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1. Introduction

A number of well-known results in differential geometry (see,
e.g., [2], [4]), [8)) admit the following general description: a set
! whose elements are Riemannian manifolds satisfying certain bounds
on geometric quantities such as curvature, volume, injectivity radius,
etc., is compact with respect to some metric topology on Q.

For analogous results in submanifold theory, one might assume
bounds on the second fundamental form and seek a correspondingly
extrinsic type of convergence, e.g., in a more standard function
space sense. Our main result can be viewed as a compactness theorem
in this spirit for the classical situation of surfaces in R®.

In the following theorem we denote by dV the induced area
element, II denotes the second fundamental form, and k1, k2 the

principal curvatures:

Compactness Theorem Given constants A, E, and p>2, let Q be the

set of immersed surfaces y:M -+ R?® satifying Area(y)= ]M<n7<A,

2
B ()= fy 1T1IP av - jM(k;m;)P/ dV<E, and [, ¥AV=0 (y has "center
of gravity " at the origin). Then for any sequence {y™} in Q, there
exists a sequence of surface diffeomorphisms {")} such that a sub-

sequence of {wno¢n} converges in the C1 topology to an immersion ¢ in Q.

ﬁere M is assumed only to be complete (and without boundary),
but as shown in [5], the above bounds imply M is in fact compact, so
we might as well assume compactness of M from now on. Also, though

the topological type of M may be allowed to vary over 1,



the finiteness of topological types represented by  happens
not to be at issue here, as the Gauss-Bonnet theorem obviously
implies a bound on the Euler characteristic of such M ; thus, we
might as well fix M for the purpose of further discussion. Finall:
we specify the smoothness of the above maps: Q is a subset of the
Sobolev space L, p M,R*) of maps of M into R}  whose
derivatives up to order 2 are p-integrable, and the diffeomor-
phisms ¢; have the same smoothness.

In the course of proving the above theorem, convergence is
actually obtained in the weak - L2'p sense. Moreover, the function
Ep is shown below to be weakly lower-semicontinuous on .
Imm, o (M,R3) = { ¢ in Lz,p (M,R3) ;. ¢ is an immersion }. Thus we

arrive at the following

Existence Theorem For p > 2, the functional Ep achieves its

1

infimum within each component of Imm2 p N Area ' (1), i.e., in
’

each regular homotopy class of unit area Lyp ~immersions of
’

M into R3.

As the case p = 2 is "borderline" for the Sobolev inequalit:

1 (M,R3) only for p > 2), the

(L (M,R3) is included in C
2,pP

above compactness theorem is apparently unimprovable in the sense

that a bound on E, does not prewent immersed surfaces from

degenerating (an interesting example of this behavior is described

at the end of Section 2).

On the other hand, this leaves open the possibility that
the solutions given by the above existence theorem persist in the

limit as p approaches 2. iﬁié';bint is of particular interest



since E2 is variationally equivalent to the total squared

mean curvature functional, F(y) = IM Hz dv; to be precise, if
x (M) 1is the Euler characteristic of M , the Gauss-Bonnet theorem
gives Ez(w) = 4 F(¢) - 47 x (M). While some beautiful results
about F have been proved, it is not even known, e.g., if there
exist any minima for F (among immersed surfaces in R3) other than
the standard sphere.

It appears extremely likely that the "Clifford torus",
T/f s, obtained by revolving thé circle ‘C = { (x,0,2) in R3 3
(x - /3 F + 2% = 1 } about the z-axis, yields a minimum for F
among immersed tori. However, the Willmore inequality
ITZ H2 dv 2 2n2 = F (T,i) remains a conjecture except in certain -
cases the (result has been established recently for canal surfaces
by U. Pinkall, and for a large class of conformal types of tori
by Li and Yau [ 6]).0ne strategy for proving the general conjecture
is to prove the above existence theorem for the case M = Tz, p =2,

and show that all critical points of F (among tori) satisfy the

inequality.

All known critical points of F arise from two sources.

First, a result of Weiner [ 9 } states that minimal submanifolds

3 are taken to critical points of F under stereographic

3

of s

projection of S onto R3. This result is a consequence of the
fact that a generalization of F 1is invariant under conformal
changes of metric in the ambient space. Second, a very recent

paper of Bryant [ 1] classifies all critical points of F for

M= s2 , after proving the beautiful result that to such a critical

point one can associite a holomorphic quartic d{fferential”on M.



