By the decomposition

$$H^{0} \xrightarrow{(AA^{\bullet} + \lambda^{2})^{-1}} H^{1} \xrightarrow{[f,AA^{\bullet}]} H^{0} \xrightarrow{(AA^{\bullet} + \lambda^{2})^{-1}} H^{1} \in K(H^{0}, H^{1})$$

we see that the integrand is bounded by $C(1 + \lambda^2)^{-1}$. Compactness follows from Proposition 2.1. \Box

3 The relative index theorem

Let M be a complete Riemannian manifold and S be a \mathbb{Z}_2 -graded Clifford- C^* bundle with associated Dirac operator D. Suppose Assumption 1. Set $F := [D(AA^*)^{-1/2}]^{odd}$.

Lemma 3.1 The even part of $D(AA^*)^{-1/2}$ is compact.

Proof: Let ϵ be the \mathbb{Z}_2 -grading of H^0 and \sim denote equality modulo $K(H^0)$.

$$2[D(AA^{*})^{-1/2}]^{\epsilon_{\nu}} = \epsilon D(AA^{*})^{-1/2} \epsilon + D(AA^{*})^{-1/2} = D\epsilon[\epsilon, (AA^{*})^{-1/2}] = D\epsilon \frac{2}{\pi} \int_{0}^{\infty} [\epsilon, (AA^{*} + \lambda^{2})^{-1}] d\lambda = D\epsilon \frac{2}{\pi} \int_{0}^{\infty} (AA^{*} + \lambda^{2})^{-1} [\epsilon, AA^{*}] (AA^{*} + \lambda^{2})^{-1} d\lambda = D\epsilon \frac{2}{\pi} \int_{0}^{\infty} (AA^{*} + \lambda^{2})^{-1} [\epsilon, SS^{*} + DS^{*} + SD] (AA^{*} + \lambda^{2})^{-1} d\lambda \sim 0$$

Proposition 3.2 (H^0, F) is a Kasparov module over the pair of C^{*}-algebras $(C_g(M), A)$.

Proof: We have to verify

$$F - F^* \in K(H^0)$$

$$F^2 - 1 \in K(H^0)$$

$$[f, F] \in K(H^0) \quad \forall f \in C_g(M)$$

Then

$$F^* - F \xrightarrow{Lemma \ 3.1} (AA^*)^{-1/2}D - D(AA^*)^{-1/2}$$

$$\sim (AA^*)^{-1/2}A - D(AA^*)^{-1/2}$$

$$= A(A^*A)^{-1/2} - D(AA^*)^{-1/2}$$

$$\xrightarrow{Lemma \ 2.2} A(AA^*)^{-1/2} - D(AA^*)^{-1/2}$$

$$\sim D(AA^*)^{-1/2} - D(AA^*)^{-1/2}$$

$$= 0$$

$$F^{2} - 1 \xrightarrow{\text{Lemma 3.1}} D(AA^{*})^{-1/2}D(AA^{*})^{-1/2} - 1$$

$$\sim A^{*}(AA^{*})^{-1/2}A(AA^{*})^{-1/2} - 1$$

$$= A^{*}A(A^{*}A)^{-1/2}(AA^{*})^{-1/2} - 1$$

$$\xrightarrow{\text{Lemma 2.2}} A^{*}A(A^{*}A)^{-1/2}(A^{*}A)^{-1/2} - 1$$

$$= 0$$

W.l.o.g. we can assume f to be smooth and grad $f \in C_0(M, TM)$.

$$\begin{array}{ll} [f,F] & \stackrel{Lemma \ 3.1}{\sim} & [f,D(AA^*)^{-1/2}] \\ & = & [f,D](AA^*)^{-1/2} + D[f,(AA^*)^{-1/2}] \\ & \stackrel{Lemma \ 2.3}{\sim} & -grad \ f(AA^*)^{-1/2} \\ & \stackrel{Prop. \ 2.1}{\sim} & 0. \end{array}$$

Let $[M] \in KK(C_g(M), A)$ denote the class represented by (H^0, F) (as above we compress all structures in the symbol M) and $\{M\} \in KK(k, A)$ be the class obtained from [M] restricting to the constant functions in $C_g(M)$. Clearly $\{M\}$ is represented by (H^0, F) too.

Let $N \subset M$ be a compact hypersurface cutting a normal neighbourhood U(N)in two pieces $U(N)_{\pm}$. Assume that there is a diagram

intertwining all structures. We form a new manifold \tilde{M} cutting at N and glueing together using γ and a new bundle \tilde{S} using Γ with associated Dirac operator \tilde{D} . Suppose that \tilde{D} also satisfies Assumption 1. Let $\{\tilde{M}\} \in KK(k, A)$ be the class given by \tilde{D} .

Theorem 3.3 (K-theoretic relative index theorem) $\{\tilde{M}\} = \{M\}$

Proof: Note that $H^0 = \tilde{H^0}$ in a canonical way. Thus it is enough to show that

$$\Delta := F - \tilde{F} \in K(H^0).$$

Recall that we use the compact perturbation as equivalence relation in the KKgroups. Let $\psi, \phi \in C^{\infty}(M)$, $\phi \equiv 1$ outside of some small neighbourhood of Nand $\psi, \phi \equiv 0$ inside a smaller one such that $\psi \phi = \phi$. Set $\chi := (1 - \phi)$ and let $\rho \in C_c^{\infty}(U(N))$ such that $\rho \chi = \chi$. Let $\tilde{\Delta} := \psi \Delta \phi + \rho \Delta \chi$. Then

$$\tilde{\Delta} - \Delta = \psi \Delta \phi + \rho \Delta \chi - \Delta$$

= $(1 - \psi) \Delta \chi + (1 - \rho) \Delta \chi$
$$\overset{Lemma 2.3}{\sim} (1 - \psi) \phi \Delta + (1 - \rho) \chi \Delta$$

= 0

Thus it is enough to show the compactness of $\tilde{\Delta}$. Let us consider e.g. $\psi \Delta \phi$.

$$\begin{split} & \psi \Delta \phi \\ \overset{Lemma \ 3.1}{\sim} \quad & \frac{2}{\pi} \int_0^\infty \psi [D(AA^* + \lambda^2)^{-1} - \tilde{D}(\tilde{A}\tilde{A}^* + \lambda^2)^{-1}] \phi d\lambda \\ \overset{Prop. \ 2.1}{\sim} \quad & \frac{2}{\pi} \int_0^\infty D\psi [(AA^* + \lambda^2)^{-1} - (\tilde{A}\tilde{A}^* + \lambda^2)^{-1}] \phi d\lambda \end{split}$$

$$= \frac{2}{\pi} \int_0^\infty D(AA^* + \lambda^2)^{-1} (AA^* + \lambda^2) \psi [(AA^* + \lambda^2)^{-1} - (\tilde{A}\tilde{A}^* + \lambda^2)^{-1}] \phi d\lambda$$

$$\sim \frac{2}{\pi} \int_0^\infty D(AA^* + \lambda^2)^{-1}$$

$$= [(AA^* + \lambda^2) \psi (AA^* + \lambda^2)^{-1} \phi - (\tilde{A}\tilde{A}^* + \lambda^2) \psi (\tilde{A}\tilde{A}^* + \lambda^2)^{-1} \phi] d\lambda$$

$$\stackrel{Prop. 2.1}{\sim} \frac{2}{\pi} \int_0^\infty D(AA^* + \lambda^2)^{-1} [\psi \phi - \psi \phi] d\lambda$$

$$= 0$$

Analogously we handle $\rho \Delta \chi$. Thus $\tilde{\Delta} \in K(H^0)$ and also $\Delta \in K(H^0)$. \Box

4 Invertibility at infinity

Let M be a complete Riemannian manifold and S be a \mathbb{Z}_2 -graded Clifford- C^* -bundle with associated Dirac operator D. We say that D is invertible at infinity if there is some $f \in C_c^{\infty}(M)$ such that $D^2 + f$ is invertible as operator in $B(H^1, H^0)$.

Proposition 4.1 If D is invertible at infinity then $D \in B(H^1, H^0)$ is Fredholm.

Proof: We construct a parametrix $R \in B(H^0, H^1)$ such that $DR \sim 1$ and $RD \sim 1$. Let $\psi, \phi \in C_c^{\infty}(M)$ such that $\phi \equiv 1$ on supp f and such that $\psi \phi = \phi$. Moreover let $\chi \in C^{\infty}(M)$ such that $\chi \equiv 0$ on supp f and $\chi(1 - \phi) = 1 - \phi$. Let $R_U := D(D^2 + f)^{-1}$ and R_K be a parametrix of D with support on some compact set containing supp ψ . R_K can be constructed using pseudodifferential calculus as in [9]. Set $R = \chi R_U(1 - \phi) + \psi R_K \phi$. Then we have $R \in B(H^0, H^1)$. Apply now D.