2. Non-Parametric Estimates

A basic difficulty to be confronted is that the functional
Ep does not depend on parametrization and therefore cannot control
derivatives of y . Our strategy for overcoming this problem begins
with the fact that any immersed surface ¢: M —> R3 can be
considered locally as the graph of a function h : Dr —>» R, where
Dr c R2 is the open disc of sufficiently small radius r. In this
section we obtain estimates which refer to the functions h which

arise in this way, rather than to the global parametrization ¢ .

First we fix some notation. We will denote the norm on

0
co) by || “0 , the norm on Lp(Dr) by | ”p , and the norm
on L, 5 (D) by I “k,P' We will use the multi-index notation;
for instance, if y = (i,j) for positive integers 4i,j, then

[y] = i+j, and

Y= 2, thus ||n)® =) oY nI? .

ax:1L ax kP ry)sk

The following lemma is essentially a statement of the fact that

in the “non-parametric", i.e. graph case, the functional Ep is

non-uniformly elliptic.

Lemma 2.1 Let ¢ € L2 p(Dr,R’) be of the special form
’
v(x,y) = (x,y,h(x,y)), vwhere h:Dr - R

is a smooth function. Then for p 2 2,

Y P P ' 1 3p"1
E : P'h s 4F(1+j}Vh ) E



Proof: We set s = hx ,t = h U =nh .V =h W =nh '

v XX Yy xy
and A = 1 + s2 + tz. Then the graph of h has mean and
-3
Gaussian curvatures H = % A 2[(1+52)V + (1+t2)U - 2stW],

2 + tz)(UV - wz). So we get the

Pl
following inequality for the integrand of EP(W): (4H2—2K)2A2
1-3

A

K=2a2@wv-w)=n3(1+s

[(1+s2)2v2 + (14t 202 + 2014524824252 Y)W

4+ 282¢20v - 4(14s2)stvW - 4(1+t )stuw]P/2

1-3
=2 2 [(82V+t20—25tW)2
2.2 215
+ (UT+VT+2W )]

+ 2(sV-tW)2 + 2(tu-sw)2

- 1-3
AlT?E[u + v 2w2]7 -7r2[lu|p + |v|P + zlwlp].

Since A = 1 + IVh]2 s (1 + IVhl)z, we have

=N

A (x,y) 2 (1 + lthHcﬁ1-3p' vix,y) € M. Therefore, inte-
grating over M gives Ep(w) 2 (1+|thH(ﬂ 1-3p[M]U|p+]\l]p+2|wlpdydx

1-3p Yu|| P -pP 1-3p Y P
= (1+]pWh]],) lIoYn]l £ 2 4 F(1+]|vh]],) ¢ T llo™|l )
o mgz P ° [y]=2 Pt -

In order to deal with the non-uniformity, i.e., to control
Vh, we need the folloﬁing Sobolev-type inequality due to Morrey

(a proof is given in [3], p. 23):

Lemma 2.2 Let p>2, and r>0. Then for all h in L, p(Dr) and for
_———— ’

all z in Dr' 2

|h(z)-h(0)] s 16 r P Hthp .



Applying Lemma 2.2 to 3% ' 3y and summing, we obtain:

Lemma 2.3 Suppose p>2, r>0, and h is in L2 p(Dr) and satisfies
’
2

Vh(0)=0. Then ||Vh||, s64 r P [z;zn'o*nnp .
'Y =

To summarize the above in words: a uniform bound on Vh implie
an Lp-bound on second derivatives of h (given the bound on Ep),
while an Lp-bound on second derivatives gives rise to a uniform
bound on Vh. Of course the situation is not so circular as this
statement makes it sound, for the radius of the domain Dr enters
into the latter estimate.

In order to make use of this information we first introduce
some notation. Given g€M, let A:R?® +R® be the Euclidean isometry
which takes the origin to y(g) and whose differential takes
e3=(0,0,1) to the inward unit normal to ¢ at g (to simplify nota-
tion we are assuming M to be orientable). Let n be the standard

projection of R*® onto the x,y-plane,

and define U q to be the g~component of ( n o A" Te w)-1(Dr).
’

For r,a >.0 , let us call an immersion ¢ : M —> R3 an

{r,a)-immersion if, for each point gq .€ M, A-1o v (U ) is the

r,d

' function h:D. —> R satisfying il v hll‘ S a.

graph of a C

Theorem 2.4 Let p> 2, let o<a § 1 . and suppose

¢ € Imm, o (M,RB). Then ¢ is an (r,a)-immersion for all r salishyi
[}

»~11p Eﬁ‘f_
p(w).



¢‘-

Proof Pick q € M, and suppose s > o is small enough so that

d(lq é wi is non-singular on Ug q - Then since M is compact
’

the local homeomorphism uq °o ¥ Us'q — Ds,q is actually a

covering projection. But D is simply connected, so in fact

s,q

s, oYy : U ~3 -D is a homeomorphism. It follows that
q 5,9

5,9
v (Us,q) is the graph of a function over Ds'q .

Now let S be the largest number such that ¢ (US } is

+d

the graph of a function h : Dé q —> R. By the previous paragraph,
’

it follows that || vh ”0 = ». Therefore, since Vh (o) = o,

there must exist g o<rq'<s such that ||vnl%= a .

It remains to estimate rq . Using Lemmas 2.1 and 2.3, we get

1-2 1-2 3p-1 1
6. p Y 6. p o P
= ||v 52 2 .
a= || hqllo g ME'Z lip hqllps ry Pa(1+a) (E, (¥))

Solving for rz and using the fact that 1+as2 one

P
-1ip _a
obtains rq > 2 E;T?T . ]

b ! ¥ cannot degenerate to a non-

immersion. It should be noted, however, that the (r,a)-bound does

Thus, given a bound on E

not imply a lower bound on the injectivity radius. In fact, we

can easily describe a function h:R2 —> R (and satisfying
IIVh{[o < a) but having a graph with arbitrarity small injectivity
radius. To do so, we begin by choosing a positive integer n,

setting ¢ = %ﬁ , and defining a continuous function h by

'ﬁ(e-l(x.y)-(zmﬁuo)l).if | (x,¥)-(2me,0) |< €, m an integer

h (x,y)= J

. o if (x,y) not in one of the above discs .,



We then smooth h to get h such that | vhHo :IIVEI% = a,
h is C' close to h . and h preserves the symmetry of h with

respect to the x-axis. Then the origin is joined to the point

AITYL

n
lying directly over the x-axis), while a path making a "detour

(x,0) by a geodesic of length approximately (the geodesic

around the cones" can join the same two points with length

/T+a?

approximately % + 2€ < -

Finally, we show by an explicit example how Theorem 2.4
(hence also the compactness theorem itself) can fail in the case
p=2. Our example depends on the fact that EZ is invariant under
conformal transformations of R3— { point not in w(M)}' (essentiall
a special case of the conformal invariance property mentioned in

the introduction).

Let X, = - (V2 + %,,o,o) and let ¥ be obtained by
inverting Tlf (see introduction) about Xn and normalizing
area by the appropriate dilation. Then {wn} is a sequence
of critical points of E2 (in fact minima, if the Willmore
conjecture is true) satisfying Ez(ﬂi) = Zuz, Area (wn)nv1,
for all n. Yet the geodesic C of the original torus T/f is
taken to a geodesic whose length is approaching zero; thus, no
reparametrization of wh can approach an immersion. Curiously,
though, the image of ¥n is approaching the standard sphere of

unit area.



3. Convergence

The previous section suggests that it may be convenient,
for the present purpose, to consider an immersed surface as a
system of graphs and to work with a notion of convergence adapted
to this point of view. We begin this section by making this idea
precise and showing that, given a sequence of immersions in the
set N defined in the introduction, one can extract a subsequence

{1} which converges in such a manner.

This enables us to reparametrize the immersions by a kind of

k (for some fixed

*averaged normal projection® of *n onto *n+
large integer n) in such a way that the reparametrized sequence
converges weakly in Lz,p (H,RB) to an immersion. The reparame-
trization step involves a bit more work, and we relegate to the
appendix some detailed verifications of "intuitively obvious"

properties of the projection construction.