$$DR = D\chi R_U(1-\phi) + D\psi R_K \phi$$

= $grad \chi R_U(1-\phi) + grad \psi R_K \phi + \chi D R_U(1-\phi) + \psi D R_K \phi$
$$\stackrel{Prop. 2.1}{\sim} \chi D^2 (D^2 + f)^{-1} (1-\phi) + \psi \phi$$

= $\chi (D^2 + f) (D^2 + f)^{-1} (1-\phi) + \psi \phi$
= $\chi (1-\phi) + \psi \phi$
= 1

$$RD = \chi R_U (1 - \phi) D + \psi R_K \phi D$$

$$\stackrel{Prop. 2.1}{\sim} \chi R_U D (1 - \phi) + \psi R_K D \phi$$

$$\sim \chi D (D^2 + f)^{-1} D (1 - \phi) + \psi \phi$$

$$= \chi (D^2 + f)^{-1} D^2 (1 - \phi) - \chi (D^2 + f)^{-1} grad f (D^2 + f)^{-1} (1 - \phi) + \psi \phi$$

$$\sim \chi (1 - \phi) + \psi \phi$$

$$= 1$$

Note that $RD, DR \in B(H^k)$ for any $k \ge 1$ and $DR - 1, RD - 1 \in K(H^k)$ by the same proof. Assume now that the fibre V of S is a free A-C*-Hilbert module.

4 INVERTIBILITY AT INFINITY

Theorem 4.2 Let $D \in B(H^1, H^0)$ be invertible at infinity. Then there is an operator S such that D + S is invertible and $S \in K(H^0, H^k)$ for any given $k \in \mathbb{N}$.

Proof: We construct first isomorphisms $H^{l} \cong l^{2} \otimes V$. Let $M = \bigcup_{\alpha} K_{\alpha}$ be a countable triangulation such that $S_{|K_{\alpha}} \cong K \times V$. For every α fix an orthonormal basis $\{\psi_{\alpha}^{i}\}_{i \in \mathbb{N}}$ in $L^{2}(K_{\alpha})$ where $\psi_{\alpha}^{i} \in C_{c}^{\infty}(int(K_{\alpha}))$. With respect to this basis we have

$$L^2(K_{\alpha}, S_{|K_{\alpha}}) \cong l^2 \otimes V.$$

Fix an enumeration of the ψ^i_{α} . Then we get also

$$H^{0} \cong \bigoplus_{\alpha} L^{2}(K_{\alpha}, S_{|K_{\alpha}}) = \bigoplus_{\alpha} l^{2} \otimes V = l^{2} \otimes V.$$

For $v \in V$ let $v_i = (0, \ldots, v, 0, \ldots)$ with v at the *i*'th entry and $L_n \subset H^0$ be the subspace generated by the v_i with $i \leq n$. By construction we have in fact for any $n, k \in \mathbb{N}$ that $L_n \subset H^k$ compactly embedded. For $l \geq 0$ we use the identification

$$l^2 \otimes V \cong H^0 \xrightarrow{(1+D^2)^{-l/2}} H^l$$

in order to construct the desired isomorphism. Define the subspaces $L_n \subset H^l$ as above. Again $L_n \in H^k$ for any k, n compactly embedded (do not confuse the L_n in different H^l).

We construct now decompositions $H^1 = U_1 \oplus W_1$, $H^0 = U_2 \oplus W_2$ such that

$$D = \left(\begin{array}{cc} D^1 & 0\\ 0 & D^2 \end{array}\right)$$

and D^1 is invertible, $W_1, W_2 \subset H^k$ compactly for any given $k \in \mathbb{N}$ (this construction is essentially due to Miščenko/Fomenko [9]). Let $DR = 1 + K_1$ where R is the parametrix obtained above. We construct decompositions $H^0 = M_i \oplus N_i$, i = 1, 2such that $N_i \subset H^k$ compactly for any k and

$$1+K_1=\left(\begin{array}{cc}1+K^1&0\\0&*\end{array}\right).$$

Since K_1 is compact we can find by definition (see [9]) a n_0 such that for all $n \ge n_0$ we have $||K_{1|L_{\pi}^{1}}|| < 1$. Let

$$K = \left(\begin{array}{cc} K^1 & K^2 \\ K^3 & K^4 \end{array}\right)$$

with respect to $H^0 = L_n^{\perp} \oplus L_n$ for some $n \ge n_0$. Then $1 + K^1$ is invertible. Set

$$X_2 := \begin{pmatrix} 1 & 0 \\ -K^3(1+K^1)^{-1} & 1 \end{pmatrix} \quad X_1 := \begin{pmatrix} 1 & -(1+K^1)^{-1}K^2 \\ 0 & 1 \end{pmatrix}.$$