In the following lemma we record some useful facts which refer

to the notation introduced before Theorem 2.4:

Lemma 3.1 Let ¢ : M — R3 be an (r,a)-surface and let p,q € M.

a) If pE€ U, then |v(q) - v(p)l< (1+a?)r

2

q

1
<3 and U.!'.'p n Ur,p + @ then DElP c Ur,q .
4

b) If a
‘ ] 1

Proof: Part a) is abvious. To prove b) , let

x € ur s Y€ Ur n Ur .« Then

TIP z'tq Tlp
qu(x) [sjw(x)-p(q) |s|v(x)=v(p) | +]w(p)-w(y) |+]o(¥) -y (q) ]

-1
P 3(1+a2)§ <r.soU, nU_ S (D). But U
P T

v U
P %.q

~ir



is a connected set containinag q, so in fact, .it must be con-

. . -1
tained in the g-component of °q (Dr)' i.e., pr,q’ So

Ur < Ur q’ Q
P
Let @ = {q,,....q } be a finite set of points in M, and let

m
0<&<r. Ve call Qa é-net for v if M= U U .
i=1 89

Lemma 3.2 I1f ¢ is an (r,a)-surface, a’<% , and 0<6§<r, then
there exists a 8-net for y which contains

fewer than E% » Area (y) points.

Proof: Pick a9, arbitrarily, and pick q, ¢ 06,q1' By lemma 3.1,

= ¢, If {UG } is not a cover

U
2 /9,89y

U nou
6 8
7' 34

for M, pick q, ¢ u, U Ug o - Lemmadl implies

:q1 lqz
06 n U‘S =¢, 1 = 1,2. We continue in this way. Since
9% 7Y%
T M52 52
Area (y) 2 ] Area(U, ) 2z ] T(z)” 2 m &, we see that this
i=1 T'qi i=1

procedure must yield a cover after at most —67 Area(y) steps. O

3

Now suppose ¥$:M —> R is an (r,a)-immersion and

Q={q1 n...,qm} is a é-net for ¢ . To each inQ we can

associate a Euclidean isometry A;» a neighborhood U,=U of q,

i rlqi
1
and a C -function hi : Dr —>» R, as described earlier. We can

also assign to each q; a set zic {1,2,...,m} as follows:

j € 2, if and only if U h - .
J i 4 6y as non-empty intersection with Us'qj



-11-

Thus we associate to ¢, Q, r, 6, a graph system,

n :
r= { Ai'hi'zi }131 (of course Ai,hi are not quite uniquely

determined, but in any case O= h(0)=vh(0)).

Next we consider a sequence of immersions (¢n} in 8 and
show how to extract a subsequence which converges in the sense of
graph systems. We begin by choosing 0<a2<% . and O<r<1 such that
Theorem 2.4 imélies all the *n are (r,a)-immersions. Next we
take 6<r and use Lemma 3.2 to choose 6&-nets Qn containing
at most %21\ points. Since we can always pass to a subseguence
if necessary, we might as well assume the nets Qn all have

m elements and that z? =2, for some fixed sets 2

. i ]

By Lemma 3.1 a),,we know that the diameter of wn is bounded
by 2m({(1+a)r. But the wn all have center of gravity zero, so
in fact, they are all contained in some fixed ball. It follows
that we can assume all the Euclidean isometries A? converge to

some fixed isometries A in the sense that

i

llA? - Ai" =|:Ff%iAQ(V) - Ai(v)l tends to zero.

Finally, using Lemma 2,1, the (rg)-bound, the bound on

E_, and the fact that 0=h"(0), we obtain a bound on || h?| .
P i it'2,p

(Dr’ is compactly embedded in C1(Dr) (for p>2),
1

Since L2'p

we can therefore assume that the h? converge in C to functions h,.

i

Defining the distance between two graph systems

-— - m —
I= { Ai'hi'zi }?-1 and T= { Ai'Ei'zi }1.1 hy “ r—r” =

m : -
T llAi - §i||+ ||h1 - hi“ 17 we can summarize the above by
o

i=1

Theorem 3.3 Any sequence of immersions in f has a subsequence {y"}

which admits a Cauchy sequence of graph systems.
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In order to obtain a stronger type of convergence we first
take a bit more care in our choice of constants: let °=T%U v
then choose rs1 according to Theorem 2.4, and set 6=%%. Now
let wo,w1,¢2,... be the sequence of (r,a)- immersions provided
by the above theorem, with corresponding Cauchy sequence of graph

systems r°,r1,r2,..., and §-nets Qn = { q2=A:(o) }m p

i=1

n=o0,%1,2, ... Since we can always pass to a subsequence if
necessary, we might as well assume that |[r"-T®|| <e= ar for
all n. Moreover, we might as well assume, for gonvenience, that
wo itself is C¢© since we could make a C1-perturbation to
smooth wo (it isn't quite obvious that such a perturbation
need not do slight damage to the (r,a)-bound or the estimate

on ||r“-r°]|, but we can always start with slightly smaller a,¢).

The object now is to "project® wo onto the subsequent

immersions wl,wz,w3, ess » thus inducing diffeomorphisms

¢n : M—> M such that the reparametrizations wn o ¢n converge

to an immersion, as claimed in the compactness theorem. In
discussing the projection construction we will simplify notation
by dropping the superscript o and replacing the superscript n

by a bar above the letter; for example, we will write

n..n
o« ¥, hy, U7 n,

- - - o o o
v, hi' Ur'qi, Vv, hi' U_ - in place of v, hi' Ur’qi r,q;

r,qi

respectively.

The first step is to define an approximate unit nqrmal along

v, X:M ——a»sz, which satisfies much better bounds than the actual

2

(inward) unit normal along ¢, N:M — S (as before, we are

assuming M to be orientable to keep the notation simple).
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Set Nisntqi), and for q€M, let Z(q) be the set

of integers i such that q € U We will make use of an

rlqi'

auxilliary function g : R* —> R which is ¢~ and which
satisfies: g(t)=1 for t<%, g(t)=0 for t>1, and —2<g'(t)<o

for all t. We now define a vector S(q) by

(3.1) Slq)=

v(9) =¥ (q;) ]
(l - )“i'

1€Z(q) o

" Finally, our approximate unit normal is the vector X(q)=f§%q;"

Now let zq be the line parametrized by Lq(t) = ¢y(g) +tX(q).

It is shown in the appendix that if g 1lies in U6 q then
’
i

there exists a unique number, T(g), such that zq(T(q)) lies
3

in *(ur'ai). So let us define a map VY : UG:qi -—> R~ by

(3.2) Y{q) = lq(T(q)) = v(q) + T(q)X(q)

and a map ¢ : Us'q —> M Dby letting 4¢(q) be the unique point
- - i - - .

q in U_ = such that y(q) = ¥Y(q). It is verified in the

rcqi

appendix that if q also happens to lie in U then the

6'qj
corresponding construction leads to the same T(q) , Y{(g) , ¢(q).

Since M 1is covered by the sets U we thus obtain globally

c,qi
defined mapgs T : M—> R, ¥ : M —> Ra, and ¢ : M —» M.

Of course, Y = vee.



-14~

It remains to show that ¥ is an immersion‘which is C1

close to ¢ and which satisfies an -bound; returning to

La.p
the sequence {wn} we will then be able to extract from the
corresponding sequence {?n=¢no¢n} a subsequence which converges

to an immersion in C1 and converges weakly in (by the

L,,p

N are diffeo-

Eberlein - Shmulyan Theorem). The fact that the ¢
orphisms is automatic. For ¢n is an immersion if Yn is, hence
by compactness of M, ¢n:M —> M is actually a covering projection.
Since ¢n is obviously not a multiple covering, ’n must be

a diffeomorphism.

To obtain the necessary local information about derivatives
of ¥ =49 + TX we use the atlas on M induced by the graph

system T to pull back the maps wlu . X|U ‘ Tlu
r,qi . rlqi r'qi

to the disc Dr . and we use the atlas induced by T to pull

back the maps ;ﬁ - to Dr' The same letters will be used
r,q
i

to denote these pulled-back maps; thus, e.g., we will write
v(w = A, (wh (w), ¥lw =&A lwh (w)), for wenD.

3

Furthermore, we can assume A, is the identity on R”.

i
Let 13,: denote the orthogonal projections of R3 onto

the z-axis and x,y-plane, respectively. Define G : Dr x R —>R by

(3.3)  G(w,t) = B, ( v y(w)+tnX(w) - Sy - trx(w).