Then

$$X_2(1+K_1)X_1 = \begin{pmatrix} 1+K^1 & 0\\ 0 & 1+K^4-K^3(1+K^1)^{-1}K^2 \end{pmatrix}.$$

4 INVERTIBILITY AT INFINITY

Set $M_1 \oplus N_1 := X_1(L_n^{\perp} \oplus L_n)$ and $M_2 \oplus N_2 := X_2^{-1}(L_n^{\perp} \oplus L_n)$. Note that $K_i \in K(H^k)$ for any $k \ge 0$. Thus choosing *n* large enough we have $(1 + K^1)^{-1} \in B(H^k)$. Then $N_i \subset H^k$, i = 1, 2. Let $P : H^0 \to N_2$ be the projection onto N_2 along M_2 and set $D_1 := (1 - P)D$. Then $D_1R = 1 + \tilde{K}_1$ and $RD_1 = 1 + \tilde{K}_2$ with $\tilde{K}_1 = (1 - P)K_1 - P$ and $\tilde{K}_2 = 1 + K_2 - RPD$. We construct decompositions $H^1 = \tilde{M}_i \oplus \tilde{N}_i$, i = 1, 2such that

$$1 + \tilde{K}_2 = \left(\begin{array}{cc} 1 + \tilde{K}^2 & 0\\ 0 & * \end{array}\right)$$

and $\bar{N}_i \subset H^k$ compactly for k as above. Consider the composition

$$H^1 = \bar{M}_1 \oplus \bar{N}_1 \xrightarrow{D_1} M_2 \oplus N_2 \xrightarrow{R} \bar{M}_2 \oplus \bar{N}_2 = H^1.$$

 $RD_{|\bar{M}_1}: \bar{M}_1 \to \bar{M}_2$ is an isomorphism. Hence $D_1(\bar{M}_1) \subset M_2$ is a closed subspace. Since $D_1(H^1) = M_2$ we have the factorization

$$\bar{M}_1 \oplus \bar{N}_1 \to D_1(\bar{M}_1) \oplus [D_1(\bar{N}_1) \oplus N_2] \cong M_2 \oplus N_2 = H^0$$

Let $\Pi: H^1 \to \overline{N}_1$ be the projection onto \overline{N}_1 anlong \overline{M}_1 and $Q: H^0 \to D_1(\overline{N}_1) \oplus N_2$ be the projection along $D_1(\overline{M}_1)$. Then $(1-Q)D(1-\Pi): \overline{M}_1 \to D_1(\overline{M}_1)$ is invertible. Let $U_1 := (1-Q)H^1$, $W_1 := QH^1$, $U_2 := (1-\Pi)H^0$, $W_2 := \Pi H^0$. Then we have

$$D = \left(\begin{array}{cc} (1-Q)D(1-\Pi) & 0\\ 0 & * \end{array}\right).$$

Note that $D_1(\bar{N}_1) \oplus N_2 \subset D_1 H^k + H^k \subset H^{k-1}$. Thus $W_i \subset H^{k-1}$, i = 1, 2 compactly. The formal difference of projective finitely generated A-modules

$$[W_1] - [W_2] \in K_0(A)$$

is the index of D. Since D is selfadjoint we have $[W_1] = [W_2]$ in $K_0(A)$. Thus there is a number $r \ge 0$ such that $W_1 \oplus A^r \cong W_2 \oplus A^r$. Choosing our n large enough we can assume that $W_1 = W_2$. It is here where the assumption on the fibre of S enters. Choose an isomorphism $I: W_1 \to W_2$ and set

$$\bar{D} := (1 - Q)D(1 - \Pi) + QI\Pi.$$

 \overline{D} is invertible and $S := \overline{D} - D$ is in $K(H^0, H^l)$ for any given $l \ge 0$. This proves the theorem. \Box

If the fibre of S is not free we can circumvent the stabilization problem as follows. We consider instead of H^l the spaces $\tilde{H}^l := H^l \oplus A^r$ for some large r and extend the action of D and $C_g(M)$ by zero. Then Theorem 4.2 holds on these spaces. The resulting classes $[M] \in KK(C_g(M), A)$ represented by (\tilde{H}^0, \tilde{F}) do not depend on r. There is also a corresponding modification of the relative index theorem 3.3.