Applying 13 to equation (3.2) and comparing with (3.3) yields

(3.4) 0 = G(w,T(wW)),

for all we€ D&‘
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In the appendix, the implicit function theorem is applied
to (3.4) to show that T is differentiable. Also, by fefininq
our choice of €, we obtain sufficiently good estimates for |T|
and ||DT|| (the double bars denote the operator norm), to

conclude that at each w'€D6,

ioy-pwil s || T} + |}l ox|| <%. It follows that Y is
an immersion with a differential which satisfies |Dv(w)u|>»%

for all w € Dr and unit vectors u € R2.

To get the second derivative bound on Y = ¥+TX recall
that ¢y, X are fixed smooth maps, so it suffices to bound T

in L (M,R). We can define our normon L via the fixed
2,p 2,p

atlas used above (that induced by ). Thus, we are clearly
done once we bound D2T in Lp(Dr)° As shown in the appendix,
this bound follows readily from the second derivative of
equation (3.4) together with the estimate on 'lﬁilh,p

provided by Lemma 2.1.
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4. Lower Semi-continuity

In the previous section we obtained a sequence {¥")} in @

which converges weakly in L to an immersion ¥ € L It

2,p 2,p’
remains to show that EP(W)S lim inf EP(Wn), hence ¥ € © , thus

completing the proof of the co:p;c:ness theorem. Also, by choosii
as our original sequence a mihimizing segquence for Ep in a given
regular homotopy class of unit area immersions, we will simutane:
ly obtain the existence theorem,

We begin by stating a straightforward generalization of a
theorem of Morrey (see [7], p. 22) to higher order integrals. Fo

A a bounded domain in Rd and ¥y € L p(A,Rm), we will let v stand

k,
for the derivatives of ¢ of order 0 up to k-1, and ¢ will stand
for the derivatives of ¢y of order k. An element of A will be
denoted by §.

Theorem 4.1 Suppose F=F(f,v,z) is C?, F20, and F is convex in

the set of variables f, for each fixed £,v. Then the functional
I(y)= ]AF(i,c,v) d€1...d£d is lower semicontinuous with respect

to weak Lk 1(A,Rm)—convergence.
14

At this point one could easily apply Theorem 4.1 to Ep in
the graph case V¥(x,y)=(x,y,h(x,y)), and then make use of the
graph system convergence to obtain the desired inequality.
However, we choose to work with arbitrary global parametrization
and obtain a result of independent interest; in particular, for
the lower semi-continuity result itself there is no reason to

exclude the case p=2.
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For /c :Rz, and v: A +R3 an L2 p(A,mB)-immersion, let
‘ 2 2 2
s 16—2:-, t 5%, U -~ , vV a.y s W R‘W' E <s,s>,
a0
F=«<s,t>, G= <t,t>, A = EG - Fz, L =A 2det(s),
t
2, (¥ 2, (Y
v = A det(s), w=A det(s). Then the surface ¢y has mean
t t

and Gaussian curvatures H = % A-1(En - 2Fm+ GE),

K=2a"(n -m?). We set

Fp(x,y,s,t,U,V,W) = [A(S,t)]2[4H2(S,t,U,V,W)

- 2K(s,t,U,v,w)]§, and EP(W) = IAFp(x,y,s,t,U,V,W)dy dx.

Lemma 4.2 For p & 2, Fp is convex in the variables Ui,
Vi, wi ‘i = 1,2,3 (thebcomponents of U, V, W).

Proof: Let Bi be in R?, i=1,2,3, and let B=(0,...0,81,82,B3).

Observe that Fz is a homogeneous second degree polynomial in Ui,

Vi, Wi, i=1'2'3. Thus, D:Fz (X,Y,S,t,U,V,W) (BIB)=2F2(xIYJslt'B1182183)200

By the chain rule, the case p>2 now follows from the case p=2. ©o

Theorem 4.3 Let p22, and suppose a sequence of immersions {w“}

converges weakly in Lz'p(M,R’) to an immersion y. Then

n
E,(¥) s 11:_’1:f E,(47).

Proof: By Lemma 4.2 we see that Pp satisfies the hypothesis of
Theorem 4.1 (where it has been defined, i.e., for (g,f,v) coming
from an immersion). Of course, our maps y are defined on a manifold
M rather than on a domain A in R?. However, we can think of M as a
polygon with identifications on the boundary; thus, omitting a set

of measure zero, we can pull our maps back by a fixed diffeomorphism

to a polygonal domain in R? and then apply Theorem 4.1. o
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5. Appendix

Here we discuss details of the projection construction of
Section 3. Thus we are considering two (r,a)-immersions ¢ , E,

and ‘corresponding graph systems T,T, satisfying || r-T]| <¢= ar.

m

i=1 ¢

We also have the §-nets Q= { qi=Ai(°) }?=1 and Q= {§i=ii(0) }

on which the graph systems T,T are based. The numbers o and §
{and hence also ¢ ) are assumed to be small, and it will be seen
below how precisely to determine these values such that the

projection construction works.

Lemma 5.1 For any g€M , |X(g) - N(qQ)] s Y2 a. Also, if

i€z {q), i.e., if q €U then |N(q) - N(qi)l s /2 a .

’
r,qi
Proof: We might as well assume that w(qi) is the origin and

N{g;) = (o,0,1), hence (U q ) 1is the graph of
24

h : D, —> R which satisfies || vh|| j<a.

Now N(q) is a unit normal to the graph of h, so it can
ah’

2 2
Setting N(gq) = (a,b,c), it follows that e_%E_ s a?.
c

1
be written N(q) = (1*|Vh|2) 2 (= %%'

1

1+a?

Since a?+b?+c?=1, we conclude that c? 2 . which implies

IN(@) - N(q))| = 2(1-¢c) s 2 o .

The first statement now follows from the observation that
X(g) 1is a normalized (weighted) sum of the vectors xi\c N(qi),

i €2 (q) , all of which lie in the hemisphere whose "pole" is N(q).



-19-

Lemma 5.2 Assume & = 6+ W0e<r <1, and suppose q € UG q
’
i

Then the line zq (defined in section 3) has non-empty inter-

section with ¢ (U= = ).
6lqi

Proof: Let C be the boundary of ¥ (63151) (so C is an
embedded circle in R3). The idea of the proof is to show that C
is not nuli-homotopic in RB-{Lq} .

We might as well assume X{q) = (o0,0,1) (so 2q is parallel
to the =z-axis) and ;(ai) is the origin. We note that the

distance between (0,0,1) and the unit normal to ¢ at &i can
be estimated by |N(g,)-X(a)| s |H(g)-N(g)| + [N(gy)-N(q)]| +

IN(Q)-X(q)| < € +2/2 a <4 a (here we used Lemma 5.1 and the
fact that || r-T|| < ¢€).

It follows easily from this estimate, together with the
(r,a)-bound on v that C can be parametrized as a curve C(8)

which stays very close to the circle y(8) = &(cosé ,sine , 0);

to be precise, || C-y||°< 4 a (1+a2) § <8¢. Of course, the

projection of C onto the x,y-plane is at least as close to .

On the other hand, the projection of zq is the point

obtained by projecting y(q). But |y(q)]| = lW(q)’5(51)| <
lvt@-via )| + lvla)-F(@)| s (1va)see < eo2¢ .

Since 6+2¢ < 6-8¢ , the result follows. o



Lemma 5.3 In addition to the hypothesis of Lemma 5.2 assume
a < #% . Then lq intersects E(ﬁr 3 ) in a unique point.
, I3
i
Proof: This time it is convenient to assume ﬁ(ai) = (0,0,1).

Then from the estimate Iﬁ(ai)—x(q)|<4u of the previous proof

we conclude that lq has "slope" greater than % . Now if zq
intersects E(ﬁr,ai) in at least two points the mean value theorem
implies that the curve obtained by projecting 2q vertically

onto E(ﬁr a ) also has "slope" somewhere greater than % . But
r .

this contradicts the (r,a)-bound on E .

Lemma 5.4 In addition to the hypothesis of Lemma 5.3 assume

§ £ . Suppose also g € U for some Jj . Then $-1(£ )
4 quj q

intersects Usx = and Uz = in the same point.