5 An application

Fix a finitely generated group π . Any spin manifold N with $\pi_1(N) = \pi$ gives rise to a $B := BSpin \times B\pi$ -manifold (see [11]). The B structure

 $f: N \to B$

is given by the product of the classifying maps of the spin structure and of the universal cover of N. Consider the set $S_n(\pi)$ of tuples (M^n, N, F, h) where (M, N, F)is a n-dimensional B-bordism, $N = \partial M$ and h is a positive scalar curvature metric on N. S is a semigroup under disjoint union. Let ~ be the equivalence relation given by B-bordism. A B-bordism of (M, N, F, h) and (M_1, N_1, F_1, h_1) consists of a Bbordism (W, N, N_1, Φ) between $(N, F_{|N})$ and $(N_1, F_{1|N_1})$, a positive scalar curvature metric g on W which is product near ∂W and restricts to h, h_1 at N, N_1 and a zero-B-bordism (V, Ψ) of $(M \cup_N W \cup_{N_1} M_1, (F, \Phi, F_1))$. Note that $R_n(\pi) := S_n(\pi)/\sim$ is a goup. A similar group has been considered by B.Hajduk. It is a special case of a construction due to S.Stolz [10].

Theorem 5.1 There is a canonical homomorphism $R_n(\pi) \to KK_n(\mathbf{R}, C_r^*(\pi))$.

Proof: Let $(M, N, F, h) \in S_n(\pi)$. Choose a metric on M such that it is product near N and restricts to h. Glue a metric cylinder $[0,\infty) \times N$ at the boundary of M obtaining the complete manifold M and extend F constantly. $F^*E\pi$ is a π -principal fibre bundle. Associate $C_r^*(\pi)$ and obtain a flat bundle with fibre $C_r^*(\pi)$ using the canonical action of π on $C_r^*(\pi)$ from the left. Let E be the real Clifford bundle with fibre C_n associated to the spin structure and form $S := E \otimes V$. S is a C^* -Clifford bundle over $C_n \otimes C^*_r(\pi)$. Let D be the associated Dirac operator. Since the scalar curvature is positive at infinity, D is invertible at infinity and we can form $\{\overline{M}\} \in KK(\mathbf{R}, C_n \otimes C_r^*(\pi))$. Clearly the map associating to $(M, N, F, h) \in S_n(\pi)$ the class $\{\overline{M}\}$ is additive. We must show that it factors through $R_n(\pi)$. Let (W, N, Φ) be a zero-B-bordism of (N, F_N) , g be a positive scalar curvature metric on W which is product near ∂W and restricts to h on N and (V, Ψ) be a zero-B-bordism of $(M \cup_N W, (F, \Phi))$. Let $L := \overline{M} \cup \overline{W}$ and $\tilde{L} := W \cup_N M \cup \mathbb{R} \times N$. Then $\{L\} = \{\overline{M}\}$ and $\{L\} = \{W \cup_N M\}$ since on the remaining components there are positive scalar curvature metrics and the Dirac operator is invertible there. By the relative index theorem $\{L\} = \{\tilde{L}\}$. But $\{\tilde{L}\} = 0$ since the Dirac operator is zero-bordant. Hence $\{M\} = 0$. This proves the theorem. \Box

The idea of this construction is due to Stefan Stolz.

References

- [1] N. Anghel. L^2 -index formulae for perturbed Dirac operators. Communications in Mathematical Physics, 128:77-97, 1990.
- [2] N. Anghel. Preprint, MSRI Berkeley. 1991.

- B. Blackadar. K-Theory for Operator Algebras. Math.Sci.Res.Inst.Publ. No. 5 Springer, New York, 1986.
- [4] N. V. Borisov, W. Müller, and R.Schrader. Relative index theory and supersymmetric scattering theory. Communications in Mathematical Physics, 114:475-513, 1988.
- [5] U. Bunke. Dirac Operatoren auf offenen Mannigfaltigkeiten. PhD thesis, Ernst-Moritz-Arndt-Universität Greifswald, 1991.
- U. Bunke. Relative index theory. Journal of Functional Analysis, 105(1):63-76, 1992.
- [7] H. Donnelly. Essential spectrum and heat kernel. Journal of Functional Analysis, 75(2):362-381, 1987.
- [8] M. Gromov and H. B. Lawson. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math IHES, 58:295-408, 1983.
- [9] A. S. Miščenko and A. T. Fomenko. The index of elliptic operators over C^{*}algebras. Izv. Akad. Nauk SSSR, Ser. Math., 43:831-859, 1979.
- [10] S. Stolz. Concordance classes of positive scalar curvature metrics. in preparation, 1992.
- [11] R. E. Stong. Notes on Cobordism Theory. Princeton University Press, 1968.