G,qi G,qj

Proof: The assumption q € U implies j € Z (see Section 3

qui i

for the definition of 2Z,). Thus, Ug’ai intersects ﬁE:&j
non-trivially. Lemma 3.1 now implies that ﬁg 3 is contained in
i ’ .
3

SO the stétement follows ffom Lemmas 5.2 and 5.3. o]

-

Urrc-li
On: inspection of the above lemmas, we see that the projection
construction makes sense if we choose our constants as follows:

X

= = I -
r<1, as= 700 (so e = 100), and § = 10 °

However, to ensure that the resulting map Y=y +TX is an

immersion satisfying the required bounds, we will make one further

_lar)?

refinement of the above choice of constants, namely, we set €= max (A,
4

This will enable us to prove the following
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Lemma 5.5 Let T:Dr->R, x:Dr-+S2 be the pulled-back maps defined

before equation (3.3). Then at each w € DG'

IT| <15¢ ana ||Dx|| < 332, hence |T||IDX|| <<% .

Proof: From |IT-T||<e one easily checks that the two maps ¥, E:Dr-vR
satisfy Hw-$“o<4e. This enables one to make a homotopy argument
very similar to that of Lemma 5.2 to show that for w € DG'
2,(t) =V (W) +tX(w) intersects i(ﬁwe,w). it follows that
|T(w)| € 4e+(1+a?)10 € < 15€.

Differentiating equation (3.1) and using the fact that

lztw] s Q] = 2 15A

, we obtain ||DS(w) || S Tt £ U ST

S,%% Since
S(w) is a weighted sum of unit vectors Ni which lie within 3a of
each other, and since at least one of the "weights", g(:), is equal
to one, it follows that |S(w)| 21. Therefore,

Jlps|l  30a
DXl £ 2 s . (o]
|| ” < “sll zr

Lemma 5.6 T:D;+R is differentiable and satisfies “DTH<%-.

Proof: Let us denote the derivative of G:D;xR+R with respect to

the first factor by D1G and the derivative with respect to the second

factor by 3. By Lemma 5. 1, |X(w)~(0,0,1)| <5a, so differentiation
of equation (3.3) gives | |-|Dh X -n‘xlzln’xl-lbh nx|>

The implicit function theorem and equation (3.3) now imply T is
differentiable.
Furthermore, since Dy is easily seen to satisfy ||Dy||<1+a
and ||vDy||<2a , we obtain '

RPN

llp, G||=||Dh 7 (DY+TDX) - w° (D¢+TDX)|ISa((1+a) 1g) *20+75 S - Thus we have

||D'r||=ﬂ9_lﬁﬂs?. o

5%l
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- % 2
Lemma 5.7 T:Dy+R is in Lz,p(Dé)' and ||D T”P is bounded by

a constant which does not depend on y.
1

Proof: Set w=(w ,wz). Taking of equation (3.4) (using

i.
ow ow

equation (3.3)) yields an equation of the form

.
"Ry \, e T
Y

0 = o — 22— +C,
(3:Y=1 BrY 3uBau 3t o ka1

where CB y C depend on derivatives of y and X up to order twc
’

and derivatives of Ei and T up to order one, all of which

quantities we have uniform bounds for.

By Lemma 2.1 the second derivatives of ﬁi are bounded in
terms of a and E, and by Lemma 5.6, %% is bounded away from 0.

Thus, the result follows by solving for the second derivative ¢

T in the above equation.



(1]

[2]

(31

(4]

(5]

6]

(7]

(81

(9]

-23-

REFERENCES

BRYANT, A duality theorem for Willmore surfaces, preprint (1984).

CHEEGER, Finiteness theorems for Riemannian manifolds,

Amer. J. of Math., 92 (1970), 61-74.

FRIEDMAN, Partial Differential Equations, Holt, Rinehart

and Winston, Inc. (1969).

GROMOV, Structures Métriques pour les Variétés Riemanniennes,

rédigé par J. Lafontaine et P. Pansu, Cédic-Fernand

Nathan , (1981).

LANGER, Diameter bounds for surfaces, preprint (1984).

LI and S. T. YAU, A conformal invariant and applications
to the Willmore conjecture and the first eigenvalue

for compact surfaces, Invent. Math., 69 (1982), 269-291.

B. MORREY, Multiple Integrals in the Calculus of vVariations,

Springer, (1966).

MUMFORD, A remark on Mahler's compactness theorem, Proc.

A. M. S., 28 (1971), 289-294.

L. WEINER, On a problem of Chen, Willmore, et al, Indiana

Univ. Math. Journ., 27 (1978), 19-35.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 